Remote monitoring of water clarity in coastal oceans of the Guangdong-Hong Kong-Macao Greater Bay Area, China based on machine learning

•A machine learning based algorithm for retrieving Secchi depth (ZSD) was developed.•ZSD were shallowest in the Pearl River Estuary, followed by Daya Bay and Mirs Bay.•ZSD increased in the Pearl River Estuary and Daya Bay, decreased in the Mirs Bay.•Sediment discharge, wind speed, and precipitation...

Full description

Saved in:
Bibliographic Details
Published inEcological indicators Vol. 160; p. 111789
Main Authors Lu, Xinyi, Mo, Zifeng, Zhao, Jun, Ma, Chunlei
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2024
Elsevier
Subjects
Online AccessGet full text
ISSN1470-160X
1872-7034
1872-7034
DOI10.1016/j.ecolind.2024.111789

Cover

Abstract •A machine learning based algorithm for retrieving Secchi depth (ZSD) was developed.•ZSD were shallowest in the Pearl River Estuary, followed by Daya Bay and Mirs Bay.•ZSD increased in the Pearl River Estuary and Daya Bay, decreased in the Mirs Bay.•Sediment discharge, wind speed, and precipitation regulated ZSD in the study area. The development of the Guangdong-Hong Kong-Macao Greater Bay Area (GBA), one of the most developed and densely populated regions in China, has posed an increasing threat to the health of the water environment in adjacent coastal oceans. However, the spatiotemporal variations of water clarity in the coastal oceans of the GBA (COGBA) have not been well-documented. Therefore, this study aims to develop a remote sensing retrieval algorithm for assessing water clarity, represented by Secchi disk depth (ZSD), based on Landsat-8 OLI imagery for the COGBA using a machine learning method. Cross-validation demonstrated that the algorithm performed exceptionally well, with an R2 value greater than 0.8. By applying the algorithm to 263 Landsat-8 OLI images, we obtained a time series of ZSD for the period of 2013–2021 over the COGBA. Results indicate that the Pearl River Estuary (PRE) exhibited the highest turbidity, followed by the Daya Bay and the Mirs Bay. Generally, ZSD increased from the northwest to the southeast of the COGBA. Seasonal, interannual, and long-term variations in ZSD were also observed with long-term increases in the PRE and the Daya Bay. The interannual variations in ZSD during fall were primarily regulated by different factors in each region. In the PRE, the negative effects of sediment discharge and wind speed played a significant role. In Mirs Bay, wind speed and sediment discharge had a negative impact on ZSD. In Daya Bay, precipitation and wind speed were the key factors influencing ZSD. The development and findings of our algorithm contribute to the protection and management of the water environment in the COGBA, facilitating effective governance measures.
AbstractList The development of the Guangdong-Hong Kong-Macao Greater Bay Area (GBA), one of the most developed and densely populated regions in China, has posed an increasing threat to the health of the water environment in adjacent coastal oceans. However, the spatiotemporal variations of water clarity in the coastal oceans of the GBA (COGBA) have not been well-documented. Therefore, this study aims to develop a remote sensing retrieval algorithm for assessing water clarity, represented by Secchi disk depth (ZSD), based on Landsat-8 OLI imagery for the COGBA using a machine learning method. Cross-validation demonstrated that the algorithm performed exceptionally well, with an R² value greater than 0.8. By applying the algorithm to 263 Landsat-8 OLI images, we obtained a time series of ZSD for the period of 2013–2021 over the COGBA. Results indicate that the Pearl River Estuary (PRE) exhibited the highest turbidity, followed by the Daya Bay and the Mirs Bay. Generally, ZSD increased from the northwest to the southeast of the COGBA. Seasonal, interannual, and long-term variations in ZSD were also observed with long-term increases in the PRE and the Daya Bay. The interannual variations in ZSD during fall were primarily regulated by different factors in each region. In the PRE, the negative effects of sediment discharge and wind speed played a significant role. In Mirs Bay, wind speed and sediment discharge had a negative impact on ZSD. In Daya Bay, precipitation and wind speed were the key factors influencing ZSD. The development and findings of our algorithm contribute to the protection and management of the water environment in the COGBA, facilitating effective governance measures.
The development of the Guangdong-Hong Kong-Macao Greater Bay Area (GBA), one of the most developed and densely populated regions in China, has posed an increasing threat to the health of the water environment in adjacent coastal oceans. However, the spatiotemporal variations of water clarity in the coastal oceans of the GBA (COGBA) have not been well-documented. Therefore, this study aims to develop a remote sensing retrieval algorithm for assessing water clarity, represented by Secchi disk depth (ZSD), based on Landsat-8 OLI imagery for the COGBA using a machine learning method. Cross-validation demonstrated that the algorithm performed exceptionally well, with an R2 value greater than 0.8. By applying the algorithm to 263 Landsat-8 OLI images, we obtained a time series of ZSD for the period of 2013–2021 over the COGBA. Results indicate that the Pearl River Estuary (PRE) exhibited the highest turbidity, followed by the Daya Bay and the Mirs Bay. Generally, ZSD increased from the northwest to the southeast of the COGBA. Seasonal, interannual, and long-term variations in ZSD were also observed with long-term increases in the PRE and the Daya Bay. The interannual variations in ZSD during fall were primarily regulated by different factors in each region. In the PRE, the negative effects of sediment discharge and wind speed played a significant role. In Mirs Bay, wind speed and sediment discharge had a negative impact on ZSD. In Daya Bay, precipitation and wind speed were the key factors influencing ZSD. The development and findings of our algorithm contribute to the protection and management of the water environment in the COGBA, facilitating effective governance measures.
