Generating a novel synthetic dataset for rehabilitation exercises using pose-guided conditioned diffusion models: A quantitative and qualitative evaluation

Machine learning has emerged as a promising approach to enhance rehabilitation therapy monitoring and evaluation, providing personalized insights. However, the scarcity of data remains a significant challenge in developing robust machine learning models for rehabilitation. This paper introduces a no...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 167; p. 107665
Main Authors Mennella, Ciro, Maniscalco, Umberto, De Pietro, Giuseppe, Esposito, Massimo
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.12.2023
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2023.107665

Cover

Abstract Machine learning has emerged as a promising approach to enhance rehabilitation therapy monitoring and evaluation, providing personalized insights. However, the scarcity of data remains a significant challenge in developing robust machine learning models for rehabilitation. This paper introduces a novel synthetic dataset for rehabilitation exercises, leveraging pose-guided person image generation using conditioned diffusion models. By processing a pre-labeled dataset of class movements for 6 rehabilitation exercises, the described method generates realistic human movement images of elderly subjects engaging in home-based exercises. A total of 22,352 images were generated to accurately capture the spatial consistency of human joint relationships for predefined exercise movements. This novel dataset significantly amplified variability in the physical and demographic attributes of the main subject and the background environment. Quantitative metrics used for image assessment revealed highly favorable results. The generated images successfully maintained intra-class and inter-class consistency in motion data, producing outstanding outcomes with distance correlation values exceeding the 0.90. This innovative approach empowers researchers to enhance the value of existing limited datasets by generating high-fidelity synthetic images that precisely augment the anthropometric and biomechanical attributes of individuals engaged in rehabilitation exercises. •Enriching real-world rehabilitation datasets through synthetic data augmentation.•Advanced generative algorithms for creating novel, high-fidelity images that capture essential biomechanical attributes.•Introducing comprehensive evaluation methods for validating the consistency of generated synthetic data in the rehabilitation field.
AbstractList Machine learning has emerged as a promising approach to enhance rehabilitation therapy monitoring and evaluation, providing personalized insights. However, the scarcity of data remains a significant challenge in developing robust machine learning models for rehabilitation. This paper introduces a novel synthetic dataset for rehabilitation exercises, leveraging pose-guided person image generation using conditioned diffusion models. By processing a pre-labeled dataset of class movements for 6 rehabilitation exercises, the described method generates realistic human movement images of elderly subjects engaging in home-based exercises. A total of 22,352 images were generated to accurately capture the spatial consistency of human joint relationships for predefined exercise movements. This novel dataset significantly amplified variability in the physical and demographic attributes of the main subject and the background environment. Quantitative metrics used for image assessment revealed highly favorable results. The generated images successfully maintained intra-class and inter-class consistency in motion data, producing outstanding outcomes with distance correlation values exceeding the 0.90. This innovative approach empowers researchers to enhance the value of existing limited datasets by generating high-fidelity synthetic images that precisely augment the anthropometric and biomechanical attributes of individuals engaged in rehabilitation exercises.
AbstractMachine learning has emerged as a promising approach to enhance rehabilitation therapy monitoring and evaluation, providing personalized insights. However, the scarcity of data remains a significant challenge in developing robust machine learning models for rehabilitation. This paper introduces a novel synthetic dataset for rehabilitation exercises, leveraging pose-guided person image generation using conditioned diffusion models. By processing a pre-labeled dataset of class movements for 6 rehabilitation exercises, the described method generates realistic human movement images of elderly subjects engaging in home-based exercises. A total of 22,352 images were generated to accurately capture the spatial consistency of human joint relationships for predefined exercise movements. This novel dataset significantly amplified variability in the physical and demographic attributes of the main subject and the background environment. Quantitative metrics used for image assessment revealed highly favorable results. The generated images successfully maintained intra-class and inter-class consistency in motion data, producing outstanding outcomes with distance correlation values exceeding the 0.90. This innovative approach empowers researchers to enhance the value of existing limited datasets by generating high-fidelity synthetic images that precisely augment the anthropometric and biomechanical attributes of individuals engaged in rehabilitation exercises.
Machine learning has emerged as a promising approach to enhance rehabilitation therapy monitoring and evaluation, providing personalized insights. However, the scarcity of data remains a significant challenge in developing robust machine learning models for rehabilitation. This paper introduces a novel synthetic dataset for rehabilitation exercises, leveraging pose-guided person image generation using conditioned diffusion models. By processing a pre-labeled dataset of class movements for 6 rehabilitation exercises, the described method generates realistic human movement images of elderly subjects engaging in home-based exercises. A total of 22,352 images were generated to accurately capture the spatial consistency of human joint relationships for predefined exercise movements. This novel dataset significantly amplified variability in the physical and demographic attributes of the main subject and the background environment. Quantitative metrics used for image assessment revealed highly favorable results. The generated images successfully maintained intra-class and inter-class consistency in motion data, producing outstanding outcomes with distance correlation values exceeding the 0.90. This innovative approach empowers researchers to enhance the value of existing limited datasets by generating high-fidelity synthetic images that precisely augment the anthropometric and biomechanical attributes of individuals engaged in rehabilitation exercises. •Enriching real-world rehabilitation datasets through synthetic data augmentation.•Advanced generative algorithms for creating novel, high-fidelity images that capture essential biomechanical attributes.•Introducing comprehensive evaluation methods for validating the consistency of generated synthetic data in the rehabilitation field.
Machine learning has emerged as a promising approach to enhance rehabilitation therapy monitoring and evaluation, providing personalized insights. However, the scarcity of data remains a significant challenge in developing robust machine learning models for rehabilitation. This paper introduces a novel synthetic dataset for rehabilitation exercises, leveraging pose-guided person image generation using conditioned diffusion models. By processing a pre-labeled dataset of class movements for 6 rehabilitation exercises, the described method generates realistic human movement images of elderly subjects engaging in home-based exercises. A total of 22,352 images were generated to accurately capture the spatial consistency of human joint relationships for predefined exercise movements. This novel dataset significantly amplified variability in the physical and demographic attributes of the main subject and the background environment. Quantitative metrics used for image assessment revealed highly favorable results. The generated images successfully maintained intra-class and inter-class consistency in motion data, producing outstanding outcomes with distance correlation values exceeding the 0.90. This innovative approach empowers researchers to enhance the value of existing limited datasets by generating high-fidelity synthetic images that precisely augment the anthropometric and biomechanical attributes of individuals engaged in rehabilitation exercises.Machine learning has emerged as a promising approach to enhance rehabilitation therapy monitoring and evaluation, providing personalized insights. However, the scarcity of data remains a significant challenge in developing robust machine learning models for rehabilitation. This paper introduces a novel synthetic dataset for rehabilitation exercises, leveraging pose-guided person image generation using conditioned diffusion models. By processing a pre-labeled dataset of class movements for 6 rehabilitation exercises, the described method generates realistic human movement images of elderly subjects engaging in home-based exercises. A total of 22,352 images were generated to accurately capture the spatial consistency of human joint relationships for predefined exercise movements. This novel dataset significantly amplified variability in the physical and demographic attributes of the main subject and the background environment. Quantitative metrics used for image assessment revealed highly favorable results. The generated images successfully maintained intra-class and inter-class consistency in motion data, producing outstanding outcomes with distance correlation values exceeding the 0.90. This innovative approach empowers researchers to enhance the value of existing limited datasets by generating high-fidelity synthetic images that precisely augment the anthropometric and biomechanical attributes of individuals engaged in rehabilitation exercises.
