Remote monitoring of water clarity in coastal oceans of the Guangdong-Hong Kong-Macao Greater Bay Area, China based on machine learning
•A machine learning based algorithm for retrieving Secchi depth (ZSD) was developed.•ZSD were shallowest in the Pearl River Estuary, followed by Daya Bay and Mirs Bay.•ZSD increased in the Pearl River Estuary and Daya Bay, decreased in the Mirs Bay.•Sediment discharge, wind speed, and precipitation...
Saved in:
| Published in | Ecological indicators Vol. 160; p. 111789 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.03.2024
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1470-160X 1872-7034 1872-7034 |
| DOI | 10.1016/j.ecolind.2024.111789 |
Cover
| Abstract | •A machine learning based algorithm for retrieving Secchi depth (ZSD) was developed.•ZSD were shallowest in the Pearl River Estuary, followed by Daya Bay and Mirs Bay.•ZSD increased in the Pearl River Estuary and Daya Bay, decreased in the Mirs Bay.•Sediment discharge, wind speed, and precipitation regulated ZSD in the study area.
The development of the Guangdong-Hong Kong-Macao Greater Bay Area (GBA), one of the most developed and densely populated regions in China, has posed an increasing threat to the health of the water environment in adjacent coastal oceans. However, the spatiotemporal variations of water clarity in the coastal oceans of the GBA (COGBA) have not been well-documented. Therefore, this study aims to develop a remote sensing retrieval algorithm for assessing water clarity, represented by Secchi disk depth (ZSD), based on Landsat-8 OLI imagery for the COGBA using a machine learning method. Cross-validation demonstrated that the algorithm performed exceptionally well, with an R2 value greater than 0.8. By applying the algorithm to 263 Landsat-8 OLI images, we obtained a time series of ZSD for the period of 2013–2021 over the COGBA. Results indicate that the Pearl River Estuary (PRE) exhibited the highest turbidity, followed by the Daya Bay and the Mirs Bay. Generally, ZSD increased from the northwest to the southeast of the COGBA. Seasonal, interannual, and long-term variations in ZSD were also observed with long-term increases in the PRE and the Daya Bay. The interannual variations in ZSD during fall were primarily regulated by different factors in each region. In the PRE, the negative effects of sediment discharge and wind speed played a significant role. In Mirs Bay, wind speed and sediment discharge had a negative impact on ZSD. In Daya Bay, precipitation and wind speed were the key factors influencing ZSD. The development and findings of our algorithm contribute to the protection and management of the water environment in the COGBA, facilitating effective governance measures. |
|---|---|
| AbstractList | The development of the Guangdong-Hong Kong-Macao Greater Bay Area (GBA), one of the most developed and densely populated regions in China, has posed an increasing threat to the health of the water environment in adjacent coastal oceans. However, the spatiotemporal variations of water clarity in the coastal oceans of the GBA (COGBA) have not been well-documented. Therefore, this study aims to develop a remote sensing retrieval algorithm for assessing water clarity, represented by Secchi disk depth (ZSD), based on Landsat-8 OLI imagery for the COGBA using a machine learning method. Cross-validation demonstrated that the algorithm performed exceptionally well, with an R² value greater than 0.8. By applying the algorithm to 263 Landsat-8 OLI images, we obtained a time series of ZSD for the period of 2013–2021 over the COGBA. Results indicate that the Pearl River Estuary (PRE) exhibited the highest turbidity, followed by the Daya Bay and the Mirs Bay. Generally, ZSD increased from the northwest to the southeast of the COGBA. Seasonal, interannual, and long-term variations in ZSD were also observed with long-term increases in the PRE and the Daya Bay. The interannual variations in ZSD during fall were primarily regulated by different factors in each region. In the PRE, the negative effects of sediment discharge and wind speed played a significant role. In Mirs Bay, wind speed and sediment discharge had a negative impact on ZSD. In Daya Bay, precipitation and wind speed were the key factors influencing ZSD. The development and findings of our algorithm contribute to the protection and management of the water environment in the COGBA, facilitating effective governance measures. The development of the Guangdong-Hong Kong-Macao Greater Bay Area (GBA), one of the most developed and densely populated regions in China, has posed an increasing threat to the health of the water environment in adjacent coastal oceans. However, the spatiotemporal variations of water clarity in the coastal oceans of the GBA (COGBA) have not been well-documented. Therefore, this study aims to develop a remote sensing retrieval algorithm for assessing water clarity, represented by Secchi disk depth (ZSD), based on Landsat-8 OLI imagery for the COGBA using a machine learning method. Cross-validation demonstrated that the algorithm performed exceptionally