•A machine learning based algorithm for retrieving Secchi depth (ZSD) was developed.•ZSD were shallowest in the Pearl River Estuary, followed by Daya Bay and Mirs Bay.•ZSD increased in the Pearl River Estuary and Daya Bay, decreased in the Mirs Bay.•Sediment discharge, wind speed, and precipitation regulated ZSD in the study area. The development of the Guangdong-Hong Kong-Macao Greater Bay Area (GBA), one of the most developed and densely populated regions in China, has posed an increasing threat to the health of the water environment in adjacent coastal oceans. However, the spatiotemporal variations of water clarity in the coastal oceans of the GBA (COGBA) have not been well-documented. Therefore, this study aims to develop a remote sensing retrieval algorithm for assessing water clarity, represented by Secchi disk depth (ZSD), based on Landsat-8 OLI imagery for the COGBA using a machine learning method. Cross-validation demonstrated that the algorithm performed exceptionally well, with an R2 value greater than 0.8. By applying the algorithm to 263 Landsat-8 OLI images, we obtained a time series of ZSD for the period of 2013–2021 over the COGBA. Results indicate that the Pearl River Estuary (PRE) exhibited the highest turbidity, followed by the Daya Bay and the Mirs Bay. Generally, ZSD increased from the northwest to the southeast of the COGBA. Seasonal, interannual, and long-term variations in ZSD were also observed with long-term increases in the PRE and the Daya Bay. The interannual variations in ZSD during fall were primarily regulated by different factors in each region. In the PRE, the negative effects of sediment discharge and wind speed played a significant role. In Mirs Bay, wind speed and sediment discharge had a negative impact on ZSD. In Daya Bay, precipitation and wind speed were the key factors influencing ZSD. The development and findings of our algorithm contribute to the protection and management of the water environment in the COGBA, facilitating effective governance measures.
ArticleNumber 111789
Author Zhao, Jun
Lu, Xinyi
Mo, Zifeng
Ma, Chunlei
Author_xml – sequence: 1
  givenname: Xinyi
  surname: Lu
  fullname: Lu, Xinyi
  organization: School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
– sequence: 2
  givenname: Zifeng
  surname: Mo
  fullname: Mo, Zifeng
  organization: School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
– sequence: 3
  givenname: Jun
  surname: Zhao
  fullname: Zhao, Jun
  organization: School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
– sequence: 4
  givenname: Chunlei
  orcidid: 0000-0002-2993-7492
  surname: Ma
  fullname: Ma, Chunlei
  email: machlei@mail.sysu.edu.cn
  organization: School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
BookMark eNqNkV1rVDEQhg9Swbb6E4RceuHZ5uN84oXURbfFiiAK3oU5c-Zss2STNcla9hf4t5vtKV54UyEkL8O8zwx5z4oT5x0VxWvBF4KL5mKzIPTWuHEhuawWQoi2658Vp6JrZdlyVZ1kXbW8FA3_-aI4i3HDs6_vm9Pizzfa-kRs651JPhi3Zn5id5AoMLQQTDow4xh6iAks80jg4rEl3RJb7cGtR-_W5VW-2Oej-gIInq0CPSA-wIFdZv2WLW-NAzZApJF5x7aAuUDMEgSXp74snk9gI716fM-LH58-fl9elTdfV9fLy5sSq7pOpQBZS5wmqSZSDULT0gSt7FQvFZcD53zIquq7YYBR8qHte0kDCQCOUslWnRfXM3f0sNG7YLYQDtqD0Q8FH9YaQjJoSde96qaWj2posFIIfUPQIZ9kjQ1NTZdZzczaux0c7sDav0DB9TEavdGP0ehjNHqOJhvfzMZd8L_2FJPemohkLTjy-6iVqFXHu3xy67u5FYOPMdCk0SRIxrsUwNgnB9X_uP93wfezj3IUvw0FHdGQQxpNIEz5r8wThHvjCtBG
CitedBy_id crossref_primary_10_1371_journal_pone_0317914
Cites_doi 10.1016/j.ecolind.2019.105848
10.1016/j.ecolind.2017.02.007
10.1016/j.marpolbul.2008.02.030
10.1016/j.rse.2017.09.004
10.1016/j.rse.2007.12.013
10.1080/15481603.2022.2116102
10.1016/j.marpolbul.2019.04.078
10.1016/j.ecss.2017.06.025
10.1016/S0034-4257(02)00022-6
10.1029/2020JC016202
10.3390/s16081298
10.1016/j.rse.2018.12.023
10.1016/j.watres.2021.116844
10.3390/w12010030
10.1016/j.rse.2020.111950
10.3390/app13064007
10.3390/rs8030244
10.1016/j.rse.2015.08.002
10.1007/s12237-011-9411-9
10.1016/j.jenvman.2023.117812
10.1002/lno.10940
10.1016/j.envres.2022.114380
10.1016/j.csr.2018.11.007
10.1016/j.ecss.2019.02.038
10.1016/j.rse.2020.111949
10.1016/j.rse.2014.09.020
10.1016/j.rse.2019.111284
10.1111/gcb.15667
10.1016/j.rse.2016.02.033
10.1016/j.isprsjprs.2021.10.009
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
ADTOC
UNPAY
DOA
DOI 10.1016/j.ecolind.2024.111789
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 1872-7034
ExternalDocumentID oai_doaj_org_article_5938f70d3b6c43ca96ea8c0f25c6ef68
10.1016/j.ecolind.2024.111789
10_1016_j_ecolind_2024_111789
S1470160X24002462
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAHBH
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABJNI
ABLST
ABMAC
ABXDB
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFPKN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPCBC
SSA
SSJ
SSZ
T5K
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
7S9
L.6
ADTOC
AGCQF
UNPAY
ID FETCH-LOGICAL-c455t-1a252cff23fe36ca67efa728392302b000b923498bbad20b7992ebe1aa0c23273
IEDL.DBID .~1
ISSN 1470-160X
1872-7034
IngestDate Fri Oct 03 12:52:51 EDT 2025
Tue Aug 19 19:08:34 EDT 2025
Thu Oct 02 21:45:27 EDT 2025
