Machine-learning algorithms define pathogen-specific local immune fingerprints in peritoneal dialysis patients with bacterial infections

The immune system has evolved to sense invading pathogens, control infection, and restore tissue integrity. Despite symptomatic variability in patients, unequivocal evidence that an individual's immune system distinguishes between different organisms and mounts an appropriate response is lackin...

Full description

Saved in:
Bibliographic Details
Published inKidney international Vol. 92; no. 1; pp. 179 - 191
Main Authors Zhang, Jingjing, Friberg, Ida M., Kift-Morgan, Ann, Parekh, Gita, Morgan, Matt P., Liuzzi, Anna Rita, Lin, Chan-Yu, Donovan, Kieron L., Colmont, Chantal S., Morgan, Peter H., Davis, Paul, Weeks, Ian, Fraser, Donald J., Topley, Nicholas, Eberl, Matthias
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.07.2017
Elsevier
Subjects
Online AccessGet full text
ISSN0085-2538
1523-1755
1523-1755
DOI10.1016/j.kint.2017.01.017

Cover

Abstract The immune system has evolved to sense invading pathogens, control infection, and restore tissue integrity. Despite symptomatic variability in patients, unequivocal evidence that an individual's immune system distinguishes between different organisms and mounts an appropriate response is lacking. We here used a systematic approach to characterize responses to microbiologically well-defined infection in a total of 83 peritoneal dialysis patients on the day of presentation with acute peritonitis. A broad range of cellular and soluble parameters was determined in peritoneal effluents, covering the majority of local immune cells, inflammatory and regulatory cytokines and chemokines as well as tissue damage–related factors. Our analyses, utilizing machine-learning algorithms, demonstrate that different groups of bacteria induce qualitatively distinct local immune fingerprints, with specific biomarker signatures associated with Gram-negative and Gram-positive organisms, and with culture-negative episodes of unclear etiology. Even more, within the Gram-positive group, unique immune biomarker combinations identified streptococcal and non-streptococcal species including coagulase-negative Staphylococcus spp. These findings have diagnostic and prognostic implications by informing patient management and treatment choice at the point of care. Thus, our data establish the power of non-linear mathematical models to analyze complex biomedical datasets and highlight key pathways involved in pathogen-specific immune responses.
AbstractList The immune system has evolved to sense invading pathogens, control infection, and restore tissue integrity. Despite symptomatic variability in patients, unequivocal evidence that an individual's immune system distinguishes between different organisms and mounts an appropriate response is lacking. We here used a systematic approach to characterize responses to microbiologically well-defined infection in a total of 83 peritoneal dialysis patients on the day of presentation with acute peritonitis. A broad range of cellular and soluble parameters was determined in peritoneal effluents, covering the majority of local immune cells, inflammatory and regulatory cytokines and chemokines as well as tissue damage–related factors. Our analyses, utilizing machine-learning algorithms, demonstrate that different groups of bacteria induce qualitatively distinct local immune fingerprints, with specific biomarker signatures associated with Gram-negative and Gram-positive organisms, and with culture-negative episodes of unclear etiology. Even more, within the Gram-positive group, unique immune biomarker combinations identified streptococcal and non-streptococcal species including coagulase-negative Staphylococcus spp. These findings have diagnostic and prognostic implications by informing patient management and treatment choice at the point of care. Thus, our data establish the power of non-linear mathematical models to analyze complex biomedical datasets and highlight key pathways involved in pathogen-specific immune responses.
The immune system has evolved to sense invading pathogens, control infection, and restore tissue integrity. Despite symptomatic variability in patients, unequivocal evidence that an individual's immune system distinguishes between different organisms and mounts an appropriate response is lacking. We here used a systematic approach to characterize responses to microbiologically well-defined infection in a total of 83 peritoneal dialysis patients on the day of presentation with acute peritonitis. A broad range of cellular and soluble parameters was determined in peritoneal effluents, covering the majority of local immune cells, inflammatory and regulatory cytokines and chemokines as well as tissue damage-related factors. Our analyses, utilizing machine-learning algorithms, demonstrate that different groups of bacteria induce qualitatively distinct local immune fingerprints, with specific biomarker signatures associated with Gram-negative and Gram-positive organisms, and with culture-negative episodes of unclear etiology. Even more, within the Gram-positive group, unique immune biomarker combinations identified streptococcal and non-streptococcal species including coagulase-negative Staphylococcus spp. These findings have diagnostic and prognostic implications by informing patient management and treatment choice at the point of care. Thus, our data establish the power of non-linear mathematical models to analyze complex biomedical datasets and highlight key pathways involved in pathogen-specific immune responses.The immune system has evolved to sense invading pathogens, control infection, and restore tissue integrity. Despite symptomatic variability in patients, unequivocal evidence that an individual's immune system distinguishes between different organisms and mounts an appropriate response is lacking. We here used a systematic approach to characterize responses to microbiologically well-defined infection in a total of 83 peritoneal dialysis patients on the day of presentation with acute peritonitis. A broad range of cellular and soluble parameters was determined in peritoneal effluents, covering the majority of local immune cells, inflammatory and regulatory cytokines and chemokines as well as tissue damage-related factors. Our analyses, utilizing machine-learning algorithms, demonstrate that different groups of bacteria induce qualitatively distinct local immune fingerprints, with specific biomarker signatures associated with Gram-negative and Gram-positive organisms, and with culture-negative episodes of unclear etiology. Even more, within the Gram-positive group, unique immune biomarker combinations identified streptococcal and non-streptococcal species including coagulase-negative Staphylococcus spp. These findings have diagnostic and prognostic implications by informing patient management and treatment choice at the point of care. Thus, our data establish the power of non-linear mathematical models to analyze complex biomedical datasets and highlight key pathways involved in pathogen-specific immune responses.
Author Eberl, Matthias
Colmont, Chantal S.
Morgan, Matt P.
Zhang, Jingjing
Friberg, Ida M.
Donovan, Kieron L.
Lin, Chan-Yu
Fraser, Donald J.
Liuzzi, Anna Rita
Kift-Morgan, Ann
Parekh, Gita
Morgan, Peter H.