well, with an R2 value greater than 0.8. By applying the algorithm to 263 Landsat-8 OLI images, we obtained a time series of ZSD for the period of 2013–2021 over the COGBA. Results indicate that the Pearl River Estuary (PRE) exhibited the highest turbidity, followed by the Daya Bay and the Mirs Bay. Generally, ZSD increased from the northwest to the southeast of the COGBA. Seasonal, interannual, and long-term variations in ZSD were also observed with long-term increases in the PRE and the Daya Bay. The interannual variations in ZSD during fall were primarily regulated by different factors in each region. In the PRE, the negative effects of sediment discharge and wind speed played a significant role. In Mirs Bay, wind speed and sediment discharge had a negative impact on ZSD. In Daya Bay, precipitation and wind speed were the key factors influencing ZSD. The development and findings of our algorithm contribute to the protection and management of the water environment in the COGBA, facilitating effective governance measures. •A machine learning based algorithm for retrieving Secchi depth (ZSD) was developed.•ZSD were shallowest in the Pearl River Estuary, followed by Daya Bay and Mirs Bay.•ZSD increased in the Pearl River Estuary and Daya Bay, decreased in the Mirs Bay.•Sediment discharge, wind speed, and precipitation regulated ZSD in the study area. The development of the Guangdong-Hong Kong-Macao Greater Bay Area (GBA), one of the most developed and densely populated regions in China, has posed an increasing threat to the health of the water environment in adjacent coastal oceans. However, the spatiotemporal variations of water clarity in the coastal oceans of the GBA (COGBA) have not been well-documented. Therefore, this study aims to develop a remote sensing retrieval algorithm for assessing water clarity, represented by Secchi disk depth (ZSD), based on Landsat-8 OLI imagery for the COGBA using a machine learning method. Cross-validation demonstrated that the algorithm performed exceptionally well, with an R2 value greater than 0.8. By applying the algorithm to 263 Landsat-8 OLI images, we obtained a time series of ZSD for the period of 2013–2021 over the COGBA. Results indicate that the Pearl River Estuary (PRE) exhibited the highest turbidity, followed by the Daya Bay and the Mirs Bay. Generally, ZSD increased from the northwest to the southeast of the COGBA. Seasonal, interannual, and long-term variations in ZSD were also observed with long-term increases in the PRE and the Daya Bay. The interannual variations in ZSD during fall were primarily regulated by different factors in each region. In the PRE, the negative effects of sediment discharge and wind speed played a significant role. In Mirs Bay, wind speed and sediment discharge had a negative impact on ZSD. In Daya Bay, precipitation and wind speed were the key factors influencing ZSD. The development and findings of our algorithm contribute to the protection and management of the water environment in the COGBA, facilitating effective governance measures. |
| ArticleNumber | 111789 |
| Author | Zhao, Jun Lu, Xinyi Mo, Zifeng Ma, Chunlei |
| Author_xml | – sequence: 1 givenname: Xinyi surname: Lu fullname: Lu, Xinyi organization: School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China – sequence: 2 givenname: Zifeng surname: Mo fullname: Mo, Zifeng organization: School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China – sequence: 3 givenname: Jun surname: Zhao fullname: Zhao, Jun organization: School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China – sequence: 4 givenname: Chunlei orcidid: 0000-0002-2993-7492 surname: Ma fullname: Ma, Chunlei email: machlei@mail.sysu.edu.cn organization: School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China |
| BookMark | eNqNkV1rVDEQhg9Swbb6E4RceuHZ5uN84oXURbfFiiAK3oU5c-Zss2STNcla9hf4t5vtKV54UyEkL8O8zwx5z4oT5x0VxWvBF4KL5mKzIPTWuHEhuawWQoi2658Vp6JrZdlyVZ1kXbW8FA3_-aI4i3HDs6_vm9Pizzfa-kRs651JPhi3Zn5id5AoMLQQTDow4xh6iAks80jg4rEl3RJb7cGtR-_W5VW-2Oej-gIInq0CPSA-wIFdZv2WLW-NAzZApJF5x7aAuUDMEgSXp74snk9gI716fM-LH58-fl9elTdfV9fLy5sSq7pOpQBZS5wmqSZSDULT0gSt7FQvFZcD53zIquq7YYBR8qHte0kDCQCOUslWnRfXM3f0sNG7YLYQDtqD0Q8FH9YaQjJoSde96qaWj2posFIIfUPQIZ9kjQ1NTZdZzczaux0c7sDav0DB9TEavdGP0ehjNHqOJhvfzMZd8L_2FJPemohkLTjy-6iVqFXHu3xy67u5FYOPMdCk0SRIxrsUwNgnB9X_uP93wfezj3IUvw0FHdGQQxpNIEz5r8wThHvjCtBG |
| CitedBy_id | crossref_primary_10_1371_journal_pone_0317914 |
| Cites_doi | 10.1016/j.ecolind.2019.105848 10.1016/j.ecolind.2017.02.007 10.1016/j.marpolbul.2008.02.030 10.1016/j.rse.2017.09.004 10.1016/j.rse.2007.12.013 10.1080/15481603.2022.2116102 10.1016/j.marpolbul.2019.04.078 10.1016/j.ecss.2017.06.025 10.1016/S0034-4257(02)00022-6 10.1029/2020JC016202 10.3390/s16081298 10.1016/j.rse.2018.12.023 10.1016/j.watres.2021.116844 10.3390/w12010030 10.1016/j.rse.2020.111950 10.3390/app13064007 10.3390/rs8030244 10.1016/j.rse.2015.08.002 10.1007/s12237-011-9411-9 10.1016/j.jenvman.2023.117812 10.1002/lno.10940 10.1016/j.envres.2022.114380 10.1016/j.csr.2018.11.007 10.1016/j.ecss.2019.02.038 10.1016/j.rse.2020.111949 10.1016/j.rse.2014.09.020 10.1016/j.rse.2019.111284 10.1111/gcb.15667 10.1016/j.rse.2016.02.033 10.1016/j.isprsjprs.2021.10.009 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors |
| Copyright_xml | – notice: 2024 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 ADTOC UNPAY DOA |
| DOI | 10.1016/j.ecolind.2024.111789 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Environmental Sciences |
| EISSN | 1872-7034 |
| ExternalDocumentID | oai_doaj_org_article_5938f70d3b6c43ca96ea8c0f25c6ef68 10.1016/j.ecolind.2024.111789 10_1016_j_ecolind_2024_111789 S1470160X24002462 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --K --M .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ AACTN AAEDT AAEDW AAFTH AAFWJ AAHBH AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFYP ABGRD ABJNI ABLST ABMAC ABXDB ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFPKN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPCBC SSA SSJ SSZ T5K ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD 7S9 L.6 ADTOC AGCQF UNPAY |
| ID | FETCH-LOGICAL-c455t-1a252cff23fe36ca67efa728392302b000b923498bbad20b7992ebe1aa0c23273 |
| IEDL.DBID | .~1 |
| ISSN | 1470-160X 1872-7034 |
| IngestDate | Fri Oct 03 12:52:51 EDT 2025 Tue Aug 19 19:08:34 EDT 2025 Thu Oct 02 21:45:27 EDT 2025 Wed Oct 01 05:04:12 EDT 2025 Thu Apr 24 23:06:30 EDT 2025 Tue Jun 18 08:50:48 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Water clarity Guangdong-Hong Kong-Macao Greater Bay Area Empirical model Remote sensing Machine learning |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c455t-1a252cff23fe36ca67efa728392302b000b923498bbad20b7992ebe1aa0c23273 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-2993-7492 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1470160X24002462 |
| PQID | 3153808808 |
| PQPubID | 24069 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_5938f70d3b6c43ca96ea8c0f25c6ef68 unpaywall_primary_10_1016_j_ecolind_2024_111789 proquest_miscellaneous_3153808808 crossref_citationtrail_10_1016_j_ecolind_2024_111789 crossref_primary_10_1016_j_ecolind_2024_111789 elsevier_sciencedirect_doi_10_1016_j_ecolind_2024_111789 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | March 2024 2024-03-00 20240301 2024-03-01 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 03 year: 2024 text: March 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Ecological indicators |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Olmanson, Bauer, Brezonik (b0135) 2008; 112 McPherson, Hill, Zimmerman, Dierssen (b0120) 2011; 34 Shen, Duan, Cao, Xue, Qi, Ma, Liu, Song, Huang, Song (b0150) 2020; 247 Alikas, Kratzer (b0005) 2017; 77 Kloiber, Brezonik, Olmanson, Bauer (b0070) 2002; 82 Luis, Rheuban, Kavanaugh, Glover, Wei, Lee, Doney (b0100) 2019; 145 Qing, Cui, Lai, Bao, Diao, Yue, Hao (b0145) 2021; 102 Chen, Gong, Cai, Chen, Zhang (b0015) 2017; 194 Zhang, Zhang, Shi, Zhou, Li (b0185) 2021; 192 Lee, Shang, Du, Wei (b0090) 2018; 63 Ni, Lu, Luo, Tian, Zeng (b0125) 2008; 56 Zeng, Xu, Cheng, Zhao, Yang (b0175) 2023; 13 Jia, Su, Huang, Sun, Jiang, Ma (b0065) 2018; 38 Page, Olmanson, Mishra (b0140) 2019; 231 Lee, Darecki, Carder, Davis, Stramski, Rhea (b0075) 2005; 110 Ding, Shao, Huang, Altan, Hu (b0040) 2022; 113 Chen, Hu (b0020) 2017; 201 Yuan, Wang, Fan, Dong, Li, Lin, Zhou (b0170) 2022; 215 Gomes, Alcantara, Rodrigues, Bernardo (b0055) 2020; 110 Zhang, Shi, Sun, Zhang, Li, Wang, Zhou, Zhi, Liu, Li, Zhu, Qin, Jeppesen, Zhou, Li (b0190) 2022; 59 Wang, Li, Zhang, Lee, Spyrakos, Feng, Liu, Zhao, Wu, Zhu, Jia, Wan, Zhang, Shen, Tyler, Zhang (b0155) 2020; 247 Wu, Liu, Ji (b0160) 2007; 19 Cheung, Cheung, Mak, Liu, Xia, Zhang, Yung, Liu (b0035) 2021; 27 Xiang, Cui, Li, Zhang, Mu, Liu, Zhao (b0165) 2023; 338 Bergstra, Yamins, Cox (b0010) 2013 Guo, Ma, Ai, Xu, Huang, Zhao (b0060) 2020; 125 Dogliotti, Ruddick, Nechad, Doxaran, Knaeps (b0045) 2015; 156 Mamun, Kim, Alam, An (b0115) 2019; 12 Maciel, Barbosa, Novo, Flores Júnior, Begliomini (b0110) 2021; 182 Chen, Hu, Barnes, Xie, Lin, Qiu (b0025) 2019; 222 Zhan, Wu, Wei, Tang, Zhan (b0180) 2019; 172 Gholizadeh, Melesse, Reddi (b0050) 2016; 16 Liu, Zhang, Yao, Zhang, Feng (b0095) 2018; 43 Cheng, Z. (2016). Application of the geostationary ocean color imager (GOCI) to mapping the diurnal and seasonal variability of surface suspended matter in a macro-tidal estuary. In: UNSW Sydney. Lee, Shang, Hu, Du, Weidemann, Hou, Lin, Lin (b0080) 2015; 169 Ma, Zhao, Ai, Sun, Yang (b0105) 2021 Nukapothula, Chen, Wu (b0130) 2019; 221 Lee, Shang, Qi, Yan, Lin (b0085) 2016; 177 Zhang (10.1016/j.ecolind.2024.111789_b0185) 2021; 192 Mamun (10.1016/j.ecolind.2024.111789_b0115) 2019; 12 Olmanson (10.1016/j.ecolind.2024.111789_b0135) 2008; 112 Yuan (10.1016/j.ecolind.2024.111789_b0170) 2022; 215 Guo (10.1016/j.ecolind.2024.111789_b0060) 2020; 125 Maciel (10.1016/j.ecolind.2024.111789_b0110) 2021; 182 Shen (10.1016/j.ecolind.2024.111789_b0150) 2020; 247 Gholizadeh (10.1016/j.ecolind.2024.111789_b0050) 2016; 16 Jia (10.1016/j.ecolind.2024.111789_b0065) 2018; 38 10.1016/j.ecolind.2024.111789_b0030 Cheung (10.1016/j.ecolind.2024.111789_b0035) 2021; 27 Xiang (10.1016/j.ecolind.2024.111789_b0165) 2023; 338 Dogliotti (10.1016/j.ecolind.2024.111789_b0045) 2015; 156 Lee (10.1016/j.ecolind.2024.111789_b0090) 2018; 63 Zhang (10.1016/j.ecolind.2024.111789_b0190) 2022; 59 Alikas (10.1016/j.ecolind.2024.111789_b0005) 2017; 77 Nukapothula (10.1016/j.ecolind.2024.111789_b0130) 2019; 221 Chen (10.1016/j.ecolind.2024.111789_b0025) 2019; 222 Zeng (10.1016/j.ecolind.2024.111789_b0175) 2023; 13 Bergstra (10.1016/j.ecolind.2024.111789_b0010) 2013 Kloiber (10.1016/j.ecolind.2024.111789_b0070) 2002; 82 Luis (10.1016/j.ecolind.2024.111789_b0100) 2019; 145 Chen (10.1016/j.ecolind.2024.111789_b0020) 2017; 201 Qing (10.1016/j.ecolind.2024.111789_b0145) 2021; 102 Wang (10.1016/j.ecolind.2024.111789_b0155) 2020; 247 Lee (10.1016/j.ecolind.2024.111789_b0075) 2005; 110 Lee (10.1016/j.ecolind.2024.111789_b0085) 2016; 177 Ma (10.1016/j.ecolind.2024.111789_b0105) 2021 Wu (10.1016/j.ecolind.2024.111789_b0160) 2007; 19 Gomes (10.1016/j.ecolind.2024.111789_b0055) 2020; 110 Chen (10.1016/j.ecolind.2024.111789_b0015) 2017; 194 Page (10.1016/j.ecolind.2024.111789_b0140) 2019; 231 Ding (10.1016/j.ecolind.2024.111789_b0040) 2022; 113 Ni (10.1016/j.ecolind.2024.111789_b0125) 2008; 56 Liu (10.1016/j.ecolind.2024.111789_b0095) 2018; 43 Zhan (10.1016/j.ecolind.2024.111789_b0180) 2019; 172 Lee (10.1016/j.ecolind.2024.111789_b0080) 2015; 169 McPherson (10.1016/j.ecolind.2024.111789_b0120) 2011; 34 |
| References_xml | – volume: 43 start-page: 72 year: 2018 end-page: 78 ident: b0095 article-title: Remote sensing inversion of water transparency in Dongping Lake publication-title: Science of Surveying and Mapping – volume: 12 start-page: 30 year: 2019 ident: b0115 article-title: Prediction of algal chlorophyll-a and water clarity in monsoon-region reservoir using machine learning approaches publication-title: Water – volume: 338 year: 2023 ident: b0165 article-title: Evaluating the effectiveness of coastal environmental management policies in China: The case of Bohai Sea publication-title: J. Environ. Manage. – year: 2013 ident: b0010 article-title: Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures publication-title: In, – volume: 231 start-page: 12 year: 2019 ident: b0140 article-title: A harmonized image processing workflow using Sentinel-2/MSI and Landsat-8/OLI for mapping water clarity in optically variable lake systems publication-title: Remote Sens. Environ. – volume: 222 start-page: 286 year: 2019 end-page: 302 ident: b0025 article-title: Improving ocean color data coverage through machine learning publication-title: Remote Sens. Environ. – year: 2021 ident: b0105 article-title: Machine learning based long-term water quality in the turbid pearl river estuary publication-title: China. Journal of Geophysical Research: Oceans. – volume: 82 start-page: 38 year: 2002 end-page: 47 ident: b0070 article-title: A procedure for regional lake water clarity assessment using Landsat multispectral data publication-title: Remote Sens. Environ. – volume: 125 year: 2020 ident: b0060 article-title: Assessing the effects of the hong kong-zhuhai-macau bridge on the total suspended solids in the pearl river estuary based on landsat time series publication-title: J. Geophys. Res. – volume: 172 start-page: 22 year: 2019 end-page: 32 ident: b0180 article-title: Spatio-temporal variation of the suspended sediment concentration in the Pearl River Estuary observed by MODIS during 2003–2015 publication-title: Cont. Shelf Res. – volume: 177 year: 2016 ident: b0085 article-title: A semi-analytical scheme to estimate Secchi-disk depth from Landsat-8 measurements publication-title: Remote Sens. Environ. – volume: 182 start-page: 134 year: 2021 end-page: 152 ident: b0110 article-title: Water clarity in Brazilian water assessed using Sentinel-2 and machine learning methods publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 201 start-page: 115 year: 2017 end-page: 132 ident: b0020 article-title: Estimating sea surface salinity in the northern Gulf of Mexico from satellite ocean color measurements publication-title: Remote Sens. Environ. – volume: 113 year: 2022 ident: b0040 article-title: Time-series land cover mapping and urban expansion analysis using OpenStreetMap data and remote sensing big data: A case study of Guangdong-Hong Kong-Macao Greater Bay Area publication-title: China. – volume: 16 year: 2016 ident: b0050 article-title: A Comprehensive review on water quality parameters estimation using remote sensing techniques publication-title: Sensors (basel) – volume: 34 start-page: 1150 year: 2011 end-page: 1160 ident: b0120 article-title: The optical properties of greater florida bay: implications for seagrass abundance publication-title: Estuar. Coasts – volume: 145 start-page: 96 year: 2019 end-page: 104 ident: b0100 article-title: Capturing coastal water clarity variability with Landsat 8 publication-title: Mar. Pollut. Bull. – volume: 13 start-page: 4007 year: 2023 ident: b0175 article-title: Regional remote sensing of lake water transparency based on google earth engine: performance of empirical algorithm and machine learning publication-title: Appl. Sci. – volume: 