Wed Oct 01 05:04:12 EDT 2025
Thu Apr 24 23:06:30 EDT 2025
Tue Jun 18 08:50:48 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Water clarity
Guangdong-Hong Kong-Macao Greater Bay Area
Empirical model
Remote sensing
Machine learning
Language English
License This is an open access article under the CC BY-NC-ND license.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-1a252cff23fe36ca67efa728392302b000b923498bbad20b7992ebe1aa0c23273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2993-7492
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1470160X24002462
PQID 3153808808
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_5938f70d3b6c43ca96ea8c0f25c6ef68
unpaywall_primary_10_1016_j_ecolind_2024_111789
proquest_miscellaneous_3153808808
crossref_citationtrail_10_1016_j_ecolind_2024_111789
crossref_primary_10_1016_j_ecolind_2024_111789
elsevier_sciencedirect_doi_10_1016_j_ecolind_2024_111789
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2024
2024-03-00
20240301
2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: March 2024
PublicationDecade 2020
PublicationTitle Ecological indicators
PublicationYear 2024
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Olmanson, Bauer, Brezonik (b0135) 2008; 112
McPherson, Hill, Zimmerman, Dierssen (b0120) 2011; 34
Shen, Duan, Cao, Xue, Qi, Ma, Liu, Song, Huang, Song (b0150) 2020; 247
Alikas, Kratzer (b0005) 2017; 77
Kloiber, Brezonik, Olmanson, Bauer (b0070) 2002; 82
Luis, Rheuban, Kavanaugh, Glover, Wei, Lee, Doney (b0100) 2019; 145
Qing, Cui, Lai, Bao, Diao, Yue, Hao (b0145) 2021; 102
Chen, Gong, Cai, Chen, Zhang (b0015) 2017; 194
Zhang, Zhang, Shi, Zhou, Li (b0185) 2021; 192
Lee, Shang, Du, Wei (b0090) 2018; 63
Ni, Lu, Luo, Tian, Zeng (b0125) 2008; 56
Zeng, Xu, Cheng, Zhao, Yang (b0175) 2023; 13
Jia, Su, Huang, Sun, Jiang, Ma (b0065) 2018; 38
Page, Olmanson, Mishra (b0140) 2019; 231
Lee, Darecki, Carder, Davis, Stramski, Rhea (b0075) 2005; 110
Ding, Shao, Huang, Altan, Hu (b0040) 2022; 113
Chen, Hu (b0020) 2017; 201
Yuan, Wang, Fan, Dong, Li, Lin, Zhou (b0170) 2022; 215
Gomes, Alcantara, Rodrigues, Bernardo (b0055) 2020; 110
Zhang, Shi, Sun, Zhang, Li, Wang, Zhou, Zhi, Liu, Li, Zhu, Qin, Jeppesen, Zhou, Li (b0190) 2022; 59
Wang, Li, Zhang, Lee, Spyrakos, Feng, Liu, Zhao, Wu, Zhu, Jia, Wan, Zhang, Shen, Tyler, Zhang (b0155) 2020; 247
Wu, Liu, Ji (b0160) 2007; 19
Cheung, Cheung, Mak, Liu, Xia, Zhang, Yung, Liu (b0035) 2021; 27
Xiang, Cui, Li, Zhang, Mu, Liu, Zhao (b0165) 2023; 338
Bergstra, Yamins, Cox (b0010) 2013
Guo, Ma, Ai, Xu, Huang, Zhao (b0060) 2020; 125
Dogliotti, Ruddick, Nechad, Doxaran, Knaeps (b0045) 2015; 156
Mamun, Kim, Alam, An (b0115) 2019; 12
Maciel, Barbosa, Novo, Flores Júnior, Begliomini (b0110) 2021; 182
Chen, Hu, Barnes, Xie, Lin, Qiu (b0025) 2019; 222
Zhan, Wu, Wei, Tang, Zhan (b0180) 2019; 172
Gholizadeh, Melesse, Reddi (b0050) 2016; 16
Liu, Zhang, Yao, Zhang, Feng (b0095) 2018; 43
Cheng, Z. (2016). Application of the geostationary ocean color imager (GOCI) to mapping the diurnal and seasonal variability of surface suspended matter in a macro-tidal estuary. In: UNSW Sydney.
Lee, Shang, Hu, Du, Weidemann, Hou, Lin, Lin (b0080) 2015; 169
Ma, Zhao, Ai, Sun, Yang (b0105) 2021
Nukapothula, Chen, Wu (b0130) 2019; 221
Lee, Shang, Qi, Yan, Lin (b0085) 2016; 177
Zhang (10.1016/j.ecolind.2024.111789_b0185) 2021; 192
Mamun (10.1016/j.ecolind.2024.111789_b0115) 2019; 12
Olmanson (10.1016/j.ecolind.2024.111789_b0135) 2008; 112
Yuan (10.1016/j.ecolind.2024.111789_b0170) 2022; 215
Guo (10.1016/j.ecolind.2024.111789_b0060) 2020; 125
Maciel (10.1016/j.ecolind.2024.111789_b0110) 2021; 182
Shen (10.1016/j.ecolind.2024.111789_b0150) 2020; 247
Gholizadeh (10.1016/j.ecolind.2024.111789_b0050) 2016; 16
Jia (10.1016/j.ecolind.2024.111789_b0065) 2018; 38
10.1016/j.ecolind.2024.111789_b0030
Cheung (10.1016/j.ecolind.2024.111789_b0035) 2021; 27
Xiang (10.1016/j.ecolind.2024.111789_b0165) 2023; 338
Dogliotti (10.1016/j.ecolind.2024.111789_b0045) 2015; 156
Lee (10.1016/j.ecolind.2024.111789_b0090) 2018; 63
Zhang (10.1016/j.ecolind.2024.111789_b0190) 2022; 59
Alikas (10.1016/j.ecolind.2024.111789_b0005) 2017; 77
Nukapothula (10.1016/j.ecolind.2024.111789_b0130) 2019; 221
Chen (10.1016/j.ecolind.2024.111789_b0025) 2019; 222
Zeng (10.1016/j.ecolind.2024.111789_b0175) 2023; 13
Bergstra (10.1016/j.ecolind.2024.111789_b0010) 2013
Kloiber (10.1016/j.ecolind.2024.111789_b0070) 2002; 82
Luis (10.1016/j.ecolind.2024.111789_b0100) 2019; 145
Chen (10.1016/j.ecolind.2024.111789_b0020) 2017; 201
Qing (10.1016/j.ecolind.2024.111789_b0145) 2021; 102
Wang (10.1016/j.ecolind.2024.111789_b0155) 2020; 247
Lee (10.1016/j.ecolind.2024.111789_b0075) 2005; 110
Lee (10.1016/j.ecolind.2024.111789_b0085) 2016; 177
Ma (10.1016/j.ecolind.2024.111789_b0105) 2021
Wu (10.1016/j.ecolind.2024.111789_b0160) 2007; 19
Gomes (10.1016/j.ecolind.2024.111789_b0055) 2020; 110
Chen (10.1016/j.ecolind.2024.111789_b0015) 2017; 194
Page (10.1016/j.ecolind.2024.111789_b0140) 2019; 231
Ding (10.1016/j.ecolind.2024.111789_b0040) 2022; 113
Ni (10.1016/j.ecolind.2024.111789_b0125) 2008; 56