ArticleNumber 107665
Author Maniscalco, Umberto
Mennella, Ciro
De Pietro, Giuseppe
Esposito, Massimo
Author_xml – sequence: 1
  givenname: Ciro
  orcidid: 0000-0003-0419-7181
  surname: Mennella
  fullname: Mennella, Ciro
  email: ciro.mennella@icar.cnr.it
– sequence: 2
  givenname: Umberto
  orcidid: 0000-0002-7157-8411
  surname: Maniscalco
  fullname: Maniscalco, Umberto
  email: umberto.maniscalco@icar.cnr.it
– sequence: 3
  givenname: Giuseppe
  orcidid: 0000-0002-4675-5957
  surname: De Pietro
  fullname: De Pietro, Giuseppe
– sequence: 4
  givenname: Massimo
  orcidid: 0000-0002-7196-7994
  surname: Esposito
  fullname: Esposito, Massimo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37925908$$D View this record in MEDLINE/PubMed
BookMark eNqVktFuFCEUhompsdvqKxgSb7yZFRhmhvHC2DS2NWnihXpNGDjTsrKwBWbjPosvK9Pd1qSJMV4Bh-_8HM5_TtCRDx4QwpQsKaHtu9VSh_VmsGENZskIq0u4a9vmGVpQ0fUVaWp-hBaEUFJxwZpjdJLSihDCSU1eoOO661nTE7FAvy7BQ1TZ-hussA9bcDjtfL6FbDU2KqsEGY8h4gi3arDO5gIHj-EnRG0TJDylOXkTElQ3kzVgsA7e2Jkqe2PHsRAlYx0MuPQen-G7Sfl8L7QFrLyZA-7hDFvlpvs3XqLno3IJXh3WU_T94tO386vq-svl5_Oz60rzpslVDQyo6Meh1jCYth-Y4oYOQnNRk6HlXUtUpwRXQE25YG1Hqer5qAwbhCkdOUVv97qbGO4mSFmubdLgnPIQpiSZEG3Tlzb2BX3zBF2FKfpSXaF6xtqm4axQrw_UNBSH5CbatYo7-dD2Aog9oGNIKcL4iFAiZ4flSv5xWM4Oy73DJfXDk1R9sCRHZd1_CBQzYGshSu2st1q5H7CD9PgfKhOTRH6dh2ieIVYTSmvSFYGPfxeQJth_1_AbFiPgZQ
CitedBy_id crossref_primary_10_1007_s44163_024_00130_7
crossref_primary_10_1109_JIOT_2024_3421918
crossref_primary_10_1016_j_compbiomed_2024_108826
Cites_doi 10.1109/ACCESS.2023.3236084
10.1097/CCM.0b013e3181a38937
10.1016/j.cviu.2018.10.009
10.1186/1743-0003-11-3
10.1016/j.artint.2021.103546
10.1186/s12883-017-0888-0
10.1056/NEJMsa1713258
10.1016/j.knosys.2021.107024
10.1214/009053607000000505
10.1007/s00530-021-00815-4
10.3390/s23187667
10.1038/s41598-023-39278-0
10.1109/TCSVT.2021.3059706
10.1186/s40537-019-0197-0
10.1145/3065386
10.1109/TIP.2020.3023853
10.1016/S0140-6736(11)60325-5
10.1016/j.compbiomed.2023.107485
10.1186/1743-0003-10-60
10.1109/TIP.2003.819861
10.1016/j.patter.2023.100788
10.1145/3575656
10.1126/sciadv.abb7973
10.1016/j.patcog.2020.107404
10.1109/TIP.2021.3052364
10.3390/app10030762
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright © 2023 Elsevier Ltd. All rights reserved.
2023. Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
– notice: Copyright © 2023 Elsevier Ltd. All rights reserved.
– notice: 2023. Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2023.107665
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Computing Database
Health & Medical Collection (Alumni)
Proquest Medical Database
Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE


Research Library Prep
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 107665
ExternalDocumentID 37925908
10_1016_j_compbiomed_2023_107665
1_s2_0_S0010482523011307
S0010482523011307
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
AAYXX
CITATION
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c455t-3e2e189fb3cebd69b2a4d1b8c4830b64760a7a84ae1d4d126711a94fad2b8d403
IEDL.DBID BENPR
ISSN 0010-4825
1879-0534
IngestDate Sat Sep 27 18:38:21 EDT 2025
Tue Oct 07 06:39:18 EDT 2025
Wed Feb 19 02:05:11 EST 2025
Thu Apr 24 23:06:19 EDT 2025
Wed Oct 01 05:18:12 EDT 2025
Tue Feb 25 20:11:33 EST 2025
Tue Oct 14 19:33:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Computer vision
Rehabilitation
Generative models
Pose estimation
Artificial Intelligence
Language English
License Copyright © 2023 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-3e2e189fb3cebd69b2a4d1b8c4830b64760a7a84ae1d4d126711a94fad2b8d403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0419-7181
0000-0002-4675-5957
0000-0002-7157-8411
0000-0002-7196-7994
PMID 37925908
PQID 2892265542
PQPubID 1226355
PageCount 1
ParticipantIDs proquest_miscellaneous_2886598259
proquest_journals_2892265542
pubmed_primary_37925908
crossref_primary_10_1016_j_compbiomed_2023_107665
crossref_citationtrail_10_1016_j_compbiomed_2023_107665
elsevier_clinicalkeyesjournals_1_s2_0_S0010482523011307
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2023_107665
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Chen, Zhang, Tan, Yin, Liu (b37) 2021; 32
Rombach, Blattmann, Lorenz, Esser, Ommer (b29) 2022
Seib, Lange, Wirtz (b18) 2020
Prevedello, Halabi, Shih, Wu, Kohli, Chokshi, Erickson, Kalpathy-Cramer, Andriole, Flanders (b76) 2019; 1
Müller-Franzes, Niehues, Khader, Arasteh, Haarburger, Kuhl, Wang, Han, Nolte, Nebelung (b65) 2023; 13
Akbar, Wang, Eklund (b21) 2023
Csiszar (b57) 1989
Qin, Zhang, Huang, Dehghan, Zaiane, Jagersand (b55) 2020; 106
Giggins, Persson, Caulfield (b3) 2013; 10
Ma, Jia, Sun, Schiele, Tuytelaars, Van Gool (b10) 2017; 30
Shorten, Khoshgoftaar (b14) 2019; 6
Mennella, Maniscalco, De Pietro, Esposito (b64) 2023
Perera, Patel (b73) 2023
Székely, Rizzo, Bakirov (b61) 2007; 35
Mao, Li, Xie, Lau, Wang, Paul Smolley (b67) 2017
Krizhevsky, Sutskever, Hinton (b13) 2017; 60