59 start-page: 1367 year: 2022 end-page: 1383 ident: b0190 article-title: Improving remote sensing estimation of Secchi disk depth for global lakes and reservoirs using machine learning methods publication-title: Giscience & Remote Sensing – volume: 192 year: 2021 ident: b0185 article-title: Remote sensing estimation of water clarity for various lakes in China publication-title: Water Res. – volume: 215 year: 2022 ident: b0170 article-title: Spatiotemporal dynamics and anthropologically dominated drivers of chlorophyll-a, TN and TP concentrations in the Pearl River Estuary based on retrieval algorithm and random forest regression publication-title: Environ. Res. – volume: 221 start-page: 90 year: 2019 end-page: 103 ident: b0130 article-title: Long-term distribution patterns of remotely sensed water quality variables in Pearl River Delta, China publication-title: Estuar. Coast. Shelf Sci. – volume: 77 start-page: 218 year: 2017 end-page: 227 ident: b0005 article-title: Improved retrieval of Secchi depth for optically-complex waters using remote sensing data publication-title: Ecol. Ind. – volume: 56 start-page: 1150 year: 2008 end-page: 1157 ident: b0125 article-title: Riverine inputs of total organic carbon and suspended particulate matter from the Pearl River Delta to the coastal ocean off South China publication-title: Mar. Pollut. Bull. – volume: 27 start-page: 3463 year: 2021 end-page: 3473 ident: b0035 article-title: Distinct interaction effects of warming and anthropogenic input on diatoms and dinoflagellates in an urbanized estuarine ecosystem publication-title: Glob Chang Biol – volume: 156 start-page: 157 year: 2015 end-page: 168 ident: b0045 article-title: A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine waters publication-title: Remote Sens. Environ. – volume: 169 start-page: 139 year: 2015 end-page: 149 ident: b0080 article-title: Secchi disk depth: A new theory and mechanistic model for underwater visibility publication-title: Remote Sens. Environ. – volume: 110 start-page: 14 year: 2020 ident: b0055 article-title: Satellite estimates of euphotic zone and Secchi disk depths in a colored dissolved organic matter-dominated inland water publication-title: Ecol. Ind. – volume: 112 start-page: 4086 year: 2008 end-page: 4097 ident: b0135 article-title: A 20-year Landsat water clarity census of Minnesota's 10,000 lakes publication-title: Remote Sens. Environ. – volume: 110 year: 2005 ident: b0075 article-title: Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods publication-title: J. Geophys. Res. Oceans – reference: Cheng, Z. (2016). Application of the geostationary ocean color imager (GOCI) to mapping the diurnal and seasonal variability of surface suspended matter in a macro-tidal estuary. In: UNSW Sydney. – volume: 38 year: 2018 ident: b0065 article-title: Dynamic change characteristics and its dominant influencing factors of secchi disk depth in coastal and inland waters publication-title: Acta Opt. Sin. – volume: 247 year: 2020 ident: b0150 article-title: Sentinel-3 OLCI observations of water clarity in large lakes in eastern China: Implications for SDG 6.3.2 evaluation publication-title: Remote Sens. Environ. – volume: 63 start-page: 2321 year: 2018 end-page: 2336 ident: b0090 article-title: Resolving the long-standing puzzles about the observed Secchi depth relationships publication-title: Limnol. Oceanogr. – volume: 102 year: 2021 ident: b0145 article-title: Improving remote sensing retrieval of water clarity in complex coastal and inland waters with modified absorption estimation and optical water classification using Sentinel-2 MSI publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 19 start-page: 235 year: 2007 end-page: 240 ident: b0160 article-title: Landsat TM image-based retrieval model of water clarity: a case study of Lake Poyang National Nature Reserve, China publication-title: Scientia Limnologica Sinica – volume: 247 year: 2020 ident: b0155 article-title: Changes of water clarity in large lakes and reservoirs across China observed from long-term MODIS publication-title: Remote Sens. Environ. – volume: 194 start-page: 252 year: 2017 end-page: 262 ident: b0015 article-title: Dispersal of the Pearl River plume over continental shelf in summer publication-title: Estuar. Coast. Shelf Sci. – volume: 110 start-page: 14 year: 2020 ident: 10.1016/j.ecolind.2024.111789_b0055 article-title: Satellite estimates of euphotic zone and Secchi disk depths in a colored dissolved organic matter-dominated inland water publication-title: Ecol. Ind. doi: 10.1016/j.ecolind.2019.105848 – volume: 102 year: 2021 ident: 10.1016/j.ecolind.2024.111789_b0145 article-title: Improving remote sensing retrieval of water clarity in complex coastal and inland waters with modified absorption estimation and optical water classification using Sentinel-2 MSI publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 77 start-page: 218 year: 2017 ident: 10.1016/j.ecolind.2024.111789_b0005 article-title: Improved retrieval of Secchi depth for optically-complex waters using remote sensing data publication-title: Ecol. Ind. doi: 10.1016/j.ecolind.2017.02.007 – volume: 56 start-page: 1150 year: 2008 ident: 10.1016/j.ecolind.2024.111789_b0125 article-title: Riverine inputs of total organic carbon and suspended particulate matter from the Pearl River Delta to the coastal ocean off South China publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2008.02.030 – volume: 201 start-page: 115 year: 2017 ident: 10.1016/j.ecolind.2024.111789_b0020 article-title: Estimating sea surface salinity in the northern Gulf of Mexico from satellite ocean color measurements publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.09.004 – volume: 112 start-page: 4086 year: 2008 ident: 10.1016/j.ecolind.2024.111789_b0135 article-title: A 20-year Landsat water clarity census of Minnesota's 10,000 lakes publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.12.013 – year: 2013 ident: 10.1016/j.ecolind.2024.111789_b0010 article-title: Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures – volume: 38 year: 2018 ident: 10.1016/j.ecolind.2024.111789_b0065 article-title: Dynamic change characteristics and its dominant influencing factors of secchi disk depth in coastal and inland waters publication-title: Acta Opt. Sin. – volume: 59 start-page: 1367 year: 2022 ident: 10.1016/j.ecolind.2024.111789_b0190 article-title: Improving remote sensing estimation of Secchi disk depth for global lakes and reservoirs using machine learning methods publication-title: Giscience & Remote Sensing doi: 10.1080/15481603.2022.2116102 – volume: 145 start-page: 96 year: 2019 ident: 10.1016/j.ecolind.2024.111789_b0100 article-title: Capturing coastal water clarity variability with Landsat 8 publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2019.04.078 – volume: 194 start-page: 252 year: 2017 ident: 10.1016/j.ecolind.2024.111789_b0015 article-title: Dispersal of the Pearl River plume over continental shelf in summer publication-title: Estuar. Coast. Shelf Sci. doi: 10.1016/j.ecss.2017.06.025 – volume: 82 start-page: 38 year: 2002 ident: 10.1016/j.ecolind.2024.111789_b0070 article-title: A procedure for regional lake water clarity assessment using Landsat multispectral data publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00022-6 – year: 2021 ident: 10.1016/j.ecolind.2024.111789_b0105 article-title: Machine learning based long-term water quality in the turbid pearl river estuary publication-title: China. Journal of Geophysical Research: Oceans. – volume: 125 year: 2020 ident: 10.1016/j.ecolind.2024.111789_b0060 article-title: Assessing the effects of the hong kong-zhuhai-macau bridge on the total suspended solids in the pearl river estuary based on landsat time series publication-title: J. Geophys. Res. doi: 10.1029/2020JC016202 – volume: 16 year: 2016 ident: 10.1016/j.ecolind.2024.111789_b0050 article-title: A Comprehensive review on water quality parameters estimation using remote sensing techniques publication-title: Sensors (basel) doi: 10.3390/s16081298 – volume: 222 start-page: 286 year: 2019 ident: 10.1016/j.ecolind.2024.111789_b0025 article-title: Improving ocean color data coverage through machine learning publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.12.023 – volume: 110 year: 2005 ident: 10.1016/j.ecolind.2024.111789_b0075 article-title: Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods publication-title: J. Geophys. Res. Oceans – volume: 192 year: 2021 ident: 10.1016/j.ecolind.2024.111789_b0185 article-title: Remote sensing estimation of water clarity for various lakes in China publication-title: Water Res. doi: 10.1016/j.watres.2021.116844 – volume: 12 start-page: 30 year: 2019 ident: 10.1016/j.ecolind.2024.111789_b0115 article-title: Prediction of algal chlorophyll-a and water clarity in monsoon-region reservoir using machine learning approaches publication-title: Water doi: 10.3390/w12010030 – volume: 247 year: 2020 ident: 10.1016/j.ecolind.2024.111789_b0150 article-title: Sentinel-3 OLCI observations of water clarity in large lakes in eastern China: Implications for SDG 6.3.2 evaluation publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111950 – volume: 19 start-page: 235 year: 2007 ident: 10.1016/j.ecolind.2024.111789_b0160 article-title: Landsat TM image-based retrieval model of water clarity: a case study of Lake Poyang National Nature Reserve, China publication-title: Scientia Limnologica Sinica – volume: 13 start-page: 4007 year: 2023 ident: 10.1016/j.ecolind.2024.111789_b0175 article-title: Regional remote sensing of lake water transparency based on google earth engine: performance of empirical algorithm and machine learning publication-title: Appl. Sci. doi: 10.3390/app13064007 – volume: 113 year: 2022 ident: 10.1016/j.ecolind.2024.111789_b0040 article-title: Time-series land cover mapping and urban expansion analysis using OpenStreetMap data and remote sensing big data: A case study of Guangdong-Hong Kong-Macao Greater Bay Area publication-title: China. International Journal of Applied Earth Observation and Geoinformation – ident: 10.1016/j.ecolind.2024.111789_b0030 doi: 10.3390/rs8030244 – volume: 169 start-page: 139 year: 2015 ident: 