Generating a novel synthetic dataset for rehabilitation exercises using pose-guided conditioned diffusion models: A quantitative and qualitative evaluation
Machine learning has emerged as a promising approach to enhance rehabilitation therapy monitoring and evaluation, providing personalized insights. However, the scarcity of data remains a significant challenge in developing robust machine learning models for rehabilitation. This paper introduces a no...
Saved in:
| Published in | Computers in biology and medicine Vol. 167; p. 107665 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Ltd
01.12.2023
Elsevier Limited |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0010-4825 1879-0534 1879-0534 |
| DOI | 10.1016/j.compbiomed.2023.107665 |
Cover
| Abstract | Machine learning has emerged as a promising approach to enhance rehabilitation therapy monitoring and evaluation, providing personalized insights. However, the scarcity of data remains a significant challenge in developing robust machine learning models for rehabilitation.
This paper introduces a novel synthetic dataset for rehabilitation exercises, leveraging pose-guided person image generation using conditioned diffusion models. By processing a pre-labeled dataset of class movements for 6 rehabilitation exercises, the described method generates realistic human movement images of elderly subjects engaging in home-based exercises.
A total of 22,352 images were generated to accurately capture the spatial consistency of human joint relationships for predefined exercise movements. This novel dataset significantly amplified variability in the physical and demographic attributes of the main subject and the background environment. Quantitative metrics used for image assessment revealed highly favorable results. The generated images successfully maintained intra-class and inter-class consistency in motion data, producing outstanding outcomes with distance correlation values exceeding the 0.90.
This innovative approach empowers researchers to enhance the value of existing limited datasets by generating high-fidelity synthetic images that precisely augment the anthropometric and biomechanical attributes of individuals engaged in rehabilitation exercises.
•Enriching real-world rehabilitation datasets through synthetic data augmentation.•Advanced generative algorithms for creating novel, high-fidelity images that capture essential biomechanical attributes.•Introducing comprehensive evaluation methods for validating the consistency of generated synthetic data in the rehabilitation field. |
|---|---|
| AbstractList | Machine learning has emerged as a promising approach to enhance rehabilitation therapy monitoring and evaluation, providing personalized insights. However, the scarcity of data remains a significant challenge in developing robust machine learning models for rehabilitation. This paper introduces a novel synthetic dataset for rehabilitation exercises, leveraging pose-guided person image generation using conditioned diffusion models. By processing a pre-labeled dataset of class movements for 6 rehabilitation exercises, the described method generates realistic human movement images of elderly subjects engaging in home-based exercises. A total of 22,352 images were generated to accurately capture the spatial consistency of human joint relationships for predefined exercise movements. This novel dataset significantly amplified variability in the physical and demographic attributes of the main subject and the background environment. Quantitative metrics used for image assessment revealed highly favorable results. The generated images successfully maintained intra-class and inter-class consistency in motion data, producing outstanding outcomes with distance correlation values exceeding the 0.90. This innovative approach empowers researchers to enhance the value of existing limited datasets by generating high-fidelity synthetic images that precisely augment the anthropometric and biomechanical attributes of individuals engaged in rehabilitation exercises. AbstractMachine learning has emerged as a promising approach to enhance rehabilitation therapy monitoring and evaluation, providing personalized insights. However, the scarcity of data remains a significant challenge in developing robust machine learning models for rehabilitation. This paper introduces a novel synthetic dataset for rehabilitation exercises, leveraging pose-guided person image generation using conditioned diffusion models. By processing a pre-labeled dataset of class movements for 6 rehabilitation exercises, the described method generates realistic human movement images of elderly subjects engaging in home-based exercises. A total of 22,352 images were generated to accurately capture the spatial consistency of human joint relationships for predefined exercise movements. This novel dataset significantly amplified variability in the physical and demographic attributes of the main subject and the background environment. Quantitative metrics used for image assessment revealed highly favorable results. The generated images successfully maintained intra-class and inter-class consistency in motion data, producing outstanding outcomes with distance correlation values exceeding the 0.90. This innovative approach empowers researchers to enhance the value of existing limited datasets by generating high-fidelity synthetic images that precisely augment the anthropometric and biomechanical attributes of individuals engaged in rehabilitation exercises. Machine learning has emerged as a promising approach to enhance rehabilitation therapy monitoring and evaluation, providing personalized insights. However, the scarcity of data remains a significant challenge in developing robust machine learning models for rehabilitation. This paper introduces a novel synthetic dataset for rehabilitation exercises, leveraging pose-guided person image generation using conditioned diffusion models. By processing a pre-labeled dataset of class movements for 6 rehabilitation exercises, the described method generates realistic human movement images of elderly subjects engaging in home-based exercises. A total of 22,352 images were generated to accurately capture the spatial consistency of human joint relationships for predefined exercise movements. This novel dataset significantly amplified variability in the physical and demographic attributes of the main subject and the background environment. Quantitative metrics used for image assessment revealed highly favorable results. The generated images successfully maintained intra-class and inter-class consistency in motion data, producing outstanding outcomes with distance correlation values exceeding the 0.90. This innovative approach empowers researchers to enhance the value of existing limited datasets by generating high-fidelity synthetic images that precisely augment the anthropometric and biomechanical attributes of individuals engaged in rehabilitation exercises. •Enriching real-world rehabilitation datasets through synthetic data augmentation.