Liu (10.1016/j.ecolind.2024.111789_b0095) 2018; 43
Zhan (10.1016/j.ecolind.2024.111789_b0180) 2019; 172
Lee (10.1016/j.ecolind.2024.111789_b0080) 2015; 169
McPherson (10.1016/j.ecolind.2024.111789_b0120) 2011; 34
References_xml – volume: 43
  start-page: 72
  year: 2018
  end-page: 78
  ident: b0095
  article-title: Remote sensing inversion of water transparency in Dongping Lake
  publication-title: Science of Surveying and Mapping
– volume: 12
  start-page: 30
  year: 2019
  ident: b0115
  article-title: Prediction of algal chlorophyll-a and water clarity in monsoon-region reservoir using machine learning approaches
  publication-title: Water
– volume: 338
  year: 2023
  ident: b0165
  article-title: Evaluating the effectiveness of coastal environmental management policies in China: The case of Bohai Sea
  publication-title: J. Environ. Manage.
– year: 2013
  ident: b0010
  article-title: Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures
  publication-title: In,
– volume: 231
  start-page: 12
  year: 2019
  ident: b0140
  article-title: A harmonized image processing workflow using Sentinel-2/MSI and Landsat-8/OLI for mapping water clarity in optically variable lake systems
  publication-title: Remote Sens. Environ.
– volume: 222
  start-page: 286
  year: 2019
  end-page: 302
  ident: b0025
  article-title: Improving ocean color data coverage through machine learning
  publication-title: Remote Sens. Environ.
– year: 2021
  ident: b0105
  article-title: Machine learning based long-term water quality in the turbid pearl river estuary
  publication-title: China. Journal of Geophysical Research: Oceans.
– volume: 82
  start-page: 38
  year: 2002
  end-page: 47
  ident: b0070
  article-title: A procedure for regional lake water clarity assessment using Landsat multispectral data
  publication-title: Remote Sens. Environ.
– volume: 125
  year: 2020
  ident: b0060
  article-title: Assessing the effects of the hong kong-zhuhai-macau bridge on the total suspended solids in the pearl river estuary based on landsat time series
  publication-title: J. Geophys. Res.
– volume: 172
  start-page: 22
  year: 2019
  end-page: 32
  ident: b0180
  article-title: Spatio-temporal variation of the suspended sediment concentration in the Pearl River Estuary observed by MODIS during 2003–2015
  publication-title: Cont. Shelf Res.
– volume: 177
  year: 2016
  ident: b0085
  article-title: A semi-analytical scheme to estimate Secchi-disk depth from Landsat-8 measurements
  publication-title: Remote Sens. Environ.
– volume: 182
  start-page: 134
  year: 2021
  end-page: 152
  ident: b0110
  article-title: Water clarity in Brazilian water assessed using Sentinel-2 and machine learning methods
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 201
  start-page: 115
  year: 2017
  end-page: 132
  ident: b0020
  article-title: Estimating sea surface salinity in the northern Gulf of Mexico from satellite ocean color measurements
  publication-title: Remote Sens. Environ.
– volume: 113
  year: 2022
  ident: b0040
  article-title: Time-series land cover mapping and urban expansion analysis using OpenStreetMap data and remote sensing big data: A case study of Guangdong-Hong Kong-Macao Greater Bay Area
  publication-title: China.
– volume: 16
  year: 2016
  ident: b0050
  article-title: A Comprehensive review on water quality parameters estimation using remote sensing techniques
  publication-title: Sensors (basel)
– volume: 34
  start-page: 1150
  year: 2011
  end-page: 1160
  ident: b0120
  article-title: The optical properties of greater florida bay: implications for seagrass abundance
  publication-title: Estuar. Coasts
– volume: 145
  start-page: 96
  year: 2019
  end-page: 104
  ident: b0100
  article-title: Capturing coastal water clarity variability with Landsat 8
  publication-title: Mar. Pollut. Bull.
– volume: 13
  start-page: 4007
  year: 2023
  ident: b0175
  article-title: Regional remote sensing of lake water transparency based on google earth engine: performance of empirical algorithm and machine learning
  publication-title: Appl. Sci.
– volume: 59
  start-page: 1367
  year: 2022
  end-page: 1383
  ident: b0190
  article-title: Improving remote sensing estimation of Secchi disk depth for global lakes and reservoirs using machine learning methods
  publication-title: Giscience & Remote Sensing
– volume: 192
  year: 2021
  ident: b0185
  article-title: Remote sensing estimation of water clarity for various lakes in China
  publication-title: Water Res.
– volume: 215
  year: 2022
  ident: b0170
  article-title: Spatiotemporal dynamics and anthropologically dominated drivers of chlorophyll-a, TN and TP concentrations in the Pearl River Estuary based on retrieval algorithm and random forest regression
  publication-title: Environ. Res.
– volume: 221
  start-page: 90
  year: 2019
  end-page: 103
  ident: b0130
  article-title: Long-term distribution patterns of remotely sensed water quality variables in Pearl River Delta, China
  publication-title: Estuar. Coast. Shelf Sci.