Ge, Li, Zhao, Yin, Yi, Wang (b69) 2018; 31
Langhorne, Bernhardt, Kwakkel (b2) 2011; 377
Ma, Jia, Sun, Schiele, Tuytelaars, Van Gool (b33) 2017; 30
Holzinger, Saranti, Angerschmid, Finzel, Schmid, Mueller (b9) 2023
Redmon, Divvala, Girshick, Farhadi (b59) 2016
Votel, Li (b60) 2017
Zheng, Yang, Yu, Zheng, Yang, Kautz (b66) 2019
Mello, Lieou, Goodman (b75) 2018; 378
Ho, Jain, Abbeel (b28) 2020; 33
Neverova, Guler, Kokkinos (b39) 2018
Jia, Zhang, Wang, Tan (b31) 2022
Liu, Liu, Chiu, Tai, Tang (b35) 2020
Balakrishnan, Zhao, Dalca, Durand, Guttag (b11) 2018
Ramesh, Pavlov, Goh, Gray, Voss, Radford, Chen, Sutskever (b30) 2021
Pinaya, Tudosiu, Dafflon, Da Costa, Fernandez, Nachev, Ourselin, Cardoso (b19) 2022
Packhäuser, Folle, Thamm, Maier (b22) 2023
Gulrajani, Ahmed, Arjovsky, Dumoulin, Courville (b25) 2017; 30
Hinton, Roweis (b62) 2002; 15
Leinar, Jitendra (b74) 2021
Moghadam, Van Dalen, Martin, Lennerz, Yip, Farahani, Bashashati (b23) 2023
Wang, Bovik, Sheikh, Simoncelli (b54) 2004; 13
Odena, Olah, Shlens (b27) 2017
Müller, Holzinger (b17) 2021; 300
Saharia, Chan, Saxena, Li, Whang, Denton, Ghasemipour, Gontijo Lopes, Karagol Ayan, Salimans (b48) 2022; 35
Ma, Jia, Sun, Schiele, Tuytelaars, Van Gool (b68) 2017; 30
Radford, Kim, Hallacy, Ramesh, Goh, Agarwal, Sastry, Askell, Mishkin, Clark (b45) 2021
Xu, Fu, Wen, Pan, Jiang, Xue (b40) 2020; 29
Perez, Wang (b15) 2017
Trabucco, Doherty, Gurinas, Salakhutdinov (b44) 2023
Kingma, Welling (b26) 2013
Burtin, Clerckx, Robbeets, Ferdinande, Langer, Troosters, Hermans, Decramer, Gosselink (b1) 2009; 37
Borji (b50) 2019; 179
Stöckl (b43) 2022
Fréchet (b58) 1957
Dorjsembe, Odonchimed, Xiao (b20) 2022
Yu, Seff, Zhang, Song, Funkhouser, Xiao (b70) 2015
Yang, Wang, Liu, Gao, Ren, Zhang, Wang, Ma, Hua, Gao (b41) 2021; 30
Wang, She, Ward (b49) 2021; 54
Luzi, Marrero, Wynar, Baraniuk, Henry (b71) 2023
Salimans, Goodfellow, Zaremba, Cheung, Radford, Chen (b52) 2016; 29
Inoue (b16) 2018
Theis, Oord, Bethge (b51) 2015
Gauthier, Kane, Borstad, Strahl, Uswatte, Taub, Morris, Hall, Arakelian, Mark (b5) 2017; 17
P.Y. Simard, D. Steinkraus, J.C. Platt, et al., Best practices for convolutional neural networks applied to visual document analysis, in: Icdar, Vol. 3, Edinburgh, 2003.
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (b24) 2014
Maciejasz, Eschweiler, Gerlach-Hahn, Jansen-Troy, Leonhardt (b6) 2014; 11
Wei, Wu (b63) 2023; 23
Liu, Wei, Lu, Zhou (b72) 2018
Mennella, Maniscalco, De Pietro, Esposito (b46) 2023
Barratt, Sharma (b56) 2018
Pereira, Folgado, Cotrim, Sousa (b4) 2019
Liu, Wang, Ji, Ge, Chen (b38) 2021; 223
Heusel, Ramsauer, Unterthiner, Nessler, Hochreiter (b53) 2017; 30
Krause, Grabsch, Kloor, Jendrusch, Echle, Buelow, Boor, Luedde, Brinker, Trautwein (b78) 2021; 254
Han, Nebelung, Haarburger, Horst, Reinartz, Merhof, Kiessling, Schulz, Truhn (b77) 2020; 6
von Platen, Patil, Lozhkov, Cuenca, Lambert, Rasul, Davaadorj, Wolf (b47) 2022
Merdivan, Singh, Hanke, Kropf, Holzinger, Geist (b8) 2020; 10
Sha, Zhang, Shen, Li, Mei (b32) 2023; 55
Balakrishnan, Zhao, Dalca, Durand, Guttag (b36) 2018
Debnath, O’Brien, Yamaguchi, Behera (b7) 2022; 28
Karmakar, Mishra (b34) 2020
Zhang, Agrawala (b42) 2023
Pereira (10.1016/j.compbiomed.2023.107665_b4) 2019
Wang (10.1016/j.compbiomed.2023.107665_b54) 2004; 13
Merdivan (10.1016/j.compbiomed.2023.107665_b8) 2020; 10
Rombach (10.1016/j.compbiomed.2023.107665_b29) 2022
Prevedello (10.1016/j.compbiomed.2023.107665_b76) 2019; 1
Ge (10.1016/j.compbiomed.2023.107665_b69) 2018; 31
Radford (10.1016/j.compbiomed.2023.107665_b45) 2021
Fréchet (10.1016/j.compbiomed.2023.107665_b58) 1957
10.1016/j.compbiomed.2023.107665_b12
Székely (10.1016/j.compbiomed.2023.107665_b61) 2007; 35
Ho (10.1016/j.compbiomed.2023.107665_b28) 2020; 33
Stöckl (10.1016/j.compbiomed.2023.107665_b43) 2022
Csiszar (10.1016/j.compbiomed.2023.107665_b57) 1989
Gulrajani (10.1016/j.compbiomed.2023.107665_b25) 2017; 30
Yang (10.1016/j.compbiomed.2023.107665_b41) 2021; 30
Wang (10.1016/j.compbiomed.2023.107665_b49) 2021; 54
Qin (10.1016/j.compbiomed.2023.107665_b55) 2020; 106
Sha (10.1016/j.compbiomed.2023.107665_b32) 2023; 55
Pinaya (10.1016/j.compbiomed.2023.107665_b19) 2022
Packhäuser (10.1016/j.compbiomed.2023.107665_b22) 2023
Ramesh (10.1016/j.compbiomed.2023.107665_b30) 2021
Wei (10.1016/j.compbiomed.2023.107665_b63) 2023; 23
Goodfellow (10.1016/j.compbiomed.2023.107665_b24) 2014
Theis (10.1016/j.compbiomed.2023.107665_b51) 2015
Balakrishnan (10.1016/j.compbiomed.2023.107665_b36) 2018
Krizhevsky (10.1016/j.compbiomed.2023.107665_b13) 2017; 60
Mello (10.1016/j.compbiomed.2023.107665_b75) 2018; 378
Yu (10.1016/j.compbiomed.2023.107665_b70) 2015
Luzi (10.1016/j.compbiomed.2023.107665_b71) 2023
Krause (10.1016/j.compbiomed.2023.107665_b78) 2021; 254
Salimans (10.1016/j.compbiomed.2023.107665_b52) 2016; 29
Hinton (10.1016/j.compbiomed.2023.107665_b62) 2002; 15
Langhorne (10.1016/j.compbiomed.2023.107665_b2) 2011; 377
