Plant virus ecology and epidemiology: historical perspectives, recent progress and future prospects
After clarifying the relationship between the closely related concepts of ecology and epidemiology as they are used in plant virology, this article provides a historical perspective on the subject before discussing recent progress and future prospects. Ecology focuses on virus populations interactin...
Saved in:
Published in | Annals of applied biology Vol. 164; no. 3; pp. 320 - 347 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.05.2014
Blackwell Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0003-4746 1744-7348 |
DOI | 10.1111/aab.12123 |
Cover
Abstract | After clarifying the relationship between the closely related concepts of ecology and epidemiology as they are used in plant virology, this article provides a historical perspective on the subject before discussing recent progress and future prospects. Ecology focuses on virus populations interacting with host populations within a variable environment, while epidemiology focuses on the complex association between virus and host plant, and factors that influence spread. The evolution and growth of plant virus ecology and epidemiology since its inception to the present day, and the major milestones in its development, are illustrated by examples from influential historical reviews published in the Annals of Applied Biology over the last 100 years. Original research papers published in the journal are used to illustrate important ecological and epidemiological principles and new developments in both fields. Both areas are multifaceted with many factors influencing host plants, and virus and vector behaviour. The highly diverse scenarios that arise from this process influence the virus population and the spatiotemporal dynamics of virus distribution and spread. The review then describes exciting progress in research in the areas of molecular epidemiology and ecology, and understanding virus–vector interactions. Application of new molecular techniques has greatly accelerated the rate of progress in understanding virus populations and the way changes in these populations influence epidemics. Viruses cause direct and plant‐mediated indirect effects on insect vectors by modifying their life cycles, fitness and behaviour, and one of the most fascinating recent fields of research concerns plant‐mediated indirect virus manipulation of insect vector behaviour that encourages virus spread. Next, the review describes the current state of knowledge about spread of plant viruses at the critical agro‐ecological interface between managed and natural vegetation. There is an urgent need to understand how viruses move in both directions between the two and be able to anticipate these kinds of events. To obtain an understanding of, and ability to foresee, such events will require a major research effort into the future. The review finishes by discussing the implications of climate change and rapid technological innovation for the types of research needed to avoid virus threats to future world food supplies and plant biodiversity. There has been lamentably little focus on research to determine the magnitude of the threat from diseases caused in diverse plant virus pathosystems under different climate change scenarios. Increasing technological innovation offers many opportunities to help ensure this situation is addressed, and provide plant virus ecology and epidemiology with a very exciting future. |
---|---|
AbstractList | After clarifying the relationship between the closely related concepts of ecology and epidemiology as they are used in plant virology, this article provides a historical perspective on the subject before discussing recent progress and future prospects. Ecology focuses on virus populations interacting with host populations within a variable environment, while epidemiology focuses on the complex association between virus and host plant, and factors that influence spread. The evolution and growth of plant virus ecology and epidemiology since its inception to the present day, and the major milestones in its development, are illustrated by examples from influential historical reviews published in the Annals of Applied Biology over the last 100 years. Original research papers published in the journal are used to illustrate important ecological and epidemiological principles and new developments in both fields. Both areas are multifaceted with many factors influencing host plants, and virus and vector behaviour. The highly diverse scenarios that arise from this process influence the virus population and the spatiotemporal dynamics of virus distribution and spread. The review then describes exciting progress in research in the areas of molecular epidemiology and ecology, and understanding virus-vector interactions. Application of new molecular techniques has greatly accelerated the rate of progress in understanding virus populations and the way changes in these populations influence epidemics. Viruses cause direct and plant-mediated indirect effects on insect vectors by modifying their life cycles, fitness and behaviour, and one of the most fascinating recent fields of research concerns plant-mediated indirect virus manipulation of insect vector behaviour that encourages virus spread. Next, the review describes the current state of knowledge about spread of plant viruses at the critical agro-ecological interface between managed and natural vegetation. There is an urgent need to understand how viruses move in both directions between the two and be able to anticipate these kinds of events. To obtain an understanding of, and ability to foresee, such events will require a major research effort into the future. The review finishes by discussing the implications of climate change and rapid technological innovation for the types of research needed to avoid virus threats to future world food supplies and plant biodiversity. There has been lamentably little focus on research to determine the magnitude of the threat from diseases caused in diverse plant virus pathosystems under different climate change scenarios. Increasing technological innovation offers many opportunities to help ensure this situation is addressed, and provide plant virus ecology and epidemiology with a very exciting future. After clarifying the relationship between the closely related concepts of ecology and epidemiology as they are used in plant virology, this article provides a historical perspective on the subject before discussing recent progress and future prospects. Ecology focuses on virus populations interacting with host populations within a variable environment, while epidemiology focuses on the complex association between virus and host plant, and factors that influence spread. The evolution and growth of plant virus ecology and epidemiology since its inception to the present day, and the major milestones in its development, are illustrated by examples from influential historical reviews published in the Annals of Applied Biology over the last 100 years. Original research papers published in the journal are used to illustrate important ecological and epidemiological principles and new developments in both fields. Both areas are multifaceted with many factors influencing host plants, and virus and vector behaviour. The highly diverse scenarios that arise from this process influence the virus population and the spatiotemporal dynamics of virus distribution and spread. The review then describes exciting progress in research in the areas of molecular epidemiology and ecology, and understanding virus–vector interactions. Application of new molecular techniques has greatly accelerated the rate of progress in understanding virus populations and the way changes in these populations influence epidemics. Viruses cause direct and plant‐mediated indirect effects on insect vectors by modifying their life cycles, fitness and behaviour, and one of the most fascinating recent fields of research concerns plant‐mediated indirect virus manipulation of insect vector behaviour that encourages virus spread. Next, the review describes the current state of knowledge about spread of plant viruses at the critical agro‐ecological interface between managed and natural vegetation. There is an urgent need to understand how viruses move in both directions between the two and be able to anticipate these kinds of events. To obtain an understanding of, and ability to foresee, such events will require a major research effort into the future. The review finishes by discussing the implications of climate change and rapid technological innovation for the types of research needed to avoid virus threats to future world food supplies and plant biodiversity. There has been lamentably little focus on research to determine the magnitude of the threat from diseases caused in diverse plant virus pathosystems under different climate change scenarios. Increasing technological innovation offers many opportunities to help ensure this situation is addressed, and provide plant virus ecology and epidemiology with a very exciting future. After clarifying the relationship between the closely related concepts of ecology and epidemiology as they are used in plant virology, this article provides a historical perspective on the subject before discussing recent progress and future prospects. Ecology focuses on virus populations interacting with host populations within a variable environment, while epidemiology focuses on the complex association between virus and host plant, and factors that influence spread. The evolution and growth of plant virus ecology and epidemiology since its inception to the present day, and the major milestones in its development, are illustrated by examples from influential historical reviews published in the Annals of Applied Biology over the last 100 years. Original research papers published in the journal are used to illustrate important ecological and epidemiological principles and new developments in both fields. Both areas are multifaceted with many factors influencing host plants, and virus and vector behaviour. The highly diverse scenarios that arise from this process influence the virus population and the spatiotemporal dynamics of virus distribution and spread. The review then describes exciting progress in research in the areas of molecular epidemiology and ecology, and understanding virus-vector interactions. Application of new molecular techniques has greatly accelerated the rate of progress in understanding virus populations and the way changes in these populations influence epidemics. Viruses cause direct and plant-mediated indirect effects on insect vectors by modifying their life cycles, fitness and behaviour, and one of the most fascinating recent fields of research concerns plant-mediated indirect virus manipulation of insect vector behaviour that encourages virus spread. Next, the review describes the current state of knowledge about spread of plant viruses at the critical agro-ecological interface between managed and natural vegetation. There is an urgent need to understand how viruses move in both directions between the two and be able to anticipate these kinds of events. To obtain an understanding of, and ability to foresee, such events will require a major research effort into the future. The review finishes by discussing the implications of climate change and rapid technological innovation for the types of research needed to avoid virus threats to future world food supplies and plant biodiversity. There has been lamentably little focus on research to determine the magnitude of the threat from diseases caused in diverse plant virus pathosystems under different climate change scenarios. Increasing technological innovation offers many opportunities to help ensure this situation is addressed, and provide plant virus ecology and epidemiology with a very exciting future. [PUBLICATION ABSTRACT] |
Author | Jones, R.A.C. |
Author_xml | – sequence: 1 fullname: Jones, R.A.C |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28361786$$DView record in Pascal Francis |
BookMark | eNqFkU9v1DAQxS1UJLaFA5-ASAgJJNL6vx1u2wJtRQuVaMXRcpzx4pJNUjsp7LfHu1t6qAT4Ynn0e_M883bRTtd3gNBzgvdJPgfW1vuEEsoeoRlRnJeKcb2DZhhjVnLF5RO0m9J1fla4ojPkLlrbjcVtiFMqwPVtv1gVtmsKGEIDy7ApvCu-hzT2MTjbFgPENIAbwy2kt0UEB1k_xH4RIaWN1E_jFGFd24DpKXrsbZvg2d29h64-frg8OinPvhyfHs3PSseFYKWua1lLIRvMLPbMSexBEEIrrRmVDceec6rAVk0NtfROS6modxQI440jDdtDr7d9s_PNBGk0y5ActHlC6KdkiJRMSMay2X9RQbOZILrK6MsH6HU_xS4PkinCNcWY0ky9uqNsylvy0XYuJDPEsLRxZahmkigtM_dmy7m8nRTB3yMEm3WCJidoNglm9uAB68Jox9B3Y7Sh_ZfiZ2hh9ffWZj4__KMot4ocMPy6V9j4w0jFlDDfPh8bffn-4lycfzLr_7_Y8t72xi5invHqK8WEY0wkV5iz358gxho |
CODEN | AABIAV |
CitedBy_id | crossref_primary_10_3390_v12121388 crossref_primary_10_1094_PDIS_08_21_1852_SR crossref_primary_10_1111_mpp_13098 crossref_primary_10_1146_annurev_phyto_080614_120140 crossref_primary_10_17660_ActaHortic_2020_1294_24 crossref_primary_10_1016_j_virusres_2017_06_029 crossref_primary_10_1094_PBIOMES_06_24_0062_R crossref_primary_10_3390_plants12213677 crossref_primary_10_1016_j_coviro_2017_07_005 crossref_primary_10_1146_annurev_phyto_080516_035349 crossref_primary_10_1146_annurev_virology_092818_015606 crossref_primary_10_1016_j_ab_2018_01_019 crossref_primary_10_1016_j_actatropica_2018_04_015 crossref_primary_10_1016_j_micpath_2018_07_008 crossref_primary_10_1007_s00705_016_2848_1 crossref_primary_10_1111_jph_12484 crossref_primary_10_1111_ppa_13571 crossref_primary_10_3390_pathogens11020200 crossref_primary_10_3390_plants13071001 crossref_primary_10_1016_j_jksus_2022_102051 crossref_primary_10_1007_s42690_024_01170_3 crossref_primary_10_1094_PHYTO_10_22_0394_V crossref_primary_10_1094_PDIS_03_15_0342_RE crossref_primary_10_1016_j_micpath_2018_03_019 crossref_primary_10_1146_annurev_virology_092917_043421 crossref_primary_10_1007_s44154_022_00058_x crossref_primary_10_1016_j_virusres_2020_198059 crossref_primary_10_1016_j_virusres_2019_197845 crossref_primary_10_1111_eea_13284 crossref_primary_10_3389_fmicb_2020_578064 crossref_primary_10_1093_ee_nvw102 crossref_primary_10_1007_s42690_022_00771_0 crossref_primary_10_1111_ppa_14016 crossref_primary_10_1111_mpp_12268 crossref_primary_10_1038_srep39432 crossref_primary_10_3390_agriculture14020284 crossref_primary_10_3390_v16010144 crossref_primary_10_3390_v13102051 crossref_primary_10_3390_plants10020233 crossref_primary_10_3390_agronomy11071268 crossref_primary_10_1007_s44279_024_00124_0 crossref_primary_10_1007_s00284_015_0900_0 crossref_primary_10_1016_j_plantsci_2018_04_011 crossref_primary_10_1094_PHYTO_10_22_0378_V crossref_primary_10_1155_aia_6006985 crossref_primary_10_1371_journal_pone_0167769 crossref_primary_10_1146_annurev_ento_020117_043119 crossref_primary_10_1094_PDIS_06_17_0782_RE crossref_primary_10_1016_j_scitotenv_2019_135044 crossref_primary_10_1094_PBIOMES_05_23_0033_R crossref_primary_10_1038_s41598_020_79937_0 crossref_primary_10_1094_PHYTO_07_19_0250_FI crossref_primary_10_1016_j_jafr_2023_100689 crossref_primary_10_1016_j_virol_2024_109981 crossref_primary_10_1111_aab_12125 crossref_primary_10_1186_s12985_017_0754_0 crossref_primary_10_1086_714589 crossref_primary_10_1111_aab_12361 |