– volume: 77
  start-page: 218
  year: 2017
  end-page: 227
  ident: b0005
  article-title: Improved retrieval of Secchi depth for optically-complex waters using remote sensing data
  publication-title: Ecol. Ind.
– volume: 56
  start-page: 1150
  year: 2008
  end-page: 1157
  ident: b0125
  article-title: Riverine inputs of total organic carbon and suspended particulate matter from the Pearl River Delta to the coastal ocean off South China
  publication-title: Mar. Pollut. Bull.
– volume: 27
  start-page: 3463
  year: 2021
  end-page: 3473
  ident: b0035
  article-title: Distinct interaction effects of warming and anthropogenic input on diatoms and dinoflagellates in an urbanized estuarine ecosystem
  publication-title: Glob Chang Biol
– volume: 156
  start-page: 157
  year: 2015
  end-page: 168
  ident: b0045
  article-title: A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine waters
  publication-title: Remote Sens. Environ.
– volume: 169
  start-page: 139
  year: 2015
  end-page: 149
  ident: b0080
  article-title: Secchi disk depth: A new theory and mechanistic model for underwater visibility
  publication-title: Remote Sens. Environ.
– volume: 110
  start-page: 14
  year: 2020
  ident: b0055
  article-title: Satellite estimates of euphotic zone and Secchi disk depths in a colored dissolved organic matter-dominated inland water
  publication-title: Ecol. Ind.
– volume: 112
  start-page: 4086
  year: 2008
  end-page: 4097
  ident: b0135
  article-title: A 20-year Landsat water clarity census of Minnesota's 10,000 lakes
  publication-title: Remote Sens. Environ.
– volume: 110
  year: 2005
  ident: b0075
  article-title: Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods
  publication-title: J. Geophys. Res. Oceans
– reference: Cheng, Z. (2016). Application of the geostationary ocean color imager (GOCI) to mapping the diurnal and seasonal variability of surface suspended matter in a macro-tidal estuary. In: UNSW Sydney.
– volume: 38
  year: 2018
  ident: b0065
  article-title: Dynamic change characteristics and its dominant influencing factors of secchi disk depth in coastal and inland waters
  publication-title: Acta Opt. Sin.
– volume: 247
  year: 2020
  ident: b0150
  article-title: Sentinel-3 OLCI observations of water clarity in large lakes in eastern China: Implications for SDG 6.3.2 evaluation
  publication-title: Remote Sens. Environ.
– volume: 63
  start-page: 2321
  year: 2018
  end-page: 2336
  ident: b0090
  article-title: Resolving the long-standing puzzles about the observed Secchi depth relationships
  publication-title: Limnol. Oceanogr.
– volume: 102
  year: 2021
  ident: b0145
  article-title: Improving remote sensing retrieval of water clarity in complex coastal and inland waters with modified absorption estimation and optical water classification using Sentinel-2 MSI
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 19
  start-page: 235
  year: 2007
  end-page: 240
  ident: b0160
  article-title: Landsat TM image-based retrieval model of water clarity: a case study of Lake Poyang National Nature Reserve, China
  publication-title: Scientia Limnologica Sinica
– volume: 247
  year: 2020
  ident: b0155
  article-title: Changes of water clarity in large lakes and reservoirs across China observed from long-term MODIS
  publication-title: Remote Sens. Environ.
– volume: 194
  start-page: 252
  year: 2017
  end-page: 262
  ident: b0015
  article-title: Dispersal of the Pearl River plume over continental shelf in summer
  publication-title: Estuar. Coast. Shelf Sci.
– volume: 110
  start-page: 14
  year: 2020
  ident: 10.1016/j.ecolind.2024.111789_b0055
  article-title: Satellite estimates of euphotic zone and Secchi disk depths in a colored dissolved organic matter-dominated inland water
  publication-title: Ecol. Ind.
  doi: 10.1016/j.ecolind.2019.105848
– volume: 102
  year: 2021
  ident: 10.1016/j.ecolind.2024.111789_b0145
  article-title: Improving remote sensing retrieval of water clarity in complex coastal and inland waters with modified absorption estimation and optical water classification using Sentinel-2 MSI
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 77
  start-page: 218
  year: 2017
  ident: 10.1016/j.ecolind.2024.111789_b0005
  article-title: Improved retrieval of Secchi depth for optically-complex waters using remote sensing data
  publication-title: Ecol. Ind.
  doi: 10.1016/j.ecolind.2017.02.007
– volume: 56
  start-page: 1150
  year: 2008
  ident: 10.1016/j.ecolind.2024.111789_b0125
  article-title: Riverine inputs of total organic carbon and suspended particulate matter from the Pearl River Delta to the coastal ocean off South China
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2008.02.030
– volume: 201
  start-page: 115
  year: 2017
  ident: 10.1016/j.ecolind.2024.111789_b0020
  article-title: Estimating sea surface salinity in the northern Gulf of Mexico from satellite ocean color measurements
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.09.004
– volume: 112
  start-page: 4086
  year: 2008
  ident: 10.1016/j.ecolind.2024.111789_b0135
  article-title: A 20-year Landsat water clarity census of Minnesota's 10,000 lakes
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.12.013
– year: 2013
  ident: 10.1016/j.ecolind.2024.111789_b0010
  article-title: Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures
– volume: 38
  year: 2018
  ident: 10.1016/j.ecolind.2024.111789_b0065
  article-title: Dynamic change characteristics and its dominant influencing factors of secchi disk depth in coastal and inland waters
  publication-title: Acta Opt. Sin.
– volume: 59
  start-page: 1367
  year: 2022
  ident: 10.1016/j.ecolind.2024.111789_b0190
  article-title: Improving remote sensing estimation of Secchi disk depth for global lakes and reservoirs using machine learning methods
  publication-title: Giscience & Remote Sensing
  doi: 10.1080/15481603.2022.2116102
– volume: 145
  start-page: 96
  year: 2019
  ident: 10.1016/j.ecolind.2024.111789_b0100
  article-title: Capturing coastal water clarity variability with Landsat 8
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2019.04.078
– volume: 194
  start-page: 252
  year: 2017
  ident: 10.1016/j.ecolind.2024.111789_b0015
  article-title: Dispersal of the Pearl River plume over continental shelf in summer
  publication-title: Estuar. Coast. Shelf Sci.
  doi: 10.1016/j.ecss.2017.06.025
– volume: 82
  start-page: 38
  year: 2002
  ident: 10.1016/j.ecolind.2024.111789_b0070
  article-title: A procedure for regional lake water clarity assessment using Landsat multispectral data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00022-6
– year: 2021
  ident: 10.1016/j.ecolind.2024.111789_b0105
  article-title: Machine learning based long-term water quality in the turbid pearl river estuary
  publication-title: China. Journal of Geophysical Research: Oceans.
– volume: 125
  year: 2020
  ident: 10.1016/j.ecolind.2024.111789_b0060
  article-title: Assessing the effects of the hong kong-zhuhai-macau bridge on the total suspended solids in the pearl river estuary based on landsat time series
  publication-title: J. Geophys. Res.
  doi: 10.1029/2020JC016202
– volume: 16
  year: 2016
  ident: 10.1016/j.ecolind.2024.111789_b0050
  article-title: A Comprehensive review on water quality parameters estimation using remote sensing techniques
  publication-title: Sensors (basel)
  doi: 10.3390/s16081298
– volume: 222
  start-page: 286
  year: 2019
  ident: 10.1016/j.ecolind.2024.111789_b0025
  article-title: Improving ocean color data coverage through machine learning
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.12.023
– volume: 110
  year: 2005
  ident: 10.1016/j.ecolind.2024.111789_b0075
  article-title: Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods
  publication-title: J. Geophys. Res. Oceans
– volume: 192
  year: 2021
  ident: 10.1016/j.ecolind.2024.111789_b0185
  article-title: Remote sensing estimation of water clarity for various lakes in China
  publication-title: Water Res.
  doi: 10.1016/j.watres.2021.116844
– volume: 12
  start-page: 30
  year: 2019
  ident: 10.1016/j.ecolind.2024.111789_b0115
  article-title: Prediction of algal chlorophyll-a and water clarity in monsoon-region reservoir using machine learning approaches
  publication-title: Water
  doi: 10.3390/w12010030
– volume: 247
  year: 2020
  ident: 10.1016/j.ecolind.2024.111789_b0150
  article-title: Sentinel-3 OLCI observations of water clarity in large lakes in eastern China: Implications for SDG 6.3.2 evaluation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111950
– volume: 19
  start-page: 235
  year: 2007
  ident: 10.1016/j.ecolind.2024.111789_b0160
  article-title: Landsat TM image-based retrieval model of water clarity: a case study of Lake Poyang National Nature Reserve, China
  publication-title: Scientia Limnologica Sinica
– volume: 13
  start-page: 4007
  year: 2023
  ident: 10.1016/j.ecolind.2024.111789_b0175
  article-title: Regional remote sensing of lake water transparency based on google earth engine: performance of empirical algorithm and machine learning
  publication-title: Appl. Sci.
  doi: 10.3390/app13064007
– volume: 113
  year: 2022
  ident: 10.1016/j.ecolind.2024.111789_b0040
  article-title: Time-series land cover mapping and urban expansion analysis using OpenStreetMap data and remote sensing big data: A case study of Guangdong-Hong Kong-Macao Greater Bay Area
  publication-title: China. International Journal of Applied Earth Observation and Geoinformation
– ident: 10.1016/j.ecolind.2024.111789_b0030
  doi: 10.3390/rs8030244
– volume: 169
  start-page: 139
  year: 2015
  ident: 10.1016/j.ecolind.2024.111789_b0080
  article-title: Secchi disk depth: A new theory and mechanistic model for underwater visibility
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.08.002
– volume: 34
  start-page: 1150
  year: 2011
  ident: 10.1016/j.ecolind.2024.111789_b0120
  article-title: The optical properties of greater florida bay: implications for seagrass abundance
  publication-title: Estuar. Coasts
  doi: 10.1007/s12237-011-9411-9
– volume: 338
  year: 2023
  ident: 10.1016/j.ecolind.2024.111789_b0165
  article-title: Evaluating the effectiveness of coastal environmental management policies in China: The case of Bohai Sea
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2023.117812
– volume: 63
  start-page: 2321
  year: 2018
  ident: 10.1016/j.ecolind.2024.111789_b0090
  article-title: Resolving the long-standing puzzles about the observed Secchi depth relationships
  publication-title: Limnol. Oceanogr.
  doi: 10.1002/lno.10940
– volume: 215
  year: 2022
  ident: 10.1016/j.ecolind.2024.111789_b0170
  article-title: Spatiotemporal dynamics and anthropologically dominated drivers of chlorophyll-a, TN and TP concentrations in the Pearl River Estuary based on retrieval algorithm and random forest regression
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2022.114380
– volume: 43
  start-page: 72
  year: 2018
  ident: 10.1016/j.ecolind.2024.111789_b0095
  article-title: Remote sensing inversion of water transparency in Dongping Lake
  publication-title: Science of Surveying and Mapping
– volume: 172
  start-page: 22
  year: 2019
  ident: 10.1016/j.ecolind.2024.111789_b0180
  article-title: Spatio-temporal variation of the suspended sediment concentration in the Pearl River Estuary observed by MODIS during 2003–2015
  publication-title: Cont. Shelf Res.
  doi: 10.1016/j.csr.2018.11.007
– volume: 221
  start-page: 90
  year: 2019
  ident: 10.1016/j.ecolind.2024.111789_b0130
  article-title: Long-term distribution patterns of remotely sensed water quality variables in Pearl River Delta, China
  publication-title: Estuar. Coast. Shelf Sci.
  doi: 10.1016/j.ecss.2019.02.038
– volume: 247
  year: 2020
  ident: 10.1016/j.ecolind.2024.111789_b0155
  article-title: Changes of water clarity in large lakes and reservoirs across China observed from long-term MODIS
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111949
– volume: 156
  start-page: 157
  year: 2015
  ident: 10.1016/j.ecolind.2024.111789_b0045
  article-title: A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine waters
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.09.020
– volume: 231
  start-page: 12
  year: 2019
  ident: 10.1016/j.ecolind.2024.111789_b0140
  article-title: A harmonized image processing workflow using Sentinel-2/MSI and Landsat-8/OLI for mapping water clarity in optically variable lake systems
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111284
– volume: 27
  start-page: 3463
  year: 2021
  ident: 10.1016/j.ecolind.2024.111789_b0035
  article-title: Distinct interaction effects of warming and anthropogenic input on diatoms and dinoflagellates in an urbanized estuarine ecosystem
  publication-title: Glob Chang Biol
  doi: 10.1111/gcb.15667
– volume: 177
  year: 2016
  ident: 10.1016/j.ecolind.2024.111789_b0085
  article-title: A semi-analytical scheme to estimate Secchi-disk depth from Landsat-8 measurements
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.02.033
– volume: 182
  start-page: 134
  year: 2021
  ident: 10.1016/j.ecolind.2024.111789_b0110
  article-title: Water clarity in Brazilian water assessed using Sentinel-2 and machine learning methods
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.10.009
SSID ssj0016996
Score 2.411122
Snippet •A machine learning based algorithm for retrieving Secchi depth (ZSD) was developed.•ZSD were shallowest in the Pearl River Estuary, followed by Daya Bay and...
The development of the Guangdong-Hong Kong-Macao Greater Bay Area (GBA), one of the most developed and densely populated regions in China, has posed an...
SourceID doaj
unpaywall
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 111789
SubjectTerms algorithms
China
Empirical model
estuaries
governance
Guangdong-Hong Kong-Macao Greater Bay Area
Landsat
Machine learning
Remote sensing
rivers
sediment yield
time series analysis
turbidity
Water clarity
water quality
wind speed
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9wgEEZVLu2l6ivq9iUq9VhnMWAwx6RKtGqVHqpG2hviuUq0saPsrqL8gv7tDBhvtqftoRcL2YCBmWE-HjOD0JcmEhGlVZULllegb20FUgRy5Ym1lrDgs1HY-U8xu-Df5818J9RXuhM2uAceBm7aKNZGSTyzwnHmjBLBtI5E2jgRoshmvqRV42KqnB8IpQa7IkmqWpD5o-3O9OoI1nUA4ZKbUMrTlCFTjPcdrZSd9_-lnHbA59NNd2Pu78xyuaOHzl6g5wVA4uOh4S_Rk9C9Qoenj_Zq8LEI7Oo1-vMrAC0Cvs6im_bwcB_xHQDMW-xgUQsYHF922PVmlQqCMgPVlbIALsTAPt3C992imsED_0ipc-NMj_PGAlRxYu6hJcF8xTkON0460eO-w9f5jmbAJSjF4g26ODv9_W1WldgLleNNs65qQxvqYqQsBiacETJEI2mCU4zQBB0spLhqrTWeEiuVosAPtTHEAUiT7BAddH0X3iJsfU09yLnybeRM2pbXJjSBU6BqdJRMEB_HXrvimDzFx1jq8QbalS4k04lkeiDZBB1ti90Mnjn2FThJhN1mTo618wtgN13YTe9jtwlqR7bQBaMM2AOqutz3_88jG2mQ4XQwY7rQb1aaJbUD0z2B6qdb_vq3Xr37H716j56lKoe7dR_Qwfp2Ez4C2FrbT1muHgBpIygx
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLage-CJjctE0UBG4pEUx3bs5HGbNlWgVQhRqTxZtmNXg86Z1lbT-AP8bY4Tp1sR0sZLZCW248s5_j5fzjFC7wtPhJemyqwzPAO8NRloEehVTYwxhLm6NQo7m4jxlH-aFbNkrB5tYbb279tzWDALA8IVnXpSHhVcltVjtCMKoN4DtDOdfDn83loQSZLlgsxiuJTAGgnjtxY7_85nC4tal_1bkHSHcj5Zh0t9c60Xizvoc7qLJn25u0MnP0frlRnZX3-5dHxwxfbQ08RD8WEnOM_QIxeeo_2TW7M3-Jj0fvkC_f7qoEsdvmhHgLgUiBuPr4GnXmELc2Og8vg8YNvoZUwImAgIGKMAvcQghWFeN2GejeGBP8fQmba6we36BGRxpG-gJE5_wO113jhCa42bgC_ao54Op7st5i_R9PTk2_E4S1c4ZJYXxSrLNS2o9Z4y75iwWkjntaSRlTFCIwMxEOJVaYyuKTGyqiiIVa41scD1JNtHg9AE9wphU-e0huGiqkvPmTQlz7UrHKeS1N5SMkS870xlk3_zeM3GQvUH2X6o1OQqNrnqmnyIRptkl52Dj_sSHEVJ2USO_rnbF9C7Kqm7KipWeigYM8JyZnUlnC4t8bSwwnlRDlHZy5lKVKejMJDV-X3_f9fLpYKhIO7v6OCa9VKxiF6AGgSy_7gR2IfV6vV_pzhAg9XV2r0BTrYyb5Mm_gHDYjRa
  priority: 102
  providerName: Unpaywall
Title Remote monitoring of water clarity in coastal oceans of the Guangdong-Hong Kong-Macao Greater Bay Area, China based on machine learning
URI https://dx.doi.org/10.1016/j.ecolind.2024.111789
https://www.proquest.com/docview/3153808808
https://doi.org/10.1016/j.ecolind.2024.111789