•Advanced generative algorithms for creating novel, high-fidelity images that capture essential biomechanical attributes.•Introducing comprehensive evaluation methods for validating the consistency of generated synthetic data in the rehabilitation field. Machine learning has emerged as a promising approach to enhance rehabilitation therapy monitoring and evaluation, providing personalized insights. However, the scarcity of data remains a significant challenge in developing robust machine learning models for rehabilitation. This paper introduces a novel synthetic dataset for rehabilitation exercises, leveraging pose-guided person image generation using conditioned diffusion models. By processing a pre-labeled dataset of class movements for 6 rehabilitation exercises, the described method generates realistic human movement images of elderly subjects engaging in home-based exercises. A total of 22,352 images were generated to accurately capture the spatial consistency of human joint relationships for predefined exercise movements. This novel dataset significantly amplified variability in the physical and demographic attributes of the main subject and the background environment. Quantitative metrics used for image assessment revealed highly favorable results. The generated images successfully maintained intra-class and inter-class consistency in motion data, producing outstanding outcomes with distance correlation values exceeding the 0.90. This innovative approach empowers researchers to enhance the value of existing limited datasets by generating high-fidelity synthetic images that precisely augment the anthropometric and biomechanical attributes of individuals engaged in rehabilitation exercises.Machine learning has emerged as a promising approach to enhance rehabilitation therapy monitoring and evaluation, providing personalized insights. However, the scarcity of data remains a significant challenge in developing robust machine learning models for rehabilitation. This paper introduces a novel synthetic dataset for rehabilitation exercises, leveraging pose-guided person image generation using conditioned diffusion models. By processing a pre-labeled dataset of class movements for 6 rehabilitation exercises, the described method generates realistic human movement images of elderly subjects engaging in home-based exercises. A total of 22,352 images were generated to accurately capture the spatial consistency of human joint relationships for predefined exercise movements. This novel dataset significantly amplified variability in the physical and demographic attributes of the main subject and the background environment. Quantitative metrics used for image assessment revealed highly favorable results. The generated images successfully maintained intra-class and inter-class consistency in motion data, producing outstanding outcomes with distance correlation values exceeding the 0.90. This innovative approach empowers researchers to enhance the value of existing limited datasets by generating high-fidelity synthetic images that precisely augment the anthropometric and biomechanical attributes of individuals engaged in rehabilitation exercises. |
| ArticleNumber | 107665 |
| Author | Maniscalco, Umberto Mennella, Ciro De Pietro, Giuseppe Esposito, Massimo |
| Author_xml | – sequence: 1 givenname: Ciro orcidid: 0000-0003-0419-7181 surname: Mennella fullname: Mennella, Ciro email: ciro.mennella@icar.cnr.it – sequence: 2 givenname: Umberto orcidid: 0000-0002-7157-8411 surname: Maniscalco fullname: Maniscalco, Umberto email: umberto.maniscalco@icar.cnr.it – sequence: 3 givenname: Giuseppe orcidid: 0000-0002-4675-5957 surname: De Pietro fullname: De Pietro, Giuseppe – sequence: 4 givenname: Massimo orcidid: 0000-0002-7196-7994 surname: Esposito fullname: Esposito, Massimo |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37925908$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVktFuFCEUhompsdvqKxgSb7yZFRhmhvHC2DS2NWnihXpNGDjTsrKwBWbjPosvK9Pd1qSJMV4Bh-_8HM5_TtCRDx4QwpQsKaHtu9VSh_VmsGENZskIq0u4a9vmGVpQ0fUVaWp-hBaEUFJxwZpjdJLSihDCSU1eoOO661nTE7FAvy7BQ1TZ-hussA9bcDjtfL6FbDU2KqsEGY8h4gi3arDO5gIHj-EnRG0TJDylOXkTElQ3kzVgsA7e2Jkqe2PHsRAlYx0MuPQen-G7Sfl8L7QFrLyZA-7hDFvlpvs3XqLno3IJXh3WU_T94tO386vq-svl5_Oz60rzpslVDQyo6Meh1jCYth-Y4oYOQnNRk6HlXUtUpwRXQE25YG1Hqer5qAwbhCkdOUVv97qbGO4mSFmubdLgnPIQpiSZEG3Tlzb2BX3zBF2FKfpSXaF6xtqm4axQrw_UNBSH5CbatYo7-dD2Aog9oGNIKcL4iFAiZ4flSv5xWM4Oy73DJfXDk1R9sCRHZd1_CBQzYGshSu2st1q5H7CD9PgfKhOTRH6dh2ieIVYTSmvSFYGPfxeQJth_1_AbFiPgZQ |
| CitedBy_id | crossref_primary_10_1007_s44163_024_00130_7 crossref_primary_10_1109_JIOT_2024_3421918 crossref_primary_10_1016_j_compbiomed_2024_108826 |
| Cites_doi | 10.1109/ACCESS.2023.3236084 10.1097/CCM.0b013e3181a38937 10.1016/j.cviu.2018.10.009 10.1186/1743-0003-11-3 10.1016/j.artint.2021.103546 10.1186/s12883-017-0888-0 10.1056/NEJMsa1713258 10.1016/j.knosys.2021.107024 10.1214/009053607000000505 10.1007/s00530-021-00815-4 10.3390/s23187667 10.1038/s41598-023-39278-0 10.1109/TCSVT.2021.3059706 10.1186/s40537-019-0197-0 10.1145/3065386 10.1109/TIP.2020.3023853 10.1016/S0140-6736(11)60325-5 10.1016/j.compbiomed.2023.107485 10.1186/1743-0003-10-60 10.1109/TIP.2003.819861 10.1016/j.patter.2023.100788 10.1145/3575656 10.1126/sciadv.abb7973 10.1016/j.patcog.2020.107404 10.1109/TIP.2021.3052364 10.3390/app10030762 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd Copyright © 2023 Elsevier Ltd. All rights reserved. 2023. Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd – notice: Copyright © 2023 Elsevier Ltd. All rights reserved. – notice: 2023. Elsevier Ltd |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
| DOI | 10.1016/j.compbiomed.2023.107665 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection Computing Database Health & Medical Collection (Alumni) Proquest Medical Database Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Research Library Prep MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1879-0534 |
| EndPage | 107665 |
| ExternalDocumentID | 37925908 10_1016_j_compbiomed_2023_107665 1_s2_0_S0010482523011307 S0010482523011307 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- ~HD 3V. AACTN AFCTW AFKWA AJOXV ALIPV AMFUW M0N RIG AAYXX CITATION PUEGO CGR CUY CVF ECM EIF NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 |