Müller-Franzes (10.1016/j.compbiomed.2023.107665_b65) 2023; 13
Mao (10.1016/j.compbiomed.2023.107665_b67) 2017
Perez (10.1016/j.compbiomed.2023.107665_b15) 2017
Votel (10.1016/j.compbiomed.2023.107665_b60) 2017
Han (10.1016/j.compbiomed.2023.107665_b77) 2020; 6
von Platen (10.1016/j.compbiomed.2023.107665_b47) 2022
Maciejasz (10.1016/j.compbiomed.2023.107665_b6) 2014; 11
Seib (10.1016/j.compbiomed.2023.107665_b18) 2020
Akbar (10.1016/j.compbiomed.2023.107665_b21) 2023
Debnath (10.1016/j.compbiomed.2023.107665_b7) 2022; 28
Karmakar (10.1016/j.compbiomed.2023.107665_b34) 2020
Leinar (10.1016/j.compbiomed.2023.107665_b74) 2021
Ma (10.1016/j.compbiomed.2023.107665_b33) 2017; 30
Kingma (10.1016/j.compbiomed.2023.107665_b26) 2013
Neverova (10.1016/j.compbiomed.2023.107665_b39) 2018
Dorjsembe (10.1016/j.compbiomed.2023.107665_b20) 2022
Giggins (10.1016/j.compbiomed.2023.107665_b3) 2013; 10
Moghadam (10.1016/j.compbiomed.2023.107665_b23) 2023
Barratt (10.1016/j.compbiomed.2023.107665_b56) 2018
Saharia (10.1016/j.compbiomed.2023.107665_b48) 2022; 35
Jia (10.1016/j.compbiomed.2023.107665_b31) 2022
Zhang (10.1016/j.compbiomed.2023.107665_b42) 2023
Shorten (10.1016/j.compbiomed.2023.107665_b14) 2019; 6
Mennella (10.1016/j.compbiomed.2023.107665_b64) 2023
Perera (10.1016/j.compbiomed.2023.107665_b73) 2023
Zheng (10.1016/j.compbiomed.2023.107665_b66) 2019
Holzinger (10.1016/j.compbiomed.2023.107665_b9) 2023
Gauthier (10.1016/j.compbiomed.2023.107665_b5) 2017; 17
Trabucco (10.1016/j.compbiomed.2023.107665_b44) 2023
Burtin (10.1016/j.compbiomed.2023.107665_b1) 2009; 37
Liu (10.1016/j.compbiomed.2023.107665_b72) 2018
Odena (10.1016/j.compbiomed.2023.107665_b27) 2017
Inoue (10.1016/j.compbiomed.2023.107665_b16) 2018
Heusel (10.1016/j.compbiomed.2023.107665_b53) 2017; 30
Balakrishnan (10.1016/j.compbiomed.2023.107665_b11) 2018
Mennella (10.1016/j.compbiomed.2023.107665_b46) 2023
Chen (10.1016/j.compbiomed.2023.107665_b37) 2021; 32
Redmon (10.1016/j.compbiomed.2023.107665_b59) 2016
Ma (10.1016/j.compbiomed.2023.107665_b10) 2017; 30
Liu (10.1016/j.compbiomed.2023.107665_b35) 2020
Borji (10.1016/j.compbiomed.2023.107665_b50) 2019; 179
Ma (10.1016/j.compbiomed.2023.107665_b68) 2017; 30
Xu (10.1016/j.compbiomed.2023.107665_b40) 2020; 29
Müller (10.1016/j.compbiomed.2023.107665_b17) 2021; 300
Liu (10.1016/j.compbiomed.2023.107665_b38) 2021; 223
References_xml – volume: 15
  year: 2002
  ident: b62
  article-title: Stochastic neighbor embedding
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 179
  start-page: 41
  year: 2019
  end-page: 65
  ident: b50
  article-title: Pros and cons of gan evaluation measures
  publication-title: Comput. Vis. Image Underst.
– volume: 377
  start-page: 1693
  year: 2011
  end-page: 1702
  ident: b2
  article-title: Stroke rehabilitation
  publication-title: Lancet
– year: 2023
  ident: b21
  article-title: Beware of diffusion models for synthesizing medical images–A comparison with GANs in terms of memorizing brain tumor images
– start-page: 89
  year: 2020
  end-page: 99
  ident: b34
  article-title: A robust pose transformational GAN for pose guided person image synthesis
  publication-title: Computer Vision, Pattern Recognition, Image Processing, and Graphics: 7th National Conference, NCVPRIPG 2019, Hubballi, India, December 22–24, 2019, Revised Selected Papers 7
– volume: 55
  start-page: 1
  year: 2023
  end-page: 37
  ident: b32
  article-title: Deep person generation: A survey from the perspective of face, pose, and cloth synthesis
  publication-title: ACM Comput. Surv.
– start-page: 123
  year: 2018
  end-page: 138
  ident: b39
  article-title: Dense pose transfer
  publication-title: Proceedings of the European Conference on Computer Vision (ECCV)
– year: 2022
  ident: b20
  article-title: Three-dimensional medical image synthesis with denoising diffusion probabilistic models
  publication-title: Medical Imaging with Deep Learning
– start-page: 1
  year: 2023
  end-page: 5
  ident: b22
  article-title: Generation of anonymous chest radiographs using latent diffusion models for training thoracic abnormality classification systems
  publication-title: 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI)
– volume: 32
  start-page: 302
  year: 2021
  end-page: 314
  ident: b37
  article-title: Pman: Progressive multi-attention network for human pose transfer
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– year: 2023
  ident: b46
  article-title: A deep learning system to monitor and assess rehabilitation exercises in home-based remote and unsupervised conditions
  publication-title: Comput. Biol. Med.
– volume: 30
  year: 2017
  ident: b33
  article-title: Pose guided person image generation
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 54
  start-page: 1
  year: 2021
  end-page: 38
  ident: b49
  article-title: Generative adversarial networks in computer vision: A survey and taxonomy
  publication-title: ACM Comput. Surv.