10.1016/j.ecolind.2024.111789_b0080 article-title: Secchi disk depth: A new theory and mechanistic model for underwater visibility publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.08.002 – volume: 34 start-page: 1150 year: 2011 ident: 10.1016/j.ecolind.2024.111789_b0120 article-title: The optical properties of greater florida bay: implications for seagrass abundance publication-title: Estuar. Coasts doi: 10.1007/s12237-011-9411-9 – volume: 338 year: 2023 ident: 10.1016/j.ecolind.2024.111789_b0165 article-title: Evaluating the effectiveness of coastal environmental management policies in China: The case of Bohai Sea publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2023.117812 – volume: 63 start-page: 2321 year: 2018 ident: 10.1016/j.ecolind.2024.111789_b0090 article-title: Resolving the long-standing puzzles about the observed Secchi depth relationships publication-title: Limnol. Oceanogr. doi: 10.1002/lno.10940 – volume: 215 year: 2022 ident: 10.1016/j.ecolind.2024.111789_b0170 article-title: Spatiotemporal dynamics and anthropologically dominated drivers of chlorophyll-a, TN and TP concentrations in the Pearl River Estuary based on retrieval algorithm and random forest regression publication-title: Environ. Res. doi: 10.1016/j.envres.2022.114380 – volume: 43 start-page: 72 year: 2018 ident: 10.1016/j.ecolind.2024.111789_b0095 article-title: Remote sensing inversion of water transparency in Dongping Lake publication-title: Science of Surveying and Mapping – volume: 172 start-page: 22 year: 2019 ident: 10.1016/j.ecolind.2024.111789_b0180 article-title: Spatio-temporal variation of the suspended sediment concentration in the Pearl River Estuary observed by MODIS during 2003–2015 publication-title: Cont. Shelf Res. doi: 10.1016/j.csr.2018.11.007 – volume: 221 start-page: 90 year: 2019 ident: 10.1016/j.ecolind.2024.111789_b0130 article-title: Long-term distribution patterns of remotely sensed water quality variables in Pearl River Delta, China publication-title: Estuar. Coast. Shelf Sci. doi: 10.1016/j.ecss.2019.02.038 – volume: 247 year: 2020 ident: 10.1016/j.ecolind.2024.111789_b0155 article-title: Changes of water clarity in large lakes and reservoirs across China observed from long-term MODIS publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111949 – volume: 156 start-page: 157 year: 2015 ident: 10.1016/j.ecolind.2024.111789_b0045 article-title: A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine waters publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.09.020 – volume: 231 start-page: 12 year: 2019 ident: 10.1016/j.ecolind.2024.111789_b0140 article-title: A harmonized image processing workflow using Sentinel-2/MSI and Landsat-8/OLI for mapping water clarity in optically variable lake systems publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111284 – volume: 27 start-page: 3463 year: 2021 ident: 10.1016/j.ecolind.2024.111789_b0035 article-title: Distinct interaction effects of warming and anthropogenic input on diatoms and dinoflagellates in an urbanized estuarine ecosystem publication-title: Glob Chang Biol doi: 10.1111/gcb.15667 – volume: 177 year: 2016 ident: 10.1016/j.ecolind.2024.111789_b0085 article-title: A semi-analytical scheme to estimate Secchi-disk depth from Landsat-8 measurements publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.02.033 – volume: 182 start-page: 134 year: 2021 ident: 10.1016/j.ecolind.2024.111789_b0110 article-title: Water clarity in Brazilian water assessed using Sentinel-2 and machine learning methods publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.10.009 |
| SSID | ssj0016996 |
| Score | 2.411122 |
| Snippet | •A machine learning based algorithm for retrieving Secchi depth (ZSD) was developed.•ZSD were shallowest in the Pearl River Estuary, followed by Daya Bay and... The development of the Guangdong-Hong Kong-Macao Greater Bay Area (GBA), one of the most developed and densely populated regions in China, has posed an... |
| SourceID | doaj unpaywall proquest crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 111789 |
| SubjectTerms | algorithms China Empirical model estuaries governance Guangdong-Hong Kong-Macao Greater Bay Area Landsat Machine learning Remote sensing rivers sediment yield time series analysis turbidity Water clarity water quality wind speed |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9wgEEZVLu2l6ivq9iUq9VhnMWAwx6RKtGqVHqpG2hviuUq0saPsrqL8gv7tDBhvtqftoRcL2YCBmWE-HjOD0JcmEhGlVZULllegb20FUgRy5Ym1lrDgs1HY-U8xu-Df5818J9RXuhM2uAceBm7aKNZGSTyzwnHmjBLBtI5E2jgRoshmvqRV42KqnB8IpQa7IkmqWpD5o-3O9OoI1nUA4ZKbUMrTlCFTjPcdrZSd9_-lnHbA59NNd2Pu78xyuaOHzl6g5wVA4uOh4S_Rk9C9Qoenj_Zq8LEI7Oo1-vMrAC0Cvs6im_bwcB_xHQDMW-xgUQsYHF922PVmlQqCMgPVlbIALsTAPt3C992imsED_0ipc-NMj_PGAlRxYu6hJcF8xTkON0460eO-w9f5jmbAJSjF4g26ODv9_W1WldgLleNNs65qQxvqYqQsBiacETJEI2mCU4zQBB0spLhqrTWeEiuVosAPtTHEAUiT7BAddH0X3iJsfU09yLnybeRM2pbXJjSBU6BqdJRMEB_HXrvimDzFx1jq8QbalS4k04lkeiDZBB1ti90Mnjn2FThJhN1mTo618wtgN13YTe9jtwlqR7bQBaMM2AOqutz3_88jG2mQ4XQwY7rQb1aaJbUD0z2B6qdb_vq3Xr37H716j56lKoe7dR_Qwfp2Ez4C2FrbT1muHgBpIygx priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLage-CJjctE0UBG4pEUx3bs5HGbNlWgVQhRqTxZtmNXg86Z1lbT-AP8bY4Tp1sR0sZLZCW248s5_j5fzjFC7wtPhJemyqwzPAO8NRloEehVTYwxhLm6NQo7m4jxlH-aFbNkrB5tYbb279tzWDALA8IVnXpSHhVcltVjtCMKoN4DtDOdfDn83loQSZLlgsxiuJTAGgnjtxY7_85nC4tal_1bkHSHcj5Zh0t9c60Xizvoc7qLJn25u0MnP0frlRnZX3-5dHxwxfbQ08RD8WEnOM_QIxeeo_2TW7M3-Jj0fvkC_f7qoEsdvmhHgLgUiBuPr4GnXmELc2Og8vg8YNvoZUwImAgIGKMAvcQghWFeN2GejeGBP8fQmba6we36BGRxpG-gJE5_wO113jhCa42bgC_ao54Op7st5i_R9PTk2_E4S1c4ZJYXxSrLNS2o9Z4y75iwWkjntaSRlTFCIwMxEOJVaYyuKTGyqiiIVa41scD1JNtHg9AE9wphU-e0huGiqkvPmTQlz7UrHKeS1N5SMkS870xlk3_zeM3GQvUH2X6o1OQqNrnqmnyIRptkl52Dj_sSHEVJ2USO_rnbF9C7Kqm7KipWeigYM8JyZnUlnC4t8bSwwnlRDlHZy5lKVKejMJDV-X3_f9fLpYKhIO7v6OCa9VKxiF6AGgSy_7gR2IfV6vV_pzhAg9XV2r0BTrYyb5Mm_gHDYjRa priority: 102 providerName: Unpaywall |
| Title | Remote monitoring of water clarity in coastal oceans of the Guangdong-Hong Kong-Macao Greater Bay Area, China based on machine learning |
| URI | https://dx.doi.org/10.1016/j.ecolind.2024.111789 https://www.proquest.com/docview/3153808808 https://doi.org/10.1016/j.ecolind.2024.111789 https://doaj.org/article/5938f70d3b6c43ca96ea8c0f25c6ef68 |
| UnpaywallVersion | publishedVersion |
| Volume | 160 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1872-7034 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016996 issn: 1872-7034 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7034 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016996 issn: 1872-7034 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-7034 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016996 issn: 1872-7034 databaseCode: .~1 dateStart: 20010801 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-7034 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016996 issn: 1872-7034 databaseCode: ACRLP dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-7034 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016996 issn: 1872-7034 databaseCode: AIKHN dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7034 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016996 issn: 1872-7034 databaseCode: AKRWK dateStart: 20010801 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Lb9MwGLemcYAL4jXRMSojcSSN4zhxcuymTYVpFQIqlVNkO3bVqUuqPjTtsiv_Nt_nJF13GuIS5WE7Tr7XL873IORz4ljqpM4DY7UIwN7qAKQI5KpkWmsW29IHhV2N09FEfJsm0wNy1sXCoFtlq_sbne61dXsmbN9muJzPw5-RkJgebYpekFx4PSyExCoGg_udm0eU5nkTYSRZgK0fonjC6wF84QGYw4ShXKDykFjtfc8--TT-j8zUHgx9vq2W6u5WLRZ7FuniFXnZQkk6bGb7mhzY6g05On-IXIOLreiu35I_PyxQxdIbL8S4mkdrR28Baq6ogc9bQON0XlFTqzV2BLMGRgybAEKkwEjVrKyrWTCCDb3EvStlVE39EgMMcaruYCZWfaG-IjdF61jSuqI33lvT0rY8xewdmVyc_zobBW0VhsCIJNkEkeIJN87x2Nk4NSqV1inJEVjFjCOI0LAn8kxrVXKmZZ5z4IxIKWYArsn4iBxWdWXfE6rLiJcg8XmZORFLnYlI2cQKLlnpDGc9Irp3X5g2RTlWylgUnS_addGSrECSFQ3JemSw67ZscnQ81eEUCbtrjCm2_Yl6NStaHiuSPM4cTCzWqRGxUXlqVWaY44lJrUuzHsk6tigecSwMNX_q_p86NipAmvEXjapsvV0XMRogUPwMhg93_PVvT3X8_xP6QF7gUeNbd0ION6ut_Qhga6P7Xpr65Nnw6-Vo3PdLFnA0GX8f_v4L0nUtSg |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05b9swFCaCdEiXoldQ92SBjpVFkZQojU2QwG3iDG0CeCNIijQcOJLhA0GWrv3bfU-H40wpugiCeIjSuz5K7yDkSxpYFpQtIuetjMDe2gikCOSqZNZaJnzZBIWNL7LRlfwxSSd75LiPhUG3yk73tzq90dbdlbh7m_FiNot_JVJherQJekFyiXr4iUy5wh3Y8PfWzyPJiqINMVIswu73YTzx9RC2eIDmMGMol6g9FJZ73zFQTR7_B3ZqB4cebKqFubs18_mOSTp9Tp51WJJ-a5f7guz56iU5PLkPXYPGTnZXr8ifnx7I4ulNI8X4OY_Wgd4C1lxSB_tbgON0VlFXmxUOBLsGVgy7AESkwEnVtKyraTSCAz3Ds7FxpqbNNwaY4sjcwUq8-UqbktwUzWNJ64reNO6annb1KaavydXpyeXxKOrKMEROpuk6SgxPuQuBi-BF5kymfDCKI7ISjCOKsHAmi9xaU3JmVVFwYI3EGOYArylxSParuvJvCLVlwksQ-aLMgxTK5jIxPvWSK1YGx9mAyP7da9flKMdSGXPdO6Nd645kGkmmW5INyHA7bNEm6XhswBESdtsZc2w3F-rlVHdMptNC5AEWJmzmpHCmyLzJHQs8dZkPWT4gec8W-gHLwlSzx-7_uWcjDeKM_2hM5evNSgu0QKD5GUwfb_nr357q7f8v6BM5GF2Oz_X594uzd-QptrSOdu_J_nq58R8Aea3tx0ay_gITJiw6 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLage-CJjctE0UBG4pEUx3bs5HGbNlWgVQhRqTxZtmNXg86Z1lbT-AP8bY4Tp1sR0sZLZCW248s5_j5fzjFC7wtPhJemyqwzPAO8NRloEehVTYwxhLm6NQo7m4jxlH-aFbNkrB5tYbb279tzWDALA8IVnXpSHhVcltVjtCMKoN4DtDOdfDn83loQSZLlgsxiuJTAGgnjtxY7_85nC4tal_1bkHSHcj5Zh0t9c60Xizvoc7qLJn25u0MnP0frlRnZX3-5dHxwxfbQ08RD8WEnOM_QIxeeo_2TW7M3-Jj0fvkC_f7qoEsdvmhHgLgUiBuPr4GnXmELc2Og8vg8YNvoZUwImAgIGKMAvcQghWFeN2GejeGBP8fQmba6we36BGRxpG-gJE5_wO113jhCa42bgC_ao54Op7st5i_R9PTk2_E4S1c4ZJYXxSrLNS2o9Z4y75iwWkjntaSRlTFCIwMxEOJVaYyuKTGyqiiIVa41scD1JNtHg9AE9wphU-e0huGiqkvPmTQlz7UrHKeS1N5SMkS870xlk3_zeM3GQvUH2X6o1OQqNrnqmnyIRptkl52Dj_sSHEVJ2USO_rnbF9C7Kqm7KipWeigYM8JyZnUlnC4t8bSwwnlRDlHZy5lKVKejMJDV-X3_f9fLpYKhIO7v6OCa9VKxiF6AGgSy_7gR2IfV6vV_pzhAg9XV2r0BTrYyb5Mm_gHDYjRa |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remote+monitoring+of+water+clarity+in+coastal+oceans+of+the+Guangdong-Hong+Kong-Macao+Greater+Bay+Area%2C+China+based+on+machine+learning&rft.jtitle=Ecological+indicators&rft.au=Lu%2C+Xinyi&rft.au=Mo%2C+Zifeng&rft.au=Zhao%2C+Jun&rft.au=Ma%2C+Chunlei&rft.date=2024-03-01&rft.pub=Elsevier+Ltd&rft.issn=1470-160X&rft.eissn=1872-7034&rft.volume=160&rft_id=info:doi/10.1016%2Fj.ecolind.2024.111789&rft.externalDocID=S1470160X24002462 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1470-160X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1470-160X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1470-160X&client=summon |