Cites_doi | 10.1146/annurev.py.20.090182.001205 10.1016/B978-0-12-374153-0.00011-4 10.1111/j.1744-7348.1985.tb03135.x 10.1111/j.1744-7348.2003.tb00239.x 10.1111/j.1744-7348.2010.00397.x 10.1111/j.1744-7348.1966.tb04381.x 10.1146/annurev.en.06.010161.002023 10.1111/j.1744-7348.1996.tb07097.x 10.1111/j.1744-7348.1981.tb02988.x 10.1111/j.1744-7348.1988.tb03328.x 10.1111/aab.12022 10.1073/pnas.1113227108 10.1016/S0065-3527(06)67007-3 10.1111/j.1744-7348.1974.tb01403.x 10.1038/npg.els.0000759 10.1094/PDIS.2000.84.1.103C 10.1111/j.1744-7348.1969.tb05461.x 10.1079/PAVSNNR20127022 10.1371/journal.ppat.1003304 10.1111/j.1744-7348.1967.tb04417.x 10.1016/j.virusres.2008.11.020 10.1016/j.virusres.2012.03.016 10.1016/j.virusres.2011.04.011 10.1007/978-3-642-68153-0_15 10.1099/vir.0.2008/003590-0 10.1111/j.1744-7348.1950.tb00950.x 10.1111/j.1744-7348.1984.tb03031.x 10.1099/vir.0.016089-0 10.1071/AR9940183 10.1098/rstb.1983.0071 10.1111/j.1744-7348.1999.tb00867.x 10.3390/v4113069 10.1016/S0065-3527(06)67006-1 10.1111/j.1744-7348.1976.tb00600.x 10.1016/S0065-3527(08)60267-5 10.1111/j.1744-7348.2004.tb00349.x 10.1111/j.1744-7348.1973.tb01309.x 10.1111/j.1744-7348.2005.04033.x 10.1111/j.1744-7348.2006.00083.x 10.1111/j.1744-7348.1992.tb03446.x 10.1016/S0065-3527(08)60040-8 10.1111/j.1744-7348.1998.tb05187.x 10.1371/journal.pone.0048177 10.1038/srep00578 10.1016/j.virusres.2011.04.027 10.1029/2006GL028443 10.1111/j.1744-7348.1951.tb07838.x 10.1111/j.1744-7348.1963.tb03748.x 10.1146/annurev.py.28.090190.002141 10.1016/j.virusres.2011.05.016 10.1111/j.1744-7348.1993.tb04053.x 10.1111/eea.12011 10.1111/j.1744-7348.2005.00013.x 10.1111/j.1744-7348.2004.tb00379.x 10.1111/j.1744-7348.1997.tb05158.x 10.1111/j.1744-7348.1987.tb02033.x 10.1016/j.virusres.2008.07.028 10.1016/S0065-3527(06)67008-5 10.1007/s007050170153 10.1007/s10658-013-0317-1 10.1111/j.1744-7348.1994.tb04114.x 10.1111/j.1744-7348.1988.tb02035.x 10.1093/molbev/msr314 10.1111/mec.12232 10.1007/978-3-540-75763-4_2 10.1371/journal.pone.0061543 10.1111/j.1744-7348.1980.tb03896.x 10.1016/j.virusres.2013.11.005 10.1111/j.1744-7348.1951.tb07847.x 10.1080/11956860.2002.11682699 10.1111/aab.12074 10.1111/j.1744-7348.1955.tb02417.x 10.1111/j.1744-7348.2003.tb00246.x 10.1111/j.1744-7348.1981.tb04787.x 10.2307/5892 10.1016/j.virusres.2008.08.018 10.1071/CP13108 10.1016/j.virusres.2011.05.004 10.1371/journal.pone.0081479 10.1111/j.1744-7348.1996.tb05752.x 10.1111/j.1744-7348.1989.tb03361.x 10.1111/j.1744-7348.1970.tb04590.x 10.1146/annurev.py.12.090174.000551 10.1016/j.virusres.2008.12.007 10.1111/j.1744-7348.1975.tb00534.x 10.1111/j.1365-2486.2008.01820.x 10.1111/j.1744-7348.2004.tb00391.x 10.1111/j.1744-7348.2003.tb00262.x 10.1111/j.1744-7348.1955.tb02419.x 10.1111/j.1744-7348.2007.00135.x 10.1111/j.1365-3059.2007.01653.x 10.1111/j.1744-7348.1978.tb07695.x 10.1111/j.1744-7348.1955.tb02416.x 10.1111/j.1365-2435.2012.02026.x 10.1073/pnas.0907191107 10.1111/aab.12063 10.1111/j.1744-7348.1991.tb05649.x 10.1111/j.1744-7348.1987.tb04187.x 10.1016/j.virusres.2011.05.010 10.1016/S0065-3527(06)67003-6 10.1146/annurev.phyto.38.1.71 10.1016/j.virusres.2011.04.016 10.1371/journal.ppat.1002796 10.1111/j.1744-7348.2003.tb00240.x 10.3732/ajb.1100509 10.1016/S0168-1702(00)00183-0 10.1016/B978‐0‐12‐384871‐0.00014‐5 10.1111/j.1570-7458.2007.00607.x 10.1111/j.1744-7348.1996.tb07325.x 10.1111/j.1744-7348.1972.tb04715.x 10.1111/j.1744-7348.2003.tb00253.x 10.1016/j.tree.2004.07.021 10.1111/j.1744-7348.2008.00262.x 10.1111/j.1744-7348.2010.00403.x 10.1079/9781780644257.0000 10.1111/j.1744-7348.2004.tb00366.x 10.1016/S0065-3527(06)67001-2 10.1016/j.virusres.2011.05.012 10.1371/journal.pone.0091224 10.1146/annurev-phyto-073009-114444 10.1016/S0168-1702(00)00184-2 10.1016/S0168-1702(00)00192-1 10.1016/j.virusres.2011.04.018 10.1111/j.1744-7348.1976.tb00577.x 10.1111/j.1744-7348.2002.tb00194.x 10.1111/j.1744-7348.1970.tb04597.x 10.1111/j.1744-7348.2006.00073.x 10.1371/journal.pone.0000182 10.1111/j.1744-7348.2011.00501.x 10.1111/j.1744-7348.1995.tb05384.x 10.1111/j.1744-7348.1979.tb02964.x 10.1111/j.1744-7348.1985.tb03118.x 10.1111/j.1744-7348.1977.tb00632.x 10.1016/j.virusres.2003.12.014 10.1111/j.1744-7348.2002.tb00209.x 10.1111/j.1570-7458.2012.01278.x 10.1111/j.1364-3703.2007.00460.x 10.1111/j.1744-7348.1991.tb04875.x 10.1111/j.1744-7348.1965.tb01227.x 10.1111/j.1744-7348.2008.00245.x 10.1016/j.virusres.2011.04.020 10.1073/pnas.1100773108 10.1016/j.virusres.2009.01.011 10.1111/j.1744-7348.2000.tb00067.x 10.1111/j.1744-7348.1998.tb05819.x 10.1038/srep02230 10.1111/j.1744-7348.2004.tb00350.x 10.2307/1234 10.1371/journal.pone.0083066 10.1016/j.virusres.2011.04.014 10.1016/j.virusres.2003.12.011 10.1111/j.1744-7348.1991.tb05632.x 10.1111/j.1365‐294X.2012.05457.x 10.1111/j.1744-7348.1941.tb07556.x 10.1016/S0065-3527(06)67004-8 10.1111/j.1365-294X.2010.04682.x 10.1094/PHYTO-01-11-0017 10.1111/j.1744-7348.2002.tb00158.x 10.1111/j.1744-7348.2002.tb00155.x 10.1080/07352680500365257 10.1111/j.1744-7348.1980.tb03949.x 10.1111/aab.12084 10.1071/AR07475 10.1111/j.1744-7348.2010.00423.x 10.1111/j.1744-7348.1979.tb04720.x 10.1016/B978-0-12-470240-0.50005-6 10.1016/j.virusres.2013.11.003 10.1146/annurev-phyto-072910-095235 10.1111/j.1744-7348.2006.00096.x 10.1007/BF02979527 10.1111/j.1744-7348.2010.00441.x 10.1146/annurev-phyto-082712-102234 10.1111/j.1744-7348.1998.tb05800.x 10.1111/j.1744-7348.2011.00462.x 10.1111/j.1744-7348.2010.00405.x 10.1016/j.virusres.2013.12.012 10.1111/j.1744-7348.1967.tb04416.x 10.1111/j.1744-7348.2005.04111.x 10.1111/j.1744-7348.2009.00359.x 10.1146/annurev.phyto.44.120705.104644 10.1094/Phyto-69-446 10.1111/aab.12009 10.7554/eLife.00183 10.1111/j.1744-7348.1994.tb04972.x 10.1111/j.1365-3059.1991.tb02386.x 10.1094/PHYTO-98-6-0640 10.1111/j.1744-7348.2005.040096.x 10.1016/j.virusres.2009.01.009 10.1146/annurev-genet-110711-155600 10.1111/j.1744-7348.1955.tb02418.x |
ContentType | Journal Article |
Copyright | 2014 Association of Applied Biologists 2015 INIST-CNRS |
Copyright_xml | – notice: 2014 Association of Applied Biologists – notice: 2015 INIST-CNRS |
DBID | FBQ BSCLL AAYXX CITATION IQODW 7QL 7QR 7SN 7SS 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 7S9 L.6 |
DOI | 10.1111/aab.12123 |
DatabaseName | AGRIS Istex CrossRef Pascal-Francis Bacteriology Abstracts (Microbiology B) Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Virology and AIDS Abstracts CrossRef Virology and AIDS Abstracts AGRICOLA |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1744-7348 |
EndPage | 347 |
ExternalDocumentID | 3272339761 28361786 10_1111_aab_12123 AAB12123 ark_67375_WNG_8TDPM5MK_6 US201400164704 |
Genre | reviewArticle |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 23M 31~ 33P 3EH 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 6J9 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 A8Z AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AHBTC AHEFC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EJD ESX F00 F01 F04 F5P FBQ FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 ML0 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OHT OIG OK1 OVD P2P P2W P2X P4D PALCI Q.N Q11 QB0 QF4 QM4 QN7 QO4 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI TUS UB1 UPT V8K VH1 W8V W99 WBKPD WH7 WIH WIK WNSPC WOHZO WQJ WXSBR WYISQ XG1 ZCG ZXP ZY4 ZZTAW ~IA ~KM ~WT AAMMB AEFGJ AEYWJ AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE BSCLL ESTFP AAYXX CITATION IQODW 7QL 7QR 7SN 7SS 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 7S9 L.6 |
ID | FETCH-LOGICAL-c4553-8bb6b656d03a0f3c60fe5112988326d40f4427ea9dbeb6fc86672fc2e134dc1d3 |
IEDL.DBID | DR2 |
ISSN | 0003-4746 |
IngestDate | Fri Sep 05 17:28:50 EDT 2025 Mon Sep 08 15:05:21 EDT 2025 Wed Aug 13 03:13:36 EDT 2025 Wed Apr 02 07:28:57 EDT 2025 Thu Apr 24 22:58:45 EDT 2025 Tue Jul 01 03:59:57 EDT 2025 Wed Aug 20 07:27:01 EDT 2025 Sun Sep 21 06:16:37 EDT 2025 Thu Apr 03 09:45:55 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Plant pathogen field and molecular biology Biodiversity Epidemiology Case history Prospective Field Evolution virus―vector interactions Epidemic Technological innovation Agro-ecological interface Endangered species future prospects Plant ecology Ecology history Agroecology Dynamical climatology Virus Climate change plant virology Applied biology epidemics food security progress Molecular biology Interface |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4553-8bb6b656d03a0f3c60fe5112988326d40f4427ea9dbeb6fc86672fc2e134dc1d3 |
Notes | http://dx.doi.org/10.1111/aab.12123 ark:/67375/WNG-8TDPM5MK-6 ArticleID:AAB12123 istex:D84604FAD086D29EA6DC6CAB131E8C3271298857 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1514820022 |
PQPubID | 866370 |
PageCount | 28 |
ParticipantIDs | proquest_miscellaneous_1663563355 proquest_miscellaneous_1524425189 proquest_journals_1514820022 pascalfrancis_primary_28361786 crossref_primary_10_1111_aab_12123 crossref_citationtrail_10_1111_aab_12123 wiley_primary_10_1111_aab_12123_AAB12123 istex_primary_ark_67375_WNG_8TDPM5MK_6 fao_agris_US201400164704 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2014 |
PublicationDateYYYYMMDD | 2014-05-01 |
PublicationDate_xml | – month: 05 year: 2014 text: May 2014 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford |
PublicationTitle | Annals of applied biology |
PublicationTitleAlternate | Ann Appl Biol |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd Blackwell Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell – name: Wiley Subscription Services, Inc |
References | Perry J.N., Bell E.D., Smith R.H., Woiwod I.P. (1996) SADIE: software to measure and model spatial pattern. Aspects of Applied Biology, 46, 95-102. Seal S.E., Jeger M.J., van Den Bosch F. (2006b) Begomovirus evolution and disease management. Advances in Virus Research, 67, 297-316. Thresh J.M. (1974b) Temporal patterns of virus spread. Annual Review of Phytopathology, 12, 111-128. Martinière A., Bak A., Macia J.L., Lautredou N., Gargani D., Doumayrou J., Garzo E., Moreno A., Fereres A., Blanc S., Drucker M. (2013) A virus responds instantly to the presence of the vector on the host and forms transmission morphs. eLIFE, 2, e00183. DOI:10.7554/eLife.00183. Jeger M.J., van den Bosch F., Madden L.V. (2011b) Modelling virus- and host-limitation in vectored plant disease epidemics. Virus Research, 159, 215-222. Alexander H.M., Mauck K.E., Whitfield A.E., Garret K.A., Malmstrom C.M. (2014) Plant virus interactions at the agro-ecological interface. European Journal of Plant Pathology, 138, 529-574. DOI:10.1007/S10658-013-0317-1. Karyeija R.F., Gibson R.W., Valkonen J.P.T. (1998) Resistance to sweet potato virus disease in wild East-African Ipomoea spp. Annals of Applied Biology, 133, 39-44. Carter W. (1939) Populations of Thrips tabaci, with special reference to virus transmission. Journal of Animal Ecology, 8, 261-276. Harrison B.D. (1981) Plant virus ecology: ingredients, interactions and environmental influences. Annals of Applied Biology, 99, 195-209. Thackray D.J., Smith L.J., Cheng Y., Perry J.N., Jones R.A.C. (2002) Effect of strain-specific hypersensitive resistance on spatial patterns of virus spread. Annals of Applied Biology, 141, 45-59. Jones R.A.C. (2013) Virus diseases of perennial pasture legumes: incidences, losses, epidemiology and management. Crop and Pasture Science, 64, 199-215. Zhang T., Luan J.-B., Qi J.-F., Huang C.-J., Li M., Zhou X-P., Liu S.-S. (2012) Begomovirus-whitefly mutualism is achieved through repression of plant defences by a virus pathogenicity factor. Molecular Ecology, 21, 1294-1304. DOI:10.1111/j.1365-294X.2012.05457.x. Tsai W.S., Shih S.L., Rauf A., Safitri R., Hidayati N., Huyen B.T.T., Kenyon L. (2013) Genetic diversity of legume yellow mosaic begomoviruses in Indonesia and Vietnam. Annals of Applied Biology, 163, 367-377. Jones A.T. (1979) Further studies on the effect of resistance to Amphorophora idaei in raspberry (Rubus idaeus) on the spread of aphid-borne viruses. Annals of Applied Biology, 92, 119-123. Stafford C.A., Walker G.P., Ulman D.E. (2011) Infection with a plant virus modifies vector feeding behaviour. Proceedings of the National Academy of Sciences of the United States of America, 108, 9350-9355. Wroth J.M., Jones R.A.C. (1992) Subterranean clover mottle sobemovirus: its host range, resistance in subterranean clover and transmission through seed and by grazing animals. Annals of Applied Biology, 121, 329-343. Jones R.A.C. (1993) Effects of cereal borders, admixture with cereals and plant density on the spread of bean yellow mosaic potyvirus into narrow-leafed lupins (Lupinus angustifolius). Annals of Applied Biology, 122, 501-518. Legg J.P., Jeremiah S.C., Obiero H.M., Maruthi M.N., Ndyetabula I., Okao-Okuja G., Bouwmeester H., Birimana S., Tata-Hangy W., Gashaka G., Mkamilo G., Alicai T., Lava-Kumar P. (2011) Comparing the regional epidemiology of the cassava mosaic and cassava brown streak virus pandemics in Africa. Virus Research, 159, 161-170. Tatineni S., Robertson C.J., Garnsey S.M., Dawson W.O. (2011) A plant virus evolved by acquiring multiple nonconserved genes to extend its host range. Proceedings of the National Academy of Sciences of the United States of America, 108, 17366-17371. Cheng Y., Jones R.A.C., Thackray D.J. (2002) Deploying strain specific hypersensitive resistance to diminish temporal virus spread. Annals of Applied Biology, 140, 69-79. Lecoq H., Fabre P., Joannon B., Wipf-Scheibel C., Chandeysson C., Schoeny A., Desbiez C. (2011) Search for factors involved in the rapid shift in Watermelon mosaic virus (WMV) populations in South-eastern France. Virus Research, 159, 115-123. Metz B., Davidson O.R., Bosch P.R., Dave R., Meyer L.A. (Eds) (2007) Climate Change 2007: Mitigation of Climate Change. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK/New York, NY, USA: Cambridge University Press. Wilson C.R. (2014) Applied Plant Virology. Wallingford, UK: CABI Press. Roossinck M.J. (2013) Plant virus ecology. PLoS Pathology, 9, e1003304. DOI:10.137/journal.paat.1003304. Thresh J.M. (2006b) Control of tropical plant virus diseases. Advances in Virus Research, 67, 245-295. Trebicki P., Harding R.M., Rodoni B., Baxter G., Powell K.S. (2010) Vectors and alternative hosts of tobacco yellow dwarf virus in southeastern Australia. Annals of Applied Biology, 157, 13-24. Dáder B., Moreno A., Viñuela E., Fereres A. (2012) Spatio-temporal dynamics of viruses are differentially affected by parasitoids depending on the mode of transmission. Viruses, 4, 3069-3089. Milne J.R., Walter G.H. (2003) The coincidence of thrips and dispersed pollen in PNRSV-infected stonefruit orchards - a precondition for thrips-mediated transmission via infected pollen. Annals of Applied Biology, 142, 291-298. Murant A.F., Lister R.M. (1967) Seed-transmission in the ecology of nematode-borne viruses. Annals of Applied Biology, 59, 63-76. Ssweruwagi P., Rey M.E.C., Brown J.K., Legg J.P. (2004) The cassava mosaic geminiviruses occurring in Uganda following the 1990s epidemic of severe cassava mosaic disease. Annals of Applied Biology, 145, 113-121. Tugume A.K., Mukasa S.B., Kalkkinen N., Valkonen J.P.T. (2010b) Recombination and selection pressure in the ipomovirus Sweet potato mild mottle virus (Potyviridae) in wild species and cultivated sweetpotato in the centre of evolution in East Africa. Journal of General Virology, 91, 1092-1108. Pachauri R.K., Reisinger A. (Eds) (2007) Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel for Climate Change. Cambridge, UK/New York, NY, USA: Cambridge University Press. Coutts B.A., Thomas-Carroll M.L., Jones R.A.C. (2004b) Patterns of spread of Tomato spotted wilt virus in field crops of lettuce and pepper: spatial dynamics and validation of control measures. Annals of Applied Biology, 145, 231-245. Malmstrom C.M., Melcher U., Bosque-Pérez N.A. (2011) The expanding field of plant virus ecology: historical foundations, knowledge gaps and research directions. Virus Research, 159, 84-94. Moreno A., Nebreda M., Diaz B.M., García M., Salas F., Fereres A. (2007) Temporal and spatial spread of Lettuce mosaic virus in lettuce crops in central Spain: factors involved in Lettuce mosaic virus epidemics. Annals of Applied Biology, 150, 351-360. Broadbent L.H. (1950) The correlation of aphid numbers with the spread of leaf roll and rugose mosaic in potato crops. Annals of Applied Biology, 37, 58-65. Varsani A., Shepherd D.N., Monjane A.L., Owor B.E., Erdmann J.B., Rybicki E.P., Peterschmitt M., Briddon R.W., Markham P.G., Oluwafemi S., Windram O.P., Lefeuvre P., Lett J.-M., Martin D.P. (2008) Recombination, decreased host specificity and increased mobility have driven the emergence of maize streak virus as an agricultural pathogen. Journal of General Virology, 89, 2063-2074. Canto T., Aranda M.A., Fereres A. (2009) Climate change effects on physiology and population processes of hosts and vectors that influence the spread of hemipteran-borne plant viruses. Global Change Biology, 15, 1884-1894. van der Vlugt R.A.A., Stijger C.C.M.M., Verhoeven J.Th.J., Lesseman D.-E. (2000) First report of Pepino mosaic virus on tomato. Plant Disease, 84, 103. Mauck K., Bosque-Pérez N., Eigenbrode S.D., de Moraes C., Mescher M. (2012) Transmission mechanisms shape pathogen effects on host-vector interactions: evidence from plant viruses. Functional Ecology, 26, 1162-1175. Adkins S., Webster C.G., Kousik C.S., Webb S.E., Roberts P.D., Stansly P.A., Turechek W.W. (2011) Ecology and management of whitefly-transmitted viruses of vegetable crops in Florida. Virus Research, 159, 110-114. Tugume A.K., Amayo R., Weinheimer I., Mukasa S.B., Rubaihayo P.R., Valkonen J.P.T. (2013) Genetic variability and evolutionary implications of RNA silencing suppressor genes in RNA1 of Sweet potato chlorotic stunt virus isolates infecting sweetpotato and related wild species. PLoS ONE, 8, e81479. Lecoq H., Wipf-Scheibel C., Chandeysson C., Le Van A., Fabre F., Desbiez C. (2009) Molecular epidemiology of Zucchini yellow mosaic virus in France: an historical overview. Virus Research, 141, 190-200. Alvarez A.E., Garzo E., Verbeek M., Vosman N., Dicke M., Tjallingii W.F. (2007) Infection of potato plants with potato leafroll virus changes attraction and feeding behaviour of Myzus persicae. Entomologia Experimentalis et Applicata, 125, 135-144. Bosque-Pérez N.A. (2000) Eight decades of maize streak virus research. Virus Research, 71, 107-121. Berlandier F.A., Thackray D.J., Jones R.A.C., Latham L.J., Cartwright L. (1997) Determining the relative roles of different aphid species as vectors of cucumber mosaic and bean yellow mosaic viruses in lupins. Annals of Applied Biology, 131, 297-314. Vidal E., Zagrai L., Milusheva S., Bozhkova V., Tasheva-Terzieva E., Kamenova I., Zagrai I., Cambra M. (2013) Horticultural mineral oil treatments in nurseries during aphid flights reduce Plum pox virus incidence under different ecological conditions. Annals of Applied Biology, 162, 299-308. Coutts B.A., Jones R.A.C. (2005). Suppressing spread of Tomato spotted wilt virus by drenching infected source or healthy recipient plants with neonicotinoid insecticides to control thrips vectors. Annals of Applied Biology, 146, 95-103. Bedhomme S., Lafforgue G., Elena S.F. (2012) Multihost experimental evolution of a plant RNA virus reveals local adaptation and host specific mutations. Molecular Biology, 2 2014; 138 2001; 146 2013; 3 1966; 58 2013; 2 2010; 107 2010; 19 1989; 114 2000; 137 1992; 121 2013; 64 1983; 8 1970 1991; 118 1959; 4 1951; 8 2013; 8 2012; 99 2013; 9 1993; 122 1991; 119 1950; 37 1987; 110 1987; 111 2002; 140 2002; 141 2013; 51 2006; 25 1986 1995; 126 2012; 29 1983 1981 2007; 2 2012; 26 1980 1975; 81 2012; 21 2009; 15 1992; 41 1988 2004; 145 2004; 144 1974; 77 2002; 9 1988; 16 1984; 104 2008; 59 1964; 22 2000; 71 1977; 85 1998; 133 1998; 132 1996; 129 1979; 92 1996; 128 1979; 94 1963; 53 2010; 48 1974; 64 2007; 150 1990; 28 2006; 44 1972; 71 2000; 84 2012; 46 1939; 8 1981; 97 1981; 99 2011; 159 2011; 158 1974; 12 1965; 56 2012; 167 2013; 22 1986; 31 2008; 9 2013; 163 2013; 162 1941; 28 1955; 42 2007; 34 2003; 11 1995; 64 1979; 69 2006; 67 2001 1961; 6 2005; 146 2005; 147 1982; 20 2010; 156 2010; 157 1991; 40 1970; 66 1970; 65 1999; 135 1951; 38 1967; 59 2014; 9 2014; 164 2008; 153 2007; 125 2004; 100 1973; 73 2012; 144 2012; 145 2012 1997; 131 1976; 83 1976; 82 1994; 45 2008 2007 2006 2005 2008; 98 1985; 106 2004 2003 2002 1983c; 302 2007; 56 1994; 124 2012; 2 2011; 108 1994; 125 2000; 38 1978; 89 2004; 19 1980; 94 1969; 63 1988; 113 1980; 5 1988; 112 2008; 89 2014 2009; 141 2013 2006; 149 2012; 7 2011; 49 1996; 46 2010; 91 2012; 4 2011; 101 2003; 142 e_1_2_11_93_1 e_1_2_11_200_1 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_78_1 e_1_2_11_29_1 e_1_2_11_125_1 e_1_2_11_4_1 e_1_2_11_148_1 e_1_2_11_102_1 e_1_2_11_163_1 e_1_2_11_140_1 e_1_2_11_211_1 e_1_2_11_81_1 e_1_2_11_197_1 e_1_2_11_66_1 e_1_2_11_89_1 e_1_2_11_43_1 e_1_2_11_17_1 e_1_2_11_159_1 e_1_2_11_113_1 e_1_2_11_208_1 e_1_2_11_174_1 e_1_2_11_151_1 Metz B. (e_1_2_11_112_1) 2007 e_1_2_11_201_1 e_1_2_11_92_1 e_1_2_11_31_1 e_1_2_11_77_1 e_1_2_11_103_1 e_1_2_11_149_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_141_1 e_1_2_11_164_1 e_1_2_11_212_1 e_1_2_11_80_1 Raybould A.F. (e_1_2_11_144_1) 2003 e_1_2_11_198_1 e_1_2_11_88_1 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_114_1 e_1_2_11_16_1 e_1_2_11_137_1 e_1_2_11_39_1 e_1_2_11_152_1 e_1_2_11_209_1 e_1_2_11_72_1 e_1_2_11_202_1 e_1_2_11_188_1 e_1_2_11_57_1 e_1_2_11_34_1 e_1_2_11_95_1 e_1_2_11_11_1 e_1_2_11_104_1 e_1_2_11_127_1 e_1_2_11_2_1 Thresh J.M. (e_1_2_11_191_1) 2003 e_1_2_11_165_1 Irwin M.E. (e_1_2_11_63_1) 1986 Thresh J.M. (e_1_2_11_178_1) 1981 e_1_2_11_142_1 e_1_2_11_83_1 e_1_2_11_213_1 e_1_2_11_45_1 e_1_2_11_199_1 e_1_2_11_68_1 e_1_2_11_22_1 e_1_2_11_115_1 e_1_2_11_138_1 e_1_2_11_19_1 e_1_2_11_153_1 e_1_2_11_130_1 e_1_2_11_94_1 e_1_2_11_203_1 e_1_2_11_10_1 e_1_2_11_56_1 e_1_2_11_189_1 e_1_2_11_79_1 e_1_2_11_33_1 Harrison B.D. (e_1_2_11_54_1) 1964; 22 e_1_2_11_105_1 e_1_2_11_128_1 e_1_2_11_3_1 e_1_2_11_143_1 e_1_2_11_166_1 Jones R.A.C. (e_1_2_11_70_1) 1981 e_1_2_11_82_1 Solomon S. (e_1_2_11_162_1) 2007 e_1_2_11_192_1 e_1_2_11_214_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_67_1 e_1_2_11_18_1 e_1_2_11_139_1 e_1_2_11_116_1 Thresh J.M. (e_1_2_11_185_1) 2003; 11 e_1_2_11_182_1 e_1_2_11_204_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_74_1 e_1_2_11_97_1 e_1_2_11_13_1 e_1_2_11_118_1 e_1_2_11_48_1 e_1_2_11_121_1 e_1_2_11_167_1 Thresh J.M. (e_1_2_11_181_1) 1983 e_1_2_11_193_1 e_1_2_11_215_1 Perry J.N. (e_1_2_11_135_1) 1996; 46 e_1_2_11_47_1 e_1_2_11_24_1 e_1_2_11_62_1 e_1_2_11_129_1 e_1_2_11_8_1 e_1_2_11_85_1 e_1_2_11_117_1 e_1_2_11_59_1 Pachauri R.K. (e_1_2_11_126_1) 2007 e_1_2_11_132_1 e_1_2_11_155_1 e_1_2_11_170_1 McLean G.D. (e_1_2_11_111_1) 1986 Broadbent L.H. (e_1_2_11_20_1) 1959 e_1_2_11_50_1 e_1_2_11_220_1 Parry M.L. (e_1_2_11_131_1) 2007 e_1_2_11_205_1 Schlosser E. (e_1_2_11_154_1) 1988 e_1_2_11_58_1 e_1_2_11_119_1 e_1_2_11_35_1 e_1_2_11_73_1 e_1_2_11_12_1 e_1_2_11_96_1 Mumford R.A. (e_1_2_11_120_1) 2005 e_1_2_11_122_1 e_1_2_11_145_1 e_1_2_11_168_1 Thresh J.M. (e_1_2_11_190_1) 2006 e_1_2_11_217_1 e_1_2_11_160_1 e_1_2_11_61_1 e_1_2_11_194_1 e_1_2_11_216_1 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_107_1 Thresh J.M. (e_1_2_11_183_1) 1986 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_84_1 Thresh J.M. (e_1_2_11_175_1) 1980 e_1_2_11_156_1 e_1_2_11_179_1 e_1_2_11_110_1 e_1_2_11_133_1 e_1_2_11_171_1 e_1_2_11_91_1 e_1_2_11_221_1 Thresh J.M. (e_1_2_11_187_1) 2006; 67 Plumb R.T. (e_1_2_11_136_1) 1983 e_1_2_11_184_1 e_1_2_11_30_1 e_1_2_11_99_1 Thresh J.M. (e_1_2_11_172_1) 1974; 64 Jones R.A.C. (e_1_2_11_71_1) 1988 e_1_2_11_53_1 e_1_2_11_76_1 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_169_1 Thresh J.M. (e_1_2_11_180_1) 1983; 8 e_1_2_11_100_1 e_1_2_11_146_1 e_1_2_11_123_1 Thresh J.M. (e_1_2_11_176_1) 1980; 5 e_1_2_11_218_1 e_1_2_11_161_1 Thresh J.M. (e_1_2_11_186_1) 2004 e_1_2_11_195_1 e_1_2_11_41_1 e_1_2_11_87_1 e_1_2_11_108_1 e_1_2_11_64_1 e_1_2_11_15_1 e_1_2_11_134_1 e_1_2_11_38_1 e_1_2_11_157_1 e_1_2_11_206_1 e_1_2_11_90_1 e_1_2_11_14_1 e_1_2_11_52_1 e_1_2_11_98_1 e_1_2_11_75_1 e_1_2_11_7_1 e_1_2_11_147_1 e_1_2_11_26_1 Thresh J.M. (e_1_2_11_177_1) 1981 e_1_2_11_49_1 e_1_2_11_101_1 e_1_2_11_124_1 e_1_2_11_219_1 e_1_2_11_210_1 e_1_2_11_196_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_86_1 e_1_2_11_109_1 e_1_2_11_158_1 e_1_2_11_37_1 Matthews R.E.F. (e_1_2_11_106_1) 1970 e_1_2_11_150_1 e_1_2_11_173_1 e_1_2_11_207_1 Hull R. (e_1_2_11_60_1) 2002 |
References_xml | – reference: Gallitelli D. (2000) The ecology of Cucumber mosaic virus and sustainable agriculture. Virus Research, 71, 9-21. – reference: Jones R.A.C. (2006) Control of plant virus diseases. Advances in Virus Research, 67, 205-244. – reference: Culbreath A.K., Srinivasan R. (2011) Epidemiology of spotted wilt disease of peanut caused by Tomato spotted wilt virus in the southeastern U.S. Virus Research, 159, 101-109. – reference: Boulton M.I. (2003) Geminiviruses: major threats to world agriculture. Annals of Applied Biology, 142, 143. – reference: Roossinck M.J. (2013) Plant virus ecology. PLoS Pathology, 9, e1003304. DOI:10.137/journal.paat.1003304. – reference: Jones R.A.C. (1993) Effects of cereal borders, admixture with cereals and plant density on the spread of bean yellow mosaic potyvirus into narrow-leafed lupins (Lupinus angustifolius). Annals of Applied Biology, 122, 501-518. – reference: Elnagar S., Murant A.F. (1978) Relations of carrot red leaf and carrot mottle viruses with their aphid vector, Cavariella aegopodii. Annals of Applied Biology, 89, 237-244. – reference: Prassada Rao R.D.V., Reddy A.S., Reddy S.V., Thirumala-Devi K., Chander Rao S., Manoj Kumar V., Subramaniam K., Yellamanda Reddy T., Nigam S.N., Reddy D.V.R. (2003) The host range of Tobacco streak virus in India and transmission by thrips. Annals of Applied Biology, 142, 365-368. – reference: Seal S.E., Jeger M.J., van Den Bosch F. (2006b) Begomovirus evolution and disease management. Advances in Virus Research, 67, 297-316. – reference: Verbeek M., Piron P.G.M., Dullemaas A.M., Cuperus C., van der Vlught R.A.A. (2010) Determination of aphid transmission efficiencies for N, NTN and Wilga strains of Potato virus Y. Annals of Applied Biology, 156, 39-49. – reference: Tatchell G.M., Plumb R.T., Carter N. (1988) Migration of alate morphs of the bird cherry aphid (Rhopalosiphum padi) and implications for the epidemiology of barley yellow dwarf virus. Annals of Applied Biology, 112, 1-11. – reference: Mallowa S.O., Isutsa D.K., Kamau A.W., Obonyo R., Legg J.P. (2006) Current characteristics of cassava mosaic disease in postepidemic areas increase the range of possible management options. Annals of Applied Biology, 149, 137-144. – reference: Navas-Castillo J., Fiallo-Olivé E., Sánchez-Campos S. (2011) Emerging virus diseases transmitted by whiteflies. Annual Review of Phytopathology, 49, 219-248. – reference: Rosner A., Lachman O., Pearlsman M., Feigelson L., Maslenin L., Antignus Y. (2006) Characterisation of cucumber leaf spot virus isolated from recycled irrigation water of soil-less cucumber culture. Annals of Applied Biology, 149, 313-316. – reference: Garcia-Arenal F., Escriu F., Aranda M.A., Alonso-Prados J.L., Malpica J.M., Fraile A. (2000) Molecular epidemiology of Cucumber mosaic virus and its satellite RNA. Virus Research, 71, 1-8. – reference: Pelham J., Fletcher J.T., Hawkins J.H. (1970) Establishment of a new strain of tobacco mosaic virus resulting from use of resistant varieties of tomato. Annals of Applied Biology, 65, 293-297. – reference: Smith K.M. (1955) Past and present trends in plant virus research. Annals of Applied Biology, 42, 115-121. – reference: Koenig R. (1986) Plant viruses in rivers and lakes. Advances in Virus Research, 31, 321-333. – reference: Tomlinson J.A. (1987) Epidemiology and control of virus diseases of vegetables. Annals of Applied Biology, 110, 661-681. – reference: Trebicki P., Harding R.M., Rodoni B., Baxter G., Powell K.S. (2010) Vectors and alternative hosts of tobacco yellow dwarf virus in southeastern Australia. Annals of Applied Biology, 157, 13-24. – reference: Jones R.A.C., Salam M.U., Maling T., Diggle A.J., Thackray D.J. (2010) Principles of predicting epidemics of plant virus disease. Annual Review of Phytopathology, 48, 179-203. – reference: Morales F.J., Jones P.G. (2004) The ecology and epidemiology of whitefly-transmitted viruses in Latin America. Virus Research, 100, 57-65. – reference: Malmstrom C.M., Melcher U., Bosque-Pérez N.A. (2011) The expanding field of plant virus ecology: historical foundations, knowledge gaps and research directions. Virus Research, 159, 84-94. – reference: Jones R.A.C., Smith L.J., Gajda B.E., Latham L.J. (2005) Patterns of spread of Carrot virus Y in carrot plantings and validation of control measures. Annals of Applied Biology, 147, 57-67. – reference: Bedhomme S., Lafforgue G., Elena S.F. (2012) Multihost experimental evolution of a plant RNA virus reveals local adaptation and host specific mutations. Molecular Biology, 29, 1481-1492. – reference: Tomlinson J.A., Faithfull E.M. (1979) Effects of fungicides and surfactants on the zoospores of Olpidium brassicae. Annals of Applied Biology, 94, 13-19. – reference: Tomlinson J.A., Faithfull E.M. (1984) Studies on the occurrence of tomato bushy stunt virus in English rivers. Annals of Applied Biology, 104, 485-495. – reference: Tatineni S., Robertson C.J., Garnsey S.M., Dawson W.O. (2011) A plant virus evolved by acquiring multiple nonconserved genes to extend its host range. Proceedings of the National Academy of Sciences of the United States of America, 108, 17366-17371. – reference: Rodelo-Urrego M., Pagán I., González-Jara P., Betancourt M., Moreno-Letelier A., Ayllón M.A., Fraile A., Piñero D., García-Arenal F. (2013) Landscape heterogeneity shapes host-parasite interactions and results in apparent plant virus codivergence. Molecular Ecology, 22, 2325-2340. – reference: Lecoq H., Wipf-Scheibel C., Chandeysson C., Le Van A., Fabre F., Desbiez C. (2009) Molecular epidemiology of Zucchini yellow mosaic virus in France: an historical overview. Virus Research, 141, 190-200. – reference: Murant A.F., Lister R.M. (1967) Seed-transmission in the ecology of nematode-borne viruses. Annals of Applied Biology, 59, 63-76. – reference: Wroth J.M., Jones R.A.C. (1992) Subterranean clover mottle sobemovirus: its host range, resistance in subterranean clover and transmission through seed and by grazing animals. Annals of Applied Biology, 121, 329-343. – reference: Ssweruwagi P., Rey M.E.C., Brown J.K., Legg J.P. (2004) The cassava mosaic geminiviruses occurring in Uganda following the 1990s epidemic of severe cassava mosaic disease. Annals of Applied Biology, 145, 113-121. – reference: Arif M., Torrance L., Reavy B. (1995) Acquisition and transmission of potato mop-top virus by a culture of Spongospora subterranea f.sp. subterranea derived from a single cystosorus. Annals of Applied Biology, 126, 493-503. – reference: Harrison B.D. (1981) Plant virus ecology: ingredients, interactions and environmental influences. Annals of Applied Biology, 99, 195-209. – reference: Anderson P.K., Cunningham A.A., Patel N.G., Morales F.J., Epstein P.R., Daszak P. (2004) Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends in Ecology and Evolution, 19, 535-544. – reference: Perry J.N., Bell E.D., Smith R.H., Woiwod I.P. (1996) SADIE: software to measure and model spatial pattern. Aspects of Applied Biology, 46, 95-102. – reference: Webster C.G., Coutts B.A., Jones R.A.C., Jones M.G.K., Wylie S.J. (2007) Virus impact at the interface of an ancient ecosystem and a recent agroecosystem: studies on three legume-infecting potyviruses in the South West Australian Floristic Region. Plant Pathology, 56, 729-742. – reference: Jones R.A.C., Proudlove W. (1991) Further studies on cucumber mosaic virus infection of narrow-leafed lupin (Lupinus angustifolius): seed-borne infection, aphid transmission, spread and effects on grain yield. Annals of Applied Biology, 118, 319-329. – reference: Perry J.N., Dixon P. (2002) A new method for measuring spatial association in ecological count data. Ecoscience, 9, 133-141. – reference: Cohen S., Kern J., Harpaz I., Bar-Joseph R. (1988) Epidemiological studies of the tomato yellow leaf curl virus (TYLCV) in the Jordan Valley, Israel. Phytoparasitica, 16, 259-270. – reference: Thapa V., Melcher U., Wiley G.B., Doust A., Palmer M.W., Roewe K., Roe B.A., Shend G., Roossinck M.J., Wang Y.M., Kamath N. (2012) Detection of members of the Secoviridae in the Tall Grass Prairie Preserve, Osage County, Oklahoma, USA. Virus Research, 167, 34-42. – reference: Thresh J.M. (2006b) Control of tropical plant virus diseases. Advances in Virus Research, 67, 245-295. – reference: Carmo-Sousa M., Moreno A., Garzo E., Fereres A. (2014) A non-persistently transmitted-virus induces a pull-push strategy in its aphid vector to optimize transmission and spread. Virus Research. DOI:10.1016/j.virusres.2013.12.012 in press. – reference: Thresh J.M. (2003) Control of plant virus diseases in Sub-Saharan Africa: the possibility and feasibility of an integrated approach. African Journal of Crop Science, 11, 199-223. – reference: Martinière A., Bak A., Macia J.L., Lautredou N., Gargani D., Doumayrou J., Garzo E., Moreno A., Fereres A., Blanc S., Drucker M. (2013) A virus responds instantly to the presence of the vector on the host and forms transmission morphs. eLIFE, 2, e00183. DOI:10.7554/eLife.00183. – reference: Legg J.P., Jeremiah S.C., Obiero H.M., Maruthi M.N., Ndyetabula I., Okao-Okuja G., Bouwmeester H., Birimana S., Tata-Hangy W., Gashaka G., Mkamilo G., Alicai T., Lava-Kumar P. (2011) Comparing the regional epidemiology of the cassava mosaic and cassava brown streak virus pandemics in Africa. Virus Research, 159, 161-170. – reference: Tomlinson J.A., Carter A.L., Dale W.T., Simpson C.J. (1970) Weed plants as sources of cucumber mosaic virus. Annals of Applied Biology, 66, 11-16. – reference: Cheng Y., Jones R.A.C., Thackray D.J. (2002) Deploying strain specific hypersensitive resistance to diminish temporal virus spread. Annals of Applied Biology, 140, 69-79. – reference: Makkouk K.M., Kumari S.G. (2009) Epidemiology and integrated management of persistently transmitted aphid-borne viruses of legume and cereal crops in West Asia and North Africa. Virus Research, 141, 209-218. – reference: McKirdy S.J., Jones R.A.C., Sivasithamparam K. (1998) Determining the effectiveness of grazing and trampling by livestock in transmitting white clover mosaic and subterranean clover mottle viruses. Annals of Applied Biology, 132, 91-105. – reference: Harrison B.D. (1980) A biologist's view of twenty-five years of plant virus research. Annals of Applied Biology, 94, 321-333. – reference: Solomon S., Qin D., Manning M., Xhen Z., Marquis M., Averyt K., Tignor M., Miller H. (Eds) (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel for Climate Change. Cambridge, UK/New York, NY, USA: Cambridge University Press. – reference: Thresh J.M. (2006c) Plant virus epidemiology: the concept of host genetic vulnerability. Advances in Virus Research, 67, 89-125. – reference: Irwin M.E., Thresh J.M. (1990) Epidemiology of barley yellow dwarf - a study in ecological complexity. Annual Review of Phytopathology, 28, 393-424. – reference: van der Vlugt R.A.A., Stijger C.C.M.M., Verhoeven J.Th.J., Lesseman D.-E. (2000) First report of Pepino mosaic virus on tomato. Plant Disease, 84, 103. – reference: Thresh J.M. (1966) Field experiments on the spread of blackcurrant reversion virus and its gall mite vector (Phytoptus ribis, Nal.). Annals of Applied Biology, 58, 219-230. – reference: Parry M.L., Canziani O.F., Palutikof J.P., van der Linden P.J., Hanson C.E. (Eds) (2007) Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel for Climate Change. Cambridge, UK/New York, NY, USA: Cambridge University Press. – reference: Wang J., Bing X.L., Li M., Ye G.Y., Liu S.S. (2012) Infection of tobacco plants by a begomovirus improves nutritional assimilation by a whitefly. Entomologia Experimentalis et Applicata, 144, 191-201. – reference: Harrison B.D. (1964) Specific nematode vectors for serologically distinctive forms of raspberry ringspot and tomato black ring viruses. Annals of Applied Biology, 22, 544-550. – reference: Shestra A., Srinivasan R., Riley D.G., Culbreath A.K. (2012) Direct and indirect effects of thrips-transmitted Tospoviruses on the preference and fitness of its vector, Frankliniella fusca. Entomologia Experimentalis et Applicata, 145, 260-271. – reference: Cooper J.I., Jones R.A.C. (2006) Wild plants and viruses: under-investigated ecosystems. Advances in Virus Research, 67, 1-47. – reference: Power A.G., Borer E.T., Hosseini P., Mitchell C.E., Seabloom E.W. (2011) The community ecology of Barley/Cereal yellow dwarf viruses in Western US grasslands. Virus Research, 159, 95-100. – reference: Coutts B.A., Thomas-Carroll M.L., Jones R.A.C. (2004a) Analysing spatial patterns of spread of Lettuce necrotic yellows virus and lettuce big-vein disease in lettuce field plantings. Annals of Applied Biology, 145, 339-343. – reference: Thresh J.M. (1974b) Temporal patterns of virus spread. Annual Review of Phytopathology, 12, 111-128. – reference: Fargette D., Fauquet C., Thouvenel J.C. (1985) Field studies on the spread of African cassava mosaic. Annals of Applied Biology, 106, 285-294. – reference: McKirdy S.J., Coutts B.A., Jones R.A.C. (1994) Occurrence of bean yellow mosaic virus in subterranean clover pastures and perennial native legumes. Australian Journal of Agricultural Research, 45, 183-194. – reference: Lu J., Vecchi G.A., Reichler T. (2007) Expansion of the Hadley cell under global warming. Geophysical Research Letters, 34, L06805. DOI:10.1029/2006GL028443. – reference: Pan H., Chu D., Liu B., Shi X., Guo L., Xie W., Carriere Y., Li X., Zhang Y. (2013) Differential effects of an exotic plant virus on its two closely related vectors. Scientific Reports, 3, 2230. DOI:10.1038/srep02230. – reference: Thresh J.M. (1983a) Progress curves of plant virus disease. Advances in Applied Biology, 8, 1-85. – reference: Vidal E., Zagrai L., Milusheva S., Bozhkova V., Tasheva-Terzieva E., Kamenova I., Zagrai I., Cambra M. (2013) Horticultural mineral oil treatments in nurseries during aphid flights reduce Plum pox virus incidence under different ecological conditions. Annals of Applied Biology, 162, 299-308. – reference: Jiu M., Zhou X.P., Tong L., Xu J., Yang X., Wan F.-H., Liu S.-S. (2007) Vector-virus mutualism accelerates population increase of an invasive whitefly. PLoS ONE, 2, e182. DOI:10.1371/journal.pone.0000182. – reference: Desbiez C., Joannon B., Wipf-Scheibel C., Chandeysson C., Lecoq H. (2009) Emergence of new strains of Watermelon mosaic virus in south-eastern France: evidence for limited spread but rapid local population shift. Virus Research, 141, 201-208. – reference: Jones R.A.C., Harrison B.D. (1969) The behaviour of potato mop-top virus in soil, and evidence for its transmission by Spongospora subterranea (Wallr.) Lagerh. Annals of Applied Biology, 63, 1-17. – reference: Thresh J.M. (1980b) The origins and epidemiology of some important plant virus diseases. Applied Biology, 5, 1-65. – reference: Thresh J.M. (1983c) The long-range dispersal of plant viruses by arthropod vectors. Philosophical Transactions of the Royal Society, Series B-Biological Sciences, 302, 497-528. – reference: Jones R.A.C. (2004) Using epidemiological information to develop effective integrated virus disease management strategies. Virus Research, 100, 5-30. – reference: Mauck K.E., De Moraes C.M., Mescher M.C. (2010) Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. Proceedings of the National Academy of Sciences of the United States of America, 107, 3600-3605. – reference: Broadbent L.H. (1950) The correlation of aphid numbers with the spread of leaf roll and rugose mosaic in potato crops. Annals of Applied Biology, 37, 58-65. – reference: Kendall D.A., Chinn N.E., Smith B.D., Tidboald C., Winstone L., Western N.M. (1991) Effects of straw disposal and tillage on spread of barley yellow dwarf virus in winter barley. Annals of Applied Biology, 119, 359-364. – reference: Dáder B., Moreno A., Viñuela E., Fereres A. (2012) Spatio-temporal dynamics of viruses are differentially affected by parasitoids depending on the mode of transmission. Viruses, 4, 3069-3089. – reference: Roossinck M.J. (2012) Plant virus metagenomics: biodiversity and ecology. Annual Review of Genetics, 46, 359-369. – reference: Pallett D.W., Thurston M.I., Cortina-Borja M., Edwards M.-L., Alexander M., Mitchell E., Raybould A.F., Cooper J.I. (2002) The incidence of viruses in wild Brassica rapa ssp. sylvestris in Southern England. Annals of Applied Biology, 141, 163-170. – reference: Sacristan S., Garcia-Arenal F. (2008) The evolution of virulence and pathogenicity in plant pathogen populations. Molecular Plant Pathology, 9, 369-384. – reference: Seal S.E., van Den Bosch F., Jeger M.J. (2006a) Factors influencing begomovirus evolution and their increasing global significance: implications for sustainable control. Critical Reviews in Plant Science, 25, 23-46. – reference: Morales F.J. (2006) History and current distribution of begomoviruses in Latin America. Advances in Virus Research, 67, 127-162. – reference: Fargette D., Konaté G., Fauquet C., Mulle E., Peterschmitt M., Thresh J.M. (2006) Molecular ecology and emergence of tropical plant viruses. Annual Review of Phytopathology, 44, 235-260. – reference: Metz B., Davidson O.R., Bosch P.R., Dave R., Meyer L.A. (Eds) (2007) Climate Change 2007: Mitigation of Climate Change. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK/New York, NY, USA: Cambridge University Press. – reference: Zhang T., Luan J.-B., Qi J.-F., Huang C.-J., Li M., Zhou X-P., Liu S.-S. (2012) Begomovirus-whitefly mutualism is achieved through repression of plant defences by a virus pathogenicity factor. Molecular Ecology, 21, 1294-1304. DOI:10.1111/j.1365-294X.2012.05457.x. – reference: Bawden F.C. (1955) The spread and control of plant virus diseases. Annals of Applied Biology, 42, 140-147. – reference: Soleimani R., Matic S., Taheri H., Behjatnia S.A.A., Vecchiati M., Izadpanah K., Accotto G.P. (2013) The unconventional geminivirus Beet curly top Iran virus: satisfying Koch's postulates and determining vector and host range. Annals of Applied Biology, 162, 174-181. – reference: Bosque-Pérez N.A. (2000) Eight decades of maize streak virus research. Virus Research, 71, 107-121. – reference: Canto T., Aranda M.A., Fereres A. (2009) Climate change effects on physiology and population processes of hosts and vectors that influence the spread of hemipteran-borne plant viruses. Global Change Biology, 15, 1884-1894. – reference: Difonzo C.D., Ragsdale D.W., Radcliffe E.B., Gudmestad N.C., Secor G.A. (1996) Crop borders to reduce potato virus Y incidence in seed potato. Annals of Applied Biology, 129, 289-302. – reference: Lecoq H., Fabre P., Joannon B., Wipf-Scheibel C., Chandeysson C., Schoeny A., Desbiez C. (2011) Search for factors involved in the rapid shift in Watermelon mosaic virus (WMV) populations in South-eastern France. Virus Research, 159, 115-123. – reference: Tahiri A., Sekkat A., Bennani A., Granier M., Delvare G., Peterschmitt M. (2006) Distribution of tomato-infecting begomoviruses and Bemisia tabaci biotypes in Morocco. Annals of Applied Biology, 149, 175-186. – reference: Bedford I.D., Briddon R.W., Brown J.K., Rosell R.C., Markham P.G. (1994) Geminivirus-transmission and biological characterization of Bemisia tabaci (Gennadius) biotypes from different geographic regions. Annals of Applied Biology, 125, 311-325. – reference: Zhou X. (2013) Advances in understanding begomovirus satellites. Annual Review of Phytopathology, 51, 357-381. – reference: Jones R.A.C., Koenig R., Lesseman D.E. (1980) Pepino mosaic virus, a new potexvirus from pepino (Solanum muricatum). Annals of Applied Biology, 94, 61-68. – reference: Hanada K., Harrison B.D. (1977) Effects of virus genotype and temperature on seed transmission of nepoviruses. Annals of Applied Biology, 85, 79-92. – reference: Morales F.J., Anderson P.K. (2001) The emergence and dissemination of whitefly-transmitted geminiviruses in Latin America. Archives of Virology, 146, 415-441. – reference: Kirchner S.M., Döring T.F., Hiltunen L.H., Virtanen E., Valkonen J.P.T. (2011) Information-theory-based model selection for determining the main vector and period of transmission of Potato virus Y. Annals of Applied Biology, 159, 414-427. – reference: Martínez-Ayala A., Sánchez-Campos S., Cáceres F., Aragón-Caballero L., Navas-Castillo J., Moriones E. (2014) Characterisation and genetic diversity of pepper leafroll virus, a new bipartite begomovirus infecting pepper, bean and tomato in Peru. Annals of Applied Biology, 164, 62-70. – reference: Carter W. (1961) Ecological aspects of plant virus transmissions. Annual Review of Entomology, 6, 347-370. – reference: Santala J., Samuilova O., Hannukkla A., Latvala S., Kortemaa H., Beuch U., Kvarnheden A., Persson P., Topp K., Ørstad K., Spetz C., Nielsen S.L., Kirk H.G., Budziszewska M., Wieczorek P., Obrȩpalska-Stȩplowska A., Pospieszny H., Kryszczuk A., Sztangret-Wiśniewska J., Yin Z., Chrzanowska M., Zimnoch-Guzowska E., Jackeviciene E., Taluntytė L., Pūpola N., Mihailova J., Lielmane I., Järvekülg L., Kotkas K., Rogozina E., Sozonov A., Tikhonovich I., Horn P., Broer I., Kuusiene S., Staniulis J., Uth J.G., Adam G., Valkonen J.P.T. (2010) Detection, distribution and control of Potato mop-top virus, a soil-borne virus, in northern Europe. Annals of Applied Biology, 157, 163-178. – reference: Halbert S.E., Irwin M.E., Goodman R.M. (1981) Alate aphid (Homoptera: Aphididae) species and their relative importance as field vectors of soybean mosaic virus. Annals of Applied Biology, 97, 1-9. – reference: Pagan I., Gonzales-Jara P., Moreno-Letelier A., Rodelo-Urrego M., Pinero D., Garcia-Arenal F. (2012) Effect of biodiversity changes in disease risk: exploring emergence in a plant-virus system. PLoS Pathogens, 7, e1002796. DOI:10.1371/journal.ppat.1002796. – reference: Pachauri R.K., Reisinger A. (Eds) (2007) Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel for Climate Change. Cambridge, UK/New York, NY, USA: Cambridge University Press. – reference: Jeger M.J., Chen Z., Powell G., Hodge S., van den Bosch F. (2011a) Interactions in a host plant-virus-vector-parasitoid system: modeling the consequences for virus transmission and disease dynamics. Virus Research, 159, 183-193. – reference: Tugume A.K., Cuellar W.J., Mukasa S.B., Valkonen J.P.T. (2010a) Molecular genetic analysis of virus isolates from wild and cultivated plants show East Africa as a hotspot for the evolution and diversification of Sweet potato feathery mottle virus. Molecular Ecology, 19, 3139-3156. – reference: Ingwell L.L., Eigenbrode D.D., Bosque-Pérez N. (2012) Plant viruses alter insect behavior to enhance their spread. Scientific Reports, 2, 578. DOI:10.1038/srep00578. – reference: Moreno A., De Blas C., Biurrun R., Nebreda M., Palacios I., Duque M., Fereres A. (2004) The incidence and distribution of viruses infecting lettuce, cultivated Brassica and associated natural vegetation in Spain. Annals of Applied Biology, 144, 339-346. – reference: Harrington R., Dewar A.M., George B. (1989) Forecasting the incidence of virus yellows in sugar beet in England. Annals of Applied Biology, 114, 459-469. – reference: Tugume A.K., Mukasa S.B., Valkonen J.P.T. (2008) Natural wild hosts of Sweet potato feathery mottle virus show spatial differences in virus incidence and virus-like diseases in Uganda. Phytopathology, 98, 640-652. – reference: Broadbent L., Tinsley T.W., Buddin W., Roberts E.T. (1951) The spread of lettuce mosaic in the field. Annals of Applied Biology, 8, 689-706. – reference: Coutts B.A., Jones R.A.C. (2002) Temporal dynamics of spread of four viruses within mixed species perennial pastures. Annals of Applied Biology, 140, 37-52. – reference: Homes F.O. (1955) Additive resistances to specific viral diseases in plants. Annals of Applied Biology, 42, 129-139. – reference: Adams M.L. (1991) Transmission of plant viruses by fungi. Annals of Applied Biology, 118, 479-492. – reference: Jones A.T. (1987) Control of virus infection in crop plants through vector resistance: a review of achievements prospects and problems. Annals of Applied Biology, 111, 745-772. – reference: Ferris D.G., Jones R.A.C., Wroth J.M. (1996) Determining the effectiveness of resistance to subterranean clover mottle sobemovirus in different genotypes of subterranean clover in the field using the gazing animal as virus vector. Annals of Applied Biology, 128, 303-315. – reference: Perry J.N. (1995) Spatial analysis by distance indices. Journal of Animal Ecology, 64, 303-314. – reference: Harrison B.D., Robinson D.J. (2005) Another quarter century of great progress in understanding the biological properties of plant viruses. Annals of Applied Biology, 146, 15-37. – reference: Adkins S., Webster C.G., Kousik C.S., Webb S.E., Roberts P.D., Stansly P.A., Turechek W.W. (2011) Ecology and management of whitefly-transmitted viruses of vegetable crops in Florida. Virus Research, 159, 110-114. – reference: Thresh J.M. (1991) The ecology of tropical plant virus diseases. Plant Pathology, 40, 324-339. – reference: Tsai W.S., Shih S.L., Venkatesan S.G., Aquino M.U., Green S.K., Kenyon L., Jan F.-J. (2011) Distribution and genetic diversity of begomoviruses infecting tomato and pepper plants in the Philippines. Annals of Applied Biology, 158, 275-287. – reference: Shipp J.L., Buitenhuis R., Stobbs L., Wang K., Kim W.S., Ferguson G. (2008) Vectoring of Pepino mosaic virus by bumble-bees in tomato greenhouses. Annals of Applied Biology, 153, 149-155. – reference: Rodríguez-Pardina P.E., Hanada K., Laguna I.G., Zerbini F.M., Ducasse D.A. (2011) Molecular characterisation and relative incidence of bean- and soybean-infecting begomoviruses in northwestern Argentina. Annals of Applied Biology, 158, 69-78. – reference: Watson M.A., Heathcote G.D., Lauckner F.B., Sowray P.A. (1975) The use of weather data and counts of aphids in the field to predict the incidence of yellowing viruses of sugar-beet crops in England in relation to the use of insecticides. Annals of Applied Biology, 81, 181-198. – reference: Olarte-Castillo X.A., Fermin G., Tabima J., Rojas Y., Tennant P.F., Fuchs M., Sierra R., Bernal A.J., Restrepo S. (2011) Phylogeography and molecular epidemiology of Papaya ringspot virus. Virus Research, 159, 132-140. – reference: Thresh J.M. (1976) Gradients of plant virus diseases. Annals of Applied Biology, 82, 381-406. – reference: Jeger M.J., van den Bosch F., Madden L.V. (2011b) Modelling virus- and host-limitation in vectored plant disease epidemics. Virus Research, 159, 215-222. – reference: Hull R. (2002) Mathews' Plant Virology. 4th edn. London, UK: Academic Press. – reference: Lister R.M., Murant A.F. (1967) Seed-transmission of nematode-borne viruses. Annals of Applied Biology, 59, 49-62. – reference: Pappu H.R., Jones R.A.C., Jain R.K. (2009) Global status of tospovirus epidemics in diverse cropping systems: successes achieved and challenges ahead. Virus Research, 141, 219-236. – reference: Westwood J.H., Groen S.C., Du Z., Murphy A.M., Anggoro D.T., Tungadi T., Luang-In V., Lewsey M.G., Rossiter J.T., Powell G., Smith A.G., Carr J.P. (2013) A trio of viral proteins tunes aphid-plant interactions in Arabidopsis thaliana. PLoS ONE, 8, e83066. DOI:10.1371/journal.pone.0083066. – reference: Jones R.A.C. (2005) Patterns of spread of two non-persistently aphid-borne viruses in lupin stands under four different infection scenarios. Annals of Applied Biology, 146, 337-350. – reference: Robert Y. (2001) Epidemiology of Plant Virus Diseases. Bognor Regis, UK: John Wiley & Sons Ltd. DOI:10.1038/npg.els.0000759. – reference: Thomas-Carroll M.L., Jones R.A.C. (2003) Selection, biological properties and fitness of resistance-breaking strains of Tomato spotted wilt virus in pepper. Annals of Applied Biology, 142, 235-243. – reference: Alvarez A.E., Garzo E., Verbeek M., Vosman N., Dicke M., Tjallingii W.F. (2007) Infection of potato plants with potato leafroll virus changes attraction and feeding behaviour of Myzus persicae. Entomologia Experimentalis et Applicata, 125, 135-144. – reference: Acosta-Leal R., Duffy S., Xiong Z., Hammond R.W., Elena S.F. (2011) Advances in plant virus evolution: translating evolutionary insights into better disease management. Phytopathology, 101, 1136-1148. – reference: Cooper J.I., Jones R.A.C., Harrison B.D. (1976) Field and glasshouse experiments on the control of potato mop-top virus. Annals of Applied Biology, 83, 215-230. – reference: Traore O., Pinel-Galzi A., Sorho F., Sarra S., Rakotomalala M., Sangu E., Kaneya Z., Sere Y., Konate G., Fargette D. (2009) A reassessment of the epidemiology of Rice yellow mottle virus following recent advances in field and molecular studies. Virus Research, 141, 258-267. – reference: Tugume A.K., Amayo R., Weinheimer I., Mukasa S.B., Rubaihayo P.R., Valkonen J.P.T. (2013) Genetic variability and evolutionary implications of RNA silencing suppressor genes in RNA1 of Sweet potato chlorotic stunt virus isolates infecting sweetpotato and related wild species. PLoS ONE, 8, e81479. – reference: Prendeville H.R., Ye X., Morris J.T., Pilson D. (2012) Virus infections in wild plant populations are both frequent and often unapparent. American Journal of Botany, 99, 1033-1042. – reference: Mumford R.A., Barker I., Wood K.R. (1996) The biology of the tospoviruses. Annals of Applied Biology, 128, 159-183. – reference: Cooper J.I., Harrison B.D. (1973) The role of weed hosts and the distribution and activity of vector nematodes in the ecology of tobacco rattle virus. Annals of Applied Biology, 73, 53-66. – reference: Raccah B., Gal-On A., Eastop V.F. (1985) The role of flying aphid vectors in the transmission of cucumber mosaic virus and potato virus Y to peppers in Israel. Annals of Applied Biology, 106, 451-460. – reference: Moreno A., Nebreda M., Diaz B.M., García M., Salas F., Fereres A. (2007) Temporal and spatial spread of Lettuce mosaic virus in lettuce crops in central Spain: factors involved in Lettuce mosaic virus epidemics. Annals of Applied Biology, 150, 351-360. – reference: Thresh J.M. (1982) Cropping practices and virus spread. Annual Review of Phytopathology, 20, 193-218. – reference: Cilia M., Peter K.A., Bereman M.S., Howe K., Fish T., Smith D., Gildow F., MacCoss M.J., Thannhauser T.W., Gray S.M. (2012) Discovery and targeted LC-MS/MS of purified polerovirus reveals differences in the virus-host interactome associated with altered aphid transmission. PLoS ONE, 7, e48177. DOI:10.1371/journal.pone.0048177. – reference: Murant A.F., Chambers J., Jones A.T. (1974) Spread of raspberry bushy dwarf virus by pollination, its association with crumbly fruit, and problems of control. Annals of Applied Biology, 77, 271-281. – reference: Thackray D.J., Smith L.J., Cheng Y., Perry J.N., Jones R.A.C. (2002) Effect of strain-specific hypersensitive resistance on spatial patterns of virus spread. Annals of Applied Biology, 141, 45-59. – reference: Thresh J.M. (2006a) Plant virus epidemiology. Advances in Virus Research, 67, 1-544. – reference: Matthews R.E.F. (1970) Plant Virology. New York, NY, USA: Academic Press. – reference: Coutts B.A., Jones R.A.C. (2005). Suppressing spread of Tomato spotted wilt virus by drenching infected source or healthy recipient plants with neonicotinoid insecticides to control thrips vectors. Annals of Applied Biology, 146, 95-103. – reference: Harrison B.D., Peachey J.E., Winslow R.D. (1963) The use of nematicides to control the spread of Arabis mosaic virus by Xiphenema diversicaudatum (Micol.). Annals of Applied Biology, 53, 243-255. – reference: Bos L. (1992) New plant virus problems in developing countries: a corollary of agricultural modernisation. Advances in Virus Research, 41, 349-407. – reference: Broadbent L.H. (1965) The epidemiology of tobacco mosaic. XI. Seed transmission of TMV. Annals of Applied Biology, 56, 177-205. – reference: Milne J.R., Walter G.H. (2003) The coincidence of thrips and dispersed pollen in PNRSV-infected stonefruit orchards - a precondition for thrips-mediated transmission via infected pollen. Annals of Applied Biology, 142, 291-298. – reference: Mauck K., Bosque-Pérez N., Eigenbrode S.D., de Moraes C., Mescher M. (2012) Transmission mechanisms shape pathogen effects on host-vector interactions: evidence from plant viruses. Functional Ecology, 26, 1162-1175. – reference: Jones R.A.C. (1988b) Seed-borne cucumber mosaic virus infection of narrow-leafed lupin (Lupinus angustifolius) in Western Australia. Annals of Applied Biology, 113, 507-518. – reference: Karyeija R.F., Gibson R.W., Valkonen J.P.T. (1998) Resistance to sweet potato virus disease in wild East-African Ipomoea spp. Annals of Applied Biology, 133, 39-44. – reference: McLean G.D., Garrett R.G., Ruesink W.G. (Eds) (1986) Plant Virus Epidemics: Monitoring, Modelling and Predicting Outbreaks. Sydney, Australia: Academic Press. – reference: Sauke H., Doring T.F. (2004) Potato virus Y reduction by straw mulch in organic potatoes. Annals of Applied Biology, 144, 347-355. – reference: Gómez P., Sempere R.N., Amari K., Gómez-Aix C., Aranda M.A. (2010) Epidemics of Tomato torrado virus, Pepino mosaic virus and Tomato chlorosis virus in tomato crops: do mixed infections contribute to torrado disease epidemiology? Annals of Applied Biology, 156, 401-410. – reference: Cheng Y.-H., Zheng Y.-X., Tai C.-H., Yen J.-H., Chen Y.-K., Jan F.-J. (2014) Identification, characterisation and detection of a new tospovirus from sweet pepper. Annals of Applied Biology, 164, 107-115. – reference: Jones R.A.C. (1994) Effects of mulching with cereal straw and row spacing on spread of bean yellow mosaic potyvirus into narrow-leafed lupins (Lupinus angustifolius). Annals of Applied Biology, 124, 45-58. – reference: Tsai W.S., Shih S.L., Rauf A., Safitri R., Hidayati N., Huyen B.T.T., Kenyon L. (2013) Genetic diversity of legume yellow mosaic begomoviruses in Indonesia and Vietnam. Annals of Applied Biology, 163, 367-377. – reference: Plumb R.T., Thresh J.M. (1983) Plant Virus Epidemiology: The Spread and Control of Insect-borne Viruses, pp. 377. Oxford, UK: Blackwell Scientific Publications. – reference: Jones R.A.C., Harrison B.D. (1972) Ecological studies on potato mop-top virus in Scotland. Annals of Applied Biology, 71, 47-57. – reference: Maskell L.C., Raybould A.F., Cooper J.I., Edwards M.-L., Gray A.J. (1999) Effects of turnip mosaic virus and turnip yellow mosaic virus on the survival, growth and reproduction of wild cabbage (Brassica oleracea). Annals of Applied Biology, 135, 401-407. – reference: Jones R.A.C. (2009) Plant virus emergence and evolution: origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for control. Virus Research, 141, 113-130. – reference: Kassanis B. (1941) Transmission of tobacco etch viruses by aphids. Annals of Applied Biology, 28, 238-243. – reference: Coutts B.A., Thomas-Carroll M.L., Jones R.A.C. (2004b) Patterns of spread of Tomato spotted wilt virus in field crops of lettuce and pepper: spatial dynamics and validation of control measures. Annals of Applied Biology, 145, 231-245. – reference: Wilson C.R. (2014) Applied Plant Virology. Wallingford, UK: CABI Press. – reference: Alexander H.M., Mauck K.E., Whitfield A.E., Garret K.A., Malmstrom C.M. (2014) Plant virus interactions at the agro-ecological interface. European Journal of Plant Pathology, 138, 529-574. DOI:10.1007/S10658-013-0317-1. – reference: Berlandier F.A., Thackray D.J., Jones R.A.C., Latham L.J., Cartwright L. (1997) Determining the relative roles of different aphid species as vectors of cucumber mosaic and bean yellow mosaic viruses in lupins. Annals of Applied Biology, 131, 297-314. – reference: Jones R.A.C., Fribourg C.E. (1979) Host plant reactions, some properties and serology of wild potato mosaic virus. Phytopatholgy, 69, 446-449. – reference: Varsani A., Shepherd D.N., Monjane A.L., Owor B.E., Erdmann J.B., Rybicki E.P., Peterschmitt M., Briddon R.W., Markham P.G., Oluwafemi S., Windram O.P., Lefeuvre P., Lett J.-M., Martin D.P. (2008) Recombination, decreased host specificity and increased mobility have driven the emergence of maize streak virus as an agricultural pathogen. Journal of General Virology, 89, 2063-2074. – reference: Watson M.A., Hull R., Blencowe J.W., Hamlyn B.G.M. (1951) The spread of beet yellows and beet mosaic viruses in the sugar beet root crop. I. Field observations on the virus diseases of sugar beet and their vectors Myzus persicae Sulz. and Aphis fabae Koch. Annals of Applied Biology, 38, 743-764. – reference: van Slogteren E. (1955) Serological diagnosis of plant virus diseases. Annals of Applied Biology, 42, 122-128. – reference: Thresh J.M. (1981a) Pests, Pathogens and Vegetation. London, UK: Pitman. 517pp. – reference: Thresh J.M. (1974a) Vector relationships and development of epidemics - epidemiology of plant viruses. Phytopathology, 64, 1050-1056. – reference: Jones R.A.C. (2014) Trends in plant virus epidemiology: opportunities from new or improved technologies. Virus Research. DOI:10.1016/j.virusres.2013.11.003. in press. – reference: Tugume A.K., Mukasa S.B., Kalkkinen N., Valkonen J.P.T. (2010b) Recombination and selection pressure in the ipomovirus Sweet potato mild mottle virus (Potyviridae) in wild species and cultivated sweetpotato in the centre of evolution in East Africa. Journal of General Virology, 91, 1092-1108. – reference: Wang J., Zhao H., Liu J., Jiu M., Qian Y.-J., Liu S.-S. (2010) Low frequency of horizontal and vertical transmission of two begomoviruses through whiteflies exhibits little relevance to the vector infectivity. Annals of Applied Biology, 157, 125-133. – reference: Stafford C.A., Walker G.P., Ulman D.E. (2011) Infection with a plant virus modifies vector feeding behaviour. Proceedings of the National Academy of Sciences of the United States of America, 108, 9350-9355. – reference: Carter W. (1939) Populations of Thrips tabaci, with special reference to virus transmission. Journal of Animal Ecology, 8, 261-276. – reference: Waggoner P.E., Aylor D.E. (2000) Epidemiology: a science of patterns. Annual Review of Phytopathology, 38, 71-94. – reference: Velasco L., Simon B., Janssen D., Cenis J.L. (2008) Incidences and progression of tomato chlorosis disease and tomato yellow leaf curl virus disease in tomato under different greenhouse covers in southeast Spain. Annals of Applied Biology, 153, 334-344. – reference: Coutts B.A., Strickland G.R., Kehoe M., Severtson D.L., Jones R.A.C. (2008) The epidemiology of Wheat streak mosaic virus in Australia: case histories, gradients, mite vectors and alternative hosts. Australian Journal of Agricultural Research, 59, 844-853. – reference: Jones R.A.C., Ferris D.J. (2000) Suppressing spread of alfalfa mosaic virus in grazed legume pasture swards using insecticides and admixture with grass, and effects of insecticides on numbers of aphids and three other pasture pests. Annals of Applied Biology, 137, 259-271. – reference: Bosque-Pérez N.A., Eigenbrode S.D. (2011) The influence of virus-induced changes in plants on aphid vectors: insights from luteovirus pathosystems. Virus Research, 159, 201-205. – reference: Rajabascar D., Bosque-Pérez N.A., Eigenbrode S.D. (2014) Preference by a virus vector for infected plants is reversed after virus acquisition. Virus Research. DOI:10.1016/j.virusres.2013.11.005. in press. – reference: Jones A.T. (1979) Further studies on the effect of resistance to Amphorophora idaei in raspberry (Rubus idaeus) on the spread of aphid-borne viruses. Annals of Applied Biology, 92, 119-123. – reference: Jones R.A.C. (2013) Virus diseases of perennial pasture legumes: incidences, losses, epidemiology and management. Crop and Pasture Science, 64, 199-215. – reference: Ramappa H.K., Muniyappa V., Colvin J. (1998) The contribution of tomato and alternative host plants to tomato leaf curl virus inoculum pressure in different areas of south India. Annals of Applied Biology, 133, 187-198. – reference: Varma A., Malathi V.G. (2003) Emerging geminivirus problems: a serious threat to crop production. Annals of Applied Biology, 142, 145-164. – volume: 141 start-page: 190 year: 2009 end-page: 200 article-title: Molecular epidemiology of in France: an historical overview publication-title: Virus Research – volume: 66 start-page: 11 year: 1970 end-page: 16 article-title: Weed plants as sources of cucumber mosaic virus publication-title: Annals of Applied Biology – volume: 162 start-page: 174 year: 2013 end-page: 181 article-title: The unconventional geminivirus : satisfying Koch's postulates and determining vector and host range publication-title: Annals of Applied Biology – volume: 2 start-page: e182 year: 2007 article-title: Vector–virus mutualism accelerates population increase of an invasive whitefly publication-title: PLoS ONE – volume: 159 start-page: 161 year: 2011 end-page: 170 article-title: Comparing the regional epidemiology of the cassava mosaic and cassava brown streak virus pandemics in Africa publication-title: Virus Research – volume: 108 start-page: 17366 year: 2011 end-page: 17371 article-title: A plant virus evolved by acquiring multiple nonconserved genes to extend its host range publication-title: Proceedings of the National Academy of Sciences of the United States of America – start-page: 57 year: 1980 end-page: 70 – volume: 11 start-page: 199 year: 2003 end-page: 223 article-title: Control of plant virus diseases in Sub‐Saharan Africa: the possibility and feasibility of an integrated approach publication-title: African Journal of Crop Science – volume: 164 start-page: 62 year: 2014 end-page: 70 article-title: Characterisation and genetic diversity of pepper leafroll virus, a new bipartite begomovirus infecting pepper, bean and tomato in Peru publication-title: Annals of Applied Biology – volume: 133 start-page: 187 year: 1998 end-page: 198 article-title: The contribution of tomato and alternative host plants to tomato leaf curl virus inoculum pressure in different areas of south India publication-title: Annals of Applied Biology – volume: 137 start-page: 259 year: 2000 end-page: 271 article-title: Suppressing spread of alfalfa mosaic virus in grazed legume pasture swards using insecticides and admixture with grass, and effects of insecticides on numbers of aphids and three other pasture pests publication-title: Annals of Applied Biology – volume: 141 start-page: 209 year: 2009 end-page: 218 article-title: Epidemiology and integrated management of persistently transmitted aphid‐borne viruses of legume and cereal crops in West Asia and North Africa publication-title: Virus Research – volume: 153 start-page: 149 year: 2008 end-page: 155 article-title: Vectoring of by bumble‐bees in tomato greenhouses publication-title: Annals of Applied Biology – year: 2014 – volume: 83 start-page: 215 year: 1976 end-page: 230 article-title: Field and glasshouse experiments on the control of potato mop‐top virus publication-title: Annals of Applied Biology – volume: 141 start-page: 258 year: 2009 end-page: 267 article-title: A reassessment of the epidemiology of following recent advances in field and molecular studies publication-title: Virus Research – volume: 119 start-page: 359 year: 1991 end-page: 364 article-title: Effects of straw disposal and tillage on spread of barley yellow dwarf virus in winter barley publication-title: Annals of Applied Biology – volume: 164 start-page: 107 year: 2014 end-page: 115 article-title: Identification, characterisation and detection of a new tospovirus from sweet pepper publication-title: Annals of Applied Biology – volume: 100 start-page: 5 year: 2004 end-page: 30 article-title: Using epidemiological information to develop effective integrated virus disease management strategies publication-title: Virus Research – volume: 159 start-page: 201 year: 2011 end-page: 205 article-title: The influence of virus‐induced changes in plants on aphid vectors: insights from luteovirus pathosystems publication-title: Virus Research – volume: 142 start-page: 291 year: 2003 end-page: 298 article-title: The coincidence of thrips and dispersed pollen in PNRSV‐infected stonefruit orchards – a precondition for thrips‐mediated transmission via infected pollen publication-title: Annals of Applied Biology – volume: 163 start-page: 367 year: 2013 end-page: 377 article-title: Genetic diversity of legume yellow mosaic begomoviruses in Indonesia and Vietnam publication-title: Annals of Applied Biology – volume: 133 start-page: 39 year: 1998 end-page: 44 article-title: Resistance to sweet potato virus disease in wild East‐African spp publication-title: Annals of Applied Biology – start-page: 61 year: 2003 end-page: 111 – volume: 113 start-page: 507 year: 1988 end-page: 518 article-title: Seed‐borne cucumber mosaic virus infection of narrow‐leafed lupin ( ) in Western Australia publication-title: Annals of Applied Biology – volume: 162 start-page: 299 year: 2013 end-page: 308 article-title: Horticultural mineral oil treatments in nurseries during aphid flights reduce incidence under different ecological conditions publication-title: Annals of Applied Biology – volume: 65 start-page: 293 year: 1970 end-page: 297 article-title: Establishment of a new strain of tobacco mosaic virus resulting from use of resistant varieties of tomato publication-title: Annals of Applied Biology – volume: 159 start-page: 84 year: 2011 end-page: 94 article-title: The expanding field of plant virus ecology: historical foundations, knowledge gaps and research directions publication-title: Virus Research – volume: 22 start-page: 2325 year: 2013 end-page: 2340 article-title: Landscape heterogeneity shapes host–parasite interactions and results in apparent plant virus codivergence publication-title: Molecular Ecology – volume: 67 start-page: 127 year: 2006 end-page: 162 article-title: History and current distribution of begomoviruses in Latin America publication-title: Advances in Virus Research – volume: 67 start-page: 297 year: 2006 end-page: 316 article-title: Begomovirus evolution and disease management publication-title: Advances in Virus Research – volume: 81 start-page: 181 year: 1975 end-page: 198 article-title: The use of weather data and counts of aphids in the field to predict the incidence of yellowing viruses of sugar‐beet crops in England in relation to the use of insecticides publication-title: Annals of Applied Biology – volume: 8 start-page: 689 year: 1951 end-page: 706 article-title: The spread of lettuce mosaic in the field publication-title: Annals of Applied Biology – volume: 16 start-page: 259 year: 1988 end-page: 270 article-title: Epidemiological studies of the tomato yellow leaf curl virus (TYLCV) in the Jordan Valley, Israel publication-title: Phytoparasitica – volume: 19 start-page: 535 year: 2004 end-page: 544 article-title: Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers publication-title: Trends in Ecology and Evolution – volume: 12 start-page: 111 year: 1974 end-page: 128 article-title: Temporal patterns of virus spread publication-title: Annual Review of Phytopathology – year: 2007 – volume: 104 start-page: 485 year: 1984 end-page: 495 article-title: Studies on the occurrence of tomato bushy stunt virus in English rivers publication-title: Annals of Applied Biology – volume: 89 start-page: 237 year: 1978 end-page: 244 article-title: Relations of carrot red leaf and carrot mottle viruses with their aphid vector, publication-title: Annals of Applied Biology – volume: 94 start-page: 13 year: 1979 end-page: 19 article-title: Effects of fungicides and surfactants on the zoospores of Olpidium brassicae publication-title: Annals of Applied Biology – volume: 101 start-page: 1136 year: 2011 end-page: 1148 article-title: Advances in plant virus evolution: translating evolutionary insights into better disease management publication-title: Phytopathology – volume: 118 start-page: 479 year: 1991 end-page: 492 article-title: Transmission of plant viruses by fungi publication-title: Annals of Applied Biology – volume: 149 start-page: 313 year: 2006 end-page: 316 article-title: Characterisation of cucumber leaf spot virus isolated from recycled irrigation water of soil‐less cucumber culture publication-title: Annals of Applied Biology – volume: 159 start-page: 215 year: 2011 end-page: 222 article-title: Modelling virus‐ and host‐limitation in vectored plant disease epidemics publication-title: Virus Research – start-page: 537 year: 1983 end-page: 558 – volume: 53 start-page: 243 year: 1963 end-page: 255 article-title: The use of nematicides to control the spread of Arabis mosaic virus by (Micol.) publication-title: Annals of Applied Biology – volume: 46 start-page: 95 year: 1996 end-page: 102 article-title: SADIE: software to measure and model spatial pattern publication-title: Aspects of Applied Biology – volume: 9 start-page: e91224 year: 2014 – volume: 156 start-page: 39 year: 2010 end-page: 49 article-title: Determination of aphid transmission efficiencies for N, NTN and Wilga strains of publication-title: Annals of Applied Biology – volume: 71 start-page: 47 year: 1972 end-page: 57 article-title: Ecological studies on potato mop‐top virus in Scotland publication-title: Annals of Applied Biology – year: 2002 – volume: 146 start-page: 415 year: 2001 end-page: 441 article-title: The emergence and dissemination of whitefly‐transmitted geminiviruses in Latin America publication-title: Archives of Virology – volume: 21 start-page: 1294 year: 2012 end-page: 1304 article-title: Begomovirus‐whitefly mutualism is achieved through repression of plant defences by a virus pathogenicity factor publication-title: Molecular Ecology – volume: 153 start-page: 334 year: 2008 end-page: 344 article-title: Incidences and progression of tomato chlorosis disease and tomato yellow leaf curl virus disease in tomato under different greenhouse covers in southeast Spain publication-title: Annals of Applied Biology – volume: 34 start-page: L06805 year: 2007 article-title: Expansion of the Hadley cell under global warming publication-title: Geophysical Research Letters – volume: 106 start-page: 285 year: 1985 end-page: 294 article-title: Field studies on the spread of African cassava mosaic publication-title: Annals of Applied Biology – start-page: 255 year: 1988 end-page: 270 – volume: 42 start-page: 129 year: 1955 end-page: 139 article-title: Additive resistances to specific viral diseases in plants publication-title: Annals of Applied Biology – year: 2013 – start-page: 89 year: 1981 end-page: 107 – volume: 142 start-page: 145 year: 2003 end-page: 164 article-title: Emerging geminivirus problems: a serious threat to crop production publication-title: Annals of Applied Biology – start-page: 281 year: 1988 end-page: 292 – volume: 42 start-page: 140 year: 1955 end-page: 147 article-title: The spread and control of plant virus diseases publication-title: Annals of Applied Biology – volume: 114 start-page: 459 year: 1989 end-page: 469 article-title: Forecasting the incidence of virus yellows in sugar beet in England publication-title: Annals of Applied Biology – volume: 144 start-page: 191 year: 2012 end-page: 201 article-title: Infection of tobacco plants by a begomovirus improves nutritional assimilation by a whitefly publication-title: Entomologia Experimentalis et Applicata – volume: 44 start-page: 235 year: 2006 end-page: 260 article-title: Molecular ecology and emergence of tropical plant viruses publication-title: Annual Review of Phytopathology – volume: 82 start-page: 381 year: 1976 end-page: 406 article-title: Gradients of plant virus diseases publication-title: Annals of Applied Biology – volume: 5 start-page: 1 year: 1980 end-page: 65 article-title: The origins and epidemiology of some important plant virus diseases publication-title: Applied Biology – volume: 122 start-page: 501 year: 1993 end-page: 518 article-title: Effects of cereal borders, admixture with cereals and plant density on the spread of bean yellow mosaic potyvirus into narrow‐leafed lupins ( ) publication-title: Annals of Applied Biology – volume: 141 start-page: 113 year: 2009 end-page: 130 article-title: Plant virus emergence and evolution: origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for control publication-title: Virus Research – volume: 138 start-page: 529 year: 2014 end-page: 574 article-title: Plant virus interactions at the agro‐ecological interface publication-title: European Journal of Plant Pathology – volume: 167 start-page: 34 year: 2012 end-page: 42 article-title: Detection of members of the in the Tall Grass Prairie Preserve, Osage County, Oklahoma, USA publication-title: Virus Research – volume: 48 start-page: 179 year: 2010 end-page: 203 article-title: Principles of predicting epidemics of plant virus disease publication-title: Annual Review of Phytopathology – volume: 51 start-page: 357 year: 2013 end-page: 381 article-title: Advances in understanding begomovirus satellites publication-title: Annual Review of Phytopathology – volume: 149 start-page: 175 year: 2006 end-page: 186 article-title: Distribution of tomato‐infecting begomoviruses and biotypes in Morocco publication-title: Annals of Applied Biology – year: 2014 article-title: A non‐persistently transmitted‐virus induces a pull–push strategy in its aphid vector to optimize transmission and spread publication-title: Virus Research – volume: 111 start-page: 745 year: 1987 end-page: 772 article-title: Control of virus infection in crop plants through vector resistance: a review of achievements prospects and problems publication-title: Annals of Applied Biology – volume: 97 start-page: 1 year: 1981 end-page: 9 article-title: Alate aphid (Homoptera: Aphididae) species and their relative importance as field vectors of soybean mosaic virus publication-title: Annals of Applied Biology – volume: 141 start-page: 219 year: 2009 end-page: 236 article-title: Global status of tospovirus epidemics in diverse cropping systems: successes achieved and challenges ahead publication-title: Virus Research – start-page: 1 year: 1981 end-page: 28 – volume: 129 start-page: 289 year: 1996 end-page: 302 article-title: Crop borders to reduce potato virus Y incidence in seed potato publication-title: Annals of Applied Biology – volume: 45 start-page: 183 year: 1994 end-page: 194 article-title: Occurrence of bean yellow mosaic virus in subterranean clover pastures and perennial native legumes publication-title: Australian Journal of Agricultural Research – volume: 159 start-page: 95 year: 2011 end-page: 100 article-title: The community ecology of in Western US grasslands publication-title: Virus Research – volume: 159 start-page: 414 year: 2011 end-page: 427 article-title: Information‐theory‐based model selection for determining the main vector and period of transmission of publication-title: Annals of Applied Biology – volume: 99 start-page: 1033 year: 2012 end-page: 1042 article-title: Virus infections in wild plant populations are both frequent and often unapparent publication-title: American Journal of Botany – start-page: 377 year: 1983 – volume: 150 start-page: 351 year: 2007 end-page: 360 article-title: Temporal and spatial spread of in lettuce crops in central Spain: factors involved in epidemics publication-title: Annals of Applied Biology – volume: 67 start-page: 1 year: 2006 end-page: 47 article-title: Wild plants and viruses: under‐investigated ecosystems publication-title: Advances in Virus Research – volume: 157 start-page: 13 year: 2010 end-page: 24 article-title: Vectors and alternative hosts of tobacco yellow dwarf virus in southeastern Australia publication-title: Annals of Applied Biology – volume: 29 start-page: 1481 year: 2012 end-page: 1492 article-title: Multihost experimental evolution of a plant RNA virus reveals local adaptation and host specific mutations publication-title: Molecular Biology – volume: 110 start-page: 661 year: 1987 end-page: 681 article-title: Epidemiology and control of virus diseases of vegetables publication-title: Annals of Applied Biology – volume: 28 start-page: 393 year: 1990 end-page: 424 article-title: Epidemiology of barley yellow dwarf – a study in ecological complexity publication-title: Annual Review of Phytopathology – volume: 159 start-page: 101 year: 2011 end-page: 109 article-title: Epidemiology of spotted wilt disease of peanut caused by in the southeastern U.S publication-title: Virus Research – volume: 158 start-page: 69 year: 2011 end-page: 78 article-title: Molecular characterisation and relative incidence of bean‐ and soybean‐infecting begomoviruses in northwestern Argentina publication-title: Annals of Applied Biology – volume: 131 start-page: 297 year: 1997 end-page: 314 article-title: Determining the relative roles of different aphid species as vectors of cucumber mosaic and bean yellow mosaic viruses in lupins publication-title: Annals of Applied Biology – volume: 19 start-page: 3139 year: 2010 end-page: 3156 article-title: Molecular genetic analysis of virus isolates from wild and cultivated plants show East Africa as a hotspot for the evolution and diversification of publication-title: Molecular Ecology – volume: 158 start-page: 275 year: 2011 end-page: 287 article-title: Distribution and genetic diversity of begomoviruses infecting tomato and pepper plants in the Philippines publication-title: Annals of Applied Biology – volume: 9 start-page: 133 year: 2002 end-page: 141 article-title: A new method for measuring spatial association in ecological count data publication-title: Ecoscience – volume: 142 start-page: 365 year: 2003 end-page: 368 article-title: The host range of in India and transmission by thrips publication-title: Annals of Applied Biology – volume: 56 start-page: 177 year: 1965 end-page: 205 article-title: The epidemiology of tobacco mosaic. XI. Seed transmission of TMV publication-title: Annals of Applied Biology – volume: 6 start-page: 347 year: 1961 end-page: 370 article-title: Ecological aspects of plant virus transmissions publication-title: Annual Review of Entomology – volume: 145 start-page: 113 year: 2004 end-page: 121 article-title: The cassava mosaic geminiviruses occurring in Uganda following the 1990s epidemic of severe cassava mosaic disease publication-title: Annals of Applied Biology – volume: 20 start-page: 193 year: 1982 end-page: 218 article-title: Cropping practices and virus spread publication-title: Annual Review of Phytopathology – volume: 159 start-page: 110 year: 2011 end-page: 114 article-title: Ecology and management of whitefly‐transmitted viruses of vegetable crops in Florida publication-title: Virus Research – volume: 2 start-page: 578 year: 2012 article-title: Plant viruses alter insect behavior to enhance their spread publication-title: Scientific Reports – volume: 25 start-page: 23 year: 2006 end-page: 46 article-title: Factors influencing begomovirus evolution and their increasing global significance: implications for sustainable control publication-title: Critical Reviews in Plant Science – volume: 38 start-page: 71 year: 2000 end-page: 94 article-title: Epidemiology: a science of patterns publication-title: Annual Review of Phytopathology – volume: 157 start-page: 163 year: 2010 end-page: 178 article-title: Detection, distribution and control of , a soil‐borne virus, in northern Europe publication-title: Annals of Applied Biology – volume: 67 start-page: 245 year: 2006 end-page: 295 article-title: Control of tropical plant virus diseases publication-title: Advances in Virus Research – volume: 3 start-page: 2230 year: 2013 article-title: Differential effects of an exotic plant virus on its two closely related vectors publication-title: Scientific Reports – volume: 98 start-page: 640 year: 2008 end-page: 652 article-title: Natural wild hosts of show spatial differences in virus incidence and virus‐like diseases in Uganda publication-title: Phytopathology – volume: 141 start-page: 163 year: 2002 end-page: 170 article-title: The incidence of viruses in wild ssp in Southern England publication-title: Annals of Applied Biology – volume: 302 start-page: 497 year: 1983c end-page: 528 article-title: The long‐range dispersal of plant viruses by arthropod vectors publication-title: Philosophical Transactions of the Royal Society, Series B–Biological Sciences – volume: 142 start-page: 235 year: 2003 end-page: 243 article-title: Selection, biological properties and fitness of resistance‐breaking strains of in pepper publication-title: Annals of Applied Biology – year: 1981 – volume: 146 start-page: 15 year: 2005 end-page: 37 article-title: Another quarter century of great progress in understanding the biological properties of plant viruses publication-title: Annals of Applied Biology – volume: 94 start-page: 61 year: 1980 end-page: 68 article-title: Pepino mosaic virus, a new potexvirus from pepino ( ) publication-title: Annals of Applied Biology – year: 2005 – volume: 9 start-page: e1003304 year: 2013 article-title: Plant virus ecology publication-title: PLoS Pathology – volume: 41 start-page: 349 year: 1992 end-page: 407 article-title: New plant virus problems in developing countries: a corollary of agricultural modernisation publication-title: Advances in Virus Research – volume: 59 start-page: 844 year: 2008 end-page: 853 article-title: The epidemiology of in Australia: case histories, gradients, mite vectors and alternative hosts publication-title: Australian Journal of Agricultural Research – start-page: 9 year: 2006 end-page: 32 – volume: 126 start-page: 493 year: 1995 end-page: 503 article-title: Acquisition and transmission of potato mop‐top virus by a culture of f.sp. derived from a single cystosorus publication-title: Annals of Applied Biology – start-page: 809 year: 2014 end-page: 876 – volume: 64 start-page: 199 year: 2013 end-page: 215 article-title: Virus diseases of perennial pasture legumes: incidences, losses, epidemiology and management publication-title: Crop and Pasture Science – volume: 46 start-page: 359 year: 2012 end-page: 369 article-title: Plant virus metagenomics: biodiversity and ecology publication-title: Annual Review of Genetics – volume: 99 start-page: 195 year: 1981 end-page: 209 article-title: Plant virus ecology: ingredients, interactions and environmental influences publication-title: Annals of Applied Biology – volume: 85 start-page: 79 year: 1977 end-page: 92 article-title: Effects of virus genotype and temperature on seed transmission of nepoviruses publication-title: Annals of Applied Biology – volume: 107 start-page: 3600 year: 2010 end-page: 3605 article-title: Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts publication-title: Proceedings of the National Academy of Sciences of the United States of America – year: 1986 – volume: 64 start-page: 303 year: 1995 end-page: 314 article-title: Spatial analysis by distance indices publication-title: Journal of Animal Ecology – volume: 42 start-page: 115 year: 1955 end-page: 121 article-title: Past and present trends in plant virus research publication-title: Annals of Applied Biology – volume: 73 start-page: 53 year: 1973 end-page: 66 article-title: The role of weed hosts and the distribution and activity of vector nematodes in the ecology of tobacco rattle virus publication-title: Annals of Applied Biology – start-page: 15 year: 2008 end-page: 26 – volume: 145 start-page: 260 year: 2012 end-page: 271 article-title: Direct and indirect effects of thrips‐transmitted Tospoviruses on the preference and fitness of its vector, publication-title: Entomologia Experimentalis et Applicata – volume: 8 start-page: e83066 year: 2013 article-title: A trio of viral proteins tunes aphid–plant interactions in publication-title: PLoS ONE – volume: 49 start-page: 219 year: 2011 end-page: 248 article-title: Emerging virus diseases transmitted by whiteflies publication-title: Annual Review of Phytopathology – volume: 146 start-page: 337 year: 2005 end-page: 350 article-title: Patterns of spread of two non‐persistently aphid‐borne viruses in lupin stands under four different infection scenarios publication-title: Annals of Applied Biology – volume: 71 start-page: 9 year: 2000 end-page: 21 article-title: The ecology of and sustainable agriculture publication-title: Virus Research – volume: 8 start-page: e81479 year: 2013 article-title: Genetic variability and evolutionary implications of RNA silencing suppressor genes in RNA1 of isolates infecting sweetpotato and related wild species publication-title: PLoS ONE – start-page: 53 year: 1981 end-page: 70 – volume: 4 start-page: 3069 year: 2012 end-page: 3089 article-title: Spatio‐temporal dynamics of viruses are differentially affected by parasitoids depending on the mode of transmission publication-title: Viruses – volume: 84 start-page: 103 year: 2000 article-title: First report of on tomato publication-title: Plant Disease – volume: 92 start-page: 119 year: 1979 end-page: 123 article-title: Further studies on the effect of resistance to in raspberry ( ) on the spread of aphid‐borne viruses publication-title: Annals of Applied Biology – year: 2014 article-title: Trends in plant virus epidemiology: opportunities from new or improved technologies publication-title: Virus Research – volume: 28 start-page: 238 year: 1941 end-page: 243 article-title: Transmission of tobacco etch viruses by aphids publication-title: Annals of Applied Biology – volume: 7 start-page: e48177 year: 2012 article-title: Discovery and targeted LC‐MS/MS of purified polerovirus reveals differences in the virus‐host interactome associated with altered aphid transmission publication-title: PLoS ONE – volume: 67 start-page: 205 year: 2006 end-page: 244 article-title: Control of plant virus diseases publication-title: Advances in Virus Research – volume: 59 start-page: 49 year: 1967 end-page: 62 article-title: Seed‐transmission of nematode‐borne viruses publication-title: Annals of Applied Biology – start-page: 350 year: 1986 end-page: 386 – volume: 121 start-page: 329 year: 1992 end-page: 343 article-title: Subterranean clover mottle sobemovirus: its host range, resistance in subterranean clover and transmission through seed and by grazing animals publication-title: Annals of Applied Biology – volume: 132 start-page: 91 year: 1998 end-page: 105 article-title: Determining the effectiveness of grazing and trampling by livestock in transmitting white clover mosaic and subterranean clover mottle viruses publication-title: Annals of Applied Biology – volume: 8 start-page: 1 year: 1983 end-page: 85 article-title: Progress curves of plant virus disease publication-title: Advances in Applied Biology – volume: 9 start-page: 369 year: 2008 end-page: 384 article-title: The evolution of virulence and pathogenicity in plant pathogen populations publication-title: Molecular Plant Pathology – volume: 40 start-page: 324 year: 1991 end-page: 339 article-title: The ecology of tropical plant virus diseases publication-title: Plant Pathology – volume: 67 start-page: 1 year: 2006 end-page: 544 article-title: Plant virus epidemiology publication-title: Advances in Virus Research – volume: 145 start-page: 339 year: 2004 end-page: 343 article-title: Analysing spatial patterns of spread of and lettuce big‐vein disease in lettuce field plantings publication-title: Annals of Applied Biology – volume: 15 start-page: 1884 year: 2009 end-page: 1894 article-title: Climate change effects on physiology and population processes of hosts and vectors that influence the spread of hemipteran‐borne plant viruses publication-title: Global Change Biology – volume: 159 start-page: 115 year: 2011 end-page: 123 article-title: Search for factors involved in the rapid shift in (WMV) populations in South‐eastern France publication-title: Virus Research – volume: 112 start-page: 1 year: 1988 end-page: 11 article-title: Migration of alate morphs of the bird cherry aphid ( ) and implications for the epidemiology of barley yellow dwarf virus publication-title: Annals of Applied Biology – year: 1970 – volume: 159 start-page: 132 year: 2011 end-page: 140 article-title: Phylogeography and molecular epidemiology of publication-title: Virus Research – start-page: 229 year: 2008 end-page: 250 – volume: 106 start-page: 451 year: 1985 end-page: 460 article-title: The role of flying aphid vectors in the transmission of cucumber mosaic virus and potato virus Y to peppers in Israel publication-title: Annals of Applied Biology – volume: 56 start-page: 729 year: 2007 end-page: 742 article-title: Virus impact at the interface of an ancient ecosystem and a recent agroecosystem: studies on three legume‐infecting potyviruses in the South West Australian Floristic Region publication-title: Plant Pathology – volume: 128 start-page: 159 year: 1996 end-page: 183 article-title: The biology of the tospoviruses publication-title: Annals of Applied Biology – start-page: 1 year: 2004 end-page: 30 – volume: 2 start-page: e00183 year: 2013 article-title: A virus responds instantly to the presence of the vector on the host and forms transmission morphs publication-title: eLIFE – volume: 144 start-page: 339 year: 2004 end-page: 346 article-title: The incidence and distribution of viruses infecting lettuce, cultivated Brassica and associated natural vegetation in Spain publication-title: Annals of Applied Biology – volume: 71 start-page: 107 year: 2000 end-page: 121 article-title: Eight decades of maize streak virus research publication-title: Virus Research – volume: 135 start-page: 401 year: 1999 end-page: 407 article-title: Effects of turnip mosaic virus and turnip yellow mosaic virus on the survival, growth and reproduction of wild cabbage ( ) publication-title: Annals of Applied Biology – year: 2001 – volume: 124 start-page: 45 year: 1994 end-page: 58 article-title: Effects of mulching with cereal straw and row spacing on spread of bean yellow mosaic potyvirus into narrow‐leafed lupins ( ) publication-title: Annals of Applied Biology – volume: 59 start-page: 63 year: 1967 end-page: 76 article-title: Seed‐transmission in the ecology of nematode–borne viruses publication-title: Annals of Applied Biology – volume: 89 start-page: 2063 year: 2008 end-page: 2074 article-title: Recombination, decreased host specificity and increased mobility have driven the emergence of maize streak virus as an agricultural pathogen publication-title: Journal of General Virology – volume: 71 start-page: 1 year: 2000 end-page: 8 article-title: Molecular epidemiology of and its satellite RNA publication-title: Virus Research – volume: 26 start-page: 1162 year: 2012 end-page: 1175 article-title: Transmission mechanisms shape pathogen effects on host‐vector interactions: evidence from plant viruses publication-title: Functional Ecology – volume: 156 start-page: 401 year: 2010 end-page: 410 article-title: Epidemics of , and in tomato crops: do mixed infections contribute to torrado disease epidemiology? publication-title: Annals of Applied Biology – volume: 149 start-page: 137 year: 2006 end-page: 144 article-title: Current characteristics of cassava mosaic disease in postepidemic areas increase the range of possible management options publication-title: Annals of Applied Biology – volume: 77 start-page: 271 year: 1974 end-page: 281 article-title: Spread of raspberry bushy dwarf virus by pollination, its association with crumbly fruit, and problems of control publication-title: Annals of Applied Biology – volume: 22 start-page: 544 year: 1964 end-page: 550 article-title: Specific nematode vectors for serologically distinctive forms of raspberry ringspot and tomato black ring viruses publication-title: Annals of Applied Biology – volume: 67 start-page: 89 year: 2006 end-page: 125 article-title: Plant virus epidemiology: the concept of host genetic vulnerability publication-title: Advances in Virus Research – volume: 37 start-page: 58 year: 1950 end-page: 65 article-title: The correlation of aphid numbers with the spread of leaf roll and rugose mosaic in potato crops publication-title: Annals of Applied Biology – volume: 140 start-page: 69 year: 2002 end-page: 79 article-title: Deploying strain specific hypersensitive resistance to diminish temporal virus spread publication-title: Annals of Applied Biology – volume: 38 start-page: 743 year: 1951 end-page: 764 article-title: The spread of beet yellows and beet mosaic viruses in the sugar beet root crop. I. Field observations on the virus diseases of sugar beet and their vectors Sulz. and Koch publication-title: Annals of Applied Biology – volume: 91 start-page: 1092 year: 2010 end-page: 1108 article-title: Recombination and selection pressure in the ipomovirus (Potyviridae) in wild species and cultivated sweetpotato in the centre of evolution in East Africa publication-title: Journal of General Virology – volume: 147 start-page: 57 year: 2005 end-page: 67 article-title: Patterns of spread of in carrot plantings and validation of control measures publication-title: Annals of Applied Biology – volume: 146 start-page: 95 year: 2005 end-page: 103 article-title: Suppressing spread of by drenching infected source or healthy recipient plants with neonicotinoid insecticides to control thrips vectors publication-title: Annals of Applied Biology – volume: 159 start-