– year: 2018
  ident: b56
  article-title: A note on the inception score
– start-page: 73
  year: 2019
  end-page: 82
  ident: b4
  article-title: Physiotherapy exercises evaluation using a combined approach based on sEMG and wearable inertial sensors
  publication-title: Biosignals
– volume: 31
  year: 2018
  ident: b69
  article-title: Fd-gan: Pose-guided feature distilling gan for robust person re-identification
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 30
  start-page: 2422
  year: 2021
  end-page: 2435
  ident: b41
  article-title: Towards fine-grained human pose transfer with detail replenishing network
  publication-title: IEEE Trans. Image Process.
– volume: 1
  year: 2019
  ident: b76
  article-title: Challenges related to artificial intelligence research in medical imaging and the importance of image analysis competitions
  publication-title: Radiol.: Artif. Intell.
– volume: 10
  start-page: 1
  year: 2013
  end-page: 11
  ident: b3
  article-title: Biofeedback in rehabilitation
  publication-title: J. Neuroeng. Rehabil.
– year: 2017
  ident: b15
  article-title: The effectiveness of data augmentation in image classification using deep learning
– year: 2023
  ident: b64
  article-title: The role of artificial intelligence in future rehabilitation services: A systematic literature review
  publication-title: IEEE Access
– volume: 33
  start-page: 6840
  year: 2020
  end-page: 6851
  ident: b28
  article-title: Denoising diffusion probabilistic models
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2015
  ident: b70
  article-title: Lsun: Construction of a large-scale image dataset using deep learning with humans in the loop
– start-page: 2672
  year: 2014
  end-page: 2680
  ident: b24
  article-title: Advances in Neural Information Processing Systems, Vol. 27
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: b54
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
– volume: 106
  year: 2020
  ident: b55
  article-title: U2-Net: Going deeper with nested U-structure for salient object detection
  publication-title: Pattern Recognit.
– volume: 23
  start-page: 7667
  year: 2023
  ident: b63
  article-title: The application of wearable sensors and machine learning algorithms in rehabilitation training: A systematic review
  publication-title: Sensors
– year: 2021
  ident: b74
  article-title: Maverick research: Forget about your real data – synthetic data is the future of AI
– volume: 13
  start-page: 12098
  year: 2023
  ident: b65
  article-title: A multimodal comparison of latent denoising diffusion probabilistic models and generative adversarial networks for medical image synthesis
  publication-title: Sci. Rep.
– year: 2022
  ident: b31
  article-title: Human image generation: A comprehensive survey
– start-page: 279
  year: 2023
  end-page: 288
  ident: b71
  article-title: Evaluating generative networks using Gaussian mixtures of image features
  publication-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
– volume: 17
  start-page: 1
  year: 2017
  end-page: 18
  ident: b5
  article-title: Video Game Rehabilitation for Outpatient Stroke (VIGoROUS): protocol for a multi-center comparative effectiveness trial of in-home gamified constraint-induced movement therapy for rehabilitation of chronic upper extremity hemiparesis
  publication-title: BMC Neurol.
– year: 2023
  ident: b42
  article-title: Adding conditional control to text-to-image diffusion models
– volume: 30
  year: 2017
  ident: b53
  article-title: Gans trained by a two time-scale update rule converge to a local nash equilibrium
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 30
  year: 2017
  ident: b10
  article-title: Pose guided person image generation
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2018
  ident: b16
  article-title: Data augmentation by pairing samples for images classification
– volume: 29
  start-page: 9060
  year: 2020
  end-page: 9072
  ident: b40
  article-title: Pose-guided person image synthesis in the non-iconic views
  publication-title: IEEE Trans. Image Process.
– start-page: 1409
  year: 1989
  end-page: 1413
  ident: b57
  article-title: A geometric interpretation of Darroch and Ratcliff’s generalized iterative scaling
  publication-title: Ann. Statist.
– year: 2018
  ident: b72
  article-title: An improved evaluation framework for generative adversarial networks
– year: 2023
  ident: b73
  article-title: Analyzing bias in diffusion-based face generation models
– volume: 29
  year: 2016
  ident: b52
  article-title: Improved techniques for training gans
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 35
  start-page: 2769
  year: 2007
  end-page: 2794
  ident: b61
  article-title: Measuring and testing dependence by correlation of distances
  publication-title: Ann. Statist.
– start-page: 2000
  year: 2023
  end-page: 2009
  ident: b23
  article-title: A morphology focused diffusion probabilistic model for synthesis of histopathology images
  publication-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
– start-page: 8340
  year: 2018
  end-page: 8348
  ident: b36
  article-title: Synthesizing images of humans in unseen poses
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 30
  year: 2017
  ident: b25
  article-title: Improved training of wasserstein gans
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2020
  ident: b35
  article-title: Pose-guided high-resolution appearance transfer via progressive training
– volume: 11
  start-page: 1
  year: 2014
  end-page: 29
  ident: b6
  article-title: A survey on robotic devices for upper limb rehabilitation
  publication-title: J. Neuroeng. Rehabil.
– volume: 28
  year: 2022
  ident: b7
  article-title: A review of computer vision-based approaches for physical rehabilitation and assessment
  publication-title: Multimedia Syst.
– volume: 60
  start-page: 84
  year: 2017
  end-page: 90
  ident: b13
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
– year: 2017
  ident: b60
  article-title: Next-generation pose detection with movenet and TensorFlow.js
– year: 2023
  ident: b9
  article-title: Toward human-level concept learning: Pattern benchmarking for AI algorithms
  publication-title: Patterns
– start-page: 2794
  year: 2017
  end-page: 2802
  ident: b67
  article-title: Least squares generative adversarial networks
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– start-page: 8821
  year: 2021
  end-page: 8831
  ident: b30
  article-title: Zero-shot text-to-image generation
  publication-title: International Conference on Machine Learning
– start-page: 8340
  year: 2018
  end-page: 8348
  ident: b11
  article-title: Synthesizing images of humans in unseen poses
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 2138
  year: 2019
  end-page: 2147
  ident: b66
  article-title: Joint discriminative and generative learning for person re-identification
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 30
  year: 2017
  ident: b68
  article-title: Pose guided person image generation
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 10
  start-page: 762
  year: 2020
  ident: b8
  article-title: Human annotated dialogues dataset for natural conversational agents
  publication-title: Appl. Sci.
– volume: 300
  year: 2021
  ident: b17
  article-title: Kandinsky patterns
  publication-title: Artificial Intelligence
– start-page: 8748
  year: 2021
  end-page: 8763
  ident: b45
  article-title: Learning transferable visual models from natural language supervision
  publication-title: International Conference on Machine Learning
– reference: P.Y. Simard, D. Steinkraus, J.C. Platt, et al., Best practices for convolutional neural networks applied to visual document analysis, in: Icdar, Vol. 3, Edinburgh, 2003.
– volume: 37
  start-page: 2499
  year: 2009
  end-page: 2505
  ident: b1
  article-title: Early exercise in critically ill patients enhances short-term functional recovery
  publication-title: Crit. Care Med.
