Plant virus ecology and epidemiology: historical perspectives, recent progress and future prospects

After clarifying the relationship between the closely related concepts of ecology and epidemiology as they are used in plant virology, this article provides a historical perspective on the subject before discussing recent progress and future prospects. Ecology focuses on virus populations interactin...

Full description

Saved in:
Bibliographic Details
Published inAnnals of applied biology Vol. 164; no. 3; pp. 320 - 347
Main Author Jones, R.A.C
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.05.2014
Blackwell
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0003-4746
1744-7348
DOI10.1111/aab.12123

Cover

Abstract After clarifying the relationship between the closely related concepts of ecology and epidemiology as they are used in plant virology, this article provides a historical perspective on the subject before discussing recent progress and future prospects. Ecology focuses on virus populations interacting with host populations within a variable environment, while epidemiology focuses on the complex association between virus and host plant, and factors that influence spread. The evolution and growth of plant virus ecology and epidemiology since its inception to the present day, and the major milestones in its development, are illustrated by examples from influential historical reviews published in the Annals of Applied Biology over the last 100 years. Original research papers published in the journal are used to illustrate important ecological and epidemiological principles and new developments in both fields. Both areas are multifaceted with many factors influencing host plants, and virus and vector behaviour. The highly diverse scenarios that arise from this process influence the virus population and the spatiotemporal dynamics of virus distribution and spread. The review then describes exciting progress in research in the areas of molecular epidemiology and ecology, and understanding virus–vector interactions. Application of new molecular techniques has greatly accelerated the rate of progress in understanding virus populations and the way changes in these populations influence epidemics. Viruses cause direct and plant‐mediated indirect effects on insect vectors by modifying their life cycles, fitness and behaviour, and one of the most fascinating recent fields of research concerns plant‐mediated indirect virus manipulation of insect vector behaviour that encourages virus spread. Next, the review describes the current state of knowledge about spread of plant viruses at the critical agro‐ecological interface between managed and natural vegetation. There is an urgent need to understand how viruses move in both directions between the two and be able to anticipate these kinds of events. To obtain an understanding of, and ability to foresee, such events will require a major research effort into the future. The review finishes by discussing the implications of climate change and rapid technological innovation for the types of research needed to avoid virus threats to future world food supplies and plant biodiversity. There has been lamentably little focus on research to determine the magnitude of the threat from diseases caused in diverse plant virus pathosystems under different climate change scenarios. Increasing technological innovation offers many opportunities to help ensure this situation is addressed, and provide plant virus ecology and epidemiology with a very exciting future.
AbstractList After clarifying the relationship between the closely related concepts of ecology and epidemiology as they are used in plant virology, this article provides a historical perspective on the subject before discussing recent progress and future prospects. Ecology focuses on virus populations interacting with host populations within a variable environment, while epidemiology focuses on the complex association between virus and host plant, and factors that influence spread. The evolution and growth of plant virus ecology and epidemiology since its inception to the present day, and the major milestones in its development, are illustrated by examples from influential historical reviews published in the Annals of Applied Biology over the last 100 years. Original research papers published in the journal are used to illustrate important ecological and epidemiological principles and new developments in both fields. Both areas are multifaceted with many factors influencing host plants, and virus and vector behaviour. The highly diverse scenarios that arise from this process influence the virus population and the spatiotemporal dynamics of virus distribution and spread. The review then describes exciting progress in research in the areas of molecular epidemiology and ecology, and understanding virus-vector interactions. Application of new molecular techniques has greatly accelerated the rate of progress in understanding virus populations and the way changes in these populations influence epidemics. Viruses cause direct and plant-mediated indirect effects on insect vectors by modifying their life cycles, fitness and behaviour, and one of the most fascinating recent fields of research concerns plant-mediated indirect virus manipulation of insect vector behaviour that encourages virus spread. Next, the review describes the current state of knowledge about spread of plant viruses at the critical agro-ecological interface between managed and natural vegetation. There is an urgent need to understand how viruses move in both directions between the two and be able to anticipate these kinds of events. To obtain an understanding of, and ability to foresee, such events will require a major research effort into the future. The review finishes by discussing the implications of climate change and rapid technological innovation for the types of research needed to avoid virus threats to future world food supplies and plant biodiversity. There has been lamentably little focus on research to determine the magnitude of the threat from diseases caused in diverse plant virus pathosystems under different climate change scenarios. Increasing technological innovation offers many opportunities to help ensure this situation is addressed, and provide plant virus ecology and epidemiology with a very exciting future.
After clarifying the relationship between the closely related concepts of ecology and epidemiology as they are used in plant virology, this article provides a historical perspective on the subject before discussing recent progress and future prospects. Ecology focuses on virus populations interacting with host populations within a variable environment, while epidemiology focuses on the complex association between virus and host plant, and factors that influence spread. The evolution and growth of plant virus ecology and epidemiology since its inception to the present day, and the major milestones in its development, are illustrated by examples from influential historical reviews published in the Annals of Applied Biology over the last 100 years. Original research papers published in the journal are used to illustrate important ecological and epidemiological principles and new developments in both fields. Both areas are multifaceted with many factors influencing host plants, and virus and vector behaviour. The highly diverse scenarios that arise from this process influence the virus population and the spatiotemporal dynamics of virus distribution and spread. The review then describes exciting progress in research in the areas of molecular epidemiology and ecology, and understanding virus–vector interactions. Application of new molecular techniques has greatly accelerated the rate of progress in understanding virus populations and the way changes in these populations influence epidemics. Viruses cause direct and plant‐mediated indirect effects on insect vectors by modifying their life cycles, fitness and behaviour, and one of the most fascinating recent fields of research concerns plant‐mediated indirect virus manipulation of insect vector behaviour that encourages virus spread. Next, the review describes the current state of knowledge about spread of plant viruses at the critical agro‐ecological interface between managed and natural vegetation. There is an urgent need to understand how viruses move in both directions between the two and be able to anticipate these kinds of events. To obtain an understanding of, and ability to foresee, such events will require a major research effort into the future. The review finishes by discussing the implications of climate change and rapid technological innovation for the types of research needed to avoid virus threats to future world food supplies and plant biodiversity. There has been lamentably little focus on research to determine the magnitude of the threat from diseases caused in diverse plant virus pathosystems under different climate change scenarios. Increasing technological innovation offers many opportunities to help ensure this situation is addressed, and provide plant virus ecology and epidemiology with a very exciting future.
After clarifying the relationship between the closely related concepts of ecology and epidemiology as they are used in plant virology, this article provides a historical perspective on the subject before discussing recent progress and future prospects. Ecology focuses on virus populations interacting with host populations within a variable environment, while epidemiology focuses on the complex association between virus and host plant, and factors that influence spread. The evolution and growth of plant virus ecology and epidemiology since its inception to the present day, and the major milestones in its development, are illustrated by examples from influential historical reviews published in the Annals of Applied Biology over the last 100 years. Original research papers published in the journal are used to illustrate important ecological and epidemiological principles and new developments in both fields. Both areas are multifaceted with many factors influencing host plants, and virus and vector behaviour. The highly diverse scenarios that arise from this process influence the virus population and the spatiotemporal dynamics of virus distribution and spread. The review then describes exciting progress in research in the areas of molecular epidemiology and ecology, and understanding virus-vector interactions. Application of new molecular techniques has greatly accelerated the rate of progress in understanding virus populations and the way changes in these populations influence epidemics. Viruses cause direct and plant-mediated indirect effects on insect vectors by modifying their life cycles, fitness and behaviour, and one of the most fascinating recent fields of research concerns plant-mediated indirect virus manipulation of insect vector behaviour that encourages virus spread. Next, the review describes the current state of knowledge about spread of plant viruses at the critical agro-ecological interface between managed and natural vegetation. There is an urgent need to understand how viruses move in both directions between the two and be able to anticipate these kinds of events. To obtain an understanding of, and ability to foresee, such events will require a major research effort into the future. The review finishes by discussing the implications of climate change and rapid technological innovation for the types of research needed to avoid virus threats to future world food supplies and plant biodiversity. There has been lamentably little focus on research to determine the magnitude of the threat from diseases caused in diverse plant virus pathosystems under different climate change scenarios. Increasing technological innovation offers many opportunities to help ensure this situation is addressed, and provide plant virus ecology and epidemiology with a very exciting future. [PUBLICATION ABSTRACT]
Author Jones, R.A.C.
Author_xml – sequence: 1
  fullname: Jones, R.A.C
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28361786$$DView record in Pascal Francis
BookMark eNqFkU9v1DAQxS1UJLaFA5-ASAgJJNL6vx1u2wJtRQuVaMXRcpzx4pJNUjsp7LfHu1t6qAT4Ynn0e_M883bRTtd3gNBzgvdJPgfW1vuEEsoeoRlRnJeKcb2DZhhjVnLF5RO0m9J1fla4ojPkLlrbjcVtiFMqwPVtv1gVtmsKGEIDy7ApvCu-hzT2MTjbFgPENIAbwy2kt0UEB1k_xH4RIaWN1E_jFGFd24DpKXrsbZvg2d29h64-frg8OinPvhyfHs3PSseFYKWua1lLIRvMLPbMSexBEEIrrRmVDceec6rAVk0NtfROS6modxQI440jDdtDr7d9s_PNBGk0y5ActHlC6KdkiJRMSMay2X9RQbOZILrK6MsH6HU_xS4PkinCNcWY0ky9uqNsylvy0XYuJDPEsLRxZahmkigtM_dmy7m8nRTB3yMEm3WCJidoNglm9uAB68Jox9B3Y7Sh_ZfiZ2hh9ffWZj4__KMot4ocMPy6V9j4w0jFlDDfPh8bffn-4lycfzLr_7_Y8t72xi5invHqK8WEY0wkV5iz358gxho
CODEN AABIAV
CitedBy_id crossref_primary_10_3390_v12121388
crossref_primary_10_1094_PDIS_08_21_1852_SR
crossref_primary_10_1111_mpp_13098
crossref_primary_10_1146_annurev_phyto_080614_120140
crossref_primary_10_17660_ActaHortic_2020_1294_24
crossref_primary_10_1016_j_virusres_2017_06_029
crossref_primary_10_1094_PBIOMES_06_24_0062_R
crossref_primary_10_3390_plants12213677
crossref_primary_10_1016_j_coviro_2017_07_005
crossref_primary_10_1146_annurev_phyto_080516_035349
crossref_primary_10_1146_annurev_virology_092818_015606
crossref_primary_10_1016_j_ab_2018_01_019
crossref_primary_10_1016_j_actatropica_2018_04_015
crossref_primary_10_1016_j_micpath_2018_07_008
crossref_primary_10_1007_s00705_016_2848_1
crossref_primary_10_1111_jph_12484
crossref_primary_10_1111_ppa_13571
crossref_primary_10_3390_pathogens11020200
crossref_primary_10_3390_plants13071001
crossref_primary_10_1016_j_jksus_2022_102051
crossref_primary_10_1007_s42690_024_01170_3
crossref_primary_10_1094_PHYTO_10_22_0394_V
crossref_primary_10_1094_PDIS_03_15_0342_RE
crossref_primary_10_1016_j_micpath_2018_03_019
crossref_primary_10_1146_annurev_virology_092917_043421
crossref_primary_10_1007_s44154_022_00058_x
crossref_primary_10_1016_j_virusres_2020_198059
crossref_primary_10_1016_j_virusres_2019_197845
crossref_primary_10_1111_eea_13284
crossref_primary_10_3389_fmicb_2020_578064
crossref_primary_10_1093_ee_nvw102
crossref_primary_10_1007_s42690_022_00771_0
crossref_primary_10_1111_ppa_14016
crossref_primary_10_1111_mpp_12268
crossref_primary_10_1038_srep39432
crossref_primary_10_3390_agriculture14020284
crossref_primary_10_3390_v16010144
crossref_primary_10_3390_v13102051
crossref_primary_10_3390_plants10020233
crossref_primary_10_3390_agronomy11071268
crossref_primary_10_1007_s44279_024_00124_0
crossref_primary_10_1007_s00284_015_0900_0
crossref_primary_10_1016_j_plantsci_2018_04_011
crossref_primary_10_1094_PHYTO_10_22_0378_V
crossref_primary_10_1155_aia_6006985
crossref_primary_10_1371_journal_pone_0167769
crossref_primary_10_1146_annurev_ento_020117_043119
crossref_primary_10_1094_PDIS_06_17_0782_RE
crossref_primary_10_1016_j_scitotenv_2019_135044
crossref_primary_10_1094_PBIOMES_05_23_0033_R
crossref_primary_10_1038_s41598_020_79937_0
crossref_primary_10_1094_PHYTO_07_19_0250_FI
crossref_primary_10_1016_j_jafr_2023_100689
crossref_primary_10_1016_j_virol_2024_109981
crossref_primary_10_1111_aab_12125
crossref_primary_10_1186_s12985_017_0754_0
crossref_primary_10_1086_714589
crossref_primary_10_1111_aab_12361
Cites_doi 10.1146/annurev.py.20.090182.001205
10.1016/B978-0-12-374153-0.00011-4
10.1111/j.1744-7348.1985.tb03135.x
10.1111/j.1744-7348.2003.tb00239.x
10.1111/j.1744-7348.2010.00397.x
10.1111/j.1744-7348.1966.tb04381.x
10.1146/annurev.en.06.010161.002023
10.1111/j.1744-7348.1996.tb07097.x
10.1111/j.1744-7348.1981.tb02988.x
10.1111/j.1744-7348.1988.tb03328.x
10.1111/aab.12022
10.1073/pnas.1113227108
10.1016/S0065-3527(06)67007-3
10.1111/j.1744-7348.1974.tb01403.x
10.1038/npg.els.0000759
10.1094/PDIS.2000.84.1.103C
10.1111/j.1744-7348.1969.tb05461.x
10.1079/PAVSNNR20127022
10.1371/journal.ppat.1003304
10.1111/j.1744-7348.1967.tb04417.x
10.1016/j.virusres.2008.11.020
10.1016/j.virusres.2012.03.016
10.1016/j.virusres.2011.04.011
10.1007/978-3-642-68153-0_15
10.1099/vir.0.2008/003590-0
10.1111/j.1744-7348.1950.tb00950.x
10.1111/j.1744-7348.1984.tb03031.x
10.1099/vir.0.016089-0
10.1071/AR9940183
10.1098/rstb.1983.0071
10.1111/j.1744-7348.1999.tb00867.x
10.3390/v4113069
10.1016/S0065-3527(06)67006-1
10.1111/j.1744-7348.1976.tb00600.x
10.1016/S0065-3527(08)60267-5
10.1111/j.1744-7348.2004.tb00349.x
10.1111/j.1744-7348.1973.tb01309.x
10.1111/j.1744-7348.2005.04033.x
10.1111/j.1744-7348.2006.00083.x
10.1111/j.1744-7348.1992.tb03446.x
10.1016/S0065-3527(08)60040-8
10.1111/j.1744-7348.1998.tb05187.x
10.1371/journal.pone.0048177
10.1038/srep00578
10.1016/j.virusres.2011.04.027
10.1029/2006GL028443
10.1111/j.1744-7348.1951.tb07838.x
10.1111/j.1744-7348.1963.tb03748.x
10.1146/annurev.py.28.090190.002141
10.1016/j.virusres.2011.05.016
10.1111/j.1744-7348.1993.tb04053.x
10.1111/eea.12011
10.1111/j.1744-7348.2005.00013.x
10.1111/j.1744-7348.2004.tb00379.x
10.1111/j.1744-7348.1997.tb05158.x
10.1111/j.1744-7348.1987.tb02033.x
10.1016/j.virusres.2008.07.028
10.1016/S0065-3527(06)67008-5
10.1007/s007050170153
10.1007/s10658-013-0317-1
10.1111/j.1744-7348.1994.tb04114.x