https://doaj.org/article/5938f70d3b6c43ca96ea8c0f25c6ef68
UnpaywallVersion publishedVersion
Volume 160
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1872-7034
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016996
  issn: 1872-7034
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7034
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016996
  issn: 1872-7034
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-7034
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016996
  issn: 1872-7034
  databaseCode: .~1
  dateStart: 20010801
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-7034
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016996
  issn: 1872-7034
  databaseCode: ACRLP
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-7034
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016996
  issn: 1872-7034
  databaseCode: AIKHN
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7034
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016996
  issn: 1872-7034
  databaseCode: AKRWK
  dateStart: 20010801
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Lb9MwGLemcYAL4jXRMSojcSSN4zhxcuymTYVpFQIqlVNkO3bVqUuqPjTtsiv_Nt_nJF13GuIS5WE7Tr7XL873IORz4ljqpM4DY7UIwN7qAKQI5KpkWmsW29IHhV2N09FEfJsm0wNy1sXCoFtlq_sbne61dXsmbN9muJzPw5-RkJgebYpekFx4PSyExCoGg_udm0eU5nkTYSRZgK0fonjC6wF84QGYw4ShXKDykFjtfc8--TT-j8zUHgx9vq2W6u5WLRZ7FuniFXnZQkk6bGb7mhzY6g05On-IXIOLreiu35I_PyxQxdIbL8S4mkdrR28Baq6ogc9bQON0XlFTqzV2BLMGRgybAEKkwEjVrKyrWTCCDb3EvStlVE39EgMMcaruYCZWfaG-IjdF61jSuqI33lvT0rY8xewdmVyc_zobBW0VhsCIJNkEkeIJN87x2Nk4NSqV1inJEVjFjCOI0LAn8kxrVXKmZZ5z4IxIKWYArsn4iBxWdWXfE6rLiJcg8XmZORFLnYlI2cQKLlnpDGc9Irp3X5g2RTlWylgUnS_addGSrECSFQ3JemSw67ZscnQ81eEUCbtrjCm2_Yl6NStaHiuSPM4cTCzWqRGxUXlqVWaY44lJrUuzHsk6tigecSwMNX_q_p86NipAmvEXjapsvV0XMRogUPwMhg93_PVvT3X8_xP6QF7gUeNbd0ION6ut_Qhga6P7Xpr65Nnw6-Vo3PdLFnA0GX8f_v4L0nUtSg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05b9swFCaCdEiXoldQ92SBjpVFkZQojU2QwG3iDG0CeCNIijQcOJLhA0GWrv3bfU-H40wpugiCeIjSuz5K7yDkSxpYFpQtIuetjMDe2gikCOSqZNZaJnzZBIWNL7LRlfwxSSd75LiPhUG3yk73tzq90dbdlbh7m_FiNot_JVJherQJekFyiXr4iUy5wh3Y8PfWzyPJiqINMVIswu73YTzx9RC2eIDmMGMol6g9FJZ73zFQTR7_B3ZqB4cebKqFubs18_mOSTp9Tp51WJJ-a5f7guz56iU5PLkPXYPGTnZXr8ifnx7I4ulNI8X4OY_Wgd4C1lxSB_tbgON0VlFXmxUOBLsGVgy7AESkwEnVtKyraTSCAz3Ds7FxpqbNNwaY4sjcwUq8-UqbktwUzWNJ64reNO6annb1KaavydXpyeXxKOrKMEROpuk6SgxPuQuBi-BF5kymfDCKI7ISjCOKsHAmi9xaU3JmVVFwYI3EGOYArylxSParuvJvCLVlwksQ-aLMgxTK5jIxPvWSK1YGx9mAyP7da9flKMdSGXPdO6Nd645kGkmmW5INyHA7bNEm6XhswBESdtsZc2w3F-rlVHdMptNC5AEWJmzmpHCmyLzJHQs8dZkPWT4gec8W-gHLwlSzx-7_uWcjDeKM_2hM5evNSgu0QKD5GUwfb_nr357q7f8v6BM5GF2Oz_X594uzd-QptrSOdu_J_nq58R8Aea3tx0ay_gITJiw6
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLage-CJjctE0UBG4pEUx3bs5HGbNlWgVQhRqTxZtmNXg86Z1lbT-AP8bY4Tp1sR0sZLZCW248s5_j5fzjFC7wtPhJemyqwzPAO8NRloEehVTYwxhLm6NQo7m4jxlH-aFbNkrB5tYbb279tzWDALA8IVnXpSHhVcltVjtCMKoN4DtDOdfDn83loQSZLlgsxiuJTAGgnjtxY7_85nC4tal_1bkHSHcj5Zh0t9c60Xizvoc7qLJn25u0MnP0frlRnZX3-5dHxwxfbQ08RD8WEnOM_QIxeeo_2TW7M3-Jj0fvkC_f7qoEsdvmhHgLgUiBuPr4GnXmELc2Og8vg8YNvoZUwImAgIGKMAvcQghWFeN2GejeGBP8fQmba6we36BGRxpG-gJE5_wO113jhCa42bgC_ao54Op7st5i_R9PTk2_E4S1c4ZJYXxSrLNS2o9Z4y75iwWkjntaSRlTFCIwMxEOJVaYyuKTGyqiiIVa41scD1JNtHg9AE9wphU-e0huGiqkvPmTQlz7UrHKeS1N5SMkS870xlk3_zeM3GQvUH2X6o1OQqNrnqmnyIRptkl52Dj_sSHEVJ2USO_rnbF9C7Kqm7KipWeigYM8JyZnUlnC4t8bSwwnlRDlHZy5lKVKejMJDV-X3_f9fLpYKhIO7v6OCa9VKxiF6AGgSy_7gR2IfV6vV_pzhAg9XV2r0BTrYyb5Mm_gHDYjRa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remote+monitoring+of+water+clarity+in+coastal+oceans+of+the+Guangdong-Hong+Kong-Macao+Greater+Bay+Area%2C+China+based+on+machine+learning&rft.jtitle=Ecological+indicators&rft.au=Lu%2C+Xinyi&rft.au=Mo%2C+Zifeng&rft.au=Zhao%2C+Jun&rft.au=Ma%2C+Chunlei&rft.date=2024-03-01&rft.pub=Elsevier+Ltd&rft.issn=1470-160X&rft.eissn=1872-7034&rft.volume=160&rft_id=info:doi/10.1016%2Fj.ecolind.2024.111789&rft.externalDocID=S1470160X24002462
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1470-160X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1470-160X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1470-160X&client=summon