– volume: 378
  start-page: 2202
  year: 2018
  end-page: 2211
  ident: b75
  article-title: Clinical trial participants’ views of the risks and benefits of data sharing
  publication-title: N. Engl. J. Med.
– year: 2020
  ident: b18
  article-title: Mixing real and synthetic data to enhance neural network training–A review of current approaches
– start-page: 117
  year: 2022
  end-page: 126
  ident: b19
  article-title: Brain imaging generation with latent diffusion models
  publication-title: MICCAI Workshop on Deep Generative Models
– year: 2022
  ident: b47
  article-title: Diffusers: State-of-the-art diffusion models
– year: 2015
  ident: b51
  article-title: A note on the evaluation of generative models
– year: 2022
  ident: b43
  article-title: Evaluating a synthetic image dataset generated with stable diffusion
– volume: 35
  start-page: 36479
  year: 2022
  end-page: 36494
  ident: b48
  article-title: Photorealistic text-to-image diffusion models with deep language understanding
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 2642
  year: 2017
  end-page: 2651
  ident: b27
  article-title: Conditional image synthesis with auxiliary classifier gans
  publication-title: International Conference on Machine Learning
– start-page: 10684
  year: 2022
  end-page: 10695
  ident: b29
  article-title: High-resolution image synthesis with latent diffusion models
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 183
  year: 1957
  end-page: 198
  ident: b58
  article-title: Sur la distance de deux lois de probabilité
  publication-title: Annales de l’ISUP, Vol. 6
– year: 2013
  ident: b26
  article-title: Auto-encoding variational bayes
– volume: 254
  start-page: 70
  year: 2021
  end-page: 79
  ident: b78
  article-title: Deep learning detects genetic alterations in cancer histology generated by adversarial networks
  publication-title: J. Pathol.
– start-page: 779
  year: 2016
  end-page: 788
  ident: b59
  article-title: You only look once: Unified, real-time object detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 223
  year: 2021
  ident: b38
  article-title: Pose transfer generation with semantic parsing attention network for person re-identification
  publication-title: Knowl.-Based Syst.
– volume: 6
  start-page: 1
  year: 2019
  end-page: 48
  ident: b14
  article-title: A survey on image data augmentation for deep learning
  publication-title: J. Big Data
– volume: 6
  start-page: eabb7973
  year: 2020
  ident: b77
  article-title: Breaking medical data sharing boundaries by using synthesized radiographs
  publication-title: Sci. Adv.
– year: 2023
  ident: b44
  article-title: Effective data augmentation with diffusion models
– year: 2023
  ident: 10.1016/j.compbiomed.2023.107665_b64
  article-title: The role of artificial intelligence in future rehabilitation services: A systematic literature review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3236084
– year: 2020
  ident: 10.1016/j.compbiomed.2023.107665_b35
– volume: 37
  start-page: 2499
  issue: 9
  year: 2009
  ident: 10.1016/j.compbiomed.2023.107665_b1
  article-title: Early exercise in critically ill patients enhances short-term functional recovery
  publication-title: Crit. Care Med.
  doi: 10.1097/CCM.0b013e3181a38937
– start-page: 2138
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107665_b66
  article-title: Joint discriminative and generative learning for person re-identification
– volume: 179
  start-page: 41
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107665_b50
  article-title: Pros and cons of gan evaluation measures
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2018.10.009
– year: 2018
  ident: 10.1016/j.compbiomed.2023.107665_b56
– start-page: 2794
  year: 2017
  ident: 10.1016/j.compbiomed.2023.107665_b67
  article-title: Least squares generative adversarial networks
– volume: 29
  year: 2016
  ident: 10.1016/j.compbiomed.2023.107665_b52
  article-title: Improved techniques for training gans
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 123
  year: 2018
  ident: 10.1016/j.compbiomed.2023.107665_b39
  article-title: Dense pose transfer
– year: 2023
  ident: 10.1016/j.compbiomed.2023.107665_b44
– start-page: 183
  year: 1957
  ident: 10.1016/j.compbiomed.2023.107665_b58
  article-title: Sur la distance de deux lois de probabilité
– volume: 11
  start-page: 1
  issue: 1
  year: 2014
  ident: 10.1016/j.compbiomed.2023.107665_b6
  article-title: A survey on robotic devices for upper limb rehabilitation
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-11-3
– volume: 300
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107665_b17
  article-title: Kandinsky patterns
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2021.103546
– start-page: 779
  year: 2016
  ident: 10.1016/j.compbiomed.2023.107665_b59
  article-title: You only look once: Unified, real-time object detection
– volume: 17
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2023.107665_b5
  article-title: Video Game Rehabilitation for Outpatient Stroke (VIGoROUS): protocol for a multi-center comparative effectiveness trial of in-home gamified constraint-induced movement therapy for rehabilitation of chronic upper extremity hemiparesis
  publication-title: BMC Neurol.
  doi: 10.1186/s12883-017-0888-0
– start-page: 73
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107665_b4
  article-title: Physiotherapy exercises evaluation using a combined approach based on sEMG and wearable inertial sensors
– year: 2018
  ident: 10.1016/j.compbiomed.2023.107665_b16
– year: 2021
  ident: 10.1016/j.compbiomed.2023.107665_b74
– start-page: 117
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107665_b19
  article-title: Brain imaging generation with latent diffusion models
– volume: 378
  start-page: 2202
  issue: 23
  year: 2018
  ident: 10.1016/j.compbiomed.2023.107665_b75
  article-title: Clinical trial participants’ views of the risks and benefits of data sharing
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMsa1713258
– volume: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107665_b76
  article-title: Challenges related to artificial intelligence research in medical imaging and the importance of image analysis competitions
  publication-title: Radiol.: Artif. Intell.
– volume: 223
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107665_b38
  article-title: Pose transfer generation with semantic parsing attention network for person re-identification
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.107024
– start-page: 10684
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107665_b29
  article-title: High-resolution image synthesis with latent diffusion models
– volume: 35
  start-page: 2769
  issue: 6
  year: 2007
  ident: 10.1016/j.compbiomed.2023.107665_b61
  article-title: Measuring and testing dependence by correlation of distances
  publication-title: Ann. Statist.
  doi: 10.1214/009053607000000505
– start-page: 8340
  year: 2018
  ident: 10.1016/j.compbiomed.2023.107665_b36
  article-title: Synthesizing images of humans in unseen poses
– year: 2023
  ident: 10.1016/j.compbiomed.2023.107665_b73
– year: 2022
  ident: 10.1016/j.compbiomed.2023.107665_b20
  article-title: Three-dimensional medical image synthesis with denoising diffusion probabilistic models
– volume: 30
  year: 2017
  ident: 10.1016/j.compbiomed.2023.107665_b25
  article-title: Improved training of wasserstein gans
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 28
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107665_b7
  article-title: A review of computer vision-based approaches for physical rehabilitation and assessment
  publication-title: Multimedia Syst.