Davis, Paul
Weeks, Ian
Topley, Nicholas
AuthorAffiliation 1 Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
6 Directorate of Nephrology and Transplantation, Cardiff and Vale University Health Board, University Hospital of Wales, Heath Park, Cardiff, UK
3 Directorate of Critical Care, Cardiff and Vale University Health Board, University Hospital of Wales, Heath Park, Cardiff, UK
8 Systems Immunity Research Institute, Cardiff University, Cardiff, UK
5 Wales Kidney Research Unit, Heath Park Campus, Cardiff, UK
2 Mologic Ltd., Bedford Technology Park, Thurleigh, Bedford, UK
4 Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan City, Taiwan
7 Cardiff Business School, Cardiff University, Cardiff, UK
AuthorAffiliation_xml – name: 8 Systems Immunity Research Institute, Cardiff University, Cardiff, UK
– name: 5 Wales Kidney Research Unit, Heath Park Campus, Cardiff, UK
– name: 3 Directorate of Critical Care, Cardiff and Vale University Health Board, University Hospital of Wales, Heath Park, Cardiff, UK
– name: 7 Cardiff Business School, Cardiff University, Cardiff, UK
– name: 4 Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan City, Taiwan
– name: 2 Mologic Ltd., Bedford Technology Park, Thurleigh, Bedford, UK
– name: 1 Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
– name: 6 Directorate of Nephrology and Transplantation, Cardiff and Vale University Health Board, University Hospital of Wales, Heath Park, Cardiff, UK
Author_xml – sequence: 1
  givenname: Jingjing
  surname: Zhang
  fullname: Zhang, Jingjing
  organization: Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
– sequence: 2
  givenname: Ida M.
  surname: Friberg
  fullname: Friberg, Ida M.
  organization: Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
– sequence: 3
  givenname: Ann
  surname: Kift-Morgan
  fullname: Kift-Morgan, Ann
  organization: Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
– sequence: 4
  givenname: Gita
  surname: Parekh
  fullname: Parekh, Gita
  organization: Mologic Ltd., Bedford Technology Park, Thurleigh, Bedford, UK
– sequence: 5
  givenname: Matt P.
  surname: Morgan
  fullname: Morgan, Matt P.
  organization: Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
– sequence: 6
  givenname: Anna Rita
  surname: Liuzzi
  fullname: Liuzzi, Anna Rita
  organization: Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
– sequence: 7
  givenname: Chan-Yu
  surname: Lin
  fullname: Lin, Chan-Yu
  organization: Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
– sequence: 8
  givenname: Kieron L.
  surname: Donovan
  fullname: Donovan, Kieron L.
  organization: Wales Kidney Research Unit, Heath Park Campus, Cardiff, UK
– sequence: 9
  givenname: Chantal S.
  surname: Colmont
  fullname: Colmont, Chantal S.
  organization: Wales Kidney Research Unit, Heath Park Campus, Cardiff, UK
– sequence: 10
  givenname: Peter H.
  surname: Morgan
  fullname: Morgan, Peter H.
  organization: Cardiff Business School, Cardiff University, Cardiff, UK
– sequence: 11
  givenname: Paul
  surname: Davis
  fullname: Davis, Paul
  organization: Mologic Ltd., Bedford Technology Park, Thurleigh, Bedford, UK
– sequence: 12
  givenname: Ian
  surname: Weeks
  fullname: Weeks, Ian
  organization: Systems Immunity Research Institute, Cardiff University, Cardiff, UK
– sequence: 13
  givenname: Donald J.
  surname: Fraser
  fullname: Fraser, Donald J.
  organization: Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
– sequence: 14
  givenname: Nicholas
  surname: Topley
  fullname: Topley, Nicholas
  organization: Wales Kidney Research Unit, Heath Park Campus, Cardiff, UK
– sequence: 15
  givenname: Matthias
  surname: Eberl
  fullname: Eberl, Matthias
  email: eberlm@cf.ac.uk
  organization: Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28318629$$D View this record in MEDLINE/PubMed
BookMark eNqNUctq3TAQFSWluUn7A10UL7vxrR6WH1AKJfQFKd20ayHLY1_dypIr2Qn3E_oX_ZZ8Wcbc9LkIhQEh5pwzZ86ckRMfPBDylNEto6x8sd9-tX7ecsqqLWVY1QOyYZKLnFVSnpANpbXMuRT1KTlLaU_x3wj6iJzyWrC65M2GfP-ozc56yB3o6K0fMu2GEO28G1PWQY-tbNLzLgzg8zSBsb01mQtGu8yO44JtxAwQp4heUmb9zY8JkI9WEdJZ7Q7JplXDwgq4Rums1WZG0KrhezCzDT49Jg977RI8uXvPyZe3bz5fvM8vP737cPH6MjeFlHPOS4CWy46JygjWtj3jZcWaqpRFZWSnoekLWdRlZ8qOm0KAbAtDy7qsgBvNjDgn4qi7-EkfrrVzCr2POh4Uo2oNVu3VGqxag1WUYVXIenVkTUs7Qmdwl6h_M4O26u-Otzs1hCuFXgrKOQo8vxOI4dsCaVajTQac0x7CkhSrq6aUjWANQp_9OevXkJ9XQ0B9BJgYUorQK2NnvaaIo627fw_-D_W_ln95JAHe5cpCVMngNQ10NuL1VBfsffRbwpXZrA
CitedBy_id crossref_primary_10_1186_s12911_023_02412_z
crossref_primary_10_1038_s41598_020_80938_2
crossref_primary_10_23876_j_krcp_21_204
crossref_primary_10_1177_08968608241234728
crossref_primary_10_1080_0886022X_2022_2064304
crossref_primary_10_1016_j_nefroe_2022_07_005
crossref_primary_10_1016_j_ceh_2021_11_003
crossref_primary_10_1093_ckj_sfad182
crossref_primary_10_1111_sdi_12915
crossref_primary_10_1371_journal_pcbi_1009071
crossref_primary_10_1016_j_xkme_2021_08_004
crossref_primary_10_1038_s41598_018_37762_6
crossref_primary_10_3390_biom10101361
crossref_primary_10_3389_fphys_2018_01694
crossref_primary_10_1177_08968608221080586
crossref_primary_10_1111_joim_12746
crossref_primary_10_1038_s41598_017_16521_z
crossref_primary_10_1186_s41100_021_00348_6
crossref_primary_10_1038_s41581_021_00466_8
crossref_primary_10_1155_2022_9108656
crossref_primary_10_1016_j_kint_2020_01_044
crossref_primary_10_2196_18372
crossref_primary_10_1016_j_nefro_2021_10_007
crossref_primary_10_1136_bmjopen_2023_081318
crossref_primary_10_1038_s41598_020_64184_0
crossref_primary_10_1155_2020_9867872
crossref_primary_10_3389_fimmu_2019_01838
crossref_primary_10_1016_j_xkme_2024_100927
crossref_primary_10_1155_2020_6950576
crossref_primary_10_1007_s10151_023_02841_y
crossref_primary_10_1038_s41581_020_0287_4
crossref_primary_10_3389_fendo_2023_1081543
crossref_primary_10_3390_applbiosci3010002
crossref_primary_10_1371_journal_pone_0293680
crossref_primary_10_3390_diagnostics14111113
crossref_primary_10_1016_j_jjimei_2022_100076
crossref_primary_10_1016_j_pt_2017_08_011
crossref_primary_10_3389_fmed_2023_1335232
crossref_primary_10_1093_cei_uxae019
crossref_primary_10_1038_s41598_019_55523_x
crossref_primary_10_1016_j_kint_2017_02_027
crossref_primary_10_2215_CJN_0000000000000405
crossref_primary_10_1007_s11255_024_04144_z
crossref_primary_10_1186_s12882_024_03756_y
crossref_primary_10_1002_path_5438
crossref_primary_10_3390_biom10060965
crossref_primary_10_1016_j_scitotenv_2023_162976
crossref_primary_10_1038_s41598_019_46585_y
crossref_primary_10_1053_j_ajkd_2019_05_020
crossref_primary_10_25796_bdd_v3i4_57953
crossref_primary_10_3390_info15120776
crossref_primary_10_3390_s21237786
crossref_primary_10_1159_000542870
Cites_doi 10.1097/QCO.0000000000000065
10.1093/ndt/gfq222
10.1016/j.neubiorev.2012.01.004
10.1186/1471-2105-9-319
10.1186/1471-2105-7-3
10.1016/j.coi.2015.06.002
10.1101/SQB.1989.054.01.003
10.1093/bioinformatics/16.10.906
10.1038/ncomms5649
10.1371/journal.ppat.1000308
10.1007/BF00994018
10.1053/j.ajkd.2014.02.025
10.1111/nep.12828
10.1093/ndt/gfu313
10.1111/sdi.12270
10.1038/nri3167
10.4049/jimmunol.1600990
10.1016/j.snb.2012.11.071
10.1126/scitranslmed.aaf7165
10.2478/v10136-012-0031-x
10.1681/ASN.2013040332
10.1038/89044
10.1016/j.jneuroim.2014.05.009
10.3747/pdi.2016.00078
10.1053/j.ajkd.2009.11.015
10.1371/journal.ppat.1002040
10.1093/bib/bbs034
10.3389/fimmu.2014.00572
10.1158/1078-0432.CCR-07-4534
10.1126/science.1071059
10.1016/j.surg.2010.03.023
10.1182/blood-2006-02-002477
ContentType Journal Article
Copyright 2017 International Society of Nephrology
Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
2017 International Society of Nephrology. 2017 International Society of Nephrology
Copyright_xml – notice: 2017 International Society of Nephrology
– notice: Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
– notice: 2017 International Society of Nephrology. 2017 International Society of Nephrology
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1016/j.kint.2017.01.017
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1523-1755
EndPage 191
ExternalDocumentID 10.1016/j.kint.2017.01.017
PMC5484022
28318629
10_1016_j_kint_2017_01_017
S0085253817300686
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GrantInformation_xml – fundername: Medical Research Council
  grantid: MC_PC_13060
– fundername: Wellcome Trust
– fundername: Medical Research Council
  grantid: MR/N023145/1
– fundername: Department of Health
  grantid: II-LA-0712-20006
GroupedDBID ---
.55
.GJ
0R~
1CY
29L
2WC
36B
39C
3O-
3V.
4.4
457
53G
5GY
5RE
5VS
6I.
6PF
7RV
7X7
88E
8AO
8FI
8FJ
8R4
8R5
AACTN
AAEDW
AAFTH
AAIAV
AAKUH
AALRI
AAQFI
AAWTL
AAXUO
ABAWZ
ABJNI
ABLJU
ABMAC
ABOCM
ABUWG
ABVKL
ACGFO
ACGFS
ACPRK
ADBBV
ADEZE
ADFRT
ADQMX
AENEX
AEXQZ
AFEBI
AFKRA
AFTJW
AGHFR
AHMBA
AHPSJ
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BENPR
BFHJK
BKEYQ
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DIK
DU5
EBS
EJD
EX3
F5P
FDB
FRP
FYUFA
GX1
HMCUK
HZ~
IHE
J5H
JSO
KQ8
L7B
LH4
LW6
M1P
M41
MJL
N4W
NAPCQ
NCXOZ
O9-
OK1
P2P
P6G
PQQKQ
PROAC
PSQYO
Q2X
R9-
RIG
RNS
ROL
SDH
SSZ
TR2
UKHRP
W2D
WOW
X7M
XVB
YFH
YOC
YUY
ZA5
ZCG
ZGI
ZXP
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
EFKBS
PHGZM
PHGZT
PJZUB
PPXIY
PUEGO
AFETI
AGCQF
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c455t-26eeb25d137c31bbf12671976547c5dae9f45486dc6d2c43e5b4c06867e2ca1c3
IEDL.DBID UNPAY
ISSN 0085-2538
1523-1755
IngestDate Sun Oct 26 04:10:20 EDT 2025
Tue Sep 30 16:56:44 EDT 2025
Wed Oct 01 14:24:11 EDT 2025
Mon Jul 21 06:02:40 EDT 2025
Thu Apr 24 22:53:57 EDT 2025
Wed Oct 01 04:56:21 EDT 2025
Fri Feb 23 02:23:15 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords machine learning methods
peritoneal dialysis
microbial infection
inflammation
biomarkers
Language English
License This is an open access article under the CC BY license.
Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-26eeb25d137c31bbf12671976547c5dae9f45486dc6d2c43e5b4c06867e2ca1c3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
Present address: School of Environment and Life Sciences, University of Salford, Salford M5 4WT, UK.
OpenAccessLink https://proxy.k.utb.cz/login?url=http://www.kidney-international.org/article/S0085253817300686/pdf
PMID 28318629
PQID 1879659319
PQPubID 23479
PageCount 13
ParticipantIDs unpaywall_primary_10_1016_j_kint_2017_01_017
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5484022
proquest_miscellaneous_1879659319
pubmed_primary_28318629
crossref_citationtrail_10_1016_j_kint_2017_01_017
crossref_primary_10_1016_j_kint_2017_01_017
elsevier_sciencedirect_doi_10_1016_j_kint_2017_01_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2017
2017-07-00
20170701
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: July 2017
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Kidney international
PublicationTitleAlternate Kidney Int
PublicationYear 2017
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Blander, Sander (bib3) 2012; 12
Smith, Dickinson, Forster (bib7) 2014; 5
Fahim, Hawley, McDonald (bib29) 2010; 55
Karatzoglou, Smola, Hornik, Zeileis (bib38) 2004; 11
Bajpai, Prasad, Mishra (bib8) 2014; 273
Campbell, Johnson, Mudge (bib17) 2015; 30
Wei T, Simko V. corrplot: Visualization of a correlation matrix. R package version 0.77, 2016. Available at
Van Buuren, Groothuis-Oudshoorn (bib36) 2011; 45
Taylor, Ankerst, Andridge (bib35) 2008; 14
Hsieh, Lu, Lee (bib33) 2011; 149
Accessed March 30, 2016.
Ramilo, Allman, Chung (bib5) 2007; 109
Eberl, Friberg, Liuzzi (bib28) 2014; 5
Bishop (bib22) 1995
Matzinger (bib2) 2002; 296
Accessed August 5, 2015.
Meyer D, Dimitriadou E, Hornik K, et al. e1071: Misc functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. R package version 1.6-7, 2015. Available at
Szeto, Lai, Chow (bib16) 2016; 21
Eberl, Roberts, Meuter (bib13) 2009; 5
Mejias, Suarez, Ramilo (bib9) 2014; 27
Lemon (bib42) 2006; 6
Harrell FE Jr, with contributions from Dupont C and many others. 2016. Hmisc: Harrell Miscellaneous. R package version 3.17-3. Available at
Khan, Wei, Ringnér (bib23) 2001; 7
Touw, Bayjanov, Overmars (bib27) 2013; 14
Díaz-Uriarte, Alvarez de Andrés (bib26) 2006; 7
Sweeney, Wong, Khatri (bib10) 2016; 8
Furey, Cristianini, Duffy (bib20) 2000; 16
Guyon, Elisseeff (bib18) 2003; 3
Liuzzi, Kift-Morgan, Lopez-Anton (bib15) 2016; 197
Cho, Johnson (bib11) 2014; 64
Li, Szeto, Piraino (bib12) 2016; 36
Amato, López, Peña-Méndez, Vaňhara (bib24) 2013; 11
Janeway (bib1) 1989; 541
Statnikov, Wang, Aliferis (bib32) 2008; 9
Liuzzi, McLaren, Price, Eberl (bib4) 2015; 36
Lin, Roberts, Kift-Morgan (bib6) 2013; 24
Cortes, Vapnik (bib19) 1995; 20
Liaw, Wiener (bib25) 2002; 2
Accessed February 16, 2014.
Kuhn M. Contributions from Wing J, Weston S, Williams A, Keefer C, Engelhardt A, Cooper T, Mayer Z and the R Core Team. 2014. Caret: classification and regression training. R package version 6.0.24. Available at
Bieber, Anderson, Mehrotra (bib31) 2014; 27
Davey, Lin, Roberts (bib14) 2011; 7
Fahim, Hawley, McDonald (bib30) 2010; 25
Liu, Wang, Wang, Li (bib34) 2013; 177
Orrù, Pettersson-Yeo, Marquand (bib21) 2012; 36
Warnes GR, Bolker B, Bonebakker L, et al. gplots: various R programming tools for plotting data. R package version 3.0.1, 2016. Available at
Venables, Ripley (bib39) 2002
Accessed April 21, 2016.
Accessed April 3, 2016.
Ramilo (10.1016/j.kint.2017.01.017_bib5) 2007; 109
Cho (10.1016/j.kint.2017.01.017_bib11) 2014; 64
Taylor (10.1016/j.kint.2017.01.017_bib35) 2008; 14
Eberl (10.1016/j.kint.2017.01.017_bib13) 2009; 5
Cortes (10.1016/j.kint.2017.01.017_bib19) 1995; 20
Campbell (10.1016/j.kint.2017.01.017_bib17) 2015; 30
Liaw (10.1016/j.kint.2017.01.017_bib25) 2002; 2
Lemon (10.1016/j.kint.2017.01.017_bib42) 2006; 6
Li (10.1016/j.kint.2017.01.017_bib12) 2016; 36
Fahim (10.1016/j.kint.2017.01.017_bib30) 2010; 25
Liuzzi (10.1016/j.kint.2017.01.017_bib4) 2015; 36
Van Buuren (10.1016/j.kint.2017.01.017_bib36) 2011; 45
Smith (10.1016/j.kint.2017.01.017_bib7) 2014; 5
Janeway (10.1016/j.kint.2017.01.017_bib1) 1989; 541
Lin (10.1016/j.kint.2017.01.017_bib6) 2013; 24
Hsieh (10.1016/j.kint.2017.01.017_bib33) 2011; 149
10.1016/j.kint.2017.01.017_bib41
10.1016/j.kint.2017.01.017_bib40
Liu (10.1016/j.kint.2017.01.017_bib34) 2013; 177
Blander (10.1016/j.kint.2017.01.017_bib3) 2012; 12
10.1016/j.kint.2017.01.017_bib44
Amato (10.1016/j.kint.2017.01.017_bib24) 2013; 11
10.1016/j.kint.2017.01.017_bib43
Eberl (10.1016/j.kint.2017.01.017_bib28) 2014; 5
Bajpai (10.1016/j.kint.2017.01.017_bib8) 2014; 273
Liuzzi (10.1016/j.kint.2017.01.017_bib15) 2016; 197
Matzinger (10.1016/j.kint.2017.01.017_bib2) 2002; 296
Díaz-Uriarte (10.1016/j.kint.2017.01.017_bib26) 2006; 7
Bieber (10.1016/j.kint.2017.01.017_bib31) 2014; 27
Touw (10.1016/j.kint.2017.01.017_bib27) 2013; 14
Fahim (10.1016/j.kint.2017.01.017_bib29) 2010; 55
Mejias (10.1016/j.kint.2017.01.017_bib9) 2014; 27
Szeto (10.1016/j.kint.2017.01.017_bib16) 2016; 21
Statnikov (10.1016/j.kint.2017.01.017_bib32) 2008; 9
Venables (10.1016/j.kint.2017.01.017_bib39) 2002
10.1016/j.kint.2017.01.017_bib37
Sweeney (10.1016/j.kint.2017.01.017_bib10) 2016; 8
Davey (10.1016/j.kint.2017.01.017_bib14) 2011; 7
Guyon (10.1016/j.kint.2017.01.017_bib18) 2003; 3
Bishop (10.1016/j.kint.2017.01.017_bib22) 1995
Furey (10.1016/j.kint.2017.01.017_bib20) 2000; 16
Orrù (10.1016/j.kint.2017.01.017_bib21) 2012; 36
Khan (10.1016/j.kint.2017.01.017_bib23) 2001; 7
Karatzoglou (10.1016/j.kint.2017.01.017_bib38) 2004; 11
28646991 - Kidney Int. 2017 Jul;92(1):16-18. doi: 10.1016/j.kint.2017.02.027.
References_xml – volume: 24
  start-page: 2002
  year: 2013
  end-page: 2009
  ident: bib6
  article-title: Pathogen-specific local immune fingerprints diagnose bacterial infection in peritoneal dialysis patients
  publication-title: J Am Soc Nephrol
– volume: 7
  start-page: 3
  year: 2006
  ident: bib26
  article-title: Gene selection and classification of microarray data using random forest
  publication-title: BMC Bioinformatics
– volume: 149
  start-page: 87
  year: 2011
  end-page: 93
  ident: bib33
  article-title: Novel solutions for an old disease: diagnosis of acute appendicitis with random forest, support vector machines, and artificial neural networks
  publication-title: Surgery
– volume: 36
  start-page: 1140
  year: 2012
  end-page: 1152
  ident: bib21
  article-title: Using Support Vector Machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review
  publication-title: Neurosci Biobehav Rev
– reference: Meyer D, Dimitriadou E, Hornik K, et al. e1071: Misc functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. R package version 1.6-7, 2015. Available at:
– volume: 177
  start-page: 970
  year: 2013
  end-page: 980
  ident: bib34
  article-title: Comparison of random forest, support vector machine and back propagation neural network for electronic tongue data classification: application to the recognition of orange beverage and Chinese vinegar
  publication-title: Sensors Actuators B: Chem
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  ident: bib18
  article-title: An introduction to variable and feature selection
  publication-title: J Mach Learn Res
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bib19
  article-title: Support-vector networks
  publication-title: Machine Learning
– volume: 14
  start-page: 315
  year: 2013
  end-page: 326
  ident: bib27
  article-title: Data mining in the life sciences with Random Forest: a walk in the park or lost in the jungle?
  publication-title: Brief Bioinform
– volume: 16
  start-page: 906
  year: 2000
  end-page: 914
  ident: bib20
  article-title: Support vector machine classification and validation of cancer tissue samples using microarray expression data
  publication-title: Bioinformatics
– year: 1995
  ident: bib22
  article-title: Neural Networks for Pattern Recognition
– reference: Kuhn M. Contributions from Wing J, Weston S, Williams A, Keefer C, Engelhardt A, Cooper T, Mayer Z and the R Core Team. 2014. Caret: classification and regression training. R package version 6.0.24. Available at:
– volume: 5
  start-page: 572
  year: 2014
  ident: bib28
  article-title: Pathogen-specific immune fingerprints during acute infection: the diagnostic potential of human γδ T-cells
  publication-title: Front Immunol
– year: 2002
  ident: bib39
  article-title: Modern Applied Statistics with S
– reference: Harrell FE Jr, with contributions from Dupont C and many others. 2016. Hmisc: Harrell Miscellaneous. R package version 3.17-3. Available at:
– volume: 5
  start-page: 4649
  year: 2014
  ident: bib7
  article-title: Identification of a human neonatal immune-metabolic network associated with bacterial infection
  publication-title: Nat Commun
– volume: 36
  start-page: 481
  year: 2016
  end-page: 508
  ident: bib12
  article-title: ISPD Peritonitis Recommendations: 2016 Update on Prevention and Treatment
  publication-title: Perit Dial Int
– volume: 27
  start-page: 602
  year: 2014
  end-page: 606
  ident: bib31
  article-title: Diagnostic testing for peritonitis in patients undergoing peritoneal dialysis
  publication-title: Semin Dial
– volume: 27
  start-page: 228
  year: 2014
  end-page: 235
  ident: bib9
  article-title: Detecting specific infections in children through host responses: a paradigm shift
  publication-title: Curr Opin Infect Dis
– volume: 36
  start-page: 31
  year: 2015
  end-page: 37
  ident: bib4
  article-title: Early innate responses to pathogens: pattern recognition by unconventional human T-cells
  publication-title: Curr Opin Immunol
– reference: Warnes GR, Bolker B, Bonebakker L, et al. gplots: various R programming tools for plotting data. R package version 3.0.1, 2016. Available at:
– volume: 14
  start-page: 5977
  year: 2008
  end-page: 5983
  ident: bib35
  article-title: Validation of biomarker-based risk prediction models
  publication-title: Clin Cancer Res
– volume: 11
  start-page: 1
  year: 2004
  end-page: 20
  ident: bib38
  article-title: kernlab - An S4 package for kernel methods in R
  publication-title: J Stat Softw
– volume: 64
  start-page: 278
  year: 2014
  end-page: 289
  ident: bib11
  article-title: Peritoneal dialysis-related peritonitis: towards improving evidence, practices, and outcomes
  publication-title: Am J Kidney Dis
– volume: 6
  start-page: 8
  year: 2006
  end-page: 12
  ident: bib42
  article-title: Plotrix: a package in the red light district of R
  publication-title: R News
– volume: 55
  start-page: 690
  year: 2010
  end-page: 697
  ident: bib29
  article-title: Culture-negative peritonitis in peritoneal dialysis patients in Australia: predictors, treatment, and outcomes in 435 cases
  publication-title: Am J Kidney Dis
– reference: . Accessed February 16, 2014.
– volume: 2
  start-page: 18
  year: 2002
  end-page: 22
  ident: bib25
  article-title: Classification and regression by randomForest
  publication-title: R News
– volume: 9
  start-page: 319
  year: 2008
  ident: bib32
  article-title: A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification
  publication-title: BMC Bioinformatics
– volume: 296
  start-page: 301
  year: 2002
  end-page: 305
  ident: bib2
  article-title: The danger model: a renewed sense of self
  publication-title: Science
– volume: 5
  start-page: e1000308
  year: 2009
  ident: bib13
  article-title: A rapid crosstalk of human γδ T cells and monocytes drives the acute inflammation in bacterial infections
  publication-title: PLOS Pathog
– volume: 7
  start-page: 673
  year: 2001
  end-page: 679
  ident: bib23
  article-title: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks
  publication-title: Nat Med
– volume: 197
  start-page: 2195
  year: 2016
  end-page: 2207
  ident: bib15
  article-title: Unconventional human T cells accumulate at the site of infection in response to microbial ligands and induce local tissue remodeling
  publication-title: J Immunol
– volume: 109
  start-page: 2066
  year: 2007
  end-page: 2077
  ident: bib5
  article-title: Gene expression patterns in blood leukocytes discriminate patients with acute infections
  publication-title: Blood
– reference: Wei T, Simko V. corrplot: Visualization of a correlation matrix. R package version 0.77, 2016. Available at:
– volume: 541
  start-page: 1
  year: 1989
  end-page: 13
  ident: bib1
  article-title: Approaching the asymptote? Evolution and revolution in immunology
  publication-title: Cold Spring Harb Symp Quant Biol
– volume: 273
  start-page: 96
  year: 2014
  end-page: 102
  ident: bib8
  article-title: Distinct cytokine pattern in response to different bacterial pathogens in human brain abscess
  publication-title: J Neuroimmunol
– volume: 25
  start-page: 3386
  year: 2010
  end-page: 3392
  ident: bib30
  article-title: Coagulase-negative staphylococcal peritonitis in Australian peritoneal dialysis patients: predictors, treatment and outcomes in 936 cases
  publication-title: Nephrol Dial Transplant
– volume: 7
  start-page: e1002040
  year: 2011
  ident: bib14
  article-title: Human neutrophil clearance of bacterial pathogens triggers anti-microbial γδ T cell responses in early infection
  publication-title: PLOS Pathog
– reference: . Accessed August 5, 2015.
– volume: 21
  start-page: 1069
  year: 2016
  end-page: 1072
  ident: bib16
  article-title: Dialysate bacterial endotoxin as a prognostic indicator of peritoneal dialysis related peritonitis
  publication-title: Nephrology
– volume: 12
  start-page: 215
  year: 2012
  end-page: 225
  ident: bib3
  article-title: Beyond pattern recognition: five immune checkpoints for scaling the microbial threat
  publication-title: Nat Rev Immunol
– reference: . Accessed April 21, 2016.
– reference: . Accessed March 30, 2016.
– volume: 11
  start-page: 47
  year: 2013
  end-page: 58
  ident: bib24
  article-title: Artificial neural networks in medical diagnosis
  publication-title: J Appl Biomed
– volume: 30
  start-page: 1461
  year: 2015
  end-page: 1472
  ident: bib17
  article-title: Prevention of peritoneal dialysis-related infections
  publication-title: Nephrol Dial Transplant
– volume: 45
  start-page: 1
  year: 2011
  end-page: 67
  ident: bib36
  article-title: MICE: multivariate imputation by chained equations in R
  publication-title: J Stat Softw
– volume: 8
  start-page: 346ra91
  year: 2016
  ident: bib10
  article-title: Robust classification of bacterial and viral infections via integrated host gene expression diagnostics
  publication-title: Sci Transl Med
– reference: . Accessed April 3, 2016.
– volume: 27
  start-page: 228
  year: 2014
  ident: 10.1016/j.kint.2017.01.017_bib9
  article-title: Detecting specific infections in children through host responses: a paradigm shift
  publication-title: Curr Opin Infect Dis
  doi: 10.1097/QCO.0000000000000065
– volume: 25
  start-page: 3386
  year: 2010
  ident: 10.1016/j.kint.2017.01.017_bib30
  article-title: Coagulase-negative staphylococcal peritonitis in Australian peritoneal dialysis patients: predictors, treatment and outcomes in 936 cases
  publication-title: Nephrol Dial Transplant
  doi: 10.1093/ndt/gfq222
– volume: 36
  start-page: 1140
  year: 2012
  ident: 10.1016/j.kint.2017.01.017_bib21
  article-title: Using Support Vector Machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review
  publication-title: Neurosci Biobehav Rev
  doi: 10.1016/j.neubiorev.2012.01.004
– volume: 9
  start-page: 319
  year: 2008
  ident: 10.1016/j.kint.2017.01.017_bib32
  article-title: A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-319
– volume: 7
  start-page: 3
  year: 2006
  ident: 10.1016/j.kint.2017.01.017_bib26
  article-title: Gene selection and classification of microarray data using random forest
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-3
– volume: 3
  start-page: 1157
  year: 2003
  ident: 10.1016/j.kint.2017.01.017_bib18
  article-title: An introduction to variable and feature selection
  publication-title: J Mach Learn Res
– volume: 36
  start-page: 31
  year: 2015
  ident: 10.1016/j.kint.2017.01.017_bib4
  article-title: Early innate responses to pathogens: pattern recognition by unconventional human T-cells
  publication-title: Curr Opin Immunol
  doi: 10.1016/j.coi.2015.06.002
– volume: 541
  start-page: 1
  year: 1989
  ident: 10.1016/j.kint.2017.01.017_bib1
  article-title: Approaching the asymptote? Evolution and revolution in immunology
  publication-title: Cold Spring Harb Symp Quant Biol
  doi: 10.1101/SQB.1989.054.01.003
– volume: 16
  start-page: 906
  year: 2000
  ident: 10.1016/j.kint.2017.01.017_bib20
  article-title: Support vector machine classification and validation of cancer tissue samples using microarray expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/16.10.906
– volume: 5
  start-page: 4649
  year: 2014
  ident: 10.1016/j.kint.2017.01.017_bib7
  article-title: Identification of a human neonatal immune-metabolic network associated with bacterial infection
  publication-title: Nat Commun
  doi: 10.1038/ncomms5649
– volume: 5
  start-page: e1000308
  year: 2009
  ident: 10.1016/j.kint.2017.01.017_bib13
  article-title: A rapid crosstalk of human γδ T cells and monocytes drives the acute inflammation in bacterial infections
  publication-title: PLOS Pathog
  doi: 10.1371/journal.ppat.1000308
– ident: 10.1016/j.kint.2017.01.017_bib40
– volume: 20
  start-page: 273
  year: 1995
  ident: 10.1016/j.kint.2017.01.017_bib19
  article-title: Support-vector networks
  publication-title: Machine Learning
  doi: 10.1007/BF00994018
– ident: 10.1016/j.kint.2017.01.017_bib44
– volume: 64
  start-page: 278
  year: 2014
  ident: 10.1016/j.kint.2017.01.017_bib11
  article-title: Peritoneal dialysis-related peritonitis: towards improving evidence, practices, and outcomes
  publication-title: Am J Kidney Dis
  doi: 10.1053/j.ajkd.2014.02.025
– volume: 21
  start-page: 1069
  year: 2016
  ident: 10.1016/j.kint.2017.01.017_bib16
  article-title: Dialysate bacterial endotoxin as a prognostic indicator of peritoneal dialysis related peritonitis
  publication-title: Nephrology
  doi: 10.1111/nep.12828
– volume: 30
  start-page: 1461
  year: 2015
  ident: 10.1016/j.kint.2017.01.017_bib17
  article-title: Prevention of peritoneal dialysis-related infections
  publication-title: Nephrol Dial Transplant
  doi: 10.1093/ndt/gfu313
– volume: 27
  start-page: 602
  year: 2014
  ident: 10.1016/j.kint.2017.01.017_bib31
  article-title: Diagnostic testing for peritonitis in patients undergoing peritoneal dialysis
  publication-title: Semin Dial
  doi: 10.1111/sdi.12270
– volume: 12
  start-page: 215
  year: 2012
  ident: 10.1016/j.kint.2017.01.017_bib3
  article-title: Beyond pattern recognition: five immune checkpoints for scaling the microbial threat
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri3167
– volume: 197
  start-page: 2195
  year: 2016
  ident: 10.1016/j.kint.2017.01.017_bib15
  article-title: Unconventional human T cells accumulate at the site of infection in response to microbial ligands and induce local tissue remodeling
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1600990
– year: 1995
  ident: 10.1016/j.kint.2017.01.017_bib22
– volume: 177
  start-page: 970
  year: 2013
  ident: 10.1016/j.kint.2017.01.017_bib34
  article-title: Comparison of random forest, support vector machine and back propagation neural network for electronic tongue data classification: application to the recognition of orange beverage and Chinese vinegar
  publication-title: Sensors Actuators B: Chem
  doi: 10.1016/j.snb.2012.11.071
– volume: 8
  start-page: 346ra91
  year: 2016
  ident: 10.1016/j.kint.2017.01.017_bib10
  article-title: Robust classification of bacterial and viral infections via integrated host gene expression diagnostics
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.aaf7165
– volume: 11
  start-page: 1
  year: 2004
  ident: 10.1016/j.kint.2017.01.017_bib38
  article-title: kernlab - An S4 package for kernel methods in R
  publication-title: J Stat Softw
– volume: 11
  start-page: 47
  year: 2013
  ident: 10.1016/j.kint.2017.01.017_bib24
  article-title: Artificial neural networks in medical diagnosis
  publication-title: J Appl Biomed
  doi: 10.2478/v10136-012-0031-x
– volume: 45
  start-page: 1
  year: 2011
  ident: 10.1016/j.kint.2017.01.017_bib36
  article-title: MICE: multivariate imputation by chained equations in R
  publication-title: J Stat Softw
– volume: 24
  start-page: 2002
  year: 2013
  ident: 10.1016/j.kint.2017.01.017_bib6
  article-title: Pathogen-specific local immune fingerprints diagnose bacterial infection in peritoneal dialysis patients
  publication-title: J Am Soc Nephrol
  doi: 10.1681/ASN.2013040332
– volume: 7
  start-page: 673
  year: 2001
  ident: 10.1016/j.kint.2017.01.017_bib23
  article-title: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks
  publication-title: Nat Med
  doi: 10.1038/89044
– volume: 273
  start-page: 96
  year: 2014
  ident: 10.1016/j.kint.2017.01.017_bib8
  article-title: Distinct cytokine pattern in response to different bacterial pathogens in human brain abscess
  publication-title: J Neuroimmunol
  doi: 10.1016/j.jneuroim.2014.05.009
– volume: 36
  start-page: 481
  year: 2016
  ident: 10.1016/j.kint.2017.01.017_bib12
  article-title: ISPD Peritonitis Recommendations: 2016 Update on Prevention and Treatment
  publication-title: Perit Dial Int
  doi: 10.3747/pdi.2016.00078
– volume: 55
  start-page: 690
  year: 2010
  ident: 10.1016/j.kint.2017.01.017_bib29
  article-title: Culture-negative peritonitis in peritoneal dialysis patients in Australia: predictors, treatment, and outcomes in 435 cases
  publication-title: Am J Kidney Dis
  doi: 10.1053/j.ajkd.2009.11.015
– volume: 7
  start-page: e1002040
  year: 2011
  ident: 10.1016/j.kint.2017.01.017_bib14
  article-title: Human neutrophil clearance of bacterial pathogens triggers anti-microbial γδ T cell responses in early infection
  publication-title: PLOS Pathog
  doi: 10.1371/journal.ppat.1002040
– volume: 14
  start-page: 315
  year: 2013
  ident: 10.1016/j.kint.2017.01.017_bib27
  article-title: Data mining in the life sciences with Random Forest: a walk in the park or lost in the jungle?
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbs034
– volume: 5
  start-page: 572
  year: 2014
  ident: 10.1016/j.kint.2017.01.017_bib28
  article-title: Pathogen-specific immune fingerprints during acute infection: the diagnostic potential of human γδ T-cells
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2014.00572
– volume: 14
  start-page: 5977
  year: 2008
  ident: 10.1016/j.kint.2017.01.017_bib35
  article-title: Validation of biomarker-based risk prediction models
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-07-4534
– volume: 296
  start-page: 301
  year: 2002
  ident: 10.1016/j.kint.2017.01.017_bib2
  article-title: The danger model: a renewed sense of self
  publication-title: Science
  doi: 10.1126/science.1071059
– volume: 149
  start-page: 87
  year: 2011
  ident: 10.1016/j.kint.2017.01.017_bib33
  article-title: Novel solutions for an old disease: diagnosis of acute appendicitis with random forest, support vector machines, and artificial neural networks
  publication-title: Surgery
  doi: 10.1016/j.surg.2010.03.023
– ident: 10.1016/j.kint.2017.01.017_bib37
– ident: 10.1016/j.kint.2017.01.017_bib41
– ident: 10.1016/j.kint.2017.01.017_bib43
– volume: 109
  start-page: 2066
  year: 2007
  ident: 10.1016/j.kint.2017.01.017_bib5
  article-title: Gene expression patterns in blood leukocytes discriminate patients with acute infections
  publication-title: Blood
  doi: 10.1182/blood-2006-02-002477
– year: 2002
  ident: 10.1016/j.kint.2017.01.017_bib39
– volume: 2
  start-page: 18
  year: 2002
  ident: 10.1016/j.kint.2017.01.017_bib25
  article-title: Classification and regression by randomForest
  publication-title: R News
– volume: 6
  start-page: 8
  year: 2006
  ident: 10.1016/j.kint.2017.01.017_bib42
  article-title: Plotrix: a package in the red light district of R
  publication-title: R News
– reference: 28646991 - Kidney Int. 2017 Jul;92(1):16-18. doi: 10.1016/j.kint.2017.02.027.
SSID ssj0008930
Score 2.491139
Snippet The immune system has evolved to sense invading pathogens, control infection, and restore tissue integrity. Despite symptomatic variability in patients,...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 179
SubjectTerms Acute Disease
Adolescent
Adult
Aged
Aged, 80 and over
Area Under Curve
Bacteria - classification
Bacteria - immunology
Bacteria - pathogenicity
biomarkers
Biomarkers - metabolism
Case-Control Studies
Clinical Investigation
Female
Gram-Negative Bacterial Infections - diagnosis
Gram-Negative Bacterial Infections - immunology
Gram-Negative Bacterial Infections - metabolism
Gram-Negative Bacterial Infections - microbiology
Gram-Positive Bacterial Infections - diagnosis
Gram-Positive Bacterial Infections - immunology
Gram-Positive Bacterial Infections - metabolism
Gram-Positive Bacterial Infections - microbiology
Host-Pathogen Interactions
Humans
inflammation
Machine Learning
machine learning methods
Male
microbial infection
Middle Aged
Nonlinear Dynamics
Pattern Recognition, Automated
Peptide Mapping - methods
peritoneal dialysis
Peritoneal Dialysis - adverse effects
Peritonitis - diagnosis
Peritonitis - immunology
Peritonitis - metabolism
Peritonitis - microbiology
Point-of-Care Systems
Point-of-Care Testing
Predictive Value of Tests
Reproducibility of Results
ROC Curve
Time Factors
Young Adult
Title Machine-learning algorithms define pathogen-specific local immune fingerprints in peritoneal dialysis patients with bacterial infections
URI https://dx.doi.org/10.1016/j.kint.2017.01.017
https://www.ncbi.nlm.nih.gov/pubmed/28318629
https://www.proquest.com/docview/1879659319
https://pubmed.ncbi.nlm.nih.gov/PMC5484022
http://www.kidney-international.org/article/S0085253817300686/pdf
UnpaywallVersion publishedVersion
Volume 92
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1523-1755
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008930
  issn: 0085-2538
  databaseCode: KQ8
  dateStart: 19720101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1523-1755
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008930
  issn: 0085-2538
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVYJ8HT-IYimIzEG3jUiT_SxwkxTaBOIFEJniLbcbbQklZLqmn8A_4Fv4Vfxr2OU3UqmgApb775ck7iY-fccwl5MbajMpXaMpsWlglpLBuXTjJvuDQaADF2OFGcnKjjqXj3WW6oCVFVOauK2l-yanNFrHMM7voyZPfKRKK3XBpSHF4vi3KH7CoJdHxAdqcnHw6_hC9wJhnGBc_UBK04pYyJM53GawYnQXmXDtadoWjZHwenbfK5raG8taqX5vLCzOcbA9TRbWL7NJ9OlzI7WLX2wH3fdn38_3u_Q_YifaWHXdxdcsPX98jNSfxBf5_8mARxpmexGsUpNfPTxXnVnn1raOFLaKJYBHkBuGWY5YlKJRoGVFphqoqnZVhoxPXGtqFV_esnejGjZTiEYJYLWqjQaAfbUFxHpraznMZjRG1Z3Twg06O3n94cs1jtgTkhZcsS5WGWLwueapdya0ueKM2BLUmhnSyMH5cCpleqcKpInEi9tMJhD2ifOMNd-pAMariYx4QqZVTKDfdqnInEGOutTlKfjYR3Jc-KIeH9Y85dtELHihzzvNe8fc0RGjlCIx9x2PSQvFzvs-yMQK6Nlj168khlOoqSw0h17X7Pe6jl8J7jzxtT-8WqybEqPAAcvphD8qiD3vo6gCJymJlCi74CynUAeohfbamrs-AlDj0qgMYNyas1fP_i9p78W_hTMmjPV_4Z0LfW7pOd9x-z_fia_gbgDUx0
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLVgKsGK92OqgozEDlzGiR-TZYWoKqSpWDASrCLbcdowQ2bUZITaP-hf9Fv4st7rOKOpBlWAlJ1vXs5JfOycey4hbzM7KlOpLbNpYZmQxrKsdJJ5w6XRAIjM4URxcqyOpuLzN7mhJkRV5awqan_Oqs0Vsc4xuOvLkN0rE4necmlIcfiwLMq7ZEdJoOMDsjM9_nLwPXyBx5JhXPBMTdCKU8qYONNpvGZwEpR36WDdGYqW_XFw2iaf2xrK-6t6ac5_mfl8Y4A6fEhsn-bT6VJm-6vW7ruLbdfH_7_3R-RBpK_0oIt7TO74-gm5N4k_6J-Sy0kQZ3oWq1GcUDM_WZxV7enPhha-hCaKRZAXgFuGWZ6oVKJhQKUVpqp4WoaFRlxvbBta1b-v0IsZLcMhBLNc0EKFRjvYhuI6MrWd5TQeI2rL6uYZmR5--vrxiMVqD8wJKVuWKA-zfFnwVLuUW1vyRGkObEkK7WRhfFYKmF6pwqkicSL10gqHPaB94gx36XMyqOFiXhKqlFEpN9yrbCwSY6y3Okn9eCS8K_m4GBLeP-bcRSt0rMgxz3vN248coZEjNPIRh00Pybv1PsvOCOTWaNmjJ49UpqMoOYxUt-73podaDu85_rwxtV-smhyrwgPA4Ys5JC866K2vAygih5kptOgboFwHoIf4zZa6Og1e4tCjAmjckLxfw_cvbm_338L3yKA9W_lXQN9a-zq-oNcbAUt_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine-learning+algorithms+define+pathogen-specific+local+immune+fingerprints+in%C2%A0peritoneal+dialysis+patients+with+bacterial+infections&rft.jtitle=Kidney+international&rft.au=Zhang%2C+Jingjing&rft.au=Friberg%2C+Ida+M.&rft.au=Kift-Morgan%2C+Ann&rft.au=Parekh%2C+Gita&rft.date=2017-07-01&rft.issn=0085-2538&rft.volume=92&rft.issue=1&rft.spage=179&rft.epage=191&rft_id=info:doi/10.1016%2Fj.kint.2017.01.017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_kint_2017_01_017
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0085-2538&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0085-2538&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0085-2538&client=summon