10.1111/j.1744-7348.1988.tb02035.x
10.1093/molbev/msr314
10.1111/mec.12232
10.1007/978-3-540-75763-4_2
10.1371/journal.pone.0061543
10.1111/j.1744-7348.1980.tb03896.x
10.1016/j.virusres.2013.11.005
10.1111/j.1744-7348.1951.tb07847.x
10.1080/11956860.2002.11682699
10.1111/aab.12074
10.1111/j.1744-7348.1955.tb02417.x
10.1111/j.1744-7348.2003.tb00246.x
10.1111/j.1744-7348.1981.tb04787.x
10.2307/5892
10.1016/j.virusres.2008.08.018
10.1071/CP13108
10.1016/j.virusres.2011.05.004
10.1371/journal.pone.0081479
10.1111/j.1744-7348.1996.tb05752.x
10.1111/j.1744-7348.1989.tb03361.x
10.1111/j.1744-7348.1970.tb04590.x
10.1146/annurev.py.12.090174.000551
10.1016/j.virusres.2008.12.007
10.1111/j.1744-7348.1975.tb00534.x
10.1111/j.1365-2486.2008.01820.x
10.1111/j.1744-7348.2004.tb00391.x
10.1111/j.1744-7348.2003.tb00262.x
10.1111/j.1744-7348.1955.tb02419.x
10.1111/j.1744-7348.2007.00135.x
10.1111/j.1365-3059.2007.01653.x
10.1111/j.1744-7348.1978.tb07695.x
10.1111/j.1744-7348.1955.tb02416.x
10.1111/j.1365-2435.2012.02026.x
10.1073/pnas.0907191107
10.1111/aab.12063
10.1111/j.1744-7348.1991.tb05649.x
10.1111/j.1744-7348.1987.tb04187.x
10.1016/j.virusres.2011.05.010
10.1016/S0065-3527(06)67003-6
10.1146/annurev.phyto.38.1.71
10.1016/j.virusres.2011.04.016
10.1371/journal.ppat.1002796
10.1111/j.1744-7348.2003.tb00240.x
10.3732/ajb.1100509
10.1016/S0168-1702(00)00183-0
10.1016/B978‐0‐12‐384871‐0.00014‐5
10.1111/j.1570-7458.2007.00607.x
10.1111/j.1744-7348.1996.tb07325.x
10.1111/j.1744-7348.1972.tb04715.x
10.1111/j.1744-7348.2003.tb00253.x
10.1016/j.tree.2004.07.021
10.1111/j.1744-7348.2008.00262.x
10.1111/j.1744-7348.2010.00403.x
10.1079/9781780644257.0000
10.1111/j.1744-7348.2004.tb00366.x
10.1016/S0065-3527(06)67001-2
10.1016/j.virusres.2011.05.012
10.1371/journal.pone.0091224
10.1146/annurev-phyto-073009-114444
10.1016/S0168-1702(00)00184-2
10.1016/S0168-1702(00)00192-1
10.1016/j.virusres.2011.04.018
10.1111/j.1744-7348.1976.tb00577.x
10.1111/j.1744-7348.2002.tb00194.x
10.1111/j.1744-7348.1970.tb04597.x
10.1111/j.1744-7348.2006.00073.x
10.1371/journal.pone.0000182
10.1111/j.1744-7348.2011.00501.x
10.1111/j.1744-7348.1995.tb05384.x
10.1111/j.1744-7348.1979.tb02964.x
10.1111/j.1744-7348.1985.tb03118.x
10.1111/j.1744-7348.1977.tb00632.x
10.1016/j.virusres.2003.12.014
10.1111/j.1744-7348.2002.tb00209.x
10.1111/j.1570-7458.2012.01278.x
10.1111/j.1364-3703.2007.00460.x
10.1111/j.1744-7348.1991.tb04875.x
10.1111/j.1744-7348.1965.tb01227.x
10.1111/j.1744-7348.2008.00245.x
10.1016/j.virusres.2011.04.020
10.1073/pnas.1100773108
10.1016/j.virusres.2009.01.011
10.1111/j.1744-7348.2000.tb00067.x
10.1111/j.1744-7348.1998.tb05819.x
10.1038/srep02230
10.1111/j.1744-7348.2004.tb00350.x
10.2307/1234
10.1371/journal.pone.0083066
10.1016/j.virusres.2011.04.014
10.1016/j.virusres.2003.12.011
10.1111/j.1744-7348.1991.tb05632.x
10.1111/j.1365‐294X.2012.05457.x
10.1111/j.1744-7348.1941.tb07556.x
10.1016/S0065-3527(06)67004-8
10.1111/j.1365-294X.2010.04682.x
10.1094/PHYTO-01-11-0017
10.1111/j.1744-7348.2002.tb00158.x
10.1111/j.1744-7348.2002.tb00155.x
10.1080/07352680500365257
10.1111/j.1744-7348.1980.tb03949.x
10.1111/aab.12084
10.1071/AR07475
10.1111/j.1744-7348.2010.00423.x
10.1111/j.1744-7348.1979.tb04720.x
10.1016/B978-0-12-470240-0.50005-6
10.1016/j.virusres.2013.11.003
10.1146/annurev-phyto-072910-095235
10.1111/j.1744-7348.2006.00096.x
10.1007/BF02979527
10.1111/j.1744-7348.2010.00441.x
10.1146/annurev-phyto-082712-102234
10.1111/j.1744-7348.1998.tb05800.x
10.1111/j.1744-7348.2011.00462.x
10.1111/j.1744-7348.2010.00405.x
10.1016/j.virusres.2013.12.012
10.1111/j.1744-7348.1967.tb04416.x
10.1111/j.1744-7348.2005.04111.x
10.1111/j.1744-7348.2009.00359.x
10.1146/annurev.phyto.44.120705.104644
10.1094/Phyto-69-446
10.1111/aab.12009
10.7554/eLife.00183
10.1111/j.1744-7348.1994.tb04972.x
10.1111/j.1365-3059.1991.tb02386.x
10.1094/PHYTO-98-6-0640
10.1111/j.1744-7348.2005.040096.x
10.1016/j.virusres.2009.01.009
10.1146/annurev-genet-110711-155600
10.1111/j.1744-7348.1955.tb02418.x
ContentType Journal Article
Copyright 2014 Association of Applied Biologists
2015 INIST-CNRS
Copyright_xml – notice: 2014 Association of Applied Biologists
– notice: 2015 INIST-CNRS
DBID FBQ
BSCLL
AAYXX
CITATION
IQODW
7QL
7QR
7SN
7SS
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
7S9
L.6
DOI 10.1111/aab.12123
DatabaseName AGRIS
Istex
CrossRef
Pascal-Francis
Bacteriology Abstracts (Microbiology B)
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Virology and AIDS Abstracts
CrossRef


Virology and AIDS Abstracts
AGRICOLA
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1744-7348
EndPage 347
ExternalDocumentID 3272339761
28361786
10_1111_aab_12123
AAB12123
ark_67375_WNG_8TDPM5MK_6
US201400164704
Genre reviewArticle
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
23M
31~
33P
3EH
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
6J9
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AHBTC
AHEFC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
ESX
F00
F01
F04
F5P
FBQ
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
ML0
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OHT
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QF4
QM4
QN7
QO4
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
TUS
UB1
UPT
V8K
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
ZCG
ZXP
ZY4
ZZTAW
~IA
~KM
~WT
AAMMB
AEFGJ
AEYWJ
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
BSCLL
ESTFP
AAYXX
CITATION
IQODW
7QL
7QR
7SN
7SS
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
7S9
L.6
ID FETCH-LOGICAL-c4553-8bb6b656d03a0f3c60fe5112988326d40f4427ea9dbeb6fc86672fc2e134dc1d3
IEDL.DBID DR2
ISSN 0003-4746
IngestDate Fri Sep 05 17:28:50 EDT 2025
Mon Sep 08 15:05:21 EDT 2025
Wed Aug 13 03:13:36 EDT 2025
Wed Apr 02 07:28:57 EDT 2025
Thu Apr 24 22:58:45 EDT 2025
Tue Jul 01 03:59:57 EDT 2025
Wed Aug 20 07:27:01 EDT 2025
Sun Sep 21 06:16:37 EDT 2025
Thu Apr 03 09:45:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Plant pathogen
field and molecular biology
Biodiversity
Epidemiology
Case history
Prospective
Field
Evolution
virus―vector interactions
Epidemic
Technological innovation
Agro-ecological interface
Endangered species
future prospects
Plant ecology
Ecology
history
Agroecology
Dynamical climatology
Virus
Climate change
plant virology
Applied biology
epidemics
food security
progress
Molecular biology
Interface
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4553-8bb6b656d03a0f3c60fe5112988326d40f4427ea9dbeb6fc86672fc2e134dc1d3
Notes http://dx.doi.org/10.1111/aab.12123
ark:/67375/WNG-8TDPM5MK-6
ArticleID:AAB12123
istex:D84604FAD086D29EA6DC6CAB131E8C3271298857
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1514820022
PQPubID 866370
PageCount 28
ParticipantIDs proquest_miscellaneous_1663563355
proquest_miscellaneous_1524425189
proquest_journals_1514820022
pascalfrancis_primary_28361786
crossref_primary_10_1111_aab_12123
crossref_citationtrail_10_1111_aab_12123
wiley_primary_10_1111_aab_12123_AAB12123
istex_primary_ark_67375_WNG_8TDPM5MK_6
fao_agris_US201400164704
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2014
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: May 2014
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle Annals of applied biology
PublicationTitleAlternate Ann Appl Biol
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Blackwell
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell
– name: Wiley Subscription Services, Inc
References Perry J.N., Bell E.D., Smith R.H., Woiwod I.P. (1996) SADIE: software to measure and model spatial pattern. Aspects of Applied Biology, 46, 95-102.
Seal S.E., Jeger M.J., van Den Bosch F. (2006b) Begomovirus evolution and disease management. Advances in Virus Research, 67, 297-316.
Thresh J.M. (1974b) Temporal patterns of virus spread. Annual Review of Phytopathology, 12, 111-128.
Martinière A., Bak A., Macia J.L., Lautredou N., Gargani D., Doumayrou J., Garzo E., Moreno A., Fereres A., Blanc S., Drucker M. (2013) A virus responds instantly to the presence of the vector on the host and forms transmission morphs. eLIFE, 2, e00183. DOI:10.7554/eLife.00183.
Jeger M.J., van den Bosch F., Madden L.V. (2011b) Modelling virus- and host-limitation in vectored plant disease epidemics. Virus Research, 159, 215-222.
Alexander H.M., Mauck K.E., Whitfield A.E., Garret K.A., Malmstrom C.M. (2014) Plant virus interactions at the agro-ecological interface. European Journal of Plant Pathology, 138, 529-574. DOI:10.1007/S10658-013-0317-1.
Karyeija R.F., Gibson R.W., Valkonen J.P.T. (1998) Resistance to sweet potato virus disease in wild East-African Ipomoea spp. Annals of Applied Biology, 133, 39-44.
Carter W. (1939) Populations of Thrips tabaci, with special reference to virus transmission. Journal of Animal Ecology, 8, 261-276.
Harrison B.D. (1981) Plant virus ecology: ingredients, interactions and environmental influences. Annals of Applied Biology, 99, 195-209.
Thackray D.J., Smith L.J., Cheng Y., Perry J.N., Jones R.A.C. (2002) Effect of strain-specific hypersensitive resistance on spatial patterns of virus spread. Annals of Applied Biology, 141, 45-59.
Jones R.A.C. (2013) Virus diseases of perennial pasture legumes: incidences, losses, epidemiology and management. Crop and Pasture Science, 64, 199-215.
Zhang T., Luan J.-B., Qi J.-F., Huang C.-J., Li M., Zhou X-P., Liu S.-S. (2012) Begomovirus-whitefly mutualism is achieved through repression of plant defences by a virus pathogenicity factor. Molecular Ecology, 21, 1294-1304. DOI:10.1111/j.1365-294X.2012.05457.x.
Tsai W.S., Shih S.L., Rauf A., Safitri R., Hidayati N., Huyen B.T.T., Kenyon L. (2013) Genetic diversity of legume yellow mosaic begomoviruses in Indonesia and Vietnam. Annals of Applied Biology, 163, 367-377.
Jones A.T. (1979) Further studies on the effect of resistance to Amphorophora idaei in raspberry (Rubus idaeus) on the spread of aphid-borne viruses. Annals of Applied Biology, 92, 119-123.
Stafford C.A., Walker G.P., Ulman D.E. (2011) Infection with a plant virus modifies vector feeding behaviour. Proceedings of the National Academy of Sciences of the United States of America, 108, 9350-9355.
Wroth J.M., Jones R.A.C. (1992) Subterranean clover mottle sobemovirus: its host range, resistance in subterranean clover and transmission through seed and by grazing animals. Annals of Applied Biology, 121, 329-343.
Jones R.A.C. (1993) Effects of cereal borders, admixture with cereals and plant density on the spread of bean yellow mosaic potyvirus into narrow-leafed lupins (Lupinus angustifolius). Annals of Applied Biology, 122, 501-518.
Legg J.P., Jeremiah S.C., Obiero H.M., Maruthi M.N., Ndyetabula I., Okao-Okuja G., Bouwmeester H., Birimana S., Tata-Hangy W., Gashaka G., Mkamilo G., Alicai T., Lava-Kumar P. (2011) Comparing the regional epidemiology of the cassava mosaic and cassava brown streak virus pandemics in Africa. Virus Research, 159, 161-170.
Tatineni S., Robertson C.J., Garnsey S.M., Dawson W.O. (2011) A plant virus evolved by acquiring multiple nonconserved genes to extend its host range. Proceedings of the National Academy of Sciences of the United States of America, 108, 17366-17371.
Cheng Y., Jones R.A.C., Thackray D.J. (2002) Deploying strain specific hypersensitive resistance to diminish temporal virus spread. Annals of Applied Biology, 140, 69-79.
Lecoq H., Fabre P., Joannon B., Wipf-Scheibel C., Chandeysson C., Schoeny A., Desbiez C. (2011) Search for factors involved in the rapid shift in Watermelon mosaic virus (WMV) populations in South-eastern France. Virus Research, 159, 115-123.
Metz B., Davidson O.R., Bosch P.R., Dave R., Meyer L.A. (Eds) (2007) Climate Change 2007: Mitigation of Climate Change. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK/New York, NY, USA: Cambridge University Press.
Wilson C.R. (2014) Applied Plant Virology. Wallingford, UK: CABI Press.
Roossinck M.J. (2013) Plant virus ecology. PLoS Pathology, 9, e1003304. DOI:10.137/journal.paat.1003304.
Thresh J.M. (2006b) Control of tropical plant virus diseases. Advances in Virus Research, 67, 245-295.
Trebicki P., Harding R.M., Rodoni B., Baxter G., Powell K.S. (2010) Vectors and alternative hosts of tobacco yellow dwarf virus in southeastern Australia. Annals of Applied Biology, 157, 13-24.
Dáder B., Moreno A., Viñuela E., Fereres A. (2012) Spatio-temporal dynamics of viruses are differentially affected by parasitoids depending on the mode of transmission. Viruses, 4, 3069-3089.
Milne J.R., Walter G.H. (2003) The coincidence of thrips and dispersed pollen in PNRSV-infected stonefruit orchards - a precondition for thrips-mediated transmission via infected pollen. Annals of Applied Biology, 142, 291-298.
Murant A.F., Lister R.M. (1967) Seed-transmission in the ecology of nematode-borne viruses. Annals of Applied Biology, 59, 63-76.
Ssweruwagi P., Rey M.E.C., Brown J.K., Legg J.P. (2004) The cassava mosaic geminiviruses occurring in Uganda following the 1990s epidemic of severe cassava mosaic disease. Annals of Applied Biology, 145, 113-121.
Tugume A.K., Mukasa S.B., Kalkkinen N., Valkonen J.P.T. (2010b) Recombination and selection pressure in the ipomovirus Sweet potato mild mottle virus (Potyviridae) in wild species and cultivated sweetpotato in the centre of evolution in East Africa. Journal of General Virology, 91, 1092-1108.
Pachauri R.K., Reisinger A. (Eds) (2007) Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel for Climate Change. Cambridge, UK/New York, NY, USA: Cambridge University Press.
Coutts B.A., Thomas-Carroll M.L., Jones R.A.C. (2004b) Patterns of spread of Tomato spotted wilt virus in field crops of lettuce and pepper: spatial dynamics and validation of control measures. Annals of Applied Biology, 145, 231-245.
Malmstrom C.M., Melcher U., Bosque-Pérez N.A. (2011) The expanding field of plant virus ecology: historical foundations, knowledge gaps and research directions. Virus Research, 159, 84-94.
Moreno A., Nebreda M., Diaz B.M., García M., Salas F., Fereres A. (2007) Temporal and spatial spread of Lettuce mosaic virus in lettuce crops in central Spain: factors involved in Lettuce mosaic virus epidemics. Annals of Applied Biology, 150, 351-360.
Broadbent L.H. (1950) The correlation of aphid numbers with the spread of leaf roll and rugose mosaic in potato crops. Annals of Applied Biology, 37, 58-65.
Varsani A., Shepherd D.N., Monjane A.L., Owor B.E., Erdmann J.B., Rybicki E.P., Peterschmitt M., Briddon R.W., Markham P.G., Oluwafemi S., Windram O.P., Lefeuvre P., Lett J.-M., Martin D.P. (2008) Recombination, decreased host specificity and increased mobility have driven the emergence of maize streak virus as an agricultural pathogen. Journal of General Virology, 89, 2063-2074.
Canto T., Aranda M.A., Fereres A. (2009) Climate change effects on physiology and population processes of hosts and vectors that influence the spread of hemipteran-borne plant viruses. Global Change Biology, 15, 1884-1894.
van der Vlugt R.A.A., Stijger C.C.M.M., Verhoeven J.Th.J., Lesseman D.-E. (2000) First report of Pepino mosaic virus on tomato. Plant Disease, 84, 103.
Mauck K., Bosque-Pérez N., Eigenbrode S.D., de Moraes C., Mescher M. (2012) Transmission mechanisms shape pathogen effects on host-vector interactions: evidence from plant viruses. Functional Ecology, 26, 1162-1175.
Adkins S., Webster C.G., Kousik C.S., Webb S.E., Roberts P.D., Stansly P.A., Turechek W.W. (2011) Ecology and management of whitefly-transmitted viruses of vegetable crops in Florida. Virus Research, 159, 110-114.
Tugume A.K., Amayo R., Weinheimer I., Mukasa S.B., Rubaihayo P.R., Valkonen J.P.T. (2013) Genetic variability and evolutionary implications of RNA silencing suppressor genes in RNA1 of Sweet potato chlorotic stunt virus isolates infecting sweetpotato and related wild species. PLoS ONE, 8, e81479.
Lecoq H., Wipf-Scheibel C., Chandeysson C., Le Van A., Fabre F., Desbiez C. (2009) Molecular epidemiology of Zucchini yellow mosaic virus in France: an historical overview. Virus Research, 141, 190-200.
Alvarez A.E., Garzo E., Verbeek M., Vosman N., Dicke M., Tjallingii W.F. (2007) Infection of potato plants with potato leafroll virus changes attraction and feeding behaviour of Myzus persicae. Entomologia Experimentalis et Applicata, 125, 135-144.
Bosque-Pérez N.A. (2000) Eight decades of maize streak virus research. Virus Research, 71, 107-121.
Berlandier F.A., Thackray D.J., Jones R.A.C., Latham L.J., Cartwright L. (1997) Determining the relative roles of different aphid species as vectors of cucumber mosaic and bean yellow mosaic viruses in lupins. Annals of Applied Biology, 131, 297-314.
Vidal E., Zagrai L., Milusheva S., Bozhkova V., Tasheva-Terzieva E., Kamenova I., Zagrai I., Cambra M. (2013) Horticultural mineral oil treatments in nurseries during aphid flights reduce Plum pox virus incidence under different ecological conditions. Annals of Applied Biology, 162, 299-308.
Coutts B.A., Jones R.A.C. (2005). Suppressing spread of Tomato spotted wilt virus by drenching infected source or healthy recipient plants with neonicotinoid insecticides to control thrips vectors. Annals of Applied Biology, 146, 95-103.
Bedhomme S., Lafforgue G., Elena S.F. (2012) Multihost experimental evolution of a plant RNA virus reveals local adaptation and host specific mutations. Molecular Biology, 2
2014; 138
2001; 146
2013; 3
1966; 58
2013; 2
2010; 107
2010; 19
1989; 114
2000; 137
1992; 121
2013; 64
1983; 8
1970
1991; 118
1959; 4
1951; 8
2013; 8
2012; 99
2013; 9
1993; 122
1991; 119
1950; 37
1987; 110
1987; 111
2002; 140
2002; 141
2013; 51
2006; 25
1986
1995; 126
2012; 29
1983
1981
2007; 2
2012; 26
1980
1975; 81
2012; 21
2009; 15
1992; 41
1988
2004; 145
2004; 144
1974; 77
2002; 9
1988; 16
1984; 104
2008; 59
1964; 22
2000; 71
1977; 85
1998; 133
1998; 132
1996; 129
1979; 92
1996; 128
1979; 94
1963; 53
2010; 48
1974; 64
2007; 150
1990; 28
2006; 44
1972; 71
2000; 84
2012; 46
1939; 8
1981; 97
1981; 99
2011; 159
2011; 158
1974; 12
1965; 56
2012; 167
2013; 22
1986; 31
2008; 9
2013; 163
2013; 162
1941; 28
1955; 42
2007; 34
2003; 11
1995; 64
1979; 69
2006; 67
2001
1961; 6
2005; 146
2005; 147
1982; 20
2010; 156
2010; 157
1991; 40
1970; 66
1970; 65
1999; 135
1951; 38
1967; 59
2014; 9
2014; 164
2008; 153
2007; 125
2004; 100
1973; 73
2012; 144
2012; 145
2012
1997; 131
1976; 83
1976; 82
1994; 45
2008
2007
2006
2005
2008; 98
1985; 106
2004
2003
2002
1983c; 302
2007; 56
1994; 124
2012; 2
2011; 108
1994; 125
2000; 38
1978; 89
2004; 19
1980; 94
1969; 63
1988; 113
1980; 5
1988; 112
2008; 89
2014
2009; 141
2013
2006; 149
2012; 7
2011; 49
1996; 46
2010; 91
2012; 4
2011; 101
2003; 142
e_1_2_11_93_1
e_1_2_11_200_1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_29_1
e_1_2_11_125_1
e_1_2_11_4_1
e_1_2_11_148_1
e_1_2_11_102_1
e_1_2_11_163_1
e_1_2_11_140_1
e_1_2_11_211_1
e_1_2_11_81_1
e_1_2_11_197_1
e_1_2_11_66_1
e_1_2_11_89_1
e_1_2_11_43_1
e_1_2_11_17_1
e_1_2_11_159_1
e_1_2_11_113_1
e_1_2_11_208_1
e_1_2_11_174_1
e_1_2_11_151_1
Metz B. (e_1_2_11_112_1) 2007
e_1_2_11_201_1
e_1_2_11_92_1
e_1_2_11_31_1
e_1_2_11_77_1
e_1_2_11_103_1
e_1_2_11_149_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_141_1
e_1_2_11_164_1
e_1_2_11_212_1
e_1_2_11_80_1
Raybould A.F. (e_1_2_11_144_1) 2003
e_1_2_11_198_1
e_1_2_11_88_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_114_1
e_1_2_11_16_1
e_1_2_11_137_1
e_1_2_11_39_1
e_1_2_11_152_1
e_1_2_11_209_1
e_1_2_11_72_1
e_1_2_11_202_1
e_1_2_11_188_1
e_1_2_11_57_1
e_1_2_11_34_1
e_1_2_11_95_1
e_1_2_11_11_1
e_1_2_11_104_1
e_1_2_11_127_1
e_1_2_11_2_1
Thresh J.M. (e_1_2_11_191_1) 2003
e_1_2_11_165_1
Irwin M.E. (e_1_2_11_63_1) 1986
Thresh J.M. (e_1_2_11_178_1) 1981
e_1_2_11_142_1
e_1_2_11_83_1
e_1_2_11_213_1
e_1_2_11_45_1
e_1_2_11_199_1
e_1_2_11_68_1
e_1_2_11_22_1
e_1_2_11_115_1
e_1_2_11_138_1
e_1_2_11_19_1
e_1_2_11_153_1
e_1_2_11_130_1
e_1_2_11_94_1
e_1_2_11_203_1
e_1_2_11_10_1
e_1_2_11_56_1
e_1_2_11_189_1
e_1_2_11_79_1
e_1_2_11_33_1
Harrison B.D. (e_1_2_11_54_1) 1964; 22
e_1_2_11_105_1
e_1_2_11_128_1
e_1_2_11_3_1
e_1_2_11_143_1
e_1_2_11_166_1
Jones R.A.C. (e_1_2_11_70_1) 1981
e_1_2_11_82_1
Solomon S. (e_1_2_11_162_1) 2007
e_1_2_11_192_1
e_1_2_11_214_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_18_1
e_1_2_11_139_1
e_1_2_11_116_1
Thresh J.M. (e_1_2_11_185_1) 2003; 11
e_1_2_11_182_1
e_1_2_11_204_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_97_1
e_1_2_11_13_1
e_1_2_11_118_1
e_1_2_11_48_1
e_1_2_11_121_1
e_1_2_11_167_1
Thresh J.M. (e_1_2_11_181_1) 1983
e_1_2_11_193_1
e_1_2_11_215_1
Perry J.N. (e_1_2_11_135_1) 1996; 46
e_1_2_11_47_1
e_1_2_11_24_1
e_1_2_11_62_1
e_1_2_11_129_1
e_1_2_11_8_1
e_1_2_11_85_1
e_1_2_11_117_1
e_1_2_11_59_1
Pachauri R.K. (e_1_2_11_126_1) 2007
e_1_2_11_132_1
e_1_2_11_155_1
e_1_2_11_170_1
McLean G.D. (e_1_2_11_111_1) 1986
Broadbent L.H. (e_1_2_11_20_1) 1959
e_1_2_11_50_1
e_1_2_11_220_1
Parry M.L. (e_1_2_11_131_1) 2007
e_1_2_11_205_1
Schlosser E. (e_1_2_11_154_1) 1988
e_1_2_11_58_1
e_1_2_11_119_1
e_1_2_11_35_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_96_1
Mumford R.A. (e_1_2_11_120_1) 2005
e_1_2_11_122_1
e_1_2_11_145_1
e_1_2_11_168_1
Thresh J.M. (e_1_2_11_190_1) 2006
e_1_2_11_217_1
e_1_2_11_160_1
e_1_2_11_61_1
e_1_2_11_194_1
e_1_2_11_216_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_107_1
Thresh J.M. (e_1_2_11_183_1) 1986
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_84_1
Thresh J.M. (e_1_2_11_175_1) 1980
e_1_2_11_156_1
e_1_2_11_179_1
e_1_2_11_110_1
e_1_2_11_133_1
e_1_2_11_171_1
e_1_2_11_91_1
e_1_2_11_221_1
Thresh J.M. (e_1_2_11_187_1) 2006; 67
Plumb R.T. (e_1_2_11_136_1) 1983
e_1_2_11_184_1
e_1_2_11_30_1
e_1_2_11_99_1
Thresh J.M. (e_1_2_11_172_1) 1974; 64
Jones R.A.C. (e_1_2_11_71_1) 1988
e_1_2_11_53_1
e_1_2_11_76_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_169_1
Thresh J.M. (e_1_2_11_180_1) 1983; 8
e_1_2_11_100_1
e_1_2_11_146_1
e_1_2_11_123_1
Thresh J.M. (e_1_2_11_176_1) 1980; 5
e_1_2_11_218_1
e_1_2_11_161_1
Thresh J.M. (e_1_2_11_186_1) 2004
e_1_2_11_195_1
e_1_2_11_41_1
e_1_2_11_87_1
e_1_2_11_108_1
e_1_2_11_64_1
e_1_2_11_15_1
e_1_2_11_134_1
e_1_2_11_38_1
e_1_2_11_157_1
e_1_2_11_206_1
e_1_2_11_90_1
e_1_2_11_14_1
e_1_2_11_52_1
e_1_2_11_98_1
e_1_2_11_75_1
e_1_2_11_7_1
e_1_2_11_147_1
e_1_2_11_26_1
Thresh J.M. (e_1_2_11_177_1) 1981
e_1_2_11_49_1
e_1_2_11_101_1
e_1_2_11_124_1
e_1_2_11_219_1
e_1_2_11_210_1
e_1_2_11_196_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_86_1
e_1_2_11_109_1
e_1_2_11_158_1
e_1_2_11_37_1
Matthews R.E.F. (e_1_2_11_106_1) 1970
e_1_2_11_150_1
e_1_2_11_173_1
e_1_2_11_207_1
Hull R. (e_1_2_11_60_1) 2002
References_xml – reference: Gallitelli D. (2000) The ecology of Cucumber mosaic virus and sustainable agriculture. Virus Research, 71, 9-21.
– reference: Jones R.A.C. (2006) Control of plant virus diseases. Advances in Virus Research, 67, 205-244.
– reference: Culbreath A.K., Srinivasan R. (2011) Epidemiology of spotted wilt disease of peanut caused by Tomato spotted wilt virus in the southeastern U.S. Virus Research, 159, 101-109.
– reference: Boulton M.I. (2003) Geminiviruses: major threats to world agriculture. Annals of Applied Biology, 142, 143.
– reference: Roossinck M.J. (2013) Plant virus ecology. PLoS Pathology, 9, e1003304. DOI:10.137/journal.paat.1003304.
– reference: Jones R.A.C. (1993) Effects of cereal borders, admixture with cereals and plant density on the spread of bean yellow mosaic potyvirus into narrow-leafed lupins (Lupinus angustifolius). Annals of Applied Biology, 122, 501-518.
– reference: Elnagar S., Murant A.F. (1978) Relations of carrot red leaf and carrot mottle viruses with their aphid vector, Cavariella aegopodii. Annals of Applied Biology, 89, 237-244.
– reference: Prassada Rao R.D.V., Reddy A.S., Reddy S.V., Thirumala-Devi K., Chander Rao S., Manoj Kumar V., Subramaniam K., Yellamanda Reddy T., Nigam S.N., Reddy D.V.R. (2003) The host range of Tobacco streak virus in India and transmission by thrips. Annals of Applied Biology, 142, 365-368.
– reference: Seal S.E., Jeger M.J., van Den Bosch F. (2006b) Begomovirus evolution and disease management. Advances in Virus Research, 67, 297-316.
– reference: Verbeek M., Piron P.G.M., Dullemaas A.M., Cuperus C., van der Vlught R.A.A. (2010) Determination of aphid transmission efficiencies for N, NTN and Wilga strains of Potato virus Y. Annals of Applied Biology, 156, 39-49.
– reference: Tatchell G.M., Plumb R.T., Carter N. (1988) Migration of alate morphs of the bird cherry aphid (Rhopalosiphum padi) and implications for the epidemiology of barley yellow dwarf virus. Annals of Applied Biology, 112, 1-11.
– reference: Mallowa S.O., Isutsa D.K., Kamau A.W., Obonyo R., Legg J.P. (2006) Current characteristics of cassava mosaic disease in postepidemic areas increase the range of possible management options. Annals of Applied Biology, 149, 137-144.
– reference: Navas-Castillo J., Fiallo-Olivé E., Sánchez-Campos S. (2011) Emerging virus diseases transmitted by whiteflies. Annual Review of Phytopathology, 49, 219-248.
– reference: Rosner A., Lachman O., Pearlsman M., Feigelson L., Maslenin L., Antignus Y. (2006) Characterisation of cucumber leaf spot virus isolated from recycled irrigation water of soil-less cucumber culture. Annals of Applied Biology, 149, 313-316.
– reference: Garcia-Arenal F., Escriu F., Aranda M.A., Alonso-Prados J.L., Malpica J.M., Fraile A. (2000) Molecular epidemiology of Cucumber mosaic virus and its satellite RNA. Virus Research, 71, 1-8.
– reference: Pelham J., Fletcher J.T., Hawkins J.H. (1970) Establishment of a new strain of tobacco mosaic virus resulting from use of resistant varieties of tomato. Annals of Applied Biology, 65, 293-297.
– reference: Smith K.M. (1955) Past and present trends in plant virus research. Annals of Applied Biology, 42, 115-121.
– reference: Koenig R. (1986) Plant viruses in rivers and lakes. Advances in Virus Research, 31, 321-333.
– reference: Tomlinson J.A. (1987) Epidemiology and control of virus diseases of vegetables. Annals of Applied Biology, 110, 661-681.
– reference: Trebicki P., Harding R.M., Rodoni B., Baxter G., Powell K.S. (2010) Vectors and alternative hosts of tobacco yellow dwarf virus in southeastern Australia. Annals of Applied Biology, 157, 13-24.
– reference: Jones R.A.C., Salam M.U., Maling T., Diggle A.J., Thackray D.J. (2010) Principles of predicting epidemics of plant virus disease. Annual Review of Phytopathology, 48, 179-203.
– reference: Morales F.J., Jones P.G. (2004) The ecology and epidemiology of whitefly-transmitted viruses in Latin America. Virus Research, 100, 57-65.
– reference: Malmstrom C.M., Melcher U., Bosque-Pérez N.A. (2011) The expanding field of plant virus ecology: historical foundations, knowledge gaps and research directions. Virus Research, 159, 84-94.
– reference: Jones R.A.C., Smith L.J., Gajda B.E., Latham L.J. (2005) Patterns of spread of Carrot virus Y in carrot plantings and validation of control measures. Annals of Applied Biology, 147, 57-67.
– reference: Bedhomme S., Lafforgue G., Elena S.F. (2012) Multihost experimental evolution of a plant RNA virus reveals local adaptation and host specific mutations. Molecular Biology, 29, 1481-1492.
– reference: Tomlinson J.A., Faithfull E.M. (1979) Effects of fungicides and surfactants on the zoospores of Olpidium brassicae. Annals of Applied Biology, 94, 13-19.
– reference: Tomlinson J.A., Faithfull E.M. (1984) Studies on the occurrence of tomato bushy stunt virus in English rivers. Annals of Applied Biology, 104, 485-495.
– reference: Tatineni S., Robertson C.J., Garnsey S.M., Dawson W.O. (2011) A plant virus evolved by acquiring multiple nonconserved genes to extend its host range. Proceedings of the National Academy of Sciences of the United States of America, 108, 17366-17371.
– reference: Rodelo-Urrego M., Pagán I., González-Jara P., Betancourt M., Moreno-Letelier A., Ayllón M.A., Fraile A., Piñero D., García-Arenal F. (2013) Landscape heterogeneity shapes host-parasite interactions and results in apparent plant virus codivergence. Molecular Ecology, 22, 2325-2340.
– reference: Lecoq H., Wipf-Scheibel C., Chandeysson C., Le Van A., Fabre F., Desbiez C. (2009) Molecular epidemiology of Zucchini yellow mosaic virus in France: an historical overview. Virus Research, 141, 190-200.
– reference: Murant A.F., Lister R.M. (1967) Seed-transmission in the ecology of nematode-borne viruses. Annals of Applied Biology, 59, 63-76.
– reference: Wroth J.M., Jones R.A.C. (1992) Subterranean clover mottle sobemovirus: its host range, resistance in subterranean clover and transmission through seed and by grazing animals. Annals of Applied Biology, 121, 329-343.
– reference: Ssweruwagi P., Rey M.E.C., Brown J.K., Legg J.P. (2004) The cassava mosaic geminiviruses occurring in Uganda following the 1990s epidemic of severe cassava mosaic disease. Annals of Applied Biology, 145, 113-121.
– reference: Arif M., Torrance L., Reavy B. (1995) Acquisition and transmission of potato mop-top virus by a culture of Spongospora subterranea f.sp. subterranea derived from a single cystosorus. Annals of Applied Biology, 126, 493-503.
– reference: Harrison B.D. (1981) Plant virus ecology: ingredients, interactions and environmental influences. Annals of Applied Biology, 99, 195-209.
– reference: Anderson P.K., Cunningham A.A., Patel N.G., Morales F.J., Epstein P.R., Daszak P. (2004) Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends in Ecology and Evolution, 19, 535-544.
– reference: Perry J.N., Bell E.D., Smith R.H., Woiwod I.P. (1996) SADIE: software to measure and model spatial pattern. Aspects of Applied Biology, 46, 95-102.
– reference: Webster C.G., Coutts B.A., Jones R.A.C., Jones M.G.K., Wylie S.J. (2007) Virus impact at the interface of an ancient ecosystem and a recent agroecosystem: studies on three legume-infecting potyviruses in the South West Australian Floristic Region. Plant Pathology, 56, 729-742.
– reference: Jones R.A.C., Proudlove W. (1991) Further studies on cucumber mosaic virus infection of narrow-leafed lupin (Lupinus angustifolius): seed-borne infection, aphid transmission, spread and effects on grain yield. Annals of Applied Biology, 118, 319-329.
– reference: Perry J.N., Dixon P. (2002) A new method for measuring spatial association in ecological count data. Ecoscience, 9, 133-141.
– reference: Cohen S., Kern J., Harpaz I., Bar-Joseph R. (1988) Epidemiological studies of the tomato yellow leaf curl virus (TYLCV) in the Jordan Valley, Israel. Phytoparasitica, 16, 259-270.
– reference: Thapa V., Melcher U., Wiley G.B., Doust A., Palmer M.W., Roewe K., Roe B.A., Shend G., Roossinck M.J., Wang Y.M., Kamath N. (2012) Detection of members of the Secoviridae in the Tall Grass Prairie Preserve, Osage County, Oklahoma, USA. Virus Research, 167, 34-42.
– reference: Thresh J.M. (2006b) Control of tropical plant virus diseases. Advances in Virus Research, 67, 245-295.
– reference: Carmo-Sousa M., Moreno A., Garzo E., Fereres A. (2014) A non-persistently transmitted-virus induces a pull-push strategy in its aphid vector to optimize transmission and spread. Virus Research. DOI:10.1016/j.virusres.2013.12.012 in press.
– reference: Thresh J.M. (2003) Control of plant virus diseases in Sub-Saharan Africa: the possibility and feasibility of an integrated approach. African Journal of Crop Science, 11, 199-223.
– reference: Martinière A., Bak A., Macia J.L., Lautredou N., Gargani D., Doumayrou J., Garzo E., Moreno A., Fereres A., Blanc S., Drucker M. (2013) A virus responds instantly to the presence of the vector on the host and forms transmission morphs. eLIFE, 2, e00183. DOI:10.7554/eLife.00183.
– reference: Legg J.P., Jeremiah S.C., Obiero H.M., Maruthi M.N., Ndyetabula I., Okao-Okuja G., Bouwmeester H., Birimana S., Tata-Hangy W., Gashaka G., Mkamilo G., Alicai T., Lava-Kumar P. (2011) Comparing the regional epidemiology of the cassava mosaic and cassava brown streak virus pandemics in Africa. Virus Research, 159, 161-170.
– reference: Tomlinson J.A., Carter A.L., Dale W.T., Simpson C.J. (1970) Weed plants as sources of cucumber mosaic virus. Annals of Applied Biology, 66, 11-16.
– reference: Cheng Y., Jones R.A.C., Thackray D.J. (2002) Deploying strain specific hypersensitive resistance to diminish temporal virus spread. Annals of Applied Biology, 140, 69-79.
– reference: Makkouk K.M., Kumari S.G. (2009) Epidemiology and integrated management of persistently transmitted aphid-borne viruses of legume and cereal crops in West Asia and North Africa. Virus Research, 141, 209-218.
– reference: McKirdy S.J., Jones R.A.C., Sivasithamparam K. (1998) Determining the effectiveness of grazing and trampling by livestock in transmitting white clover mosaic and subterranean clover mottle viruses. Annals of Applied Biology, 132, 91-105.
– reference: Harrison B.D. (1980) A biologist's view of twenty-five years of plant virus research. Annals of Applied Biology, 94, 321-333.
– reference: Solomon S., Qin D., Manning M., Xhen Z., Marquis M., Averyt K., Tignor M., Miller H. (Eds) (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel for Climate Change. Cambridge, UK/New York, NY, USA: Cambridge University Press.
– reference: Thresh J.M. (2006c) Plant virus epidemiology: the concept of host genetic vulnerability. Advances in Virus Research, 67, 89-125.
– reference: Irwin M.E., Thresh J.M. (1990) Epidemiology of barley yellow dwarf - a study in ecological complexity. Annual Review of Phytopathology, 28, 393-424.
– reference: van der Vlugt R.A.A., Stijger C.C.M.M., Verhoeven J.Th.J., Lesseman D.-E. (2000) First report of Pepino mosaic virus on tomato. Plant Disease, 84, 103.
– reference: Thresh J.M. (1966) Field experiments on the spread of blackcurrant reversion virus and its gall mite vector (Phytoptus ribis, Nal.). Annals of Applied Biology, 58, 219-230.
– reference: Parry M.L., Canziani O.F., Palutikof J.P., van der Linden P.J., Hanson C.E. (Eds) (2007) Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel for Climate Change. Cambridge, UK/New York, NY, USA: Cambridge University Press.
– reference: Wang J., Bing X.L., Li M., Ye G.Y., Liu S.S. (2012) Infection of tobacco plants by a begomovirus improves nutritional assimilation by a whitefly. Entomologia Experimentalis et Applicata, 144, 191-201.
– reference: Harrison B.D. (1964) Specific nematode vectors for serologically distinctive forms of raspberry ringspot and tomato black ring viruses. Annals of Applied Biology, 22, 544-550.
– reference: Shestra A., Srinivasan R., Riley D.G., Culbreath A.K. (2012) Direct and indirect effects of thrips-transmitted Tospoviruses on the preference and fitness of its vector, Frankliniella fusca. Entomologia Experimentalis et Applicata, 145, 260-271.
– reference: Cooper J.I., Jones R.A.C. (2006) Wild plants and viruses: under-investigated ecosystems. Advances in Virus Research, 67, 1-47.
– reference: Power A.G., Borer E.T., Hosseini P., Mitchell C.E., Seabloom E.W. (2011) The community ecology of Barley/Cereal yellow dwarf viruses in Western US grasslands. Virus Research, 159, 95-100.
– reference: Coutts B.A., Thomas-Carroll M.L., Jones R.A.C. (2004a) Analysing spatial patterns of spread of Lettuce necrotic yellows virus and lettuce big-vein disease in lettuce field plantings. Annals of Applied Biology, 145, 339-343.
– reference: Thresh J.M. (1974b) Temporal patterns of virus spread. Annual Review of Phytopathology, 12, 111-128.
– reference: Fargette D., Fauquet C., Thouvenel J.C. (1985) Field studies on the spread of African cassava mosaic. Annals of Applied Biology, 106, 285-294.
– reference: McKirdy S.J., Coutts B.A., Jones R.A.C. (1994) Occurrence of bean yellow mosaic virus in subterranean clover pastures and perennial native legumes. Australian Journal of Agricultural Research, 45, 183-194.
– reference: Lu J., Vecchi G.A., Reichler T. (2007) Expansion of the Hadley cell under global warming. Geophysical Research Letters, 34, L06805. DOI:10.1029/2006GL028443.
– reference: Pan H., Chu D., Liu B., Shi X., Guo L., Xie W., Carriere Y., Li X., Zhang Y. (2013) Differential effects of an exotic plant virus on its two closely related vectors. Scientific Reports, 3, 2230. DOI:10.1038/srep02230.
– reference: Thresh J.M. (1983a) Progress curves of plant virus disease. Advances in Applied Biology, 8, 1-85.
– reference: Vidal E., Zagrai L., Milusheva S., Bozhkova V., Tasheva-Terzieva E., Kamenova I., Zagrai I., Cambra M. (2013) Horticultural mineral oil treatments in nurseries during aphid flights reduce Plum pox virus incidence under different ecological conditions. Annals of Applied Biology, 162, 299-308.
– reference: Jiu M., Zhou X.P., Tong L., Xu J., Yang X., Wan F.-H., Liu S.-S. (2007) Vector-virus mutualism accelerates population increase of an invasive whitefly. PLoS ONE, 2, e182. DOI:10.1371/journal.pone.0000182.
– reference: Desbiez C., Joannon B., Wipf-Scheibel C., Chandeysson C., Lecoq H. (2009) Emergence of new strains of Watermelon mosaic virus in south-eastern France: evidence for limited spread but rapid local population shift. Virus Research, 141, 201-208.
– reference: Jones R.A.C., Harrison B.D. (1969) The behaviour of potato mop-top virus in soil, and evidence for its transmission by Spongospora subterranea (Wallr.) Lagerh. Annals of Applied Biology, 63, 1-17.
– reference: Thresh J.M. (1980b) The origins and epidemiology of some important plant virus diseases. Applied Biology, 5, 1-65.
– reference: Thresh J.M. (1983c) The long-range dispersal of plant viruses by arthropod vectors. Philosophical Transactions of the Royal Society, Series B-Biological Sciences, 302, 497-528.
– reference: Jones R.A.C. (2004) Using epidemiological information to develop effective integrated virus disease management strategies. Virus Research, 100, 5-30.
– reference: Mauck K.E., De Moraes C.M., Mescher M.C. (2010) Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. Proceedings of the National Academy of Sciences of the United States of America, 107, 3600-3605.
– reference: Broadbent L.H. (1950) The correlation of aphid numbers with the spread of leaf roll and rugose mosaic in potato crops. Annals of Applied Biology, 37, 58-65.
– reference: Kendall D.A., Chinn N.E., Smith B.D., Tidboald C., Winstone L., Western N.M. (1991) Effects of straw disposal and tillage on spread of barley yellow dwarf virus in winter barley. Annals of Applied Biology, 119, 359-364.
– reference: Dáder B., Moreno A., Viñuela E., Fereres A. (2012) Spatio-temporal dynamics of viruses are differentially affected by parasitoids depending on the mode of transmission. Viruses, 4, 3069-3089.
– reference: Roossinck M.J. (2012) Plant virus metagenomics: biodiversity and ecology. Annual Review of Genetics, 46, 359-369.
– reference: Pallett D.W., Thurston M.I., Cortina-Borja M., Edwards M.-L., Alexander M., Mitchell E., Raybould A.F., Cooper J.I. (2002) The incidence of viruses in wild Brassica rapa ssp. sylvestris in Southern England. Annals of Applied Biology, 141, 163-170.
– reference: Sacristan S., Garcia-Arenal F. (2008) The evolution of virulence and pathogenicity in plant pathogen populations. Molecular Plant Pathology, 9, 369-384.
– reference: Seal S.E., van Den Bosch F., Jeger M.J. (2006a) Factors influencing begomovirus evolution and their increasing global significance: implications for sustainable control. Critical Reviews in Plant Science, 25, 23-46.
– reference: Morales F.J. (2006) History and current distribution of begomoviruses in Latin America. Advances in Virus Research, 67, 127-162.
– reference: Fargette D., Konaté G., Fauquet C., Mulle E., Peterschmitt M., Thresh J.M. (2006) Molecular ecology and emergence of tropical plant viruses. Annual Review of Phytopathology, 44, 235-260.
– reference: Metz B., Davidson O.R., Bosch P.R., Dave R., Meyer L.A. (Eds) (2007) Climate Change 2007: Mitigation of Climate Change. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK/New York, NY, USA: Cambridge University Press.
– reference: Zhang T., Luan J.-B., Qi J.-F., Huang C.-J., Li M., Zhou X-P., Liu S.-S. (2012) Begomovirus-whitefly mutualism is achieved through repression of plant defences by a virus pathogenicity factor. Molecular Ecology, 21, 1294-1304. DOI:10.1111/j.1365-294X.2012.05457.x.
– reference: Bawden F.C. (1955) The spread and control of plant virus diseases. Annals of Applied Biology, 42, 140-147.
– reference: Soleimani R., Matic S., Taheri H., Behjatnia S.A.A., Vecchiati M., Izadpanah K., Accotto G.P. (2013) The unconventional geminivirus Beet curly top Iran virus: satisfying Koch's postulates and determining vector and host range. Annals of Applied Biology, 162, 174-181.
– reference: Bosque-Pérez N.A. (2000) Eight decades of maize streak virus research. Virus Research, 71, 107-121.
– reference: Canto T., Aranda M.A., Fereres A. (2009) Climate change effects on physiology and population processes of hosts and vectors that influence the spread of hemipteran-borne plant viruses. Global Change Biology, 15, 1884-1894.
– reference: Difonzo C.D., Ragsdale D.W., Radcliffe E.B., Gudmestad N.C., Secor G.A. (1996) Crop borders to reduce potato virus Y incidence in seed potato. Annals of Applied Biology, 129, 289-302.
– reference: Lecoq H., Fabre P., Joannon B., Wipf-Scheibel C., Chandeysson C., Schoeny A., Desbiez C. (2011) Search for factors involved in the rapid shift in Watermelon mosaic virus (WMV) populations in South-eastern France. Virus Research, 159, 115-123.
– reference: Tahiri A., Sekkat A., Bennani A., Granier M., Delvare G., Peterschmitt M. (2006) Distribution of tomato-infecting begomoviruses and Bemisia tabaci biotypes in Morocco. Annals of Applied Biology, 149, 175-186.
– reference: Bedford I.D., Briddon R.W., Brown J.K., Rosell R.C., Markham P.G. (1994) Geminivirus-transmission and biological characterization of Bemisia tabaci (Gennadius) biotypes from different geographic regions. Annals of Applied Biology, 125, 311-325.
– reference: Zhou X. (2013) Advances in understanding begomovirus satellites. Annual Review of Phytopathology, 51, 357-381.
– reference: Jones R.A.C., Koenig R., Lesseman D.E. (1980) Pepino mosaic virus, a new potexvirus from pepino (Solanum muricatum). Annals of Applied Biology, 94, 61-68.
– reference: Hanada K., Harrison B.D. (1977) Effects of virus genotype and temperature on seed transmission of nepoviruses. Annals of Applied Biology, 85, 79-92.
– reference: Morales F.J., Anderson P.K. (2001) The emergence and dissemination of whitefly-transmitted geminiviruses in Latin America. Archives of Virology, 146, 415-441.
– reference: Kirchner S.M., Döring T.F., Hiltunen L.H., Virtanen E., Valkonen J.P.T. (2011) Information-theory-based model selection for determining the main vector and period of transmission of Potato virus Y. Annals of Applied Biology, 159, 414-427.
– reference: Martínez-Ayala A., Sánchez-Campos S., Cáceres F., Aragón-Caballero L., Navas-Castillo J., Moriones E. (2014) Characterisation and genetic diversity of pepper leafroll virus, a new bipartite begomovirus infecting pepper, bean and tomato in Peru. Annals of Applied Biology, 164, 62-70.
– reference: Carter W. (1961) Ecological aspects of plant virus transmissions. Annual Review of Entomology, 6, 347-370.
– reference: Santala J., Samuilova O., Hannukkla A., Latvala S., Kortemaa H., Beuch U., Kvarnheden A., Persson P., Topp K., Ørstad K., Spetz C., Nielsen S.L., Kirk H.G., Budziszewska M., Wieczorek P., Obrȩpalska-Stȩplowska A., Pospieszny H., Kryszczuk A., Sztangret-Wiśniewska J., Yin Z., Chrzanowska M., Zimnoch-Guzowska E., Jackeviciene E., Taluntytė L., Pūpola N., Mihailova J., Lielmane I., Järvekülg L., Kotkas K., Rogozina E., Sozonov A., Tikhonovich I., Horn P., Broer I., Kuusiene S., Staniulis J., Uth J.G., Adam G., Valkonen J.P.T. (2010) Detection, distribution and control of Potato mop-top virus, a soil-borne virus, in northern Europe. Annals of Applied Biology, 157, 163-178.
– reference: Halbert S.E., Irwin M.E., Goodman R.M. (1981) Alate aphid (Homoptera: Aphididae) species and their relative importance as field vectors of soybean mosaic virus. Annals of Applied Biology, 97, 1-9.
– reference: Pagan I., Gonzales-Jara P., Moreno-Letelier A., Rodelo-Urrego M., Pinero D., Garcia-Arenal F. (2012) Effect of biodiversity changes in disease risk: exploring emergence in a plant-virus system. PLoS Pathogens, 7, e1002796. DOI:10.1371/journal.ppat.1002796.
– reference: Pachauri R.K., Reisinger A. (Eds) (2007) Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel for Climate Change. Cambridge, UK/New York, NY, USA: Cambridge University Press.
– reference: Jeger M.J., Chen Z., Powell G., Hodge S., van den Bosch F. (2011a) Interactions in a host plant-virus-vector-parasitoid system: modeling the consequences for virus transmission and disease dynamics. Virus Research, 159, 183-193.
– reference: Tugume A.K., Cuellar W.J., Mukasa S.B., Valkonen J.P.T. (2010a) Molecular genetic analysis of virus isolates from wild and cultivated plants show East Africa as a hotspot for the evolution and diversification of Sweet potato feathery mottle virus. Molecular Ecology, 19, 3139-3156.
– reference: Ingwell L.L., Eigenbrode D.D., Bosque-Pérez N. (2012) Plant viruses alter insect behavior to enhance their spread. Scientific Reports, 2, 578. DOI:10.1038/srep00578.
– reference: Moreno A., De Blas C., Biurrun R., Nebreda M., Palacios I., Duque M., Fereres A. (2004) The incidence and distribution of viruses infecting lettuce, cultivated Brassica and associated natural vegetation in Spain. Annals of Applied Biology, 144, 339-346.
– reference: Harrington R., Dewar A.M., George B. (1989) Forecasting the incidence of virus yellows in sugar beet in England. Annals of Applied Biology, 114, 459-469.
– reference: Tugume A.K., Mukasa S.B., Valkonen J.P.T. (2008) Natural wild hosts of Sweet potato feathery mottle virus show spatial differences in virus incidence and virus-like diseases in Uganda. Phytopathology, 98, 640-652.
– reference: Broadbent L., Tinsley T.W., Buddin W., Roberts E.T. (1951) The spread of lettuce mosaic in the field. Annals of Applied Biology, 8, 689-706.
– reference: Coutts B.A., Jones R.A.C. (2002) Temporal dynamics of spread of four viruses within mixed species perennial pastures. Annals of Applied Biology, 140, 37-52.
– reference: Homes F.O. (1955) Additive resistances to specific viral diseases in plants. Annals of Applied Biology, 42, 129-139.
– reference: Adams M.L. (1991) Transmission of plant viruses by fungi. Annals of Applied Biology, 118, 479-492.
– reference: Jones A.T. (1987) Control of virus infection in crop plants through vector resistance: a review of achievements prospects and problems. Annals of Applied Biology, 111, 745-772.
– reference: Ferris D.G., Jones R.A.C., Wroth J.M. (1996) Determining the effectiveness of resistance to subterranean clover mottle sobemovirus in different genotypes of subterranean clover in the field using the gazing animal as virus vector. Annals of Applied Biology, 128, 303-315.
– reference: Perry J.N. (1995) Spatial analysis by distance indices. Journal of Animal Ecology, 64, 303-314.
– reference: Harrison B.D., Robinson D.J. (2005) Another quarter century of great progress in understanding the biological properties of plant viruses. Annals of Applied Biology, 146, 15-37.
– reference: Adkins S., Webster C.G., Kousik C.S., Webb S.E., Roberts P.D., Stansly P.A., Turechek W.W. (2011) Ecology and management of whitefly-transmitted viruses of vegetable crops in Florida. Virus Research, 159, 110-114.
– reference: Thresh J.M. (1991) The ecology of tropical plant virus diseases. Plant Pathology, 40, 324-339.
– reference: Tsai W.S., Shih S.L., Venkatesan S.G., Aquino M.U., Green S.K., Kenyon L., Jan F.-J. (2011) Distribution and genetic diversity of begomoviruses infecting tomato and pepper plants in the Philippines. Annals of Applied Biology, 158, 275-287.
– reference: Shipp J.L., Buitenhuis R., Stobbs L., Wang K., Kim W.S., Ferguson G. (2008) Vectoring of Pepino mosaic virus by bumble-bees in tomato greenhouses. Annals of Applied Biology, 153, 149-155.
– reference: Rodríguez-Pardina P.E., Hanada K., Laguna I.G., Zerbini F.M., Ducasse D.A. (2011) Molecular characterisation and relative incidence of bean- and soybean-infecting begomoviruses in northwestern Argentina. Annals of Applied Biology, 158, 69-78.
– reference: Watson M.A., Heathcote G.D., Lauckner F.B., Sowray P.A. (1975) The use of weather data and counts of aphids in the field to predict the incidence of yellowing viruses of sugar-beet crops in England in relation to the use of insecticides. Annals of Applied Biology, 81, 181-198.
– reference: Olarte-Castillo X.A., Fermin G., Tabima J., Rojas Y., Tennant P.F., Fuchs M., Sierra R., Bernal A.J., Restrepo S. (2011) Phylogeography and molecular epidemiology of Papaya ringspot virus. Virus Research, 159, 132-140.
– reference: Thresh J.M. (1976) Gradients of plant virus diseases. Annals of Applied Biology, 82, 381-406.
– reference: Jeger M.J., van den Bosch F., Madden L.V. (2011b) Modelling virus- and host-limitation in vectored plant disease epidemics. Virus Research, 159, 215-222.
– reference: Hull R. (2002) Mathews' Plant Virology. 4th edn. London, UK: Academic Press.
– reference: Lister R.M., Murant A.F. (1967) Seed-transmission of nematode-borne viruses. Annals of Applied Biology, 59, 49-62.
– reference: Pappu H.R., Jones R.A.C., Jain R.K. (2009) Global status of tospovirus epidemics in diverse cropping systems: successes achieved and challenges ahead. Virus Research, 141, 219-236.
– reference: Westwood J.H., Groen S.C., Du Z., Murphy A.M., Anggoro D.T., Tungadi T., Luang-In V., Lewsey M.G., Rossiter J.T., Powell G., Smith A.G., Carr J.P. (2013) A trio of viral proteins tunes aphid-plant interactions in Arabidopsis thaliana. PLoS ONE, 8, e83066. DOI:10.1371/journal.pone.0083066.
– reference: Jones R.A.C. (2005) Patterns of spread of two non-persistently aphid-borne viruses in lupin stands under four different infection scenarios. Annals of Applied Biology, 146, 337-350.
– reference: Robert Y. (2001) Epidemiology of Plant Virus Diseases. Bognor Regis, UK: John Wiley & Sons Ltd. DOI:10.1038/npg.els.0000759.
– reference: Thomas-Carroll M.L., Jones R.A.C. (2003) Selection, biological properties and fitness of resistance-breaking strains of Tomato spotted wilt virus in pepper. Annals of Applied Biology, 142, 235-243.
– reference: Alvarez A.E., Garzo E., Verbeek M., Vosman N., Dicke M., Tjallingii W.F. (2007) Infection of potato plants with potato leafroll virus changes attraction and feeding behaviour of Myzus persicae. Entomologia Experimentalis et Applicata, 125, 135-144.
– reference: Acosta-Leal R., Duffy S., Xiong Z., Hammond R.W., Elena S.F. (2011) Advances in plant virus evolution: translating evolutionary insights into better disease management. Phytopathology, 101, 1136-1148.
– reference: Cooper J.I., Jones R.A.C., Harrison B.D. (1976) Field and glasshouse experiments on the control of potato mop-top virus. Annals of Applied Biology, 83, 215-230.
– reference: Traore O., Pinel-Galzi A., Sorho F., Sarra S., Rakotomalala M., Sangu E., Kaneya Z., Sere Y., Konate G., Fargette D. (2009) A reassessment of the epidemiology of Rice yellow mottle virus following recent advances in field and molecular studies. Virus Research, 141, 258-267.
– reference: Tugume A.K., Amayo R., Weinheimer I., Mukasa S.B., Rubaihayo P.R., Valkonen J.P.T. (2013) Genetic variability and evolutionary implications of RNA silencing suppressor genes in RNA1 of Sweet potato chlorotic stunt virus isolates infecting sweetpotato and related wild species. PLoS ONE, 8, e81479.
– reference: Prendeville H.R., Ye X., Morris J.T., Pilson D. (2012) Virus infections in wild plant populations are both frequent and often unapparent. American Journal of Botany, 99, 1033-1042.
– reference: Mumford R.A., Barker I., Wood K.R. (1996) The biology of the tospoviruses. Annals of Applied Biology, 128, 159-183.
– reference: Cooper J.I., Harrison B.D. (1973) The role of weed hosts and the distribution and activity of vector nematodes in the ecology of tobacco rattle virus. Annals of Applied Biology, 73, 53-66.
– reference: Raccah B., Gal-On A., Eastop V.F. (1985) The role of flying aphid vectors in the transmission of cucumber mosaic virus and potato virus Y to peppers in Israel. Annals of Applied Biology, 106, 451-460.
– reference: Moreno A., Nebreda M., Diaz B.M., García M., Salas F., Fereres A. (2007) Temporal and spatial spread of Lettuce mosaic virus in lettuce crops in central Spain: factors involved in Lettuce mosaic virus epidemics. Annals of Applied Biology, 150, 351-360.
– reference: Thresh J.M. (1982) Cropping practices and virus spread. Annual Review of Phytopathology, 20, 193-218.
– reference: Cilia M., Peter K.A., Bereman M.S., Howe K., Fish T., Smith D., Gildow F., MacCoss M.J., Thannhauser T.W., Gray S.M. (2012) Discovery and targeted LC-MS/MS of purified polerovirus reveals differences in the virus-host interactome associated with altered aphid transmission. PLoS ONE, 7, e48177. DOI:10.1371/journal.pone.0048177.
– reference: Murant A.F., Chambers J., Jones A.T. (1974) Spread of raspberry bushy dwarf virus by pollination, its association with crumbly fruit, and problems of control. Annals of Applied Biology, 77, 271-281.
– reference: Thackray D.J., Smith L.J., Cheng Y., Perry J.N., Jones R.A.C. (2002) Effect of strain-specific hypersensitive resistance on spatial patterns of virus spread. Annals of Applied Biology, 141, 45-59.
– reference: Thresh J.M. (2006a) Plant virus epidemiology. Advances in Virus Research, 67, 1-544.
– reference: Matthews R.E.F. (1970) Plant Virology. New York, NY, USA: Academic Press.
– reference: Coutts B.A., Jones R.A.C. (2005). Suppressing spread of Tomato spotted wilt virus by drenching infected source or healthy recipient plants with neonicotinoid insecticides to control thrips vectors. Annals of Applied Biology, 146, 95-103.
– reference: Harrison B.D., Peachey J.E., Winslow R.D. (1963) The use of nematicides to control the spread of Arabis mosaic virus by Xiphenema diversicaudatum (Micol.). Annals of Applied Biology, 53, 243-255.
– reference: Bos L. (1992) New plant virus problems in developing countries: a corollary of agricultural modernisation. Advances in Virus Research, 41, 349-407.
– reference: Broadbent L.H. (1965) The epidemiology of tobacco mosaic. XI. Seed transmission of TMV. Annals of Applied Biology, 56, 177-205.
– reference: Milne J.R., Walter G.H. (2003) The coincidence of thrips and dispersed pollen in PNRSV-infected stonefruit orchards - a precondition for thrips-mediated transmission via infected pollen. Annals of Applied Biology, 142, 291-298.
– reference: Mauck K., Bosque-Pérez N., Eigenbrode S.D., de Moraes C., Mescher M. (2012) Transmission mechanisms shape pathogen effects on host-vector interactions: evidence from plant viruses. Functional Ecology, 26, 1162-1175.
– reference: Jones R.A.C. (1988b) Seed-borne cucumber mosaic virus infection of narrow-leafed lupin (Lupinus angustifolius) in Western Australia. Annals of Applied Biology, 113, 507-518.
– reference: Karyeija R.F., Gibson R.W., Valkonen J.P.T. (1998) Resistance to sweet potato virus disease in wild East-African Ipomoea spp. Annals of Applied Biology, 133, 39-44.
– reference: McLean G.D., Garrett R.G., Ruesink W.G. (Eds) (1986) Plant Virus Epidemics: Monitoring, Modelling and Predicting Outbreaks. Sydney, Australia: Academic Press.
– reference: Sauke H., Doring T.F. (2004) Potato virus Y reduction by straw mulch in organic potatoes. Annals of Applied Biology, 144, 347-355.
– reference: Gómez P., Sempere R.N., Amari K., Gómez-Aix C., Aranda M.A. (2010) Epidemics of Tomato torrado virus, Pepino mosaic virus and Tomato chlorosis virus in tomato crops: do mixed infections contribute to torrado disease epidemiology? Annals of Applied Biology, 156, 401-410.
– reference: Cheng Y.-H., Zheng Y.-X., Tai C.-H., Yen J.-H., Chen Y.-K., Jan F.-J. (2014) Identification, characterisation and detection of a new tospovirus from sweet pepper. Annals of Applied Biology, 164, 107-115.
– reference: Jones R.A.C. (1994) Effects of mulching with cereal straw and row spacing on spread of bean yellow mosaic potyvirus into narrow-leafed lupins (Lupinus angustifolius). Annals of Applied Biology, 124, 45-58.
– reference: Tsai W.S., Shih S.L., Rauf A., Safitri R., Hidayati N., Huyen B.T.T., Kenyon L. (2013) Genetic diversity of legume yellow mosaic begomoviruses in Indonesia and Vietnam. Annals of Applied Biology, 163, 367-377.
– reference: Plumb R.T., Thresh J.M. (1983) Plant Virus Epidemiology: The Spread and Control of Insect-borne Viruses, pp. 377. Oxford, UK: Blackwell Scientific Publications.
– reference: Jones R.A.C., Harrison B.D. (1972) Ecological studies on potato mop-top virus in Scotland. Annals of Applied Biology, 71, 47-57.
– reference: Maskell L.C., Raybould A.F., Cooper J.I., Edwards M.-L., Gray A.J. (1999) Effects of turnip mosaic virus and turnip yellow mosaic virus on the survival, growth and reproduction of wild cabbage (Brassica oleracea). Annals of Applied Biology, 135, 401-407.
– reference: Jones R.A.C. (2009) Plant virus emergence and evolution: origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for control. Virus Research, 141, 113-130.
– reference: Kassanis B. (1941) Transmission of tobacco etch viruses by aphids. Annals of Applied Biology, 28, 238-243.
– reference: Coutts B.A., Thomas-Carroll M.L., Jones R.A.C. (2004b) Patterns of spread of Tomato spotted wilt virus in field crops of lettuce and pepper: spatial dynamics and validation of control measures. Annals of Applied Biology, 145, 231-245.
– reference: Wilson C.R. (2014) Applied Plant Virology. Wallingford, UK: CABI Press.
– reference: Alexander H.M., Mauck K.E., Whitfield A.E., Garret K.A., Malmstrom C.M. (2014) Plant virus interactions at the agro-ecological interface. European Journal of Plant Pathology, 138, 529-574. DOI:10.1007/S10658-013-0317-1.
– reference: Berlandier F.A., Thackray D.J., Jones R.A.C., Latham L.J., Cartwright L. (1997) Determining the relative roles of different aphid species as vectors of cucumber mosaic and bean yellow mosaic viruses in lupins. Annals of Applied Biology, 131, 297-314.
– reference: Jones R.A.C., Fribourg C.E. (1979) Host plant reactions, some properties and serology of wild potato mosaic virus. Phytopatholgy, 69, 446-449.
– reference: Varsani A., Shepherd D.N., Monjane A.L., Owor B.E., Erdmann J.B., Rybicki E.P., Peterschmitt M., Briddon R.W., Markham P.G., Oluwafemi S., Windram O.P., Lefeuvre P., Lett J.-M., Martin D.P. (2008) Recombination, decreased host specificity and increased mobility have driven the emergence of maize streak virus as an agricultural pathogen. Journal of General Virology, 89, 2063-2074.
– reference: Watson M.A., Hull R., Blencowe J.W., Hamlyn B.G.M. (1951) The spread of beet yellows and beet mosaic viruses in the sugar beet root crop. I. Field observations on the virus diseases of sugar beet and their vectors Myzus persicae Sulz. and Aphis fabae Koch. Annals of Applied Biology, 38, 743-764.
– reference: van Slogteren E. (1955) Serological diagnosis of plant virus diseases. Annals of Applied Biology, 42, 122-128.
– reference: Thresh J.M. (1981a) Pests, Pathogens and Vegetation. London, UK: Pitman. 517pp.
– reference: Thresh J.M. (1974a) Vector relationships and development of epidemics - epidemiology of plant viruses. Phytopathology, 64, 1050-1056.
– reference: Jones R.A.C. (2014) Trends in plant virus epidemiology: opportunities from new or improved technologies. Virus Research. DOI:10.1016/j.virusres.2013.11.003. in press.
– reference: Tugume A.K., Mukasa S.B., Kalkkinen N., Valkonen J.P.T. (2010b) Recombination and selection pressure in the ipomovirus Sweet potato mild mottle virus (Potyviridae) in wild species and cultivated sweetpotato in the centre of evolution in East Africa. Journal of General Virology, 91, 1092-1108.
– reference: Wang J., Zhao H., Liu J., Jiu M., Qian Y.-J., Liu S.-S. (2010) Low frequency of horizontal and vertical transmission of two begomoviruses through whiteflies exhibits little relevance to the vector infectivity. Annals of Applied Biology, 157, 125-133.
– reference: Stafford C.A., Walker G.P., Ulman D.E. (2011) Infection with a plant virus modifies vector feeding behaviour. Proceedings of the National Academy of Sciences of the United States of America, 108, 9350-9355.
– reference: Carter W. (1939) Populations of Thrips tabaci, with special reference to virus transmission. Journal of Animal Ecology, 8, 261-276.
– reference: Waggoner P.E., Aylor D.E. (2000) Epidemiology: a science of patterns. Annual Review of Phytopathology, 38, 71-94.
– reference: Velasco L., Simon B., Janssen D., Cenis J.L. (2008) Incidences and progression of tomato chlorosis disease and tomato yellow leaf curl virus disease in tomato under different greenhouse covers in southeast Spain. Annals of Applied Biology, 153, 334-344.
– reference: Coutts B.A., Strickland G.R., Kehoe M., Severtson D.L., Jones R.A.C. (2008) The epidemiology of Wheat streak mosaic virus in Australia: case histories, gradients, mite vectors and alternative hosts. Australian Journal of Agricultural Research, 59, 844-853.
– reference: Jones R.A.C., Ferris D.J. (2000) Suppressing spread of alfalfa mosaic virus in grazed legume pasture swards using insecticides and admixture with grass, and effects of insecticides on numbers of aphids and three other pasture pests. Annals of Applied Biology, 137, 259-271.
– reference: Bosque-Pérez N.A., Eigenbrode S.D. (2011) The influence of virus-induced changes in plants on aphid vectors: insights from luteovirus pathosystems. Virus Research, 159, 201-205.
– reference: Rajabascar D., Bosque-Pérez N.A., Eigenbrode S.D. (2014) Preference by a virus vector for infected plants is reversed after virus acquisition. Virus Research. DOI:10.1016/j.virusres.2013.11.005. in press.
– reference: Jones A.T. (1979) Further studies on the effect of resistance to Amphorophora idaei in raspberry (Rubus idaeus) on the spread of aphid-borne viruses. Annals of Applied Biology, 92, 119-123.
– reference: Jones R.A.C. (2013) Virus diseases of perennial pasture legumes: incidences, losses, epidemiology and management. Crop and Pasture Science, 64, 199-215.
– reference: Ramappa H.K., Muniyappa V., Colvin J. (1998) The contribution of tomato and alternative host plants to tomato leaf curl virus inoculum pressure in different areas of south India. Annals of Applied Biology, 133, 187-198.
– reference: Varma A., Malathi V.G. (2003) Emerging geminivirus problems: a serious threat to crop production. Annals of Applied Biology, 142, 145-164.
– volume: 141
  start-page: 190
  year: 2009
  end-page: 200
  article-title: Molecular epidemiology of in France: an historical overview
  publication-title: Virus Research
– volume: 66
  start-page: 11
  year: 1970
  end-page: 16
  article-title: Weed plants as sources of cucumber mosaic virus
  publication-title: Annals of Applied Biology
– volume: 162
  start-page: 174
  year: 2013
  end-page: 181
  article-title: The unconventional geminivirus : satisfying Koch's postulates and determining vector and host range
  publication-title: Annals of Applied Biology
– volume: 2
  start-page: e182
  year: 2007
  article-title: Vector–virus mutualism accelerates population increase of an invasive whitefly
  publication-title: PLoS ONE
– volume: 159
  start-page: 161
  year: 2011
  end-page: 170
  article-title: Comparing the regional epidemiology of the cassava mosaic and cassava brown streak virus pandemics in Africa
  publication-title: Virus Research
– volume: 108
  start-page: 17366
  year: 2011
  end-page: 17371
  article-title: A plant virus evolved by acquiring multiple nonconserved genes to extend its host range
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– start-page: 57
  year: 1980
  end-page: 70
– volume: 11
  start-page: 199
  year: 2003
  end-page: 223
  article-title: Control of plant virus diseases in Sub‐Saharan Africa: the possibility and feasibility of an integrated approach
  publication-title: African Journal of Crop Science
– volume: 164
  start-page: 62
  year: 2014
  end-page: 70
  article-title: Characterisation and genetic diversity of pepper leafroll virus, a new bipartite begomovirus infecting pepper, bean and tomato in Peru
  publication-title: Annals of Applied Biology
– volume: 133
  start-page: 187
  year: 1998
  end-page: 198
  article-title: The contribution of tomato and alternative host plants to tomato leaf curl virus inoculum pressure in different areas of south India
  publication-title: Annals of Applied Biology
– volume: 137
  start-page: 259
  year: 2000
  end-page: 271
  article-title: Suppressing spread of alfalfa mosaic virus in grazed legume pasture swards using insecticides and admixture with grass, and effects of insecticides on numbers of aphids and three other pasture pests
  publication-title: Annals of Applied Biology
– volume: 141
  start-page: 209
  year: 2009
  end-page: 218
  article-title: Epidemiology and integrated management of persistently transmitted aphid‐borne viruses of legume and cereal crops in West Asia and North Africa
  publication-title: Virus Research
– volume: 153
  start-page: 149
  year: 2008
  end-page: 155
  article-title: Vectoring of by bumble‐bees in tomato greenhouses
  publication-title: Annals of Applied Biology
– year: 2014
– volume: 83
  start-page: 215
  year: 1976
  end-page: 230
  article-title: Field and glasshouse experiments on the control of potato mop‐top virus
  publication-title: Annals of Applied Biology
– volume: 141
  start-page: 258
  year: 2009
  end-page: 267
  article-title: A reassessment of the epidemiology of following recent advances in field and molecular studies
  publication-title: Virus Research
– volume: 119
  start-page: 359
  year: 1991
  end-page: 364
  article-title: Effects of straw disposal and tillage on spread of barley yellow dwarf virus in winter barley
  publication-title: Annals of Applied Biology
– volume: 164
  start-page: 107
  year: 2014
  end-page: 115
  article-title: Identification, characterisation and detection of a new tospovirus from sweet pepper
  publication-title: Annals of Applied Biology
– volume: 100
  start-page: 5
  year: 2004
  end-page: 30
  article-title: Using epidemiological information to develop effective integrated virus disease management strategies
  publication-title: Virus Research
– volume: 159
  start-page: 201
  year: 2011
  end-page: 205
  article-title: The influence of virus‐induced changes in plants on aphid vectors: insights from luteovirus pathosystems
  publication-title: Virus Research
– volume: 142
  start-page: 291
  year: 2003
  end-page: 298
  article-title: The coincidence of thrips and dispersed pollen in PNRSV‐infected stonefruit orchards – a precondition for thrips‐mediated transmission via infected pollen
  publication-title: Annals of Applied Biology
– volume: 163
  start-page: 367
  year: 2013
  end-page: 377
  article-title: Genetic diversity of legume yellow mosaic begomoviruses in Indonesia and Vietnam
  publication-title: Annals of Applied Biology
– volume: 133
  start-page: 39
  year: 1998
  end-page: 44
  article-title: Resistance to sweet potato virus disease in wild East‐African spp
  publication-title: Annals of Applied Biology
– start-page: 61
  year: 2003
  end-page: 111
– volume: 113
  start-page: 507
  year: 1988
  end-page: 518
  article-title: Seed‐borne cucumber mosaic virus infection of narrow‐leafed lupin ( ) in Western Australia
  publication-title: Annals of Applied Biology
– volume: 162
  start-page: 299
  year: 2013
  end-page: 308
  article-title: Horticultural mineral oil treatments in nurseries during aphid flights reduce incidence under different ecological conditions
  publication-title: Annals of Applied Biology
– volume: 65
  start-page: 293
  year: 1970
  end-page: 297
  article-title: Establishment of a new strain of tobacco mosaic virus resulting from use of resistant varieties of tomato
  publication-title: Annals of Applied Biology
– volume: 159
  start-page: 84
  year: 2011
  end-page: 94
  article-title: The expanding field of plant virus ecology: historical foundations, knowledge gaps and research directions
  publication-title: Virus Research
– volume: 22
  start-page: 2325
  year: 2013
  end-page: 2340
  article-title: Landscape heterogeneity shapes host–parasite interactions and results in apparent plant virus codivergence
  publication-title: Molecular Ecology
– volume: 67
  start-page: 127
  year: 2006
  end-page: 162
  article-title: History and current distribution of begomoviruses in Latin America
  publication-title: Advances in Virus Research
– volume: 67
  start-page: 297
  year: 2006
  end-page: 316
  article-title: Begomovirus evolution and disease management
  publication-title: Advances in Virus Research
– volume: 81
  start-page: 181
  year: 1975
  end-page: 198
  article-title: The use of weather data and counts of aphids in the field to predict the incidence of yellowing viruses of sugar‐beet crops in England in relation to the use of insecticides
  publication-title: Annals of Applied Biology
– volume: 8
  start-page: 689
  year: 1951
  end-page: 706
  article-title: The spread of lettuce mosaic in the field
  publication-title: Annals of Applied Biology
– volume: 16
  start-page: 259
  year: 1988
  end-page: 270
  article-title: Epidemiological studies of the tomato yellow leaf curl virus (TYLCV) in the Jordan Valley, Israel
  publication-title: Phytoparasitica
– volume: 19
  start-page: 535
  year: 2004
  end-page: 544
  article-title: Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers
  publication-title: Trends in Ecology and Evolution
– volume: 12
  start-page: 111
  year: 1974
  end-page: 128
  article-title: Temporal patterns of virus spread
  publication-title: Annual Review of Phytopathology
– year: 2007
– volume: 104
  start-page: 485
  year: 1984
  end-page: 495
  article-title: Studies on the occurrence of tomato bushy stunt virus in English rivers
  publication-title: Annals of Applied Biology
– volume: 89
  start-page: 237
  year: 1978
  end-page: 244
  article-title: Relations of carrot red leaf and carrot mottle viruses with their aphid vector,
  publication-title: Annals of Applied Biology
– volume: 94
  start-page: 13
  year: 1979
  end-page: 19
  article-title: Effects of fungicides and surfactants on the zoospores of Olpidium brassicae
  publication-title: Annals of Applied Biology
– volume: 101
  start-page: 1136
  year: 2011
  end-page: 1148
  article-title: Advances in plant virus evolution: translating evolutionary insights into better disease management
  publication-title: Phytopathology
– volume: 118
  start-page: 479
  year: 1991
  end-page: 492
  article-title: Transmission of plant viruses by fungi
  publication-title: Annals of Applied Biology
– volume: 149
  start-page: 313
  year: 2006
  end-page: 316
  article-title: Characterisation of cucumber leaf spot virus isolated from recycled irrigation water of soil‐less cucumber culture
  publication-title: Annals of Applied Biology
– volume: 159
  start-page: 215
  year: 2011
  end-page: 222
  article-title: Modelling virus‐ and host‐limitation in vectored plant disease epidemics
  publication-title: Virus Research
– start-page: 537
  year: 1983
  end-page: 558
– volume: 53
  start-page: 243
  year: 1963
  end-page: 255
  article-title: The use of nematicides to control the spread of Arabis mosaic virus by (Micol.)
  publication-title: Annals of Applied Biology
– volume: 46
  start-page: 95
  year: 1996
  end-page: 102
  article-title: SADIE: software to measure and model spatial pattern
  publication-title: Aspects of Applied Biology
– volume: 9
  start-page: e91224
  year: 2014
– volume: 156
  start-page: 39
  year: 2010
  end-page: 49
  article-title: Determination of aphid transmission efficiencies for N, NTN and Wilga strains of
  publication-title: Annals of Applied Biology
– volume: 71
  start-page: 47
  year: 1972
  end-page: 57
  article-title: Ecological studies on potato mop‐top virus in Scotland
  publication-title: Annals of Applied Biology
– year: 2002
– volume: 146
  start-page: 415
  year: 2001
  end-page: 441
  article-title: The emergence and dissemination of whitefly‐transmitted geminiviruses in Latin America
  publication-title: Archives of Virology
– volume: 21
  start-page: 1294
  year: 2012
  end-page: 1304
  article-title: Begomovirus‐whitefly mutualism is achieved through repression of plant defences by a virus pathogenicity factor
  publication-title: Molecular Ecology
– volume: 153
  start-page: 334
  year: 2008
  end-page: 344
  article-title: Incidences and progression of tomato chlorosis disease and tomato yellow leaf curl virus disease in tomato under different greenhouse covers in southeast Spain
  publication-title: Annals of Applied Biology
– volume: 34
  start-page: L06805
  year: 2007
  article-title: Expansion of the Hadley cell under global warming
  publication-title: Geophysical Research Letters
– volume: 106
  start-page: 285
  year: 1985
  end-page: 294
  article-title: Field studies on the spread of African cassava mosaic
  publication-title: Annals of Applied Biology
– start-page: 255
  year: 1988
  end-page: 270
– volume: 42
  start-page: 129
  year: 1955
  end-page: 139
  article-title: Additive resistances to specific viral diseases in plants
  publication-title: Annals of Applied Biology
– year: 2013
– start-page: 89
  year: 1981
  end-page: 107
– volume: 142
  start-page: 145
  year: 2003
  end-page: 164
  article-title: Emerging geminivirus problems: a serious threat to crop production
  publication-title: Annals of Applied Biology
– start-page: 281
  year: 1988
  end-page: 292
– volume: 42
  start-page: 140
  year: 1955
  end-page: 147
  article-title: The spread and control of plant virus diseases
  publication-title: Annals of Applied Biology
– volume: 114
  start-page: 459
  year: 1989
  end-page: 469
  article-title: Forecasting the incidence of virus yellows in sugar beet in England
  publication-title: Annals of Applied Biology
– volume: 144
  start-page: 191
  year: 2012
  end-page: 201
  article-title: Infection of tobacco plants by a begomovirus improves nutritional assimilation by a whitefly
  publication-title: Entomologia Experimentalis et Applicata
– volume: 44
  start-page: 235
  year: 2006
  end-page: 260
  article-title: Molecular ecology and emergence of tropical plant viruses
  publication-title: Annual Review of Phytopathology
– volume: 82
  start-page: 381
  year: 1976
  end-page: 406
  article-title: Gradients of plant virus diseases
  publication-title: Annals of Applied Biology
– volume: 5
  start-page: 1
  year: 1980
  end-page: 65
  article-title: The origins and epidemiology of some important plant virus diseases
  publication-title: Applied Biology
– volume: 122
  start-page: 501
  year: 1993
  end-page: 518
  article-title: Effects of cereal borders, admixture with cereals and plant density on the spread of bean yellow mosaic potyvirus into narrow‐leafed lupins ( )
  publication-title: Annals of Applied Biology
– volume: 141
  start-page: 113
  year: 2009
  end-page: 130
  article-title: Plant virus emergence and evolution: origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for control
  publication-title: Virus Research
– volume: 138
  start-page: 529
  year: 2014
  end-page: 574
  article-title: Plant virus interactions at the agro‐ecological interface
  publication-title: European Journal of Plant Pathology
– volume: 167
  start-page: 34
  year: 2012
  end-page: 42
  article-title: Detection of members of the in the Tall Grass Prairie Preserve, Osage County, Oklahoma, USA
  publication-title: Virus Research
– volume: 48
  start-page: 179
  year: 2010
  end-page: 203
  article-title: Principles of predicting epidemics of plant virus disease
  publication-title: Annual Review of Phytopathology
– volume: 51
  start-page: 357
  year: 2013
  end-page: 381
  article-title: Advances in understanding begomovirus satellites
  publication-title: Annual Review of Phytopathology
– volume: 149
  start-page: 175
  year: 2006
  end-page: 186
  article-title: Distribution of tomato‐infecting begomoviruses and biotypes in Morocco
  publication-title: Annals of Applied Biology
– year: 2014
  article-title: A non‐persistently transmitted‐virus induces a pull–push strategy in its aphid vector to optimize transmission and spread
  publication-title: Virus Research
– volume: 111
  start-page: 745
  year: 1987
  end-page: 772
  article-title: Control of virus infection in crop plants through vector resistance: a review of achievements prospects and problems
  publication-title: Annals of Applied Biology
– volume: 97
  start-page: 1
  year: 1981
  end-page: 9
  article-title: Alate aphid (Homoptera: Aphididae) species and their relative importance as field vectors of soybean mosaic virus
  publication-title: Annals of Applied Biology
– volume: 141
  start-page: 219
  year: 2009
  end-page: 236
  article-title: Global status of tospovirus epidemics in diverse cropping systems: successes achieved and challenges ahead
  publication-title: Virus Research
– start-page: 1
  year: 1981
  end-page: 28
– volume: 129
  start-page: 289
  year: 1996
  end-page: 302
  article-title: Crop borders to reduce potato virus Y incidence in seed potato
  publication-title: Annals of Applied Biology
– volume: 45
  start-page: 183
  year: 1994
  end-page: 194
  article-title: Occurrence of bean yellow mosaic virus in subterranean clover pastures and perennial native legumes
  publication-title: Australian Journal of Agricultural Research
– volume: 159
  start-page: 95
  year: 2011
  end-page: 100
  article-title: The community ecology of in Western US grasslands
  publication-title: Virus Research
– volume: 159
  start-page: 414
  year: 2011
  end-page: 427
  article-title: Information‐theory‐based model selection for determining the main vector and period of transmission of
  publication-title: Annals of Applied Biology
– volume: 99
  start-page: 1033
  year: 2012
  end-page: 1042
  article-title: Virus infections in wild plant populations are both frequent and often unapparent
  publication-title: American Journal of Botany
– start-page: 377
  year: 1983
– volume: 150
  start-page: 351
  year: 2007
  end-page: 360
  article-title: Temporal and spatial spread of in lettuce crops in central Spain: factors involved in epidemics
  publication-title: Annals of Applied Biology
– volume: 67
  start-page: 1
  year: 2006
  end-page: 47
  article-title: Wild plants and viruses: under‐investigated ecosystems
  publication-title: Advances in Virus Research
– volume: 157
  start-page: 13
  year: 2010
  end-page: 24
  article-title: Vectors and alternative hosts of tobacco yellow dwarf virus in southeastern Australia
  publication-title: Annals of Applied Biology
– volume: 29
  start-page: 1481
  year: 2012
  end-page: 1492
  article-title: Multihost experimental evolution of a plant RNA virus reveals local adaptation and host specific mutations
  publication-title: Molecular Biology
– volume: 110
  start-page: 661
  year: 1987
  end-page: 681
  article-title: Epidemiology and control of virus diseases of vegetables
  publication-title: Annals of Applied Biology
– volume: 28
  start-page: 393
  year: 1990
  end-page: 424
  article-title: Epidemiology of barley yellow dwarf – a study in ecological complexity
  publication-title: Annual Review of Phytopathology
– volume: 159
  start-page: 101
  year: 2011
  end-page: 109
  article-title: Epidemiology of spotted wilt disease of peanut caused by in the southeastern U.S
  publication-title: Virus Research
– volume: 158
  start-page: 69
  year: 2011
  end-page: 78
  article-title: Molecular characterisation and relative incidence of bean‐ and soybean‐infecting begomoviruses in northwestern Argentina
  publication-title: Annals of Applied Biology
– volume: 131
  start-page: 297
  year: 1997
  end-page: 314
  article-title: Determining the relative roles of different aphid species as vectors of cucumber mosaic and bean yellow mosaic viruses in lupins
  publication-title: Annals of Applied Biology
– volume: 19
  start-page: 3139
  year: 2010
  end-page: 3156
  article-title: Molecular genetic analysis of virus isolates from wild and cultivated plants show East Africa as a hotspot for the evolution and diversification of
  publication-title: Molecular Ecology
– volume: 158
  start-page: 275
  year: 2011
  end-page: 287
  article-title: Distribution and genetic diversity of begomoviruses infecting tomato and pepper plants in the Philippines
  publication-title: Annals of Applied Biology
– volume: 9
  start-page: 133
  year: 2002
  end-page: 141
  article-title: A new method for measuring spatial association in ecological count data
  publication-title: Ecoscience
– volume: 142
  start-page: 365
  year: 2003
  end-page: 368
  article-title: The host range of in India and transmission by thrips
  publication-title: Annals of Applied Biology
– volume: 56
  start-page: 177
  year: 1965
  end-page: 205
  article-title: The epidemiology of tobacco mosaic. XI. Seed transmission of TMV
  publication-title: Annals of Applied Biology
– volume: 6
  start-page: 347
  year: 1961
  end-page: 370
  article-title: Ecological aspects of plant virus transmissions
  publication-title: Annual Review of Entomology
– volume: 145
  start-page: 113
  year: 2004
  end-page: 121
  article-title: The cassava mosaic geminiviruses occurring in Uganda following the 1990s epidemic of severe cassava mosaic disease
  publication-title: Annals of Applied Biology
– volume: 20
  start-page: 193
  year: 1982
  end-page: 218
  article-title: Cropping practices and virus spread
  publication-title: Annual Review of Phytopathology
– volume: 159
  start-page: 110
  year: 2011
  end-page: 114
  article-title: Ecology and management of whitefly‐transmitted viruses of vegetable crops in Florida
  publication-title: Virus Research
– volume: 2
  start-page: 578
  year: 2012
  article-title: Plant viruses alter insect behavior to enhance their spread
  publication-title: Scientific Reports
– volume: 25
  start-page: 23
  year: 2006
  end-page: 46
  article-title: Factors influencing begomovirus evolution and their increasing global significance: implications for sustainable control
  publication-title: Critical Reviews in Plant Science
– volume: 38
  start-page: 71
  year: 2000
  end-page: 94
  article-title: Epidemiology: a science of patterns
  publication-title: Annual Review of Phytopathology
– volume: 157
  start-page: 163
  year: 2010
  end-page: 178
  article-title: Detection, distribution and control of , a soil‐borne virus, in northern Europe
  publication-title: Annals of Applied Biology
– volume: 67
  start-page: 245
  year: 2006
  end-page: 295
  article-title: Control of tropical plant virus diseases
  publication-title: Advances in Virus Research
– volume: 3
  start-page: 2230
  year: 2013
  article-title: Differential effects of an exotic plant virus on its two closely related vectors
  publication-title: Scientific Reports
– volume: 98
  start-page: 640
  year: 2008
  end-page: 652
  article-title: Natural wild hosts of show spatial differences in virus incidence and virus‐like diseases in Uganda
  publication-title: Phytopathology
– volume: 141
  start-page: 163
  year: 2002
  end-page: 170
  article-title: The incidence of viruses in wild ssp in Southern England
  publication-title: Annals of Applied Biology
– volume: 302
  start-page: 497
  year: 1983c
  end-page: 528
  article-title: The long‐range dispersal of plant viruses by arthropod vectors
  publication-title: Philosophical Transactions of the Royal Society, Series B–Biological Sciences
– volume: 142
  start-page: 235
  year: 2003
  end-page: 243
  article-title: Selection, biological properties and fitness of resistance‐breaking strains of in pepper
  publication-title: Annals of Applied Biology
– year: 1981
– volume: 146
  start-page: 15
  year: 2005
  end-page: 37
  article-title: Another quarter century of great progress in understanding the biological properties of plant viruses
  publication-title: Annals of Applied Biology
– volume: 94
  start-page: 61
  year: 1980
  end-page: 68
  article-title: Pepino mosaic virus, a new potexvirus from pepino ( )
  publication-title: Annals of Applied Biology
– year: 2005
– volume: 9
  start-page: e1003304
  year: 2013
  article-title: Plant virus ecology
  publication-title: PLoS Pathology
– volume: 41
  start-page: 349
  year: 1992
  end-page: 407
  article-title: New plant virus problems in developing countries: a corollary of agricultural modernisation
  publication-title: Advances in Virus Research
– volume: 59
  start-page: 844
  year: 2008
  end-page: 853
  article-title: The epidemiology of in Australia: case histories, gradients, mite vectors and alternative hosts
  publication-title: Australian Journal of Agricultural Research
– start-page: 9
  year: 2006
  end-page: 32
– volume: 126
  start-page: 493
  year: 1995
  end-page: 503
  article-title: Acquisition and transmission of potato mop‐top virus by a culture of f.sp. derived from a single cystosorus
  publication-title: Annals of Applied Biology
– start-page: 809
  year: 2014
  end-page: 876
– volume: 64
  start-page: 199
  year: 2013
  end-page: 215
  article-title: Virus diseases of perennial pasture legumes: incidences, losses, epidemiology and management
  publication-title: Crop and Pasture Science
– volume: 46
  start-page: 359
  year: 2012
  end-page: 369
  article-title: Plant virus metagenomics: biodiversity and ecology
  publication-title: Annual Review of Genetics
– volume: 99
  start-page: 195
  year: 1981
  end-page: 209
  article-title: Plant virus ecology: ingredients, interactions and environmental influences
  publication-title: Annals of Applied Biology
– volume: 85
  start-page: 79
  year: 1977
  end-page: 92
  article-title: Effects of virus genotype and temperature on seed transmission of nepoviruses
  publication-title: Annals of Applied Biology
– volume: 107
  start-page: 3600
  year: 2010
  end-page: 3605
  article-title: Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– year: 1986
– volume: 64
  start-page: 303
  year: 1995
  end-page: 314
  article-title: Spatial analysis by distance indices
  publication-title: Journal of Animal Ecology
– volume: 42
  start-page: 115
  year: 1955
  end-page: 121
  article-title: Past and present trends in plant virus research
  publication-title: Annals of Applied Biology
– volume: 73
  start-page: 53
  year: 1973
  end-page: 66
  article-title: The role of weed hosts and the distribution and activity of vector nematodes in the ecology of tobacco rattle virus
  publication-title: Annals of Applied Biology
– start-page: 15
  year: 2008
  end-page: 26
– volume: 145
  start-page: 260
  year: 2012
  end-page: 271
  article-title: Direct and indirect effects of thrips‐transmitted Tospoviruses on the preference and fitness of its vector,
  publication-title: Entomologia Experimentalis et Applicata
– volume: 8
  start-page: e83066
  year: 2013
  article-title: A trio of viral proteins tunes aphid–plant interactions in
  publication-title: PLoS ONE
– volume: 49
  start-page: 219
  year: 2011
  end-page: 248
  article-title: Emerging virus diseases transmitted by whiteflies
  publication-title: Annual Review of Phytopathology
– volume: 146
  start-page: 337
  year: 2005
  end-page: 350
  article-title: Patterns of spread of two non‐persistently aphid‐borne viruses in lupin stands under four different infection scenarios
  publication-title: Annals of Applied Biology
– volume: 71
  start-page: 9
  year: 2000
  end-page: 21
  article-title: The ecology of and sustainable agriculture
  publication-title: Virus Research
– volume: 8
  start-page: e81479
  year: 2013
  article-title: Genetic variability and evolutionary implications of RNA silencing suppressor genes in RNA1 of isolates infecting sweetpotato and related wild species
  publication-title: PLoS ONE
– start-page: 53
  year: 1981
  end-page: 70
– volume: 4
  start-page: 3069
  year: 2012
  end-page: 3089
  article-title: Spatio‐temporal dynamics of viruses are differentially affected by parasitoids depending on the mode of transmission
  publication-title: Viruses
– volume: 84
  start-page: 103
  year: 2000
  article-title: First report of on tomato
  publication-title: Plant Disease
– volume: 92
  start-page: 119
  year: 1979
  end-page: 123
  article-title: Further studies on the effect of resistance to in raspberry ( ) on the spread of aphid‐borne viruses
  publication-title: Annals of Applied Biology
– year: 2014
  article-title: Trends in plant virus epidemiology: opportunities from new or improved technologies
  publication-title: Virus Research
– volume: 28
  start-page: 238
  year: 1941
  end-page: 243
  article-title: Transmission of tobacco etch viruses by aphids
  publication-title: Annals of Applied Biology
– volume: 7
  start-page: e48177
  year: 2012
  article-title: Discovery and targeted LC‐MS/MS of purified polerovirus reveals differences in the virus‐host interactome associated with altered aphid transmission
  publication-title: PLoS ONE
– volume: 67
  start-page: 205
  year: 2006
  end-page: 244
  article-title: Control of plant virus diseases
  publication-title: Advances in Virus Research
– volume: 59
  start-page: 49
  year: 1967
  end-page: 62
  article-title: Seed‐transmission of nematode‐borne viruses
  publication-title: Annals of Applied Biology
– start-page: 350
  year: 1986
  end-page: 386
– volume: 121
  start-page: 329
  year: 1992
  end-page: 343
  article-title: Subterranean clover mottle sobemovirus: its host range, resistance in subterranean clover and transmission through seed and by grazing animals
  publication-title: Annals of Applied Biology
– volume: 132
  start-page: 91
  year: 1998
  end-page: 105
  article-title: Determining the effectiveness of grazing and trampling by livestock in transmitting white clover mosaic and subterranean clover mottle viruses
  publication-title: Annals of Applied Biology
– volume: 8
  start-page: 1
  year: 1983
  end-page: 85
  article-title: Progress curves of plant virus disease
  publication-title: Advances in Applied Biology
– volume: 9
  start-page: 369
  year: 2008
  end-page: 384
  article-title: The evolution of virulence and pathogenicity in plant pathogen populations
  publication-title: Molecular Plant Pathology
– volume: 40
  start-page: 324
  year: 1991
  end-page: 339
  article-title: The ecology of tropical plant virus diseases
  publication-title: Plant Pathology
– volume: 67
  start-page: 1
  year: 2006
  end-page: 544
  article-title: Plant virus epidemiology
  publication-title: Advances in Virus Research
– volume: 145
  start-page: 339
  year: 2004
  end-page: 343
  article-title: Analysing spatial patterns of spread of and lettuce big‐vein disease in lettuce field plantings
  publication-title: Annals of Applied Biology
– volume: 15
  start-page: 1884
  year: 2009
  end-page: 1894
  article-title: Climate change effects on physiology and population processes of hosts and vectors that influence the spread of hemipteran‐borne plant viruses
  publication-title: Global Change Biology
– volume: 159
  start-page: 115
  year: 2011
  end-page: 123
  article-title: Search for factors involved in the rapid shift in (WMV) populations in South‐eastern France
  publication-title: Virus Research
– volume: 112
  start-page: 1
  year: 1988
  end-page: 11
  article-title: Migration of alate morphs of the bird cherry aphid ( ) and implications for the epidemiology of barley yellow dwarf virus
  publication-title: Annals of Applied Biology
– year: 1970
– volume: 159
  start-page: 132
  year: 2011
  end-page: 140
  article-title: Phylogeography and molecular epidemiology of
  publication-title: Virus Research
– start-page: 229
  year: 2008
  end-page: 250
– volume: 106
  start-page: 451
  year: 1985
  end-page: 460
  article-title: The role of flying aphid vectors in the transmission of cucumber mosaic virus and potato virus Y to peppers in Israel
  publication-title: Annals of Applied Biology
– volume: 56
  start-page: 729
  year: 2007
  end-page: 742
  article-title: Virus impact at the interface of an ancient ecosystem and a recent agroecosystem: studies on three legume‐infecting potyviruses in the South West Australian Floristic Region
  publication-title: Plant Pathology
– volume: 128
  start-page: 159
  year: 1996
  end-page: 183
  article-title: The biology of the tospoviruses
  publication-title: Annals of Applied Biology
– start-page: 1
  year: 2004
  end-page: 30
– volume: 2
  start-page: e00183
  year: 2013
  article-title: A virus responds instantly to the presence of the vector on the host and forms transmission morphs
  publication-title: eLIFE
– volume: 144
  start-page: 339
  year: 2004
  end-page: 346
  article-title: The incidence and distribution of viruses infecting lettuce, cultivated Brassica and associated natural vegetation in Spain
  publication-title: Annals of Applied Biology
– volume: 71
  start-page: 107
  year: 2000
  end-page: 121
  article-title: Eight decades of maize streak virus research
  publication-title: Virus Research
– volume: 135
  start-page: 401
  year: 1999
  end-page: 407
  article-title: Effects of turnip mosaic virus and turnip yellow mosaic virus on the survival, growth and reproduction of wild cabbage ( )
  publication-title: Annals of Applied Biology
– year: 2001
– volume: 124
  start-page: 45
  year: 1994
  end-page: 58
  article-title: Effects of mulching with cereal straw and row spacing on spread of bean yellow mosaic potyvirus into narrow‐leafed lupins ( )
  publication-title: Annals of Applied Biology
– volume: 59
  start-page: 63
  year: 1967
  end-page: 76
  article-title: Seed‐transmission in the ecology of nematode–borne viruses
  publication-title: Annals of Applied Biology
– volume: 89
  start-page: 2063
  year: 2008
  end-page: 2074
  article-title: Recombination, decreased host specificity and increased mobility have driven the emergence of maize streak virus as an agricultural pathogen
  publication-title: Journal of General Virology
– volume: 71
  start-page: 1
  year: 2000
  end-page: 8
  article-title: Molecular epidemiology of and its satellite RNA
  publication-title: Virus Research
– volume: 26
  start-page: 1162
  year: 2012
  end-page: 1175
  article-title: Transmission mechanisms shape pathogen effects on host‐vector interactions: evidence from plant viruses
  publication-title: Functional Ecology
– volume: 156
  start-page: 401
  year: 2010
  end-page: 410
  article-title: Epidemics of , and in tomato crops: do mixed infections contribute to torrado disease epidemiology?
  publication-title: Annals of Applied Biology
– volume: 149
  start-page: 137
  year: 2006
  end-page: 144
  article-title: Current characteristics of cassava mosaic disease in postepidemic areas increase the range of possible management options
  publication-title: Annals of Applied Biology
– volume: 77
  start-page: 271
  year: 1974
  end-page: 281
  article-title: Spread of raspberry bushy dwarf virus by pollination, its association with crumbly fruit, and problems of control
  publication-title: Annals of Applied Biology
– volume: 22
  start-page: 544
  year: 1964
  end-page: 550
  article-title: Specific nematode vectors for serologically distinctive forms of raspberry ringspot and tomato black ring viruses
  publication-title: Annals of Applied Biology
– volume: 67
  start-page: 89
  year: 2006
  end-page: 125
  article-title: Plant virus epidemiology: the concept of host genetic vulnerability
  publication-title: Advances in Virus Research
– volume: 37
  start-page: 58
  year: 1950
  end-page: 65
  article-title: The correlation of aphid numbers with the spread of leaf roll and rugose mosaic in potato crops
  publication-title: Annals of Applied Biology
– volume: 140
  start-page: 69
  year: 2002
  end-page: 79
  article-title: Deploying strain specific hypersensitive resistance to diminish temporal virus spread
  publication-title: Annals of Applied Biology
– volume: 38
  start-page: 743
  year: 1951
  end-page: 764
  article-title: The spread of beet yellows and beet mosaic viruses in the sugar beet root crop. I. Field observations on the virus diseases of sugar beet and their vectors Sulz. and Koch
  publication-title: Annals of Applied Biology
– volume: 91
  start-page: 1092
  year: 2010
  end-page: 1108
  article-title: Recombination and selection pressure in the ipomovirus (Potyviridae) in wild species and cultivated sweetpotato in the centre of evolution in East Africa
  publication-title: Journal of General Virology
– volume: 147
  start-page: 57
  year: 2005
  end-page: 67
  article-title: Patterns of spread of in carrot plantings and validation of control measures
  publication-title: Annals of Applied Biology
– volume: 146
  start-page: 95
  year: 2005
  end-page: 103
  article-title: Suppressing spread of by drenching infected source or healthy recipient plants with neonicotinoid insecticides to control thrips vectors
  publication-title: Annals of Applied Biology
– volume: 159
  start-page: 183
  year: 2011
  end-page: 193
  article-title: Interactions in a host plant–virus‐vector–parasitoid system: modeling the consequences for virus transmission and disease dynamics
  publication-title: Virus Research
– volume: 8
  start-page: 261
  year: 1939
  end-page: 276
  article-title: Populations of , with special reference to virus transmission
  publication-title: Journal of Animal Ecology
– year: 2014
  article-title: Preference by a virus vector for infected plants is reversed after virus acquisition
  publication-title: Virus Research
– volume: 108
  start-page: 9350
  year: 2011
  end-page: 9355
  article-title: Infection with a plant virus modifies vector feeding behaviour
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 141
  start-page: 201
  year: 2009
  end-page: 208
  article-title: Emergence of new strains of in south‐eastern France: evidence for limited spread but rapid local population shift
  publication-title: Virus Research
– volume: 142
  start-page: 143
  year: 2003
  article-title: Geminiviruses: major threats to world agriculture
  publication-title: Annals of Applied Biology
– volume: 157
  start-page: 125
  year: 2010
  end-page: 133
  article-title: Low frequency of horizontal and vertical transmission of two begomoviruses through whiteflies exhibits little relevance to the vector infectivity
  publication-title: Annals of Applied Biology
– volume: 63
  start-page: 1
  year: 1969
  end-page: 17
  article-title: The behaviour of potato mop‐top virus in soil, and evidence for its transmission by (Wallr.) Lagerh
  publication-title: Annals of Applied Biology
– volume: 69
  start-page: 446
  year: 1979
  end-page: 449
  article-title: Host plant reactions, some properties and serology of wild potato mosaic virus
  publication-title: Phytopatholgy
– volume: 31
  start-page: 321
  year: 1986
  end-page: 333
  article-title: Plant viruses in rivers and lakes
  publication-title: Advances in Virus Research
– volume: 144
  start-page: 347
  year: 2004
  end-page: 355
  article-title: reduction by straw mulch in organic potatoes
  publication-title: Annals of Applied Biology
– volume: 128
  start-page: 303
  year: 1996
  end-page: 315
  article-title: Determining the effectiveness of resistance to subterranean clover mottle sobemovirus in different genotypes of subterranean clover in the field using the gazing animal as virus vector
  publication-title: Annals of Applied Biology
– volume: 141
  start-page: 45
  year: 2002
  end-page: 59
  article-title: Effect of strain‐specific hypersensitive resistance on spatial patterns of virus spread
  publication-title: Annals of Applied Biology
– volume: 125
  start-page: 135
  year: 2007
  end-page: 144
  article-title: Infection of potato plants with potato leafroll virus changes attraction and feeding behaviour of
  publication-title: Entomologia Experimentalis et Applicata
– volume: 125
  start-page: 311
  year: 1994
  end-page: 325
  article-title: Geminivirus‐transmission and biological characterization of (Gennadius) biotypes from different geographic regions
  publication-title: Annals of Applied Biology
– volume: 140
  start-page: 37
  year: 2002
  end-page: 52
  article-title: Temporal dynamics of spread of four viruses within mixed species perennial pastures
  publication-title: Annals of Applied Biology
– year: 2012
– volume: 145
  start-page: 231
  year: 2004
  end-page: 245
  article-title: Patterns of spread of in field crops of lettuce and pepper: spatial dynamics and validation of control measures
  publication-title: Annals of Applied Biology
– start-page: 224
  year: 2003
  end-page: 226
– volume: 118
  start-page: 319
  year: 1991
  end-page: 329
  article-title: Further studies on cucumber mosaic virus infection of narrow‐leafed lupin ( ): seed‐borne infection, aphid transmission, spread and effects on grain yield
  publication-title: Annals of Applied Biology
– start-page: 349
  year: 1983
  end-page: 360
– volume: 7
  start-page: e1002796
  year: 2012
  article-title: Effect of biodiversity changes in disease risk: exploring emergence in a plant‐virus system
  publication-title: PLoS Pathogens
– volume: 42
  start-page: 122
  year: 1955
  end-page: 128
  article-title: Serological diagnosis of plant virus diseases
  publication-title: Annals of Applied Biology
– volume: 58
  start-page: 219
  year: 1966
  end-page: 230
  article-title: Field experiments on the spread of blackcurrant reversion virus and its gall mite vector ( , Nal.)
  publication-title: Annals of Applied Biology
– volume: 64
  start-page: 1050
  year: 1974
  end-page: 1056
  article-title: Vector relationships and development of epidemics – epidemiology of plant viruses
  publication-title: Phytopathology
– volume: 4
  start-page: 93
  year: 1959
  end-page: 135
– start-page: 13
  year: 1986
  end-page: 33
– volume: 100
  start-page: 57
  year: 2004
  end-page: 65
  article-title: The ecology and epidemiology of whitefly‐transmitted viruses in Latin America
  publication-title: Virus Research
– volume: 94
  start-page: 321
  year: 1980
  end-page: 333
  article-title: A biologist's view of twenty‐five years of plant virus research
  publication-title: Annals of Applied Biology
– ident: e_1_2_11_179_1
  doi: 10.1146/annurev.py.20.090182.001205
– ident: e_1_2_11_49_1
  doi: 10.1016/B978-0-12-374153-0.00011-4
– ident: e_1_2_11_141_1
  doi: 10.1111/j.1744-7348.1985.tb03135.x
– ident: e_1_2_11_17_1
  doi: 10.1111/j.1744-7348.2003.tb00239.x
– ident: e_1_2_11_50_1
  doi: 10.1111/j.1744-7348.2010.00397.x
– ident: e_1_2_11_171_1
  doi: 10.1111/j.1744-7348.1966.tb04381.x
– ident: e_1_2_11_25_1
  doi: 10.1146/annurev.en.06.010161.002023
– volume: 67
  start-page: 1
  year: 2006
  ident: e_1_2_11_187_1
  article-title: Plant virus epidemiology
  publication-title: Advances in Virus Research
– ident: e_1_2_11_121_1
  doi: 10.1111/j.1744-7348.1996.tb07097.x
– ident: e_1_2_11_51_1
  doi: 10.1111/j.1744-7348.1981.tb02988.x
– ident: e_1_2_11_72_1
  doi: 10.1111/j.1744-7348.1988.tb03328.x
– ident: e_1_2_11_208_1
  doi: 10.1111/aab.12022
– ident: e_1_2_11_167_1
  doi: 10.1073/pnas.1113227108
– ident: e_1_2_11_188_1
  doi: 10.1016/S0065-3527(06)67007-3
– ident: e_1_2_11_123_1
  doi: 10.1111/j.1744-7348.1974.tb01403.x
– ident: e_1_2_11_145_1
  doi: 10.1038/npg.els.0000759
– ident: e_1_2_11_210_1
  doi: 10.1094/PDIS.2000.84.1.103C
– ident: e_1_2_11_84_1
  doi: 10.1111/j.1744-7348.1969.tb05461.x
– ident: e_1_2_11_81_1
  doi: 10.1079/PAVSNNR20127022
– ident: e_1_2_11_149_1
  doi: 10.1371/journal.ppat.1003304
– ident: e_1_2_11_122_1
  doi: 10.1111/j.1744-7348.1967.tb04417.x
– start-page: 89
  volume-title: Pests, Pathogens and Vegetation
  year: 1981
  ident: e_1_2_11_70_1
– ident: e_1_2_11_95_1
  doi: 10.1016/j.virusres.2008.11.020
– ident: e_1_2_11_169_1
  doi: 10.1016/j.virusres.2012.03.016
– ident: e_1_2_11_125_1
  doi: 10.1016/j.virusres.2011.04.011
– ident: e_1_2_11_48_1
  doi: 10.1007/978-3-642-68153-0_15
– volume: 8
  start-page: 1
  year: 1983
  ident: e_1_2_11_180_1
  article-title: Progress curves of plant virus disease
  publication-title: Advances in Applied Biology
– ident: e_1_2_11_205_1
  doi: 10.1099/vir.0.2008/003590-0
– ident: e_1_2_11_18_1
  doi: 10.1111/j.1744-7348.1950.tb00950.x
– ident: e_1_2_11_194_1
  doi: 10.1111/j.1744-7348.1984.tb03031.x
– ident: e_1_2_11_202_1
  doi: 10.1099/vir.0.016089-0
– ident: e_1_2_11_109_1
  doi: 10.1071/AR9940183
– ident: e_1_2_11_182_1
  doi: 10.1098/rstb.1983.0071
– ident: e_1_2_11_105_1
  doi: 10.1111/j.1744-7348.1999.tb00867.x
– ident: e_1_2_11_39_1
  doi: 10.3390/v4113069
– volume-title: Mathews' Plant Virology
  year: 2002
  ident: e_1_2_11_60_1
– ident: e_1_2_11_77_1
  doi: 10.1016/S0065-3527(06)67006-1
– ident: e_1_2_11_32_1
  doi: 10.1111/j.1744-7348.1976.tb00600.x
– ident: e_1_2_11_94_1
  doi: 10.1016/S0065-3527(08)60267-5
– ident: e_1_2_11_117_1
  doi: 10.1111/j.1744-7348.2004.tb00349.x
– ident: e_1_2_11_30_1
  doi: 10.1111/j.1744-7348.1973.tb01309.x
– ident: e_1_2_11_34_1
  doi: 10.1111/j.1744-7348.2005.04033.x
– volume-title: AAB Descriptions of Plant Viruses
  year: 2005
  ident: e_1_2_11_120_1
– ident: e_1_2_11_165_1
  doi: 10.1111/j.1744-7348.2006.00083.x
– ident: e_1_2_11_219_1
  doi: 10.1111/j.1744-7348.1992.tb03446.x
– ident: e_1_2_11_14_1
  doi: 10.1016/S0065-3527(08)60040-8
– ident: e_1_2_11_110_1
  doi: 10.1111/j.1744-7348.1998.tb05187.x
– ident: e_1_2_11_28_1
  doi: 10.1371/journal.pone.0048177
– ident: e_1_2_11_62_1
  doi: 10.1038/srep00578
– ident: e_1_2_11_65_1
  doi: 10.1016/j.virusres.2011.04.027
– ident: e_1_2_11_99_1
  doi: 10.1029/2006GL028443
– ident: e_1_2_11_21_1
  doi: 10.1111/j.1744-7348.1951.tb07838.x
– start-page: 255
  volume-title: Viruses with Fungal Vectors
  year: 1988
  ident: e_1_2_11_71_1
– ident: e_1_2_11_58_1
  doi: 10.1111/j.1744-7348.1963.tb03748.x
– ident: e_1_2_11_64_1
  doi: 10.1146/annurev.py.28.090190.002141
– ident: e_1_2_11_138_1
  doi: 10.1016/j.virusres.2011.05.016
– volume-title: Pests, Pathogens and Vegetation
  year: 1981
  ident: e_1_2_11_177_1
– ident: e_1_2_11_73_1
  doi: 10.1111/j.1744-7348.1993.tb04053.x
– ident: e_1_2_11_157_1
  doi: 10.1111/eea.12011
– ident: e_1_2_11_88_1
  doi: 10.1111/j.1744-7348.2005.00013.x
– ident: e_1_2_11_36_1
  doi: 10.1111/j.1744-7348.2004.tb00379.x
– ident: e_1_2_11_12_1
  doi: 10.1111/j.1744-7348.1997.tb05158.x
– ident: e_1_2_11_69_1
  doi: 10.1111/j.1744-7348.1987.tb02033.x
– ident: e_1_2_11_78_1
  doi: 10.1016/j.virusres.2008.07.028
– ident: e_1_2_11_156_1
  doi: 10.1016/S0065-3527(06)67008-5
– ident: e_1_2_11_115_1
  doi: 10.1007/s007050170153
– start-page: 350
  volume-title: Plant Virus Epidemics: Monitoring, Modeling and Predicting Outbreaks
  year: 1986
  ident: e_1_2_11_183_1
– ident: e_1_2_11_5_1
  doi: 10.1007/s10658-013-0317-1
– ident: e_1_2_11_74_1
  doi: 10.1111/j.1744-7348.1994.tb04114.x
– ident: e_1_2_11_166_1
  doi: 10.1111/j.1744-7348.1988.tb02035.x
– ident: e_1_2_11_11_1
  doi: 10.1093/molbev/msr314
– ident: e_1_2_11_146_1
  doi: 10.1111/mec.12232
– ident: e_1_2_11_137_1
  doi: 10.1007/978-3-540-75763-4_2
– ident: e_1_2_11_119_1
  doi: 10.1371/journal.pone.0061543
– ident: e_1_2_11_87_1
  doi: 10.1111/j.1744-7348.1980.tb03896.x
– ident: e_1_2_11_142_1
  doi: 10.1016/j.virusres.2013.11.005
– ident: e_1_2_11_214_1
  doi: 10.1111/j.1744-7348.1951.tb07847.x
– ident: e_1_2_11_134_1
  doi: 10.1080/11956860.2002.11682699
– ident: e_1_2_11_103_1
  doi: 10.1111/aab.12074
– ident: e_1_2_11_159_1
  doi: 10.1111/j.1744-7348.1955.tb02417.x
– ident: e_1_2_11_170_1
  doi: 10.1111/j.1744-7348.2003.tb00246.x
– ident: e_1_2_11_56_1
  doi: 10.1111/j.1744-7348.1981.tb04787.x
– ident: e_1_2_11_133_1
  doi: 10.2307/5892
– ident: e_1_2_11_40_1
  doi: 10.1016/j.virusres.2008.08.018
– ident: e_1_2_11_79_1
  doi: 10.1071/CP13108
– ident: e_1_2_11_96_1
  doi: 10.1016/j.virusres.2011.05.004
– ident: e_1_2_11_203_1
  doi: 10.1371/journal.pone.0081479
– ident: e_1_2_11_41_1
  doi: 10.1111/j.1744-7348.1996.tb05752.x
– ident: e_1_2_11_53_1
  doi: 10.1111/j.1744-7348.1989.tb03361.x
– ident: e_1_2_11_132_1
  doi: 10.1111/j.1744-7348.1970.tb04590.x
– ident: e_1_2_11_173_1
  doi: 10.1146/annurev.py.12.090174.000551
– ident: e_1_2_11_100_1
  doi: 10.1016/j.virusres.2008.12.007
– ident: e_1_2_11_215_1
  doi: 10.1111/j.1744-7348.1975.tb00534.x
– ident: e_1_2_11_22_1
  doi: 10.1111/j.1365-2486.2008.01820.x
– ident: e_1_2_11_35_1
  doi: 10.1111/j.1744-7348.2004.tb00391.x
– ident: e_1_2_11_139_1
  doi: 10.1111/j.1744-7348.2003.tb00262.x
– ident: e_1_2_11_9_1
  doi: 10.1111/j.1744-7348.1955.tb02419.x
– ident: e_1_2_11_118_1
  doi: 10.1111/j.1744-7348.2007.00135.x
– start-page: 61
  volume-title: Plant Virology in Sub‐Saharan Africa
  year: 2003
  ident: e_1_2_11_191_1
– ident: e_1_2_11_216_1
  doi: 10.1111/j.1365-3059.2007.01653.x
– ident: e_1_2_11_42_1
  doi: 10.1111/j.1744-7348.1978.tb07695.x
– ident: e_1_2_11_160_1
  doi: 10.1111/j.1744-7348.1955.tb02416.x
– volume: 5
  start-page: 1
  year: 1980
  ident: e_1_2_11_176_1
  article-title: The origins and epidemiology of some important plant virus diseases
  publication-title: Applied Biology
– ident: e_1_2_11_108_1
  doi: 10.1111/j.1365-2435.2012.02026.x
– ident: e_1_2_11_107_1
  doi: 10.1073/pnas.0907191107
– ident: e_1_2_11_199_1
  doi: 10.1111/aab.12063
– ident: e_1_2_11_3_1
  doi: 10.1111/j.1744-7348.1991.tb05649.x
– ident: e_1_2_11_192_1
  doi: 10.1111/j.1744-7348.1987.tb04187.x
– ident: e_1_2_11_102_1
  doi: 10.1016/j.virusres.2011.05.010
– ident: e_1_2_11_189_1
  doi: 10.1016/S0065-3527(06)67003-6
– ident: e_1_2_11_211_1
  doi: 10.1146/annurev.phyto.38.1.71
– ident: e_1_2_11_4_1
  doi: 10.1016/j.virusres.2011.04.016
– ident: e_1_2_11_127_1
  doi: 10.1371/journal.ppat.1002796
– volume-title: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel for Climate Change
  year: 2007
  ident: e_1_2_11_131_1
– ident: e_1_2_11_204_1
  doi: 10.1111/j.1744-7348.2003.tb00240.x
– volume: 46
  start-page: 95
  year: 1996
  ident: e_1_2_11_135_1
  article-title: SADIE: software to measure and model spatial pattern
  publication-title: Aspects of Applied Biology
– ident: e_1_2_11_140_1
  doi: 10.3732/ajb.1100509
– ident: e_1_2_11_47_1
  doi: 10.1016/S0168-1702(00)00183-0
– ident: e_1_2_11_61_1
  doi: 10.1016/B978‐0‐12‐384871‐0.00014‐5
– ident: e_1_2_11_6_1
  doi: 10.1111/j.1570-7458.2007.00607.x
– ident: e_1_2_11_45_1
  doi: 10.1111/j.1744-7348.1996.tb07325.x
– ident: e_1_2_11_85_1
  doi: 10.1111/j.1744-7348.1972.tb04715.x
– ident: e_1_2_11_113_1
  doi: 10.1111/j.1744-7348.2003.tb00253.x
– ident: e_1_2_11_7_1
  doi: 10.1016/j.tree.2004.07.021
– volume-title: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel for Climate Change
  year: 2007
  ident: e_1_2_11_162_1
– ident: e_1_2_11_206_1
  doi: 10.1111/j.1744-7348.2008.00262.x
– ident: e_1_2_11_212_1
  doi: 10.1111/j.1744-7348.2010.00403.x
– start-page: 1
  volume-title: Virus and Virus‐like Diseases of Major Crops in Developing Countries
  year: 2004
  ident: e_1_2_11_186_1
– ident: e_1_2_11_218_1
  doi: 10.1079/9781780644257.0000
– ident: e_1_2_11_163_1
  doi: 10.1111/j.1744-7348.2004.tb00366.x
– ident: e_1_2_11_31_1
  doi: 10.1016/S0065-3527(06)67001-2
– ident: e_1_2_11_66_1
  doi: 10.1016/j.virusres.2011.05.012
– ident: e_1_2_11_209_1
  doi: 10.1371/journal.pone.0091224
– ident: e_1_2_11_89_1
  doi: 10.1146/annurev-phyto-073009-114444
– ident: e_1_2_11_46_1
  doi: 10.1016/S0168-1702(00)00184-2
– ident: e_1_2_11_15_1
  doi: 10.1016/S0168-1702(00)00192-1
– ident: e_1_2_11_97_1
  doi: 10.1016/j.virusres.2011.04.018
– ident: e_1_2_11_174_1
  doi: 10.1111/j.1744-7348.1976.tb00577.x
– ident: e_1_2_11_168_1
  doi: 10.1111/j.1744-7348.2002.tb00194.x
– ident: e_1_2_11_195_1
  doi: 10.1111/j.1744-7348.1970.tb04597.x
– ident: e_1_2_11_101_1
  doi: 10.1111/j.1744-7348.2006.00073.x
– volume: 22
  start-page: 544
  year: 1964
  ident: e_1_2_11_54_1
  article-title: Specific nematode vectors for serologically distinctive forms of raspberry ringspot and tomato black ring viruses
  publication-title: Annals of Applied Biology
– ident: e_1_2_11_67_1
  doi: 10.1371/journal.pone.0000182
– ident: e_1_2_11_93_1
  doi: 10.1111/j.1744-7348.2011.00501.x
– ident: e_1_2_11_8_1
  doi: 10.1111/j.1744-7348.1995.tb05384.x
– ident: e_1_2_11_68_1
  doi: 10.1111/j.1744-7348.1979.tb02964.x
– ident: e_1_2_11_43_1
  doi: 10.1111/j.1744-7348.1985.tb03118.x
– ident: e_1_2_11_52_1
  doi: 10.1111/j.1744-7348.1977.tb00632.x
– ident: e_1_2_11_116_1
  doi: 10.1016/j.virusres.2003.12.014
– start-page: 53
  volume-title: Pests, Pathogens and Vegetation
  year: 1981
  ident: e_1_2_11_178_1
– ident: e_1_2_11_128_1
  doi: 10.1111/j.1744-7348.2002.tb00209.x
– ident: e_1_2_11_213_1
  doi: 10.1111/j.1570-7458.2012.01278.x
– ident: e_1_2_11_151_1
  doi: 10.1111/j.1364-3703.2007.00460.x
– start-page: 224
  volume-title: Genes in the Environment
  year: 2003
  ident: e_1_2_11_144_1
– ident: e_1_2_11_92_1
  doi: 10.1111/j.1744-7348.1991.tb04875.x
– ident: e_1_2_11_19_1
  doi: 10.1111/j.1744-7348.1965.tb01227.x
– ident: e_1_2_11_158_1
  doi: 10.1111/j.1744-7348.2008.00245.x
– ident: e_1_2_11_16_1
  doi: 10.1016/j.virusres.2011.04.020
– volume-title: Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel for Climate Change
  year: 2007
  ident: e_1_2_11_126_1
– ident: e_1_2_11_164_1
  doi: 10.1073/pnas.1100773108
– ident: e_1_2_11_196_1
  doi: 10.1016/j.virusres.2009.01.011
– ident: e_1_2_11_82_1
  doi: 10.1111/j.1744-7348.2000.tb00067.x
– ident: e_1_2_11_143_1
  doi: 10.1111/j.1744-7348.1998.tb05819.x
– volume-title: Plant Virus Epidemics: Monitoring, Modelling and Predicting Outbreaks
  year: 1986
  ident: e_1_2_11_111_1
– ident: e_1_2_11_129_1
  doi: 10.1038/srep02230
– ident: e_1_2_11_153_1
  doi: 10.1111/j.1744-7348.2004.tb00350.x
– ident: e_1_2_11_24_1
  doi: 10.2307/1234
– ident: e_1_2_11_217_1
  doi: 10.1371/journal.pone.0083066
– ident: e_1_2_11_38_1
  doi: 10.1016/j.virusres.2011.04.014
– ident: e_1_2_11_75_1
  doi: 10.1016/j.virusres.2003.12.011
– ident: e_1_2_11_86_1
  doi: 10.1111/j.1744-7348.1991.tb05632.x
– ident: e_1_2_11_220_1
  doi: 10.1111/j.1365‐294X.2012.05457.x
– ident: e_1_2_11_91_1
  doi: 10.1111/j.1744-7348.1941.tb07556.x
– start-page: 93
  volume-title: Advances in Virus Research
  year: 1959
  ident: e_1_2_11_20_1
– start-page: 57
  volume-title: Comparative Epidemiology
  year: 1980
  ident: e_1_2_11_175_1
– ident: e_1_2_11_114_1
  doi: 10.1016/S0065-3527(06)67004-8
– ident: e_1_2_11_201_1
  doi: 10.1111/j.1365-294X.2010.04682.x
– ident: e_1_2_11_2_1
  doi: 10.1094/PHYTO-01-11-0017
– start-page: 281
  volume-title: Viruses with Fungal Vectors
  year: 1988
  ident: e_1_2_11_154_1
– ident: e_1_2_11_26_1
  doi: 10.1111/j.1744-7348.2002.tb00158.x
– ident: e_1_2_11_33_1
  doi: 10.1111/j.1744-7348.2002.tb00155.x
– start-page: 9
  volume-title: Virus Diseases and Crop Biosecurity, NATO Security through Science Series – C, Environmental Security
  year: 2006
  ident: e_1_2_11_190_1
– ident: e_1_2_11_155_1
  doi: 10.1080/07352680500365257
– start-page: 349
  volume-title: Plant Virus Epidemiology – The Spread and Control of Insect‐borne Pathogens
  year: 1983
  ident: e_1_2_11_181_1
– ident: e_1_2_11_55_1
  doi: 10.1111/j.1744-7348.1980.tb03949.x
– ident: e_1_2_11_27_1
  doi: 10.1111/aab.12084
– ident: e_1_2_11_37_1
  doi: 10.1071/AR07475
– ident: e_1_2_11_152_1
  doi: 10.1111/j.1744-7348.2010.00423.x
– ident: e_1_2_11_193_1
  doi: 10.1111/j.1744-7348.1979.tb04720.x
– volume: 11
  start-page: 199
  year: 2003
  ident: e_1_2_11_185_1
  article-title: Control of plant virus diseases in Sub‐Saharan Africa: the possibility and feasibility of an integrated approach
  publication-title: African Journal of Crop Science
– ident: e_1_2_11_13_1
  doi: 10.1016/B978-0-12-470240-0.50005-6
– ident: e_1_2_11_80_1
  doi: 10.1016/j.virusres.2013.11.003
– ident: e_1_2_11_124_1
  doi: 10.1146/annurev-phyto-072910-095235
– ident: e_1_2_11_150_1
  doi: 10.1111/j.1744-7348.2006.00096.x
– ident: e_1_2_11_29_1
  doi: 10.1007/BF02979527
– ident: e_1_2_11_147_1
  doi: 10.1111/j.1744-7348.2010.00441.x
– ident: e_1_2_11_221_1
  doi: 10.1146/annurev-phyto-082712-102234
– ident: e_1_2_11_90_1
  doi: 10.1111/j.1744-7348.1998.tb05800.x
– ident: e_1_2_11_198_1
  doi: 10.1111/j.1744-7348.2011.00462.x
– ident: e_1_2_11_197_1
  doi: 10.1111/j.1744-7348.2010.00405.x
– volume-title: Plant Virology
  year: 1970
  ident: e_1_2_11_106_1
– ident: e_1_2_11_23_1
  doi: 10.1016/j.virusres.2013.12.012
– ident: e_1_2_11_98_1
  doi: 10.1111/j.1744-7348.1967.tb04416.x
– ident: e_1_2_11_57_1
  doi: 10.1111/j.1744-7348.2005.04111.x
– start-page: 377
  volume-title: Plant Virus Epidemiology: The Spread and Control of Insect‐borne Viruses
  year: 1983
  ident: e_1_2_11_136_1
– ident: e_1_2_11_207_1
  doi: 10.1111/j.1744-7348.2009.00359.x
– ident: e_1_2_11_44_1
  doi: 10.1146/annurev.phyto.44.120705.104644
– ident: e_1_2_11_83_1
  doi: 10.1094/Phyto-69-446
– ident: e_1_2_11_161_1
  doi: 10.1111/aab.12009
– ident: e_1_2_11_104_1
  doi: 10.7554/eLife.00183
– ident: e_1_2_11_10_1
  doi: 10.1111/j.1744-7348.1994.tb04972.x
– ident: e_1_2_11_184_1
  doi: 10.1111/j.1365-3059.1991.tb02386.x
– ident: e_1_2_11_200_1
  doi: 10.1094/PHYTO-98-6-0640
– ident: e_1_2_11_76_1
  doi: 10.1111/j.1744-7348.2005.040096.x
– ident: e_1_2_11_130_1
  doi: 10.1016/j.virusres.2009.01.009
– ident: e_1_2_11_148_1
  doi: 10.1146/annurev-genet-110711-155600
– volume: 64
  start-page: 1050
  year: 1974
  ident: e_1_2_11_172_1
  article-title: Vector relationships and development of epidemics – epidemiology of plant viruses
  publication-title: Phytopathology
– volume-title: Climate Change 2007: Mitigation of Climate Change. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2007
  ident: e_1_2_11_112_1
– ident: e_1_2_11_59_1
  doi: 10.1111/j.1744-7348.1955.tb02418.x
– start-page: 13
  volume-title: Plant Virus Epidemics: Monitoring, Modelling and Predicting Outbreaks
  year: 1986
  ident: e_1_2_11_63_1
SSID ssj0009092
Score 2.3226364
SecondaryResourceType review_article
Snippet After clarifying the relationship between the closely related concepts of ecology and epidemiology as they are used in plant virology, this article provides a...
SourceID proquest
pascalfrancis
crossref
wiley
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 320
SubjectTerms Agro-ecological interface
Agronomy. Soil science and plant productions
biodiversity
Biological and medical sciences
Climate change
disease outbreaks
Ecology
endangered species
epidemics
Epidemiology
evolution
field and molecular biology
food availability
food security
Food supply
Fundamental and applied biological sciences. Psychology
future prospects
General agroecology
General agroecology. Agricultural and farming systems. Agricultural development. Rural area planning. Landscaping
General agronomy. Plant production
Generalities. Agricultural and farming systems. Agricultural development
Historical account
history
Host plants
insect vectors
Insects
molecular epidemiology
Natural vegetation
Phytopathology. Animal pests. Plant and forest protection
Plant growth
plant virology
plant viruses
Plant viruses and viroids
progress
Technological change
technological innovation
vegetation
virology
virus-vector interactions
Viruses
Title Plant virus ecology and epidemiology: historical perspectives, recent progress and future prospects
URI https://api.istex.fr/ark:/67375/WNG-8TDPM5MK-6/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Faab.12123
https://www.proquest.com/docview/1514820022
https://www.proquest.com/docview/1524425189
https://www.proquest.com/docview/1663563355
Volume 164
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbGJCRe2MYPLduYDEKIBzI5iePG8FTYxgTqhGAVe0CybMcBNJROTYsof_3u7CRdESDEm-WcpeR8d_6S3H1HyGNtkNacy1jaqoi5tUlspOPYNTVJjeFJ5esrRqfiZMzfnOfna-RFVwsT-CH6D27oGT5eo4Nr01xzcq0NUiOkyPSZZAJ58w_fL6mjJJNp1y2PD7hoWYUwi6dfuXIW3aj0BBAqKvcHZkjqBpRUhe4WK_DzOoj1p9DxBvnU3X9IPrk4mM_Mgf35C7Xjfz7gJrndolM6DOa0RdZcfYfcDP0qFzA68hzXi7vEYrOjGf3-dTpvqAuzVNcldcuOs4vn9EtPQkIvl1WdzTMKcRZOO-qzwyDW-qWB3gTnvGBzj4yPj85encRtv4bY8jzP4sIYYQAflizTrMqsYJXzeK6AsCFKzirO04HTsjQOa4wKIQZpZVOXZLy0SZndJ-v1pHbbhBZMupzpVHPJwF5APHMOEDavSulkaSPytNs5ZVsyc-yp8U11LzWgPeW1F5FHvehlYPD4ndA2bL_SnyGyqvGHFN87PdUa4xF54m2iX6ynF5gNN8jVx9PXqjg7fDfKR2-ViMj-itH0CwDBYSEmCOx1VqTaSNEoQFy8wEyZNCIP-8vg4_jjRtduMkcZAGEARAv5FxmEjiID-Ai68Wb156dVw-FLP9j5d9Fdcgu1EnI998j6bDp3DwCPzcy-d7wrbUwtuQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9tQwhe-EYLjGEQQjyQKR9OGiNeCmwUtlYIWm0vyLIdB9BQOjUtovz13DkfXREgxFuUnB98uTv_bN_9DuCR0kRrzoUvTJH53JjQ18Jy6poaRlrzsHD1FcNROpjwtyfJyQY8b2than6I7sCNPMPFa3JwOpA-5-VKaeJGiOJNuODu5wgSvV-RR4lARG2_PN7jacMrRHk83dC11WizUFPEqKTe75QjqSpUU1H3t1gDoOdhrFuHDq7Cx3YGdfrJ6d5irvfMj1_IHf93itfgSgNQWb-2qOuwYcsbcLFuWbnEp31Hc728CYb6Hc3Zty-zRcVs_ZapMmd21XR2-Yx97nhI2NmqsLN6yjDU4oLHXIIYhls3tGY4oXdOsLoFk4P98cuB37Rs8A1PktjPtE41QsQ8iFVQxCYNCusgXYaRI815UHAe9awSubZUZpSlaS8qTGTDmOcmzOPbsFVOS7sNLAuETQIVKS4CNBkUj61FkM2LXFiRGw-etL9OmobPnNpqfJXtvga1J532PHjYiZ7VJB6_E9rG_y_VJwyucvIhoq2nY1sLuAePnVF0g9XslBLieok8Hr2W2fjVu2EyPJSpB7trVtMNQBBHtZgosNOakWyCRSURdPGMkmUiDx50n9HN6e5GlXa6IBnEYYhFM_EXGUKPaYwIEnXj7OrPs5X9_gv3cOffRe_DpcF4eCSP3owO78Jl0lCd-rkDW_PZwt5DeDbXu84LfwI7LDHX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2IRAvfKMFxjAIIR7IlA_HjeGpsJXBaDXBKvaAZNmODWgorZoWUf567pyPrggQ4i1yzg8-351_Tu5-R8gjpZHWnIlQGJeHzJg41MIy7JoaJ1qz2Pn6iuGIH47Zm9PsdIM8b2than6I7oMbeoaP1-jg08Kdc3KlNFIjJOkmucA4HJOIiN6tuKNEJJK2XR7rMd7QCmEaTzd17TDadGoCEBW1-x1TJFUFWnJ1e4s1_HkexfpjaHCVfGwXUGefnO0t5nrP_PiF2_E_V3iNXGngKe3X9nSdbNjyBrlYN6xcwtOBJ7le3iQGux3N6bcvs0VFbT1KVVlQu2o5u3xGP3csJHS6KuusnlIItHDcUZ8eBsHWT635TXDMC1a3yHhwcPLyMGwaNoSGZVka5lpzDQCxiFIVudTwyFkP6HKIG7xgkWMs6VklCm2xyCjnvJc4k9g4ZYWJi_Q22Sonpd0mNI-EzSKVKCYiMBgQT60FiM1cIawoTECetDsnTcNmjk01vsr2VgPak157AXnYiU5rCo_fCW3D9kv1CUKrHL9P8OLpudYiFpDH3ia6yWp2hulwvUx-GL2S-cn-8TAbHkkekN01o-kmAITDSkwQ2GmtSDahopIAuViOqTJJQB50r8HJ8c-NKu1kgTKAwgCJ5uIvMogdeQr4EXTjzerPq5X9_gv_cOffRe-TS8f7A_n29ejoLrmMCqrzPnfI1ny2sPcAm831rvfBn3tQMIY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plant+virus+ecology+and+epidemiology%3A+historical+perspectives%2C+recent+progress+and+future+prospects&rft.jtitle=Annals+of+applied+biology&rft.au=Jones%2C+R.A.C.&rft.date=2014-05-01&rft.issn=0003-4746&rft.eissn=1744-7348&rft.volume=164&rft.issue=3&rft.spage=320&rft.epage=347&rft_id=info:doi/10.1111%2Faab.12123&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_aab_12123
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-4746&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-4746&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-4746&client=summon