A multi-dimensional CFD framework for fast patient-specific fractional flow reserve prediction

Fractional flow reserve (FFR) is considered as the gold standard for diagnosing coronary myocardial ischemia. Existing 3D computational fluid dynamics (CFD) methods attempt to predict FFR noninvasively using coronary computed tomography angiography (CTA). However, the accuracy and efficiency of the...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 168; p. 107718
Main Authors Yan, Qing, Xiao, Deqiang, Jia, Yaosong, Ai, Danni, Fan, Jingfan, Song, Hong, Xu, Cheng, Wang, Yining, Yang, Jian
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.01.2024
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2023.107718

Cover

More Information
Summary:Fractional flow reserve (FFR) is considered as the gold standard for diagnosing coronary myocardial ischemia. Existing 3D computational fluid dynamics (CFD) methods attempt to predict FFR noninvasively using coronary computed tomography angiography (CTA). However, the accuracy and efficiency of the 3D CFD methods in coronary arteries are considerably limited. In this work, we introduce a multi-dimensional CFD framework that improves the accuracy of FFR prediction by estimating 0D patient-specific boundary conditions, and increases the efficiency by generating 3D initial conditions. The multi-dimensional CFD models contain the 3D vascular model for coronary simulation, the 1D vascular model for iterative optimization, and the 0D vascular model for boundary conditions expression. To improve the accuracy, we utilize clinical parameters to derive 0D patient-specific boundary conditions with an optimization algorithm. To improve the efficiency, we evaluate the convergence state using the 1D vascular model and obtain the convergence parameters to generate appropriate 3D initial conditions. The 0D patient-specific boundary conditions and the 3D initial conditions are used to predict FFR (FFRC). We conducted a retrospective study involving 40 patients (61 diseased vessels) with invasive FFR and their corresponding CTA images. The results demonstrate that the FFRC and the invasive FFR have a strong linear correlation (r = 0.80, p < 0.001) and high consistency (mean difference: 0.014 ±0.071). After applying the cut-off value of FFR (0.8), the accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of FFRC were 88.5%, 93.3%, 83.9%, 84.8%, and 92.9%, respectively. Compared with the conventional zero initial conditions method, our method improves prediction efficiency by 71.3% per case. Therefore, our multi-dimensional CFD framework is capable of improving the accuracy and efficiency of FFR prediction significantly. •We introduce a novel multi-dimensional CFD framework that predicts FFR accurately and efficiently.•We develop the 0D patient-specific boundary conditions to accurately simulate the coronary outlet.•We introduce the 1D coronary model to optimize parameters and simulate the convergence state.•We construct a 3D coronary initial condition to reduce the convergence period of the 3D simulation.•We have successfully validated our multi-dimensional CFD framework by conducting a study on 40 clinical cases.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0010-4825
1879-0534
1879-0534
DOI:10.1016/j.compbiomed.2023.107718