| ID | FETCH-LOGICAL-c455t-3e2e189fb3cebd69b2a4d1b8c4830b64760a7a84ae1d4d126711a94fad2b8d403 |
| IEDL.DBID | BENPR |
| ISSN | 0010-4825 1879-0534 |
| IngestDate | Sat Sep 27 18:38:21 EDT 2025 Tue Oct 07 06:39:18 EDT 2025 Wed Feb 19 02:05:11 EST 2025 Thu Apr 24 23:06:19 EDT 2025 Wed Oct 01 05:18:12 EDT 2025 Tue Feb 25 20:11:33 EST 2025 Tue Oct 14 19:33:16 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Computer vision Rehabilitation Generative models Pose estimation Artificial Intelligence |
| Language | English |
| License | Copyright © 2023 Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c455t-3e2e189fb3cebd69b2a4d1b8c4830b64760a7a84ae1d4d126711a94fad2b8d403 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-0419-7181 0000-0002-4675-5957 0000-0002-7157-8411 0000-0002-7196-7994 |
| PMID | 37925908 |
| PQID | 2892265542 |
| PQPubID | 1226355 |
| PageCount | 1 |
| ParticipantIDs | proquest_miscellaneous_2886598259 proquest_journals_2892265542 pubmed_primary_37925908 crossref_primary_10_1016_j_compbiomed_2023_107665 crossref_citationtrail_10_1016_j_compbiomed_2023_107665 elsevier_clinicalkeyesjournals_1_s2_0_S0010482523011307 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2023_107665 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-01 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Oxford |
| PublicationTitle | Computers in biology and medicine |
| PublicationTitleAlternate | Comput Biol Med |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd Elsevier Limited |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
| References | Chen, Zhang, Tan, Yin, Liu (b37) 2021; 32 Rombach, Blattmann, Lorenz, Esser, Ommer (b29) 2022 Seib, Lange, Wirtz (b18) 2020 Prevedello, Halabi, Shih, Wu, Kohli, Chokshi, Erickson, Kalpathy-Cramer, Andriole, Flanders (b76) 2019; 1 Müller-Franzes, Niehues, Khader, Arasteh, Haarburger, Kuhl, Wang, Han, Nolte, Nebelung (b65) 2023; 13 Akbar, Wang, Eklund (b21) 2023 Csiszar (b57) 1989 Qin, Zhang, Huang, Dehghan, Zaiane, Jagersand (b55) 2020; 106 Giggins, Persson, Caulfield (b3) 2013; 10 Ma, Jia, Sun, Schiele, Tuytelaars, Van Gool (b10) 2017; 30 Shorten, Khoshgoftaar (b14) 2019; 6 Mennella, Maniscalco, De Pietro, Esposito (b64) 2023 Perera, Patel (b73) 2023 Székely, Rizzo, Bakirov (b61) 2007; 35 Mao, Li, Xie, Lau, Wang, Paul Smolley (b67) 2017 Krizhevsky, Sutskever, Hinton (b13) 2017; 60 Ge, Li, Zhao, Yin, Yi, Wang (b69) 2018; 31 Langhorne, Bernhardt, Kwakkel (b2) 2011; 377 Ma, Jia, Sun, Schiele, Tuytelaars, Van Gool (b33) 2017; 30 Holzinger, Saranti, Angerschmid, Finzel, Schmid, Mueller (b9) 2023 Redmon, Divvala, Girshick, Farhadi (b59) 2016 Votel, Li (b60) 2017 Zheng, Yang, Yu, Zheng, Yang, Kautz (b66) 2019 Mello, Lieou, Goodman (b75) 2018; 378 Ho, Jain, Abbeel (b28) 2020; 33 Neverova, Guler, Kokkinos (b39) 2018 Jia, Zhang, Wang, Tan (b31) 2022 Liu, Liu, Chiu, Tai, Tang (b35) 2020 Balakrishnan, Zhao, Dalca, Durand, Guttag (b11) 2018 Ramesh, Pavlov, Goh, Gray, Voss, Radford, Chen, Sutskever (b30) 2021 Pinaya, Tudosiu, Dafflon, Da Costa, Fernandez, Nachev, Ourselin, Cardoso (b19) 2022 Packhäuser, Folle, Thamm, Maier (b22) 2023 Gulrajani, Ahmed, Arjovsky, Dumoulin, Courville (b25) 2017; 30 Hinton, Roweis (b62) 2002; 15 Leinar, Jitendra (b74) 2021 Moghadam, Van Dalen, Martin, Lennerz, Yip, Farahani, Bashashati (b23) 2023 Wang, Bovik, Sheikh, Simoncelli (b54) 2004; 13 Odena, Olah, Shlens (b27) 2017 Müller, Holzinger (b17) 2021; 300 Saharia, Chan, Saxena, Li, Whang, Denton, Ghasemipour, Gontijo Lopes, Karagol Ayan, Salimans (b48) 2022; 35 Ma, Jia, Sun, Schiele, Tuytelaars, Van Gool (b68) 2017; 30 Radford, Kim, Hallacy, Ramesh, Goh, Agarwal, Sastry, Askell, Mishkin, Clark (b45) 2021 Xu, Fu, Wen, Pan, Jiang, Xue (b40) 2020; 29 Perez, Wang (b15) 2017 Trabucco, Doherty, Gurinas, Salakhutdinov (b44) 2023 Kingma, Welling (b26) 2013 Burtin, Clerckx, Robbeets, Ferdinande, Langer, Troosters, Hermans, Decramer, Gosselink (b1) 2009; 37 Borji (b50) 2019; 179 Stöckl (b43) 2022 Fréchet (b58) 1957 Dorjsembe, Odonchimed, Xiao (b20) 2022 Yu, Seff, Zhang, Song, Funkhouser, Xiao (b70) 2015 Yang, Wang, Liu, Gao, Ren, Zhang, Wang, Ma, Hua, Gao (b41) 2021; 30 Wang, She, Ward (b49) 2021; 54 Luzi, Marrero, Wynar, Baraniuk, Henry (b71) 2023 Salimans, Goodfellow, Zaremba, Cheung, Radford, Chen (b52) 2016; 29 Inoue (b16) 2018 Theis, Oord, Bethge (b51) 2015 Gauthier, Kane, Borstad, Strahl, Uswatte, Taub, Morris, Hall, Arakelian, Mark (b5) 2017; 17 P.Y. Simard, D. Steinkraus, J.C. Platt, et al., Best practices for convolutional neural networks applied to visual document analysis, in: Icdar, Vol. 3, Edinburgh, 2003. Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (b24) 2014 Maciejasz, Eschweiler, Gerlach-Hahn, Jansen-Troy, Leonhardt (b6) 2014; 11 Wei, Wu (b63) 2023; 23 Liu, Wei, Lu, Zhou (b72) 2018 Mennella, Maniscalco, De Pietro, Esposito (b46) 2023 Barratt, Sharma (b56) 2018 Pereira, Folgado, Cotrim, Sousa (b4) 2019 Liu, Wang, Ji, Ge, Chen (b38) 2021; 223 Heusel, Ramsauer, Unterthiner, Nessler, Hochreiter (b53) 2017; 30 Krause, Grabsch, Kloor, Jendrusch, Echle, Buelow, Boor, Luedde, Brinker, Trautwein (b78) 2021; 254 Han, Nebelung, Haarburger, Horst, Reinartz, Merhof, Kiessling, Schulz, Truhn (b77) 2020; 6 von Platen, Patil, Lozhkov, Cuenca, Lambert, Rasul, Davaadorj, Wolf (b47) 2022 Merdivan, Singh, Hanke, Kropf, Holzinger, Geist (b8) 2020; 10 Sha, Zhang, Shen, Li, Mei (b32) 2023; 55 Balakrishnan, Zhao, Dalca, Durand, Guttag (b36) 2018 Debnath, O’Brien, Yamaguchi, Behera (b7) 2022; 28 Karmakar, Mishra (b34) 2020 Zhang, Agrawala (b42) 2023 Pereira (10.1016/j.compbiomed.2023.107665_b4) 2019 Wang (10.1016/j.compbiomed.2023.107665_b54) 2004; 13 Merdivan (10.1016/j.compbiomed.2023.107665_b8) 2020; 10 Rombach (10.1016/j.compbiomed.2023.107665_b29) 2022 Prevedello (10.1016/j.compbiomed.2023.107665_b76) 2019; 1 Ge (10.1016/j.compbiomed.2023.107665_b69) 2018; 31 Radford (10.1016/j.compbiomed.2023.107665_b45) 2021 Fréchet (10.1016/j.compbiomed.2023.107665_b58) 1957 10.1016/j.compbiomed.2023.107665_b12 Székely (10.1016/j.compbiomed.2023.107665_b61) 2007; 35 Ho (10.1016/j.compbiomed.2023.107665_b28) 2020; 33 Stöckl (10.1016/j.compbiomed.2023.107665_b43) 2022 Csiszar (10.1016/j.compbiomed.2023.107665_b57) 1989 Gulrajani (10.1016/j.compbiomed.2023.107665_b25) 2017; 30 Yang (10.1016/j.compbiomed.2023.107665_b41) 2021; 30 Wang (10.1016/j.compbiomed.2023.107665_b49) 2021; 54 Qin (10.1016/j.compbiomed.2023.107665_b55) 2020; 106 Sha (10.1016/j.compbiomed.2023.107665_b32) 2023; 55 Pinaya (10.1016/j.compbiomed.2023.107665_b19) 2022 Packhäuser (10.1016/j.compbiomed.2023.107665_b22) 2023 Ramesh (10.1016/j.compbiomed.2023.107665_b30) 2021 Wei (10.1016/j.compbiomed.2023.107665_b63) 2023; 23 Goodfellow (10.1016/j.compbiomed.2023.107665_b24) 2014 Theis (10.1016/j.compbiomed.2023.107665_b51) 2015 Balakrishnan (10.1016/j.compbiomed.2023.107665_b36) 2018 Krizhevsky (10.1016/j.compbiomed.2023.107665_b13) 2017; 60 Mello (10.1016/j.compbiomed.2023.107665_b75) 2018; 378 Yu (10.1016/j.compbiomed.2023.107665_b70) 2015 Luzi (10.1016/j.compbiomed.2023.107665_b71) 2023 Krause (10.1016/j.compbiomed.2023.107665_b78) 2021; 254 Salimans (10.1016/j.compbiomed.2023.107665_b52) 2016; 29 Hinton (10.1016/j.compbiomed.2023.107665_b62) 2002; 15 Langhorne (10.1016/j.compbiomed.2023.107665_b2) 2011; 377 Müller-Franzes (10.1016/j.compbiomed.2023.107665_b65) 2023; 13 Mao (10.1016/j.compbiomed.2023.107665_b67) 2017 Perez (10.1016/j.compbiomed.2023.107665_b15) 2017 Votel (10.1016/j.compbiomed.2023.107665_b60) 2017 Han (10.1016/j.compbiomed.2023.107665_b77) 2020; 6 von Platen (10.1016/j.compbiomed.2023.107665_b47) 2022 Maciejasz (10.1016/j.compbiomed.2023.107665_b6) 2014; 11 Seib (10.1016/j.compbiomed.2023.107665_b18) 2020 Akbar (10.1016/j.compbiomed.2023.107665_b21) 2023 Debnath (10.1016/j.compbiomed.2023.107665_b7) 2022; 28 Karmakar (10.1016/j.compbiomed.2023.107665_b34) 2020 Leinar (10.1016/j.compbiomed.2023.107665_b74) 2021 Ma (10.1016/j.compbiomed.2023.107665_b33) 2017; 30 Kingma (10.1016/j.compbiomed.2023.107665_b26) 2013 Neverova (10.1016/j.compbiomed.2023.107665_b39) 2018 Dorjsembe (10.1016/j.compbiomed.2023.107665_b20) 2022 Giggins (10.1016/j.compbiomed.2023.107665_b3) 2013; 10 Moghadam (10.1016/j.compbiomed.2023.107665_b23) 2023 Barratt (10.1016/j.compbiomed.2023.107665_b56) 2018 Saharia (10.1016/j.compbiomed.2023.107665_b48) 2022; 35 Jia (10.1016/j.compbiomed.2023.107665_b31) 2022 Zhang (10.1016/j.compbiomed.2023.107665_b42) 2023 Shorten (10.1016/j.compbiomed.2023.107665_b14) 2019; 6 Mennella (10.1016/j.compbiomed.2023.107665_b64) 2023 Perera (10.1016/j.compbiomed.2023.107665_b73) 2023 Zheng (10.1016/j.compbiomed.2023.107665_b66) 2019 Holzinger (10.1016/j.compbiomed.2023.107665_b9) 2023 Gauthier (10.1016/j.compbiomed.2023.107665_b5) 2017; 17 Trabucco (10.1016/j.compbiomed.2023.107665_b44) 2023 Burtin (10.1016/j.compbiomed.2023.107665_b1) 2009; 37 Liu (10.1016/j.compbiomed.2023.107665_b72) 2018 Odena (10.1016/j.compbiomed.2023.107665_b27) 2017 Inoue (10.1016/j.compbiomed.2023.107665_b16) 2018 Heusel (10.1016/j.compbiomed.2023.107665_b53) 2017; 30 Balakrishnan (10.1016/j.compbiomed.2023.107665_b11) 2018 Mennella (10.1016/j.compbiomed.2023.107665_b46) 2023 Chen (10.1016/j.compbiomed.2023.107665_b37) 2021; 32 Redmon (10.1016/j.compbiomed.2023.107665_b59) 2016 Ma (10.1016/j.compbiomed.2023.107665_b10) 2017; 30 Liu (10.1016/j.compbiomed.2023.107665_b35) 2020 Borji (10.1016/j.compbiomed.2023.107665_b50) 2019; 179 Ma (10.1016/j.compbiomed.2023.107665_b68) 2017; 30 Xu (10.1016/j.compbiomed.2023.107665_b40) 2020; 29 Müller (10.1016/j.compbiomed.2023.107665_b17) 2021; 300 Liu (10.1016/j.compbiomed.2023.107665_b38) 2021; 223 |
| References_xml | – volume: 15 year: 2002 ident: b62 article-title: Stochastic neighbor embedding publication-title: Adv. Neural Inf. Process. Syst. – volume: 179 start-page: 41 year: 2019 end-page: 65 ident: b50 article-title: Pros and cons of gan evaluation measures publication-title: Comput. Vis. Image Underst. – volume: 377 start-page: 1693 year: 2011 end-page: 1702 ident: b2 article-title: Stroke rehabilitation publication-title: Lancet – year: 2023 ident: b21 article-title: Beware of diffusion models for synthesizing medical images–A comparison with GANs in terms of memorizing brain tumor images – start-page: 89 year: 2020 end-page: 99 ident: b34 article-title: A robust pose transformational GAN for pose guided person image synthesis publication-title: Computer Vision, Pattern Recognition, Image Processing, and Graphics: 7th National Conference, NCVPRIPG 2019, Hubballi, India, December 22–24, 2019, Revised Selected Papers 7 – volume: 55 start-page: 1 year: 2023 end-page: 37 ident: b32 article-title: Deep person generation: A survey from the perspective of face, pose, and cloth synthesis publication-title: ACM Comput. Surv. – start-page: 123 year: 2018 end-page: 138 ident: b39 article-title: Dense pose transfer publication-title: Proceedings of the European Conference on Computer Vision (ECCV) – year: 2022 ident: b20 article-title: Three-dimensional medical image synthesis with denoising diffusion probabilistic models publication-title: Medical Imaging with Deep Learning – start-page: 1 year: 2023 end-page: 5 ident: b22 article-title: Generation of anonymous chest radiographs using latent diffusion models for training thoracic abnormality classification systems publication-title: 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI) – volume: 32 start-page: 302 year: 2021 end-page: 314 ident: b37 article-title: Pman: Progressive multi-attention network for human pose transfer publication-title: IEEE Trans. Circuits Syst. Video Technol. – year: 2023 ident: b46 article-title: A deep learning system to monitor and assess rehabilitation exercises in home-based remote and unsupervised conditions publication-title: Comput. Biol. Med. – volume: 30 year: 2017 ident: b33 article-title: Pose guided person image generation publication-title: Adv. Neural Inf. Process. Syst. – volume: 54 start-page: 1 year: 2021 end-page: 38 ident: b49 article-title: Generative adversarial networks in computer vision: A survey and taxonomy publication-title: ACM Comput. Surv. – year: 2018 ident: b56 article-title: A note on the inception score – start-page: 73 year: 2019 end-page: 82 ident: b4 article-title: Physiotherapy exercises evaluation using a combined approach based on sEMG and wearable inertial sensors publication-title: Biosignals – volume: 31 year: 2018 ident: b69 article-title: Fd-gan: Pose-guided feature distilling gan for robust person re-identification publication-title: Adv. Neural Inf. Process. Syst. – volume: 30 start-page: 2422 year: 2021 end-page: 2435 ident: b41 article-title: Towards fine-grained human pose transfer with detail replenishing network publication-title: IEEE Trans. Image Process. – volume: 1 year: 2019 ident: b76 article-title: Challenges related to artificial intelligence research in medical imaging and the importance of image analysis competitions publication-title: Radiol.: Artif. Intell. – volume: 10 start-page: 1 year: 2013 end-page: 11 ident: b3 article-title: Biofeedback in rehabilitation publication-title: J. Neuroeng. Rehabil. – year: 2017 ident: b15 article-title: The effectiveness of data augmentation in image classification using deep learning – year: 2023 ident: b64 article-title: The role of artificial intelligence in future rehabilitation services: A systematic literature review publication-title: IEEE Access – volume: 33 start-page: 6840 year: 2020 end-page: 6851 ident: b28 article-title: Denoising diffusion probabilistic models publication-title: Adv. Neural Inf. Process. Syst. – year: 2015 ident: b70 article-title: Lsun: Construction of a large-scale image dataset using deep learning with humans in the loop – start-page: 2672 year: 2014 end-page: 2680 ident: b24 article-title: Advances in Neural Information Processing Systems, Vol. 27 – volume: 13 start-page: 600 year: 2004 end-page: 612 ident: b54 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. – volume: 106 year: 2020 ident: b55 article-title: U2-Net: Going deeper with nested U-structure for salient object detection publication-title: Pattern Recognit. – volume: 23 start-page: 7667 year: 2023 ident: b63 article-title: The application of wearable sensors and machine learning algorithms in rehabilitation training: A systematic review publication-title: Sensors – year: 2021 ident: b74 article-title: Maverick research: Forget about your real data – synthetic data is the future of AI – volume: 13 start-page: 12098 year: 2023 ident: b65 article-title: A multimodal comparison of latent denoising diffusion probabilistic models and generative adversarial networks for medical image synthesis publication-title: Sci. Rep. – year: 2022 ident: b31 article-title: Human image generation: A comprehensive survey – start-page: 279 year: 2023 end-page: 288 ident: b71 article-title: Evaluating generative networks using Gaussian mixtures of image features publication-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision – volume: 17 start-page: 1 year: 2017 end-page: 18 ident: b5 article-title: Video Game Rehabilitation for Outpatient Stroke (VIGoROUS): protocol for a multi-center comparative effectiveness trial of in-home gamified constraint-induced movement therapy for rehabilitation of chronic upper extremity hemiparesis publication-title: BMC Neurol. – year: 2023 ident: b42 article-title: Adding conditional control to text-to-image diffusion models – volume: 30 year: 2017 ident: b53 article-title: Gans trained by a two time-scale update rule converge to a local nash equilibrium publication-title: Adv. Neural Inf. Process. Syst. – volume: 30 year: 2017 ident: b10 article-title: Pose guided person image generation publication-title: Adv. Neural Inf. Process. Syst. – year: 2018 ident: b16 article-title: Data augmentation by pairing samples for images classification – volume: 29 start-page: 9060 year: 2020 end-page: 9072 ident: b40 article-title: Pose-guided person image synthesis in the non-iconic views publication-title: IEEE Trans. Image Process. – start-page: 1409 year: 1989 end-page: 1413 ident: b57 article-title: A geometric interpretation of Darroch and Ratcliff’s generalized iterative scaling publication-title: Ann. Statist. – year: 2018 ident: b72 article-title: An improved evaluation framework for generative adversarial networks – year: 2023 ident: b73 article-title: Analyzing bias in diffusion-based face generation models – volume: 29 year: 2016 ident: b52 article-title: Improved techniques for training gans publication-title: Adv. Neural Inf. Process. Syst. – volume: 35 start-page: 2769 year: 2007 end-page: 2794 ident: b61 article-title: Measuring and testing dependence by correlation of distances publication-title: Ann. Statist. – start-page: 2000 year: 2023 end-page: 2009 ident: b23 article-title: A morphology focused diffusion probabilistic model for synthesis of histopathology images publication-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision – start-page: 8340 year: 2018 end-page: 8348 ident: b36 article-title: Synthesizing images of humans in unseen poses publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 30 year: 2017 ident: b25 article-title: Improved training of wasserstein gans publication-title: Adv. Neural Inf. Process. Syst. – year: 2020 ident: b35 article-title: Pose-guided high-resolution appearance transfer via progressive training – volume: 11 start-page: 1 year: 2014 end-page: 29 ident: b6 article-title: A survey on robotic devices for upper limb rehabilitation publication-title: J. Neuroeng. Rehabil. – volume: 28 year: 2022 ident: b7 article-title: A review of computer vision-based approaches for physical rehabilitation and assessment publication-title: Multimedia Syst. – volume: 60 start-page: 84 year: 2017 end-page: 90 ident: b13 article-title: Imagenet classification with deep convolutional neural networks publication-title: Commun. ACM – year: 2017 ident: b60 article-title: Next-generation pose detection with movenet and TensorFlow.js – year: 2023 ident: b9 article-title: Toward human-level concept learning: Pattern benchmarking for AI algorithms publication-title: Patterns – start-page: 2794 year: 2017 end-page: 2802 ident: b67 article-title: Least squares generative adversarial networks publication-title: Proceedings of the IEEE International Conference on Computer Vision – start-page: 8821 year: 2021 end-page: 8831 ident: b30 article-title: Zero-shot text-to-image generation publication-title: International Conference on Machine Learning – start-page: 8340 year: 2018 end-page: 8348 ident: b11 article-title: Synthesizing images of humans in unseen poses publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 2138 year: 2019 end-page: 2147 ident: b66 article-title: Joint discriminative and generative learning for person re-identification publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 30 year: 2017 ident: b68 article-title: Pose guided person image generation publication-title: Adv. Neural Inf. Process. Syst. – volume: 10 start-page: 762 year: 2020 ident: b8 article-title: Human annotated dialogues dataset for natural conversational agents publication-title: Appl. Sci. – volume: 300 year: 2021 ident: b17 article-title: Kandinsky patterns publication-title: Artificial Intelligence – start-page: 8748 year: 2021 end-page: 8763 ident: b45 article-title: Learning transferable visual models from natural language supervision publication-title: International Conference on Machine Learning – reference: P.Y. Simard, D. Steinkraus, J.C. Platt, et al., Best practices for convolutional neural networks applied to visual document analysis, in: Icdar, Vol. 3, Edinburgh, 2003. – volume: 37 start-page: 2499 year: 2009 end-page: 2505 ident: b1 article-title: Early exercise in critically ill patients enhances short-term functional recovery publication-title: Crit. Care Med. – volume: 378 start-page: 2202 year: 2018 end-page: 2211 ident: b75 article-title: Clinical trial participants’ views of the risks and benefits of data sharing publication-title: N. Engl. J. Med. – year: 2020 ident: b18 article-title: Mixing real and synthetic data to enhance neural network training–A review of current approaches – start-page: 117 year: 2022 end-page: 126 ident: b19 article-title: Brain imaging generation with latent diffusion models publication-title: MICCAI Workshop on Deep Generative Models – year: 2022 ident: b47 article-title: Diffusers: State-of-the-art diffusion models – year: 2015 ident: b51 article-title: A note on the evaluation of generative models – year: 2022 ident: b43 article-title: Evaluating a synthetic image dataset generated with stable diffusion – volume: 35 start-page: 36479 year: 2022 end-page: 36494 ident: b48 article-title: Photorealistic text-to-image diffusion models with deep language understanding publication-title: Adv. Neural Inf. Process. Syst. – start-page: 2642 year: 2017 end-page: 2651 ident: b27 article-title: Conditional image synthesis with auxiliary classifier gans publication-title: International Conference on Machine Learning – start-page: 10684 year: 2022 end-page: 10695 ident: b29 article-title: High-resolution image synthesis with latent diffusion models publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 183 year: 1957 end-page: 198 ident: b58 article-title: Sur la distance de deux lois de probabilité publication-title: Annales de l’ISUP, Vol. 6 – year: 2013 ident: b26 article-title: Auto-encoding variational bayes – volume: 254 start-page: 70 year: 2021 end-page: 79 ident: b78 article-title: Deep learning detects genetic alterations in cancer histology generated by adversarial networks publication-title: J. Pathol. – start-page: 779 year: 2016 end-page: 788 ident: b59 article-title: You only look once: Unified, real-time object detection publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 223 year: 2021 ident: b38 article-title: Pose transfer generation with semantic parsing attention network for person re-identification publication-title: Knowl.-Based Syst. – volume: 6 start-page: 1 year: 2019 end-page: 48 ident: b14 article-title: A survey on image data augmentation for deep learning publication-title: J. Big Data – volume: 6 start-page: eabb7973 year: 2020 ident: b77 article-title: Breaking medical data sharing boundaries by using synthesized radiographs publication-title: Sci. Adv. – year: 2023 ident: b44 article-title: Effective data augmentation with diffusion models – year: 2023 ident: 10.1016/j.compbiomed.2023.107665_b64 article-title: The role of artificial intelligence in future rehabilitation services: A systematic literature review publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3236084 – year: 2020 ident: 10.1016/j.compbiomed.2023.107665_b35 – volume: 37 start-page: 2499 issue: 9 year: 2009 ident: 10.1016/j.compbiomed.2023.107665_b1 article-title: Early exercise in critically ill patients enhances short-term functional recovery publication-title: Crit. Care Med. doi: 10.1097/CCM.0b013e3181a38937 – start-page: 2138 year: 2019 ident: 10.1016/j.compbiomed.2023.107665_b66 article-title: Joint discriminative and generative learning for person re-identification – volume: 179 start-page: 41 year: 2019 ident: 10.1016/j.compbiomed.2023.107665_b50 article-title: Pros and cons of gan evaluation measures publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2018.10.009 – year: 2018 ident: 10.1016/j.compbiomed.2023.107665_b56 – start-page: 2794 year: 2017 ident: 10.1016/j.compbiomed.2023.107665_b67 article-title: Least squares generative adversarial networks – volume: 29 year: 2016 ident: 10.1016/j.compbiomed.2023.107665_b52 article-title: Improved techniques for training gans publication-title: Adv. Neural Inf. Process. Syst. – start-page: 123 year: 2018 ident: 10.1016/j.compbiomed.2023.107665_b39 article-title: Dense pose transfer – year: 2023 ident: 10.1016/j.compbiomed.2023.107665_b44 – start-page: 183 year: 1957 ident: 10.1016/j.compbiomed.2023.107665_b58 article-title: Sur la distance de deux lois de probabilité – volume: 11 start-page: 1 issue: 1 year: 2014 ident: 10.1016/j.compbiomed.2023.107665_b6 article-title: A survey on robotic devices for upper limb rehabilitation publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-11-3 – volume: 300 year: 2021 ident: 10.1016/j.compbiomed.2023.107665_b17 article-title: Kandinsky patterns publication-title: Artificial Intelligence doi: 10.1016/j.artint.2021.103546 – start-page: 779 year: 2016 ident: 10.1016/j.compbiomed.2023.107665_b59 article-title: You only look once: Unified, real-time object detection – volume: 17 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.compbiomed.2023.107665_b5 article-title: Video Game Rehabilitation for Outpatient Stroke (VIGoROUS): protocol for a multi-center comparative effectiveness trial of in-home gamified constraint-induced movement therapy for rehabilitation of chronic upper extremity hemiparesis publication-title: BMC Neurol. doi: 10.1186/s12883-017-0888-0 – start-page: 73 year: 2019 ident: 10.1016/j.compbiomed.2023.107665_b4 article-title: Physiotherapy exercises evaluation using a combined approach based on sEMG and wearable inertial sensors – year: 2018 ident: 10.1016/j.compbiomed.2023.107665_b16 – year: 2021 ident: 10.1016/j.compbiomed.2023.107665_b74 – start-page: 117 year: 2022 ident: 10.1016/j.compbiomed.2023.107665_b19 article-title: Brain imaging generation with latent diffusion models – volume: 378 start-page: 2202 issue: 23 year: 2018 ident: 10.1016/j.compbiomed.2023.107665_b75 article-title: Clinical trial participants’ views of the risks and benefits of data sharing publication-title: N. Engl. J. Med. doi: 10.1056/NEJMsa1713258 – volume: 1 issue: 1 year: 2019 ident: 10.1016/j.compbiomed.2023.107665_b76 article-title: Challenges related to artificial intelligence research in medical imaging and the importance of image analysis competitions publication-title: Radiol.: Artif. Intell. – volume: 223 year: 2021 ident: 10.1016/j.compbiomed.2023.107665_b38 article-title: Pose transfer generation with semantic parsing attention network for person re-identification publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.107024 – start-page: 10684 year: 2022 ident: 10.1016/j.compbiomed.2023.107665_b29 article-title: High-resolution image synthesis with latent diffusion models – volume: 35 start-page: 2769 issue: 6 year: 2007 ident: 10.1016/j.compbiomed.2023.107665_b61 article-title: Measuring and testing dependence by correlation of distances publication-title: Ann. Statist. doi: 10.1214/009053607000000505 – start-page: 8340 year: 2018 ident: 10.1016/j.compbiomed.2023.107665_b36 article-title: Synthesizing images of humans in unseen poses – year: 2023 ident: 10.1016/j.compbiomed.2023.107665_b73 – year: 2022 ident: 10.1016/j.compbiomed.2023.107665_b20 article-title: Three-dimensional medical image synthesis with denoising diffusion probabilistic models – volume: 30 year: 2017 ident: 10.1016/j.compbiomed.2023.107665_b25 article-title: Improved training of wasserstein gans publication-title: Adv. Neural Inf. Process. Syst. – volume: 28 year: 2022 ident: 10.1016/j.compbiomed.2023.107665_b7 article-title: A review of computer vision-based approaches for physical rehabilitation and assessment publication-title: Multimedia Syst. doi: 10.1007/s00530-021-00815-4 – year: 2020 ident: 10.1016/j.compbiomed.2023.107665_b18 – volume: 23 start-page: 7667 issue: 18 year: 2023 ident: 10.1016/j.compbiomed.2023.107665_b63 article-title: The application of wearable sensors and machine learning algorithms in rehabilitation training: A systematic review publication-title: Sensors doi: 10.3390/s23187667 – volume: 31 year: 2018 ident: 10.1016/j.compbiomed.2023.107665_b69 article-title: Fd-gan: Pose-guided feature distilling gan for robust person re-identification publication-title: Adv. Neural Inf. Process. Syst. – start-page: 2642 year: 2017 ident: 10.1016/j.compbiomed.2023.107665_b27 article-title: Conditional image synthesis with auxiliary classifier gans – volume: 30 year: 2017 ident: 10.1016/j.compbiomed.2023.107665_b10 article-title: Pose guided person image generation publication-title: Adv. Neural Inf. Process. Syst. – volume: 13 start-page: 12098 issue: 1 year: 2023 ident: 10.1016/j.compbiomed.2023.107665_b65 article-title: A multimodal comparison of latent denoising diffusion probabilistic models and generative adversarial networks for medical image synthesis publication-title: Sci. Rep. doi: 10.1038/s41598-023-39278-0 – volume: 32 start-page: 302 issue: 1 year: 2021 ident: 10.1016/j.compbiomed.2023.107665_b37 article-title: Pman: Progressive multi-attention network for human pose transfer publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2021.3059706 – year: 2017 ident: 10.1016/j.compbiomed.2023.107665_b60 – volume: 33 start-page: 6840 year: 2020 ident: 10.1016/j.compbiomed.2023.107665_b28 article-title: Denoising diffusion probabilistic models publication-title: Adv. Neural Inf. Process. Syst. – volume: 6 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.compbiomed.2023.107665_b14 article-title: A survey on image data augmentation for deep learning publication-title: J. Big Data doi: 10.1186/s40537-019-0197-0 – volume: 60 start-page: 84 issue: 6 year: 2017 ident: 10.1016/j.compbiomed.2023.107665_b13 article-title: Imagenet classification with deep convolutional neural networks publication-title: Commun. ACM doi: 10.1145/3065386 – year: 2023 ident: 10.1016/j.compbiomed.2023.107665_b21 – volume: 29 start-page: 9060 year: 2020 ident: 10.1016/j.compbiomed.2023.107665_b40 article-title: Pose-guided person image synthesis in the non-iconic views publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.3023853 – start-page: 2672 year: 2014 ident: 10.1016/j.compbiomed.2023.107665_b24 – start-page: 8748 year: 2021 ident: 10.1016/j.compbiomed.2023.107665_b45 article-title: Learning transferable visual models from natural language supervision – year: 2023 ident: 10.1016/j.compbiomed.2023.107665_b42 – volume: 35 start-page: 36479 year: 2022 ident: 10.1016/j.compbiomed.2023.107665_b48 article-title: Photorealistic text-to-image diffusion models with deep language understanding publication-title: Adv. Neural Inf. Process. Syst. – volume: 377 start-page: 1693 issue: 9778 year: 2011 ident: 10.1016/j.compbiomed.2023.107665_b2 article-title: Stroke rehabilitation publication-title: Lancet doi: 10.1016/S0140-6736(11)60325-5 – start-page: 1 year: 2023 ident: 10.1016/j.compbiomed.2023.107665_b22 article-title: Generation of anonymous chest radiographs using latent diffusion models for training thoracic abnormality classification systems – year: 2022 ident: 10.1016/j.compbiomed.2023.107665_b43 – year: 2023 ident: 10.1016/j.compbiomed.2023.107665_b46 article-title: A deep learning system to monitor and assess rehabilitation exercises in home-based remote and unsupervised conditions publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2023.107485 – year: 2018 ident: 10.1016/j.compbiomed.2023.107665_b72 – volume: 15 year: 2002 ident: 10.1016/j.compbiomed.2023.107665_b62 article-title: Stochastic neighbor embedding publication-title: Adv. Neural Inf. Process. Syst. – volume: 10 start-page: 1 issue: 1 year: 2013 ident: 10.1016/j.compbiomed.2023.107665_b3 article-title: Biofeedback in rehabilitation publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-10-60 – ident: 10.1016/j.compbiomed.2023.107665_b12 – year: 2015 ident: 10.1016/j.compbiomed.2023.107665_b51 – volume: 30 year: 2017 ident: 10.1016/j.compbiomed.2023.107665_b33 article-title: Pose guided person image generation publication-title: Adv. Neural Inf. Process. Syst. – volume: 54 start-page: 1 issue: 2 year: 2021 ident: 10.1016/j.compbiomed.2023.107665_b49 article-title: Generative adversarial networks in computer vision: A survey and taxonomy publication-title: ACM Comput. Surv. – start-page: 2000 year: 2023 ident: 10.1016/j.compbiomed.2023.107665_b23 article-title: A morphology focused diffusion probabilistic model for synthesis of histopathology images – volume: 13 start-page: 600 issue: 4 year: 2004 ident: 10.1016/j.compbiomed.2023.107665_b54 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – year: 2023 ident: 10.1016/j.compbiomed.2023.107665_b9 article-title: Toward human-level concept learning: Pattern benchmarking for AI algorithms publication-title: Patterns doi: 10.1016/j.patter.2023.100788 – volume: 55 start-page: 1 issue: 12 year: 2023 ident: 10.1016/j.compbiomed.2023.107665_b32 article-title: Deep person generation: A survey from the perspective of face, pose, and cloth synthesis publication-title: ACM Comput. Surv. doi: 10.1145/3575656 – volume: 6 start-page: eabb7973 issue: 49 year: 2020 ident: 10.1016/j.compbiomed.2023.107665_b77 article-title: Breaking medical data sharing boundaries by using synthesized radiographs publication-title: Sci. Adv. doi: 10.1126/sciadv.abb7973 – year: 2013 ident: 10.1016/j.compbiomed.2023.107665_b26 – volume: 30 year: 2017 ident: 10.1016/j.compbiomed.2023.107665_b53 article-title: Gans trained by a two time-scale update rule converge to a local nash equilibrium publication-title: Adv. Neural Inf. Process. Syst. – year: 2017 ident: 10.1016/j.compbiomed.2023.107665_b15 – start-page: 8340 year: 2018 ident: 10.1016/j.compbiomed.2023.107665_b11 article-title: Synthesizing images of humans in unseen poses – volume: 106 year: 2020 ident: 10.1016/j.compbiomed.2023.107665_b55 article-title: U2-Net: Going deeper with nested U-structure for salient object detection publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107404 – volume: 30 start-page: 2422 year: 2021 ident: 10.1016/j.compbiomed.2023.107665_b41 article-title: Towards fine-grained human pose transfer with detail replenishing network publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2021.3052364 – year: 2022 ident: 10.1016/j.compbiomed.2023.107665_b47 – start-page: 89 year: 2020 ident: 10.1016/j.compbiomed.2023.107665_b34 article-title: A robust pose transformational GAN for pose guided person image synthesis – volume: 30 year: 2017 ident: 10.1016/j.compbiomed.2023.107665_b68 article-title: Pose guided person image generation publication-title: Adv. Neural Inf. Process. Syst. – start-page: 8821 year: 2021 ident: 10.1016/j.compbiomed.2023.107665_b30 article-title: Zero-shot text-to-image generation – year: 2022 ident: 10.1016/j.compbiomed.2023.107665_b31 – year: 2015 ident: 10.1016/j.compbiomed.2023.107665_b70 – start-page: 279 year: 2023 ident: 10.1016/j.compbiomed.2023.107665_b71 article-title: Evaluating generative networks using Gaussian mixtures of image features – volume: 10 start-page: 762 issue: 3 year: 2020 ident: 10.1016/j.compbiomed.2023.107665_b8 article-title: Human annotated dialogues dataset for natural conversational agents publication-title: Appl. Sci. doi: 10.3390/app10030762 – start-page: 1409 year: 1989 ident: 10.1016/j.compbiomed.2023.107665_b57 article-title: A geometric interpretation of Darroch and Ratcliff’s generalized iterative scaling publication-title: Ann. Statist. – volume: 254 start-page: 70 issue: 1 year: 2021 ident: 10.1016/j.compbiomed.2023.107665_b78 article-title: Deep learning detects genetic alterations in cancer histology generated by adversarial networks publication-title: J. Pathol. |
| SSID | ssj0004030 |
| Score | 2.4135942 |
| Snippet | Machine learning has emerged as a promising approach to enhance rehabilitation therapy monitoring and evaluation, providing personalized insights. However, the... AbstractMachine learning has emerged as a promising approach to enhance rehabilitation therapy monitoring and evaluation, providing personalized insights.... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 107665 |
| SubjectTerms | Aged Artificial Intelligence Biomechanics Computer vision Consistency Datasets Deep learning Diffusion models Exercise Exercise Therapy - methods Generative models Human motion Humans Image enhancement Image processing Internal Medicine Learning algorithms Machine Learning Movement Other Pose estimation Rehabilitation Synthetic data |
| Title | Generating a novel synthetic dataset for rehabilitation exercises using pose-guided conditioned diffusion models: A quantitative and qualitative evaluation |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482523011307 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482523011307 https://www.ncbi.nlm.nih.gov/pubmed/37925908 https://www.proquest.com/docview/2892265542 https://www.proquest.com/docview/2886598259 |
| Volume | 167 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AKRWK dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1879-0534 dateEnd: 20250902 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 8FG dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ta9RAEB7aK4hfSn1tai0r-DWal81uIohU6VmEHqIW7tuybylKyV2bS8Hf4p_tTDa5Q6jSLwd3yRzZ7GRmNvvM8wC8Tri2eS3q2Flbx7yodVxq4-PC-TpJLMbNghqcz2bi9Jx_mRfzLZiNvTAEqxxjYh-o3cLSO_K3uDDASgGTX_ZheRWTahTtro4SGnqQVnDve4qxbdjJiBlrAjsfT2Zfv206JZM8NKVg9OG4OBqwPQHxRSDu0PT-hkTF8WcpKOncnbD-VZD2iWm6B7tDRcmOgws8gi3fPIYHZ8Oe-RP4E5ilCd7MNGsWN_6Stb8bLPzQgBFCtPUrhrUru_6LtZuNakwtI3D8BVsuWh9fdD-ddwxX0S6wHDlGGisdvXRjvaxO-44ds6tON337GgZTphvHQvNm-L5hGH8K59OTH59O40GSIba8KFZx7jOfllVtcuuNE5XJNHepKS0v88QILkWipS659qnDA5mQaaorXmuXmdLh3X8GkwavbR-YF1J4UVXWEGVeleq8xPKDNmqlrL1NIpDjfVd2GDnJZlyqEZj2S21mTNGMqTBjEaRry2Xg7LiHTTVOrRp7UjGKKkws97CVd9n6dggHrUpVm6lEfe_ZkNDtMgqrGF0jOBy9SK1P3nh6BK_Wh_Gpp60c3fhFR-eUgqgXiyqC58H71kPNZZWRkv3B___8BTykMQRoziFMVtedf4kF1socwbacS_wsp5-PhifoFhPHKwI |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKKwEXxD-BAkaCY8BJHDtGqlCBVlvaXSFopd5cx3YqUJXdNhtQn4V34dmYiZNdIRXUS4_5mSjO2N_MxN_MEPKScWOzSlSxs7aKeV6ZuDClj3PnK8Ys4GaOCc7jiRgd8E-H-eEK-T3kwiCtcsDEDqjd1OI_8jcQGICnAMYvfTc7jbFrFO6uDi00TN9awW10Jcb6xI5df_4TQrhmY-cj6PtVmm5v7X8YxX2XgdjyPJ_HmU99UqiqzKwvnVBlarhLysLyImOl4FIwI03BjU8cXEiFTBKjeGVcWhaOswyee42s8YwrCP7W3m9NPn9ZZmayLCTBANpxCMZ6LlFgmCFpPCTZv8Ym5nBaCjRyFxvIfznAnSHcvk1u9R4s3QxT7g5Z8fVdcn3c79HfI79CJWukU1ND6-kPf0Kb8xocTRCgyEht_JyCr0zP_qoSTofuTw1FMv4xnU0bHx-335x3FKJ2F6oqOYo9XVr8yUe7Nj7NW7pJT1tTd-lyAN7U1I6GZNFwvKxofp8cXIlyHpDVGt7tEaFeSOGFUrbEEn0qMVkB7g5uDEtZecsiIofvrm0_cmzTcaIHItx3vdSYRo3poLGIJAvJWagRcgkZNahWDzmwgNoaDNklZOVFsr7p4afRiW5SzfTXrvoSTLsUYRzQPCLrwyzSi5uXKysiLxaXAWVw68jUftriPYXAUo-5isjDMPsWQ82kgvOsePz_hz8nN0b74z29tzPZfUJu4ngCLWidrM7PWv8UnLt5-axfQZQcXfWi_QPl-2aT |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKkSouiH8CBYwEx1AnduwYCaGKsmoprZCg0t6MYzsVqMpumw2oz8Kb8HTMxMmukArqpcf8TBRnxt-M429mCHnBhHW8lnXqnatTUdQ2LW0V0sKHmjEHuFlggvPBodw9Eh-mxXSN_B5zYZBWOWJiD9R-5vAf-RYsDCBSAOeXb9UDLeLTzuTt_DTFDlK40zq204gmsh_Of8LyrX2ztwO6fpnnk_df3u2mQ4eB1ImiWKQ85CErdV1xFyovdZVb4bOqdKLkrJJCSWaVLYUNmYcLuVRZZrWorc-r0gvG4bnXyHXFuUY6oZqqVU4m4zH9BXBOwDJsYBFFbhnSxWN6_StsXw6nlUT3drFr_Ffo27vAyS1yc4hd6XY0tttkLTR3yMbBsDt_l_yKNayRSE0tbWY_wgltzxsIMUGAIhe1DQsKUTI9-6s-OB37PrUUafjHdD5rQ3rcffPBU1iv-1hPyVPs5tLh7z3aN_BpX9NtetrZpk-UA9imtvE0ponG41Ut83vk6EpUc5-sN_BuDwkNUskgtXYVFufTmeUlBDq4JaxUHRxLiBq_u3HDyLFBx4kZKXDfzUpjBjVmosYSki0l57E6yCVk9KhaM2a_Al4bcGGXkFUXyYZ2AJ7WZKbNDTOf-7pLYHY5AjjgeEI2Rysyy5tXcyohz5eXAV9w08g2YdbhPaXEIo-FTsiDaH3LoXKl4TwrH_3_4c_IBkxV83HvcP8xuYHDiXygTbK-OOvCE4jqFtXTfvpQ8vWq5-sfIfxkLQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generating+a+novel+synthetic+dataset+for+rehabilitation+exercises+using+pose-guided+conditioned+diffusion+models%3A+A+quantitative+and+qualitative+evaluation&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Mennella%2C+Ciro&rft.au=Maniscalco%2C+Umberto&rft.au=De+Pietro%2C+Giuseppe&rft.au=Esposito%2C+Massimo&rft.date=2023-12-01&rft.pub=Elsevier+Limited&rft.issn=0010-4825&rft.eissn=1879-0534&rft.volume=167&rft_id=info:doi/10.1016%2Fj.compbiomed.2023.107665&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon |