Machine-learning algorithms define pathogen-specific local immune fingerprints in peritoneal dialysis patients with bacterial infections
The immune system has evolved to sense invading pathogens, control infection, and restore tissue integrity. Despite symptomatic variability in patients, unequivocal evidence that an individual's immune system distinguishes between different organisms and mounts an appropriate response is lackin...
        Saved in:
      
    
          | Published in | Kidney international Vol. 92; no. 1; pp. 179 - 191 | 
|---|---|
| Main Authors | , , , , , , , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Elsevier Inc
    
        01.07.2017
     Elsevier  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0085-2538 1523-1755 1523-1755  | 
| DOI | 10.1016/j.kint.2017.01.017 | 
Cover
| Abstract | The immune system has evolved to sense invading pathogens, control infection, and restore tissue integrity. Despite symptomatic variability in patients, unequivocal evidence that an individual's immune system distinguishes between different organisms and mounts an appropriate response is lacking. We here used a systematic approach to characterize responses to microbiologically well-defined infection in a total of 83 peritoneal dialysis patients on the day of presentation with acute peritonitis. A broad range of cellular and soluble parameters was determined in peritoneal effluents, covering the majority of local immune cells, inflammatory and regulatory cytokines and chemokines as well as tissue damage–related factors. Our analyses, utilizing machine-learning algorithms, demonstrate that different groups of bacteria induce qualitatively distinct local immune fingerprints, with specific biomarker signatures associated with Gram-negative and Gram-positive organisms, and with culture-negative episodes of unclear etiology. Even more, within the Gram-positive group, unique immune biomarker combinations identified streptococcal and non-streptococcal species including coagulase-negative Staphylococcus spp. These findings have diagnostic and prognostic implications by informing patient management and treatment choice at the point of care. Thus, our data establish the power of non-linear mathematical models to analyze complex biomedical datasets and highlight key pathways involved in pathogen-specific immune responses. | 
    
|---|---|
| AbstractList | The immune system has evolved to sense invading pathogens, control infection, and restore tissue integrity. Despite symptomatic variability in patients, unequivocal evidence that an individual's immune system distinguishes between different organisms and mounts an appropriate response is lacking. We here used a systematic approach to characterize responses to microbiologically well-defined infection in a total of 83 peritoneal dialysis patients on the day of presentation with acute peritonitis. A broad range of cellular and soluble parameters was determined in peritoneal effluents, covering the majority of local immune cells, inflammatory and regulatory cytokines and chemokines as well as tissue damage–related factors. Our analyses, utilizing machine-learning algorithms, demonstrate that different groups of bacteria induce qualitatively distinct local immune fingerprints, with specific biomarker signatures associated with Gram-negative and Gram-positive organisms, and with culture-negative episodes of unclear etiology. Even more, within the Gram-positive group, unique immune biomarker combinations identified streptococcal and non-streptococcal species including coagulase-negative Staphylococcus spp. These findings have diagnostic and prognostic implications by informing patient management and treatment choice at the point of care. Thus, our data establish the power of non-linear mathematical models to analyze complex biomedical datasets and highlight key pathways involved in pathogen-specific immune responses. The immune system has evolved to sense invading pathogens, control infection, and restore tissue integrity. Despite symptomatic variability in patients, unequivocal evidence that an individual's immune system distinguishes between different organisms and mounts an appropriate response is lacking. We here used a systematic approach to characterize responses to microbiologically well-defined infection in a total of 83 peritoneal dialysis patients on the day of presentation with acute peritonitis. A broad range of cellular and soluble parameters was determined in peritoneal effluents, covering the majority of local immune cells, inflammatory and regulatory cytokines and chemokines as well as tissue damage-related factors. Our analyses, utilizing machine-learning algorithms, demonstrate that different groups of bacteria induce qualitatively distinct local immune fingerprints, with specific biomarker signatures associated with Gram-negative and Gram-positive organisms, and with culture-negative episodes of unclear etiology. Even more, within the Gram-positive group, unique immune biomarker combinations identified streptococcal and non-streptococcal species including coagulase-negative Staphylococcus spp. These findings have diagnostic and prognostic implications by informing patient management and treatment choice at the point of care. Thus, our data establish the power of non-linear mathematical models to analyze complex biomedical datasets and highlight key pathways involved in pathogen-specific immune responses.The immune system has evolved to sense invading pathogens, control infection, and restore tissue integrity. Despite symptomatic variability in patients, unequivocal evidence that an individual's immune system distinguishes between different organisms and mounts an appropriate response is lacking. We here used a systematic approach to characterize responses to microbiologically well-defined infection in a total of 83 peritoneal dialysis patients on the day of presentation with acute peritonitis. A broad range of cellular and soluble parameters was determined in peritoneal effluents, covering the majority of local immune cells, inflammatory and regulatory cytokines and chemokines as well as tissue damage-related factors. Our analyses, utilizing machine-learning algorithms, demonstrate that different groups of bacteria induce qualitatively distinct local immune fingerprints, with specific biomarker signatures associated with Gram-negative and Gram-positive organisms, and with culture-negative episodes of unclear etiology. Even more, within the Gram-positive group, unique immune biomarker combinations identified streptococcal and non-streptococcal species including coagulase-negative Staphylococcus spp. These findings have diagnostic and prognostic implications by informing patient management and treatment choice at the point of care. Thus, our data establish the power of non-linear mathematical models to analyze complex biomedical datasets and highlight key pathways involved in pathogen-specific immune responses.  | 
    
| Author | Eberl, Matthias Colmont, Chantal S. Morgan, Matt P. Zhang, Jingjing Friberg, Ida M. Donovan, Kieron L. Lin, Chan-Yu Fraser, Donald J. Liuzzi, Anna Rita Kift-Morgan, Ann Parekh, Gita Morgan, Peter H. Davis, Paul Weeks, Ian Topley, Nicholas  | 
    
| AuthorAffiliation | 1 Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK 6 Directorate of Nephrology and Transplantation, Cardiff and Vale University Health Board, University Hospital of Wales, Heath Park, Cardiff, UK 3 Directorate of Critical Care, Cardiff and Vale University Health Board, University Hospital of Wales, Heath Park, Cardiff, UK 8 Systems Immunity Research Institute, Cardiff University, Cardiff, UK 5 Wales Kidney Research Unit, Heath Park Campus, Cardiff, UK 2 Mologic Ltd., Bedford Technology Park, Thurleigh, Bedford, UK 4 Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan City, Taiwan 7 Cardiff Business School, Cardiff University, Cardiff, UK  | 
    
| AuthorAffiliation_xml | – name: 8 Systems Immunity Research Institute, Cardiff University, Cardiff, UK – name: 5 Wales Kidney Research Unit, Heath Park Campus, Cardiff, UK – name: 3 Directorate of Critical Care, Cardiff and Vale University Health Board, University Hospital of Wales, Heath Park, Cardiff, UK – name: 7 Cardiff Business School, Cardiff University, Cardiff, UK – name: 4 Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan City, Taiwan – name: 2 Mologic Ltd., Bedford Technology Park, Thurleigh, Bedford, UK – name: 1 Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK – name: 6 Directorate of Nephrology and Transplantation, Cardiff and Vale University Health Board, University Hospital of Wales, Heath Park, Cardiff, UK  | 
    
| Author_xml | – sequence: 1 givenname: Jingjing surname: Zhang fullname: Zhang, Jingjing organization: Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK – sequence: 2 givenname: Ida M. surname: Friberg fullname: Friberg, Ida M. organization: Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK – sequence: 3 givenname: Ann surname: Kift-Morgan fullname: Kift-Morgan, Ann organization: Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK – sequence: 4 givenname: Gita surname: Parekh fullname: Parekh, Gita organization: Mologic Ltd., Bedford Technology Park, Thurleigh, Bedford, UK – sequence: 5 givenname: Matt P. surname: Morgan fullname: Morgan, Matt P. organization: Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK – sequence: 6 givenname: Anna Rita surname: Liuzzi fullname: Liuzzi, Anna Rita organization: Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK – sequence: 7 givenname: Chan-Yu surname: Lin fullname: Lin, Chan-Yu organization: Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK – sequence: 8 givenname: Kieron L. surname: Donovan fullname: Donovan, Kieron L. organization: Wales Kidney Research Unit, Heath Park Campus, Cardiff, UK – sequence: 9 givenname: Chantal S. surname: Colmont fullname: Colmont, Chantal S. organization: Wales Kidney Research Unit, Heath Park Campus, Cardiff, UK – sequence: 10 givenname: Peter H. surname: Morgan fullname: Morgan, Peter H. organization: Cardiff Business School, Cardiff University, Cardiff, UK – sequence: 11 givenname: Paul surname: Davis fullname: Davis, Paul organization: Mologic Ltd., Bedford Technology Park, Thurleigh, Bedford, UK – sequence: 12 givenname: Ian surname: Weeks fullname: Weeks, Ian organization: Systems Immunity Research Institute, Cardiff University, Cardiff, UK – sequence: 13 givenname: Donald J. surname: Fraser fullname: Fraser, Donald J. organization: Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK – sequence: 14 givenname: Nicholas surname: Topley fullname: Topley, Nicholas organization: Wales Kidney Research Unit, Heath Park Campus, Cardiff, UK – sequence: 15 givenname: Matthias surname: Eberl fullname: Eberl, Matthias email: eberlm@cf.ac.uk organization: Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28318629$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNUctq3TAQFSWluUn7A10UL7vxrR6WH1AKJfQFKd20ayHLY1_dypIr2Qn3E_oX_ZZ8Wcbc9LkIhQEh5pwzZ86ckRMfPBDylNEto6x8sd9-tX7ecsqqLWVY1QOyYZKLnFVSnpANpbXMuRT1KTlLaU_x3wj6iJzyWrC65M2GfP-ozc56yB3o6K0fMu2GEO28G1PWQY-tbNLzLgzg8zSBsb01mQtGu8yO44JtxAwQp4heUmb9zY8JkI9WEdJZ7Q7JplXDwgq4Rums1WZG0KrhezCzDT49Jg977RI8uXvPyZe3bz5fvM8vP737cPH6MjeFlHPOS4CWy46JygjWtj3jZcWaqpRFZWSnoekLWdRlZ8qOm0KAbAtDy7qsgBvNjDgn4qi7-EkfrrVzCr2POh4Uo2oNVu3VGqxag1WUYVXIenVkTUs7Qmdwl6h_M4O26u-Otzs1hCuFXgrKOQo8vxOI4dsCaVajTQac0x7CkhSrq6aUjWANQp_9OevXkJ9XQ0B9BJgYUorQK2NnvaaIo627fw_-D_W_ln95JAHe5cpCVMngNQ10NuL1VBfsffRbwpXZrA | 
    
| CitedBy_id | crossref_primary_10_1186_s12911_023_02412_z crossref_primary_10_1038_s41598_020_80938_2 crossref_primary_10_23876_j_krcp_21_204 crossref_primary_10_1177_08968608241234728 crossref_primary_10_1080_0886022X_2022_2064304 crossref_primary_10_1016_j_nefroe_2022_07_005 crossref_primary_10_1016_j_ceh_2021_11_003 crossref_primary_10_1093_ckj_sfad182 crossref_primary_10_1111_sdi_12915 crossref_primary_10_1371_journal_pcbi_1009071 crossref_primary_10_1016_j_xkme_2021_08_004 crossref_primary_10_1038_s41598_018_37762_6 crossref_primary_10_3390_biom10101361 crossref_primary_10_3389_fphys_2018_01694 crossref_primary_10_1177_08968608221080586 crossref_primary_10_1111_joim_12746 crossref_primary_10_1038_s41598_017_16521_z crossref_primary_10_1186_s41100_021_00348_6 crossref_primary_10_1038_s41581_021_00466_8 crossref_primary_10_1155_2022_9108656 crossref_primary_10_1016_j_kint_2020_01_044 crossref_primary_10_2196_18372 crossref_primary_10_1016_j_nefro_2021_10_007 crossref_primary_10_1136_bmjopen_2023_081318 crossref_primary_10_1038_s41598_020_64184_0 crossref_primary_10_1155_2020_9867872 crossref_primary_10_3389_fimmu_2019_01838 crossref_primary_10_1016_j_xkme_2024_100927 crossref_primary_10_1155_2020_6950576 crossref_primary_10_1007_s10151_023_02841_y crossref_primary_10_1038_s41581_020_0287_4 crossref_primary_10_3389_fendo_2023_1081543 crossref_primary_10_3390_applbiosci3010002 crossref_primary_10_1371_journal_pone_0293680 crossref_primary_10_3390_diagnostics14111113 crossref_primary_10_1016_j_jjimei_2022_100076 crossref_primary_10_1016_j_pt_2017_08_011 crossref_primary_10_3389_fmed_2023_1335232 crossref_primary_10_1093_cei_uxae019 crossref_primary_10_1038_s41598_019_55523_x crossref_primary_10_1016_j_kint_2017_02_027 crossref_primary_10_2215_CJN_0000000000000405 crossref_primary_10_1007_s11255_024_04144_z crossref_primary_10_1186_s12882_024_03756_y crossref_primary_10_1002_path_5438 crossref_primary_10_3390_biom10060965 crossref_primary_10_1016_j_scitotenv_2023_162976 crossref_primary_10_1038_s41598_019_46585_y crossref_primary_10_1053_j_ajkd_2019_05_020 crossref_primary_10_25796_bdd_v3i4_57953 crossref_primary_10_3390_info15120776 crossref_primary_10_3390_s21237786 crossref_primary_10_1159_000542870  | 
    
| Cites_doi | 10.1097/QCO.0000000000000065 10.1093/ndt/gfq222 10.1016/j.neubiorev.2012.01.004 10.1186/1471-2105-9-319 10.1186/1471-2105-7-3 10.1016/j.coi.2015.06.002 10.1101/SQB.1989.054.01.003 10.1093/bioinformatics/16.10.906 10.1038/ncomms5649 10.1371/journal.ppat.1000308 10.1007/BF00994018 10.1053/j.ajkd.2014.02.025 10.1111/nep.12828 10.1093/ndt/gfu313 10.1111/sdi.12270 10.1038/nri3167 10.4049/jimmunol.1600990 10.1016/j.snb.2012.11.071 10.1126/scitranslmed.aaf7165 10.2478/v10136-012-0031-x 10.1681/ASN.2013040332 10.1038/89044 10.1016/j.jneuroim.2014.05.009 10.3747/pdi.2016.00078 10.1053/j.ajkd.2009.11.015 10.1371/journal.ppat.1002040 10.1093/bib/bbs034 10.3389/fimmu.2014.00572 10.1158/1078-0432.CCR-07-4534 10.1126/science.1071059 10.1016/j.surg.2010.03.023 10.1182/blood-2006-02-002477  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2017 International Society of Nephrology Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved. 2017 International Society of Nephrology. 2017 International Society of Nephrology  | 
    
| Copyright_xml | – notice: 2017 International Society of Nephrology – notice: Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved. – notice: 2017 International Society of Nephrology. 2017 International Society of Nephrology  | 
    
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1016/j.kint.2017.01.017 | 
    
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 1523-1755 | 
    
| EndPage | 191 | 
    
| ExternalDocumentID | 10.1016/j.kint.2017.01.017 PMC5484022 28318629 10_1016_j_kint_2017_01_017 S0085253817300686  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study  | 
    
| GrantInformation_xml | – fundername: Medical Research Council grantid: MC_PC_13060 – fundername: Wellcome Trust – fundername: Medical Research Council grantid: MR/N023145/1 – fundername: Department of Health grantid: II-LA-0712-20006  | 
    
| GroupedDBID | --- .55 .GJ 0R~ 1CY 29L 2WC 36B 39C 3O- 3V. 4.4 457 53G 5GY 5RE 5VS 6I. 6PF 7RV 7X7 88E 8AO 8FI 8FJ 8R4 8R5 AACTN AAEDW AAFTH AAIAV AAKUH AALRI AAQFI AAWTL AAXUO ABAWZ ABJNI ABLJU ABMAC ABOCM ABUWG ABVKL ACGFO ACGFS ACPRK ADBBV ADEZE ADFRT ADQMX AENEX AEXQZ AFEBI AFKRA AFTJW AGHFR AHMBA AHPSJ AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BENPR BFHJK BKEYQ BPHCQ BVXVI CAG CCPQU COF CS3 DIK DU5 EBS EJD EX3 F5P FDB FRP FYUFA GX1 HMCUK HZ~ IHE J5H JSO KQ8 L7B LH4 LW6 M1P M41 MJL N4W NAPCQ NCXOZ O9- OK1 P2P P6G PQQKQ PROAC PSQYO Q2X R9- RIG RNS ROL SDH SSZ TR2 UKHRP W2D WOW X7M XVB YFH YOC YUY ZA5 ZCG ZGI ZXP AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION EFKBS PHGZM PHGZT PJZUB PPXIY PUEGO AFETI AGCQF ALIPV CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c455t-26eeb25d137c31bbf12671976547c5dae9f45486dc6d2c43e5b4c06867e2ca1c3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0085-2538 1523-1755  | 
    
| IngestDate | Sun Oct 26 04:10:20 EDT 2025 Tue Sep 30 16:56:44 EDT 2025 Wed Oct 01 14:24:11 EDT 2025 Mon Jul 21 06:02:40 EDT 2025 Thu Apr 24 22:53:57 EDT 2025 Wed Oct 01 04:56:21 EDT 2025 Fri Feb 23 02:23:15 EST 2024  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | machine learning methods peritoneal dialysis microbial infection inflammation biomarkers  | 
    
| Language | English | 
    
| License | This is an open access article under the CC BY license. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c455t-26eeb25d137c31bbf12671976547c5dae9f45486dc6d2c43e5b4c06867e2ca1c3 | 
    
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 Present address: School of Environment and Life Sciences, University of Salford, Salford M5 4WT, UK.  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://www.kidney-international.org/article/S0085253817300686/pdf | 
    
| PMID | 28318629 | 
    
| PQID | 1879659319 | 
    
| PQPubID | 23479 | 
    
| PageCount | 13 | 
    
| ParticipantIDs | unpaywall_primary_10_1016_j_kint_2017_01_017 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5484022 proquest_miscellaneous_1879659319 pubmed_primary_28318629 crossref_citationtrail_10_1016_j_kint_2017_01_017 crossref_primary_10_1016_j_kint_2017_01_017 elsevier_sciencedirect_doi_10_1016_j_kint_2017_01_017  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | July 2017 2017-07-00 20170701  | 
    
| PublicationDateYYYYMMDD | 2017-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2017 text: July 2017  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States | 
    
| PublicationTitle | Kidney international | 
    
| PublicationTitleAlternate | Kidney Int | 
    
| PublicationYear | 2017 | 
    
| Publisher | Elsevier Inc Elsevier  | 
    
| Publisher_xml | – name: Elsevier Inc – name: Elsevier  | 
    
| References | Blander, Sander (bib3) 2012; 12 Smith, Dickinson, Forster (bib7) 2014; 5 Fahim, Hawley, McDonald (bib29) 2010; 55 Karatzoglou, Smola, Hornik, Zeileis (bib38) 2004; 11 Bajpai, Prasad, Mishra (bib8) 2014; 273 Campbell, Johnson, Mudge (bib17) 2015; 30 Wei T, Simko V. corrplot: Visualization of a correlation matrix. R package version 0.77, 2016. Available at Van Buuren, Groothuis-Oudshoorn (bib36) 2011; 45 Taylor, Ankerst, Andridge (bib35) 2008; 14 Hsieh, Lu, Lee (bib33) 2011; 149 Accessed March 30, 2016. Ramilo, Allman, Chung (bib5) 2007; 109 Eberl, Friberg, Liuzzi (bib28) 2014; 5 Bishop (bib22) 1995 Matzinger (bib2) 2002; 296 Accessed August 5, 2015. Meyer D, Dimitriadou E, Hornik K, et al. e1071: Misc functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. R package version 1.6-7, 2015. Available at Szeto, Lai, Chow (bib16) 2016; 21 Eberl, Roberts, Meuter (bib13) 2009; 5 Mejias, Suarez, Ramilo (bib9) 2014; 27 Lemon (bib42) 2006; 6 Harrell FE Jr, with contributions from Dupont C and many others. 2016. Hmisc: Harrell Miscellaneous. R package version 3.17-3. Available at Khan, Wei, Ringnér (bib23) 2001; 7 Touw, Bayjanov, Overmars (bib27) 2013; 14 Díaz-Uriarte, Alvarez de Andrés (bib26) 2006; 7 Sweeney, Wong, Khatri (bib10) 2016; 8 Furey, Cristianini, Duffy (bib20) 2000; 16 Guyon, Elisseeff (bib18) 2003; 3 Liuzzi, Kift-Morgan, Lopez-Anton (bib15) 2016; 197 Cho, Johnson (bib11) 2014; 64 Li, Szeto, Piraino (bib12) 2016; 36 Amato, López, Peña-Méndez, Vaňhara (bib24) 2013; 11 Janeway (bib1) 1989; 541 Statnikov, Wang, Aliferis (bib32) 2008; 9 Liuzzi, McLaren, Price, Eberl (bib4) 2015; 36 Lin, Roberts, Kift-Morgan (bib6) 2013; 24 Cortes, Vapnik (bib19) 1995; 20 Liaw, Wiener (bib25) 2002; 2 Accessed February 16, 2014. Kuhn M. Contributions from Wing J, Weston S, Williams A, Keefer C, Engelhardt A, Cooper T, Mayer Z and the R Core Team. 2014. Caret: classification and regression training. R package version 6.0.24. Available at Bieber, Anderson, Mehrotra (bib31) 2014; 27 Davey, Lin, Roberts (bib14) 2011; 7 Fahim, Hawley, McDonald (bib30) 2010; 25 Liu, Wang, Wang, Li (bib34) 2013; 177 Orrù, Pettersson-Yeo, Marquand (bib21) 2012; 36 Warnes GR, Bolker B, Bonebakker L, et al. gplots: various R programming tools for plotting data. R package version 3.0.1, 2016. Available at Venables, Ripley (bib39) 2002 Accessed April 21, 2016. Accessed April 3, 2016. Ramilo (10.1016/j.kint.2017.01.017_bib5) 2007; 109 Cho (10.1016/j.kint.2017.01.017_bib11) 2014; 64 Taylor (10.1016/j.kint.2017.01.017_bib35) 2008; 14 Eberl (10.1016/j.kint.2017.01.017_bib13) 2009; 5 Cortes (10.1016/j.kint.2017.01.017_bib19) 1995; 20 Campbell (10.1016/j.kint.2017.01.017_bib17) 2015; 30 Liaw (10.1016/j.kint.2017.01.017_bib25) 2002; 2 Lemon (10.1016/j.kint.2017.01.017_bib42) 2006; 6 Li (10.1016/j.kint.2017.01.017_bib12) 2016; 36 Fahim (10.1016/j.kint.2017.01.017_bib30) 2010; 25 Liuzzi (10.1016/j.kint.2017.01.017_bib4) 2015; 36 Van Buuren (10.1016/j.kint.2017.01.017_bib36) 2011; 45 Smith (10.1016/j.kint.2017.01.017_bib7) 2014; 5 Janeway (10.1016/j.kint.2017.01.017_bib1) 1989; 541 Lin (10.1016/j.kint.2017.01.017_bib6) 2013; 24 Hsieh (10.1016/j.kint.2017.01.017_bib33) 2011; 149 10.1016/j.kint.2017.01.017_bib41 10.1016/j.kint.2017.01.017_bib40 Liu (10.1016/j.kint.2017.01.017_bib34) 2013; 177 Blander (10.1016/j.kint.2017.01.017_bib3) 2012; 12 10.1016/j.kint.2017.01.017_bib44 Amato (10.1016/j.kint.2017.01.017_bib24) 2013; 11 10.1016/j.kint.2017.01.017_bib43 Eberl (10.1016/j.kint.2017.01.017_bib28) 2014; 5 Bajpai (10.1016/j.kint.2017.01.017_bib8) 2014; 273 Liuzzi (10.1016/j.kint.2017.01.017_bib15) 2016; 197 Matzinger (10.1016/j.kint.2017.01.017_bib2) 2002; 296 Díaz-Uriarte (10.1016/j.kint.2017.01.017_bib26) 2006; 7 Bieber (10.1016/j.kint.2017.01.017_bib31) 2014; 27 Touw (10.1016/j.kint.2017.01.017_bib27) 2013; 14 Fahim (10.1016/j.kint.2017.01.017_bib29) 2010; 55 Mejias (10.1016/j.kint.2017.01.017_bib9) 2014; 27 Szeto (10.1016/j.kint.2017.01.017_bib16) 2016; 21 Statnikov (10.1016/j.kint.2017.01.017_bib32) 2008; 9 Venables (10.1016/j.kint.2017.01.017_bib39) 2002 10.1016/j.kint.2017.01.017_bib37 Sweeney (10.1016/j.kint.2017.01.017_bib10) 2016; 8 Davey (10.1016/j.kint.2017.01.017_bib14) 2011; 7 Guyon (10.1016/j.kint.2017.01.017_bib18) 2003; 3 Bishop (10.1016/j.kint.2017.01.017_bib22) 1995 Furey (10.1016/j.kint.2017.01.017_bib20) 2000; 16 Orrù (10.1016/j.kint.2017.01.017_bib21) 2012; 36 Khan (10.1016/j.kint.2017.01.017_bib23) 2001; 7 Karatzoglou (10.1016/j.kint.2017.01.017_bib38) 2004; 11 28646991 - Kidney Int. 2017 Jul;92(1):16-18. doi: 10.1016/j.kint.2017.02.027.  | 
    
| References_xml | – volume: 24 start-page: 2002 year: 2013 end-page: 2009 ident: bib6 article-title: Pathogen-specific local immune fingerprints diagnose bacterial infection in peritoneal dialysis patients publication-title: J Am Soc Nephrol – volume: 7 start-page: 3 year: 2006 ident: bib26 article-title: Gene selection and classification of microarray data using random forest publication-title: BMC Bioinformatics – volume: 149 start-page: 87 year: 2011 end-page: 93 ident: bib33 article-title: Novel solutions for an old disease: diagnosis of acute appendicitis with random forest, support vector machines, and artificial neural networks publication-title: Surgery – volume: 36 start-page: 1140 year: 2012 end-page: 1152 ident: bib21 article-title: Using Support Vector Machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review publication-title: Neurosci Biobehav Rev – reference: Meyer D, Dimitriadou E, Hornik K, et al. e1071: Misc functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. R package version 1.6-7, 2015. Available at: – volume: 177 start-page: 970 year: 2013 end-page: 980 ident: bib34 article-title: Comparison of random forest, support vector machine and back propagation neural network for electronic tongue data classification: application to the recognition of orange beverage and Chinese vinegar publication-title: Sensors Actuators B: Chem – volume: 3 start-page: 1157 year: 2003 end-page: 1182 ident: bib18 article-title: An introduction to variable and feature selection publication-title: J Mach Learn Res – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: bib19 article-title: Support-vector networks publication-title: Machine Learning – volume: 14 start-page: 315 year: 2013 end-page: 326 ident: bib27 article-title: Data mining in the life sciences with Random Forest: a walk in the park or lost in the jungle? publication-title: Brief Bioinform – volume: 16 start-page: 906 year: 2000 end-page: 914 ident: bib20 article-title: Support vector machine classification and validation of cancer tissue samples using microarray expression data publication-title: Bioinformatics – year: 1995 ident: bib22 article-title: Neural Networks for Pattern Recognition – reference: Kuhn M. Contributions from Wing J, Weston S, Williams A, Keefer C, Engelhardt A, Cooper T, Mayer Z and the R Core Team. 2014. Caret: classification and regression training. R package version 6.0.24. Available at: – volume: 5 start-page: 572 year: 2014 ident: bib28 article-title: Pathogen-specific immune fingerprints during acute infection: the diagnostic potential of human γδ T-cells publication-title: Front Immunol – year: 2002 ident: bib39 article-title: Modern Applied Statistics with S – reference: Harrell FE Jr, with contributions from Dupont C and many others. 2016. Hmisc: Harrell Miscellaneous. R package version 3.17-3. Available at: – volume: 5 start-page: 4649 year: 2014 ident: bib7 article-title: Identification of a human neonatal immune-metabolic network associated with bacterial infection publication-title: Nat Commun – volume: 36 start-page: 481 year: 2016 end-page: 508 ident: bib12 article-title: ISPD Peritonitis Recommendations: 2016 Update on Prevention and Treatment publication-title: Perit Dial Int – volume: 27 start-page: 602 year: 2014 end-page: 606 ident: bib31 article-title: Diagnostic testing for peritonitis in patients undergoing peritoneal dialysis publication-title: Semin Dial – volume: 27 start-page: 228 year: 2014 end-page: 235 ident: bib9 article-title: Detecting specific infections in children through host responses: a paradigm shift publication-title: Curr Opin Infect Dis – volume: 36 start-page: 31 year: 2015 end-page: 37 ident: bib4 article-title: Early innate responses to pathogens: pattern recognition by unconventional human T-cells publication-title: Curr Opin Immunol – reference: Warnes GR, Bolker B, Bonebakker L, et al. gplots: various R programming tools for plotting data. R package version 3.0.1, 2016. Available at: – volume: 14 start-page: 5977 year: 2008 end-page: 5983 ident: bib35 article-title: Validation of biomarker-based risk prediction models publication-title: Clin Cancer Res – volume: 11 start-page: 1 year: 2004 end-page: 20 ident: bib38 article-title: kernlab - An S4 package for kernel methods in R publication-title: J Stat Softw – volume: 64 start-page: 278 year: 2014 end-page: 289 ident: bib11 article-title: Peritoneal dialysis-related peritonitis: towards improving evidence, practices, and outcomes publication-title: Am J Kidney Dis – volume: 6 start-page: 8 year: 2006 end-page: 12 ident: bib42 article-title: Plotrix: a package in the red light district of R publication-title: R News – volume: 55 start-page: 690 year: 2010 end-page: 697 ident: bib29 article-title: Culture-negative peritonitis in peritoneal dialysis patients in Australia: predictors, treatment, and outcomes in 435 cases publication-title: Am J Kidney Dis – reference: . Accessed February 16, 2014. – volume: 2 start-page: 18 year: 2002 end-page: 22 ident: bib25 article-title: Classification and regression by randomForest publication-title: R News – volume: 9 start-page: 319 year: 2008 ident: bib32 article-title: A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification publication-title: BMC Bioinformatics – volume: 296 start-page: 301 year: 2002 end-page: 305 ident: bib2 article-title: The danger model: a renewed sense of self publication-title: Science – volume: 5 start-page: e1000308 year: 2009 ident: bib13 article-title: A rapid crosstalk of human γδ T cells and monocytes drives the acute inflammation in bacterial infections publication-title: PLOS Pathog – volume: 7 start-page: 673 year: 2001 end-page: 679 ident: bib23 article-title: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks publication-title: Nat Med – volume: 197 start-page: 2195 year: 2016 end-page: 2207 ident: bib15 article-title: Unconventional human T cells accumulate at the site of infection in response to microbial ligands and induce local tissue remodeling publication-title: J Immunol – volume: 109 start-page: 2066 year: 2007 end-page: 2077 ident: bib5 article-title: Gene expression patterns in blood leukocytes discriminate patients with acute infections publication-title: Blood – reference: Wei T, Simko V. corrplot: Visualization of a correlation matrix. R package version 0.77, 2016. Available at: – volume: 541 start-page: 1 year: 1989 end-page: 13 ident: bib1 article-title: Approaching the asymptote? Evolution and revolution in immunology publication-title: Cold Spring Harb Symp Quant Biol – volume: 273 start-page: 96 year: 2014 end-page: 102 ident: bib8 article-title: Distinct cytokine pattern in response to different bacterial pathogens in human brain abscess publication-title: J Neuroimmunol – volume: 25 start-page: 3386 year: 2010 end-page: 3392 ident: bib30 article-title: Coagulase-negative staphylococcal peritonitis in Australian peritoneal dialysis patients: predictors, treatment and outcomes in 936 cases publication-title: Nephrol Dial Transplant – volume: 7 start-page: e1002040 year: 2011 ident: bib14 article-title: Human neutrophil clearance of bacterial pathogens triggers anti-microbial γδ T cell responses in early infection publication-title: PLOS Pathog – reference: . Accessed August 5, 2015. – volume: 21 start-page: 1069 year: 2016 end-page: 1072 ident: bib16 article-title: Dialysate bacterial endotoxin as a prognostic indicator of peritoneal dialysis related peritonitis publication-title: Nephrology – volume: 12 start-page: 215 year: 2012 end-page: 225 ident: bib3 article-title: Beyond pattern recognition: five immune checkpoints for scaling the microbial threat publication-title: Nat Rev Immunol – reference: . Accessed April 21, 2016. – reference: . Accessed March 30, 2016. – volume: 11 start-page: 47 year: 2013 end-page: 58 ident: bib24 article-title: Artificial neural networks in medical diagnosis publication-title: J Appl Biomed – volume: 30 start-page: 1461 year: 2015 end-page: 1472 ident: bib17 article-title: Prevention of peritoneal dialysis-related infections publication-title: Nephrol Dial Transplant – volume: 45 start-page: 1 year: 2011 end-page: 67 ident: bib36 article-title: MICE: multivariate imputation by chained equations in R publication-title: J Stat Softw – volume: 8 start-page: 346ra91 year: 2016 ident: bib10 article-title: Robust classification of bacterial and viral infections via integrated host gene expression diagnostics publication-title: Sci Transl Med – reference: . Accessed April 3, 2016. – volume: 27 start-page: 228 year: 2014 ident: 10.1016/j.kint.2017.01.017_bib9 article-title: Detecting specific infections in children through host responses: a paradigm shift publication-title: Curr Opin Infect Dis doi: 10.1097/QCO.0000000000000065 – volume: 25 start-page: 3386 year: 2010 ident: 10.1016/j.kint.2017.01.017_bib30 article-title: Coagulase-negative staphylococcal peritonitis in Australian peritoneal dialysis patients: predictors, treatment and outcomes in 936 cases publication-title: Nephrol Dial Transplant doi: 10.1093/ndt/gfq222 – volume: 36 start-page: 1140 year: 2012 ident: 10.1016/j.kint.2017.01.017_bib21 article-title: Using Support Vector Machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review publication-title: Neurosci Biobehav Rev doi: 10.1016/j.neubiorev.2012.01.004 – volume: 9 start-page: 319 year: 2008 ident: 10.1016/j.kint.2017.01.017_bib32 article-title: A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-319 – volume: 7 start-page: 3 year: 2006 ident: 10.1016/j.kint.2017.01.017_bib26 article-title: Gene selection and classification of microarray data using random forest publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-7-3 – volume: 3 start-page: 1157 year: 2003 ident: 10.1016/j.kint.2017.01.017_bib18 article-title: An introduction to variable and feature selection publication-title: J Mach Learn Res – volume: 36 start-page: 31 year: 2015 ident: 10.1016/j.kint.2017.01.017_bib4 article-title: Early innate responses to pathogens: pattern recognition by unconventional human T-cells publication-title: Curr Opin Immunol doi: 10.1016/j.coi.2015.06.002 – volume: 541 start-page: 1 year: 1989 ident: 10.1016/j.kint.2017.01.017_bib1 article-title: Approaching the asymptote? Evolution and revolution in immunology publication-title: Cold Spring Harb Symp Quant Biol doi: 10.1101/SQB.1989.054.01.003 – volume: 16 start-page: 906 year: 2000 ident: 10.1016/j.kint.2017.01.017_bib20 article-title: Support vector machine classification and validation of cancer tissue samples using microarray expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/16.10.906 – volume: 5 start-page: 4649 year: 2014 ident: 10.1016/j.kint.2017.01.017_bib7 article-title: Identification of a human neonatal immune-metabolic network associated with bacterial infection publication-title: Nat Commun doi: 10.1038/ncomms5649 – volume: 5 start-page: e1000308 year: 2009 ident: 10.1016/j.kint.2017.01.017_bib13 article-title: A rapid crosstalk of human γδ T cells and monocytes drives the acute inflammation in bacterial infections publication-title: PLOS Pathog doi: 10.1371/journal.ppat.1000308 – ident: 10.1016/j.kint.2017.01.017_bib40 – volume: 20 start-page: 273 year: 1995 ident: 10.1016/j.kint.2017.01.017_bib19 article-title: Support-vector networks publication-title: Machine Learning doi: 10.1007/BF00994018 – ident: 10.1016/j.kint.2017.01.017_bib44 – volume: 64 start-page: 278 year: 2014 ident: 10.1016/j.kint.2017.01.017_bib11 article-title: Peritoneal dialysis-related peritonitis: towards improving evidence, practices, and outcomes publication-title: Am J Kidney Dis doi: 10.1053/j.ajkd.2014.02.025 – volume: 21 start-page: 1069 year: 2016 ident: 10.1016/j.kint.2017.01.017_bib16 article-title: Dialysate bacterial endotoxin as a prognostic indicator of peritoneal dialysis related peritonitis publication-title: Nephrology doi: 10.1111/nep.12828 – volume: 30 start-page: 1461 year: 2015 ident: 10.1016/j.kint.2017.01.017_bib17 article-title: Prevention of peritoneal dialysis-related infections publication-title: Nephrol Dial Transplant doi: 10.1093/ndt/gfu313 – volume: 27 start-page: 602 year: 2014 ident: 10.1016/j.kint.2017.01.017_bib31 article-title: Diagnostic testing for peritonitis in patients undergoing peritoneal dialysis publication-title: Semin Dial doi: 10.1111/sdi.12270 – volume: 12 start-page: 215 year: 2012 ident: 10.1016/j.kint.2017.01.017_bib3 article-title: Beyond pattern recognition: five immune checkpoints for scaling the microbial threat publication-title: Nat Rev Immunol doi: 10.1038/nri3167 – volume: 197 start-page: 2195 year: 2016 ident: 10.1016/j.kint.2017.01.017_bib15 article-title: Unconventional human T cells accumulate at the site of infection in response to microbial ligands and induce local tissue remodeling publication-title: J Immunol doi: 10.4049/jimmunol.1600990 – year: 1995 ident: 10.1016/j.kint.2017.01.017_bib22 – volume: 177 start-page: 970 year: 2013 ident: 10.1016/j.kint.2017.01.017_bib34 article-title: Comparison of random forest, support vector machine and back propagation neural network for electronic tongue data classification: application to the recognition of orange beverage and Chinese vinegar publication-title: Sensors Actuators B: Chem doi: 10.1016/j.snb.2012.11.071 – volume: 8 start-page: 346ra91 year: 2016 ident: 10.1016/j.kint.2017.01.017_bib10 article-title: Robust classification of bacterial and viral infections via integrated host gene expression diagnostics publication-title: Sci Transl Med doi: 10.1126/scitranslmed.aaf7165 – volume: 11 start-page: 1 year: 2004 ident: 10.1016/j.kint.2017.01.017_bib38 article-title: kernlab - An S4 package for kernel methods in R publication-title: J Stat Softw – volume: 11 start-page: 47 year: 2013 ident: 10.1016/j.kint.2017.01.017_bib24 article-title: Artificial neural networks in medical diagnosis publication-title: J Appl Biomed doi: 10.2478/v10136-012-0031-x – volume: 45 start-page: 1 year: 2011 ident: 10.1016/j.kint.2017.01.017_bib36 article-title: MICE: multivariate imputation by chained equations in R publication-title: J Stat Softw – volume: 24 start-page: 2002 year: 2013 ident: 10.1016/j.kint.2017.01.017_bib6 article-title: Pathogen-specific local immune fingerprints diagnose bacterial infection in peritoneal dialysis patients publication-title: J Am Soc Nephrol doi: 10.1681/ASN.2013040332 – volume: 7 start-page: 673 year: 2001 ident: 10.1016/j.kint.2017.01.017_bib23 article-title: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks publication-title: Nat Med doi: 10.1038/89044 – volume: 273 start-page: 96 year: 2014 ident: 10.1016/j.kint.2017.01.017_bib8 article-title: Distinct cytokine pattern in response to different bacterial pathogens in human brain abscess publication-title: J Neuroimmunol doi: 10.1016/j.jneuroim.2014.05.009 – volume: 36 start-page: 481 year: 2016 ident: 10.1016/j.kint.2017.01.017_bib12 article-title: ISPD Peritonitis Recommendations: 2016 Update on Prevention and Treatment publication-title: Perit Dial Int doi: 10.3747/pdi.2016.00078 – volume: 55 start-page: 690 year: 2010 ident: 10.1016/j.kint.2017.01.017_bib29 article-title: Culture-negative peritonitis in peritoneal dialysis patients in Australia: predictors, treatment, and outcomes in 435 cases publication-title: Am J Kidney Dis doi: 10.1053/j.ajkd.2009.11.015 – volume: 7 start-page: e1002040 year: 2011 ident: 10.1016/j.kint.2017.01.017_bib14 article-title: Human neutrophil clearance of bacterial pathogens triggers anti-microbial γδ T cell responses in early infection publication-title: PLOS Pathog doi: 10.1371/journal.ppat.1002040 – volume: 14 start-page: 315 year: 2013 ident: 10.1016/j.kint.2017.01.017_bib27 article-title: Data mining in the life sciences with Random Forest: a walk in the park or lost in the jungle? publication-title: Brief Bioinform doi: 10.1093/bib/bbs034 – volume: 5 start-page: 572 year: 2014 ident: 10.1016/j.kint.2017.01.017_bib28 article-title: Pathogen-specific immune fingerprints during acute infection: the diagnostic potential of human γδ T-cells publication-title: Front Immunol doi: 10.3389/fimmu.2014.00572 – volume: 14 start-page: 5977 year: 2008 ident: 10.1016/j.kint.2017.01.017_bib35 article-title: Validation of biomarker-based risk prediction models publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-07-4534 – volume: 296 start-page: 301 year: 2002 ident: 10.1016/j.kint.2017.01.017_bib2 article-title: The danger model: a renewed sense of self publication-title: Science doi: 10.1126/science.1071059 – volume: 149 start-page: 87 year: 2011 ident: 10.1016/j.kint.2017.01.017_bib33 article-title: Novel solutions for an old disease: diagnosis of acute appendicitis with random forest, support vector machines, and artificial neural networks publication-title: Surgery doi: 10.1016/j.surg.2010.03.023 – ident: 10.1016/j.kint.2017.01.017_bib37 – ident: 10.1016/j.kint.2017.01.017_bib41 – ident: 10.1016/j.kint.2017.01.017_bib43 – volume: 109 start-page: 2066 year: 2007 ident: 10.1016/j.kint.2017.01.017_bib5 article-title: Gene expression patterns in blood leukocytes discriminate patients with acute infections publication-title: Blood doi: 10.1182/blood-2006-02-002477 – year: 2002 ident: 10.1016/j.kint.2017.01.017_bib39 – volume: 2 start-page: 18 year: 2002 ident: 10.1016/j.kint.2017.01.017_bib25 article-title: Classification and regression by randomForest publication-title: R News – volume: 6 start-page: 8 year: 2006 ident: 10.1016/j.kint.2017.01.017_bib42 article-title: Plotrix: a package in the red light district of R publication-title: R News – reference: 28646991 - Kidney Int. 2017 Jul;92(1):16-18. doi: 10.1016/j.kint.2017.02.027.  | 
    
| SSID | ssj0008930 | 
    
| Score | 2.491139 | 
    
| Snippet | The immune system has evolved to sense invading pathogens, control infection, and restore tissue integrity. Despite symptomatic variability in patients,... | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref elsevier  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 179 | 
    
| SubjectTerms | Acute Disease Adolescent Adult Aged Aged, 80 and over Area Under Curve Bacteria - classification Bacteria - immunology Bacteria - pathogenicity biomarkers Biomarkers - metabolism Case-Control Studies Clinical Investigation Female Gram-Negative Bacterial Infections - diagnosis Gram-Negative Bacterial Infections - immunology Gram-Negative Bacterial Infections - metabolism Gram-Negative Bacterial Infections - microbiology Gram-Positive Bacterial Infections - diagnosis Gram-Positive Bacterial Infections - immunology Gram-Positive Bacterial Infections - metabolism Gram-Positive Bacterial Infections - microbiology Host-Pathogen Interactions Humans inflammation Machine Learning machine learning methods Male microbial infection Middle Aged Nonlinear Dynamics Pattern Recognition, Automated Peptide Mapping - methods peritoneal dialysis Peritoneal Dialysis - adverse effects Peritonitis - diagnosis Peritonitis - immunology Peritonitis - metabolism Peritonitis - microbiology Point-of-Care Systems Point-of-Care Testing Predictive Value of Tests Reproducibility of Results ROC Curve Time Factors Young Adult  | 
    
| Title | Machine-learning algorithms define pathogen-specific local immune fingerprints in peritoneal dialysis patients with bacterial infections | 
    
| URI | https://dx.doi.org/10.1016/j.kint.2017.01.017 https://www.ncbi.nlm.nih.gov/pubmed/28318629 https://www.proquest.com/docview/1879659319 https://pubmed.ncbi.nlm.nih.gov/PMC5484022 http://www.kidney-international.org/article/S0085253817300686/pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 92 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1523-1755 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008930 issn: 0085-2538 databaseCode: KQ8 dateStart: 19720101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1523-1755 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008930 issn: 0085-2538 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVYJ8HT-IYimIzEG3jUiT_SxwkxTaBOIFEJniLbcbbQklZLqmn8A_4Fv4Vfxr2OU3UqmgApb775ck7iY-fccwl5MbajMpXaMpsWlglpLBuXTjJvuDQaADF2OFGcnKjjqXj3WW6oCVFVOauK2l-yanNFrHMM7voyZPfKRKK3XBpSHF4vi3KH7CoJdHxAdqcnHw6_hC9wJhnGBc_UBK04pYyJM53GawYnQXmXDtadoWjZHwenbfK5raG8taqX5vLCzOcbA9TRbWL7NJ9OlzI7WLX2wH3fdn38_3u_Q_YifaWHXdxdcsPX98jNSfxBf5_8mARxpmexGsUpNfPTxXnVnn1raOFLaKJYBHkBuGWY5YlKJRoGVFphqoqnZVhoxPXGtqFV_esnejGjZTiEYJYLWqjQaAfbUFxHpraznMZjRG1Z3Twg06O3n94cs1jtgTkhZcsS5WGWLwueapdya0ueKM2BLUmhnSyMH5cCpleqcKpInEi9tMJhD2ifOMNd-pAMariYx4QqZVTKDfdqnInEGOutTlKfjYR3Jc-KIeH9Y85dtELHihzzvNe8fc0RGjlCIx9x2PSQvFzvs-yMQK6Nlj168khlOoqSw0h17X7Pe6jl8J7jzxtT-8WqybEqPAAcvphD8qiD3vo6gCJymJlCi74CynUAeohfbamrs-AlDj0qgMYNyas1fP_i9p78W_hTMmjPV_4Z0LfW7pOd9x-z_fia_gbgDUx0 | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLVgKsGK92OqgozEDlzGiR-TZYWoKqSpWDASrCLbcdowQ2bUZITaP-hf9Fv4st7rOKOpBlWAlJ1vXs5JfOycey4hbzM7KlOpLbNpYZmQxrKsdJJ5w6XRAIjM4URxcqyOpuLzN7mhJkRV5awqan_Oqs0Vsc4xuOvLkN0rE4necmlIcfiwLMq7ZEdJoOMDsjM9_nLwPXyBx5JhXPBMTdCKU8qYONNpvGZwEpR36WDdGYqW_XFw2iaf2xrK-6t6ac5_mfl8Y4A6fEhsn-bT6VJm-6vW7ruLbdfH_7_3R-RBpK_0oIt7TO74-gm5N4k_6J-Sy0kQZ3oWq1GcUDM_WZxV7enPhha-hCaKRZAXgFuGWZ6oVKJhQKUVpqp4WoaFRlxvbBta1b-v0IsZLcMhBLNc0EKFRjvYhuI6MrWd5TQeI2rL6uYZmR5--vrxiMVqD8wJKVuWKA-zfFnwVLuUW1vyRGkObEkK7WRhfFYKmF6pwqkicSL10gqHPaB94gx36XMyqOFiXhKqlFEpN9yrbCwSY6y3Okn9eCS8K_m4GBLeP-bcRSt0rMgxz3vN248coZEjNPIRh00Pybv1PsvOCOTWaNmjJ49UpqMoOYxUt-73podaDu85_rwxtV-smhyrwgPA4Ys5JC866K2vAygih5kptOgboFwHoIf4zZa6Og1e4tCjAmjckLxfw_cvbm_338L3yKA9W_lXQN9a-zq-oNcbAUt_ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine-learning+algorithms+define+pathogen-specific+local+immune+fingerprints+in%C2%A0peritoneal+dialysis+patients+with+bacterial+infections&rft.jtitle=Kidney+international&rft.au=Zhang%2C+Jingjing&rft.au=Friberg%2C+Ida+M.&rft.au=Kift-Morgan%2C+Ann&rft.au=Parekh%2C+Gita&rft.date=2017-07-01&rft.issn=0085-2538&rft.volume=92&rft.issue=1&rft.spage=179&rft.epage=191&rft_id=info:doi/10.1016%2Fj.kint.2017.01.017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_kint_2017_01_017 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0085-2538&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0085-2538&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0085-2538&client=summon |