  doi: 10.1007/s00530-021-00815-4
– year: 2020
  ident: 10.1016/j.compbiomed.2023.107665_b18
– volume: 23
  start-page: 7667
  issue: 18
  year: 2023
  ident: 10.1016/j.compbiomed.2023.107665_b63
  article-title: The application of wearable sensors and machine learning algorithms in rehabilitation training: A systematic review
  publication-title: Sensors
  doi: 10.3390/s23187667
– volume: 31
  year: 2018
  ident: 10.1016/j.compbiomed.2023.107665_b69
  article-title: Fd-gan: Pose-guided feature distilling gan for robust person re-identification
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 2642
  year: 2017
  ident: 10.1016/j.compbiomed.2023.107665_b27
  article-title: Conditional image synthesis with auxiliary classifier gans
– volume: 30
  year: 2017
  ident: 10.1016/j.compbiomed.2023.107665_b10
  article-title: Pose guided person image generation
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 13
  start-page: 12098
  issue: 1
  year: 2023
  ident: 10.1016/j.compbiomed.2023.107665_b65
  article-title: A multimodal comparison of latent denoising diffusion probabilistic models and generative adversarial networks for medical image synthesis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-39278-0
– volume: 32
  start-page: 302
  issue: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107665_b37
  article-title: Pman: Progressive multi-attention network for human pose transfer
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2021.3059706
– year: 2017
  ident: 10.1016/j.compbiomed.2023.107665_b60
– volume: 33
  start-page: 6840
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107665_b28
  article-title: Denoising diffusion probabilistic models
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 6
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107665_b14
  article-title: A survey on image data augmentation for deep learning
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0197-0
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  ident: 10.1016/j.compbiomed.2023.107665_b13
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– year: 2023
  ident: 10.1016/j.compbiomed.2023.107665_b21
– volume: 29
  start-page: 9060
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107665_b40
  article-title: Pose-guided person image synthesis in the non-iconic views
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.3023853
– start-page: 2672
  year: 2014
  ident: 10.1016/j.compbiomed.2023.107665_b24
– start-page: 8748
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107665_b45
  article-title: Learning transferable visual models from natural language supervision
– year: 2023
  ident: 10.1016/j.compbiomed.2023.107665_b42
– volume: 35
  start-page: 36479
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107665_b48
  article-title: Photorealistic text-to-image diffusion models with deep language understanding
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 377
  start-page: 1693
  issue: 9778
  year: 2011
  ident: 10.1016/j.compbiomed.2023.107665_b2
  article-title: Stroke rehabilitation
  publication-title: Lancet
  doi: 10.1016/S0140-6736(11)60325-5
– start-page: 1
  year: 2023
  ident: 10.1016/j.compbiomed.2023.107665_b22
  article-title: Generation of anonymous chest radiographs using latent diffusion models for training thoracic abnormality classification systems
– year: 2022
  ident: 10.1016/j.compbiomed.2023.107665_b43
– year: 2023
  ident: 10.1016/j.compbiomed.2023.107665_b46
  article-title: A deep learning system to monitor and assess rehabilitation exercises in home-based remote and unsupervised conditions
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2023.107485
– year: 2018
  ident: 10.1016/j.compbiomed.2023.107665_b72
– volume: 15
  year: 2002
  ident: 10.1016/j.compbiomed.2023.107665_b62
  article-title: Stochastic neighbor embedding
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 10
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.compbiomed.2023.107665_b3
  article-title: Biofeedback in rehabilitation
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-10-60
– ident: 10.1016/j.compbiomed.2023.107665_b12
– year: 2015
  ident: 10.1016/j.compbiomed.2023.107665_b51
– volume: 30
  year: 2017
  ident: 10.1016/j.compbiomed.2023.107665_b33
  article-title: Pose guided person image generation
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 54
  start-page: 1
  issue: 2
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107665_b49
  article-title: Generative adversarial networks in computer vision: A survey and taxonomy
  publication-title: ACM Comput. Surv.
– start-page: 2000
  year: 2023
  ident: 10.1016/j.compbiomed.2023.107665_b23
  article-title: A morphology focused diffusion probabilistic model for synthesis of histopathology images
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: 10.1016/j.compbiomed.2023.107665_b54
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– year: 2023
  ident: 10.1016/j.compbiomed.2023.107665_b9
  article-title: Toward human-level concept learning: Pattern benchmarking for AI algorithms
  publication-title: Patterns
  doi: 10.1016/j.patter.2023.100788
– volume: 55
  start-page: 1
  issue: 12
  year: 2023
  ident: 10.1016/j.compbiomed.2023.107665_b32
  article-title: Deep person generation: A survey from the perspective of face, pose, and cloth synthesis
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3575656
– volume: 6
  start-page: eabb7973
  issue: 49
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107665_b77
  article-title: Breaking medical data sharing boundaries by using synthesized radiographs
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abb7973
– year: 2013
  ident: 10.1016/j.compbiomed.2023.107665_b26
– volume: 30
  year: 2017
  ident: 10.1016/j.compbiomed.2023.107665_b53
  article-title: Gans trained by a two time-scale update rule converge to a local nash equilibrium
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2017
  ident: 10.1016/j.compbiomed.2023.107665_b15
– start-page: 8340
  year: 2018
  ident: 10.1016/j.compbiomed.2023.107665_b11
  article-title: Synthesizing images of humans in unseen poses
– volume: 106
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107665_b55
  article-title: U2-Net: Going deeper with nested U-structure for salient object detection
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107404
– volume: 30
  start-page: 2422
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107665_b41
  article-title: Towards fine-grained human pose transfer with detail replenishing network
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2021.3052364
– year: 2022
  ident: 10.1016/j.compbiomed.2023.107665_b47
– start-page: 89
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107665_b34
  article-title: A robust pose transformational GAN for pose guided person image synthesis
– volume: 30
  year: 2017
  ident: 10.1016/j.compbiomed.2023.107665_b68
  article-title: Pose guided person image generation
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 8821
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107665_b30
  article-title: Zero-shot text-to-image generation
– year: 2022
  ident: 10.1016/j.compbiomed.2023.107665_b31
– year: 2015
  ident: 10.1016/j.compbiomed.2023.107665_b70
– start-page: 279
  year: 2023
  ident: 10.1016/j.compbiomed.2023.107665_b71
  article-title: Evaluating generative networks using Gaussian mixtures of image features
– volume: 10
  start-page: 762
  issue: 3
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107665_b8
  article-title: Human annotated dialogues dataset for natural conversational agents
  publication-title: Appl. Sci.
  doi: 10.3390/app10030762
– start-page: 1409
  year: 1989
  ident: 10.1016/j.compbiomed.2023.107665_b57
  article-title: A geometric interpretation of Darroch and Ratcliff’s generalized iterative scaling
  publication-title: Ann. Statist.
– volume: 254
  start-page: 70
  issue: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107665_b78
  article-title: Deep learning detects genetic alterations in cancer histology generated by adversarial networks
  publication-title: J. Pathol.
SSID ssj0004030
Score 2.4135942
Snippet Machine learning has emerged as a promising approach to enhance rehabilitation therapy monitoring and evaluation, providing personalized insights. However, the...
AbstractMachine learning has emerged as a promising approach to enhance rehabilitation therapy monitoring and evaluation, providing personalized insights....
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 107665
SubjectTerms Aged
Artificial Intelligence
Biomechanics
Computer vision
Consistency
Datasets
Deep learning
Diffusion models
Exercise
Exercise Therapy - methods
Generative models
Human motion
Humans
Image enhancement
Image processing
Internal Medicine
Learning algorithms
Machine Learning
Movement
Other
Pose estimation
Rehabilitation
Synthetic data
Title Generating a novel synthetic dataset for rehabilitation exercises using pose-guided conditioned diffusion models: A quantitative and qualitative evaluation
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482523011307
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482523011307
https://www.ncbi.nlm.nih.gov/pubmed/37925908
https://www.proquest.com/docview/2892265542
https://www.proquest.com/docview/2886598259
Volume 167
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250902
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ta9RAEB7aK4hfSn1tai0r-DWal81uIohU6VmEHqIW7tuybylKyV2bS8Hf4p_tTDa5Q6jSLwd3yRzZ7GRmNvvM8wC8Tri2eS3q2Flbx7yodVxq4-PC-TpJLMbNghqcz2bi9Jx_mRfzLZiNvTAEqxxjYh-o3cLSO_K3uDDASgGTX_ZheRWTahTtro4SGnqQVnDve4qxbdjJiBlrAjsfT2Zfv206JZM8NKVg9OG4OBqwPQHxRSDu0PT-hkTF8WcpKOncnbD-VZD2iWm6B7tDRcmOgws8gi3fPIYHZ8Oe-RP4E5ilCd7MNGsWN_6Stb8bLPzQgBFCtPUrhrUru_6LtZuNakwtI3D8BVsuWh9fdD-ddwxX0S6wHDlGGisdvXRjvaxO-44ds6tON337GgZTphvHQvNm-L5hGH8K59OTH59O40GSIba8KFZx7jOfllVtcuuNE5XJNHepKS0v88QILkWipS659qnDA5mQaaorXmuXmdLh3X8GkwavbR-YF1J4UVXWEGVeleq8xPKDNmqlrL1NIpDjfVd2GDnJZlyqEZj2S21mTNGMqTBjEaRry2Xg7LiHTTVOrRp7UjGKKkws97CVd9n6dggHrUpVm6lEfe_ZkNDtMgqrGF0jOBy9SK1P3nh6BK_Wh_Gpp60c3fhFR-eUgqgXiyqC58H71kPNZZWRkv3B___8BTykMQRoziFMVtedf4kF1socwbacS_wsp5-PhifoFhPHKwI
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKKwEXxD-BAkaCY8BJHDtGqlCBVlvaXSFopd5cx3YqUJXdNhtQn4V34dmYiZNdIRXUS4_5mSjO2N_MxN_MEPKScWOzSlSxs7aKeV6ZuDClj3PnK8Ys4GaOCc7jiRgd8E-H-eEK-T3kwiCtcsDEDqjd1OI_8jcQGICnAMYvfTc7jbFrFO6uDi00TN9awW10Jcb6xI5df_4TQrhmY-cj6PtVmm5v7X8YxX2XgdjyPJ_HmU99UqiqzKwvnVBlarhLysLyImOl4FIwI03BjU8cXEiFTBKjeGVcWhaOswyee42s8YwrCP7W3m9NPn9ZZmayLCTBANpxCMZ6LlFgmCFpPCTZv8Ym5nBaCjRyFxvIfznAnSHcvk1u9R4s3QxT7g5Z8fVdcn3c79HfI79CJWukU1ND6-kPf0Kb8xocTRCgyEht_JyCr0zP_qoSTofuTw1FMv4xnU0bHx-335x3FKJ2F6oqOYo9XVr8yUe7Nj7NW7pJT1tTd-lyAN7U1I6GZNFwvKxofp8cXIlyHpDVGt7tEaFeSOGFUrbEEn0qMVkB7g5uDEtZecsiIofvrm0_cmzTcaIHItx3vdSYRo3poLGIJAvJWagRcgkZNahWDzmwgNoaDNklZOVFsr7p4afRiW5SzfTXrvoSTLsUYRzQPCLrwyzSi5uXKysiLxaXAWVw68jUftriPYXAUo-5isjDMPsWQ82kgvOsePz_hz8nN0b74z29tzPZfUJu4ngCLWidrM7PWv8UnLt5-axfQZQcXfWi_QPl-2aT
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKkSouiH8CBYwEx1AnduwYCaGKsmoprZCg0t6MYzsVqMpumw2oz8Kb8HTMxMmukArqpcf8TBRnxt-M429mCHnBhHW8lnXqnatTUdQ2LW0V0sKHmjEHuFlggvPBodw9Eh-mxXSN_B5zYZBWOWJiD9R-5vAf-RYsDCBSAOeXb9UDLeLTzuTt_DTFDlK40zq204gmsh_Of8LyrX2ztwO6fpnnk_df3u2mQ4eB1ImiWKQ85CErdV1xFyovdZVb4bOqdKLkrJJCSWaVLYUNmYcLuVRZZrWorc-r0gvG4bnXyHXFuUY6oZqqVU4m4zH9BXBOwDJsYBFFbhnSxWN6_StsXw6nlUT3drFr_Ffo27vAyS1yc4hd6XY0tttkLTR3yMbBsDt_l_yKNayRSE0tbWY_wgltzxsIMUGAIhe1DQsKUTI9-6s-OB37PrUUafjHdD5rQ3rcffPBU1iv-1hPyVPs5tLh7z3aN_BpX9NtetrZpk-UA9imtvE0ponG41Ut83vk6EpUc5-sN_BuDwkNUskgtXYVFufTmeUlBDq4JaxUHRxLiBq_u3HDyLFBx4kZKXDfzUpjBjVmosYSki0l57E6yCVk9KhaM2a_Al4bcGGXkFUXyYZ2AJ7WZKbNDTOf-7pLYHY5AjjgeEI2Rysyy5tXcyohz5eXAV9w08g2YdbhPaXEIo-FTsiDaH3LoXKl4TwrH_3_4c_IBkxV83HvcP8xuYHDiXygTbK-OOvCE4jqFtXTfvpQ8vWq5-sfIfxkLQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generating+a+novel+synthetic+dataset+for+rehabilitation+exercises+using+pose-guided+conditioned+diffusion+models%3A+A+quantitative+and+qualitative+evaluation&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Mennella%2C+Ciro&rft.au=Maniscalco%2C+Umberto&rft.au=De+Pietro%2C+Giuseppe&rft.au=Esposito%2C+Massimo&rft.date=2023-12-01&rft.pub=Elsevier+Limited&rft.issn=0010-4825&rft.eissn=1879-0534&rft.volume=167&rft_id=info:doi/10.1016%2Fj.compbiomed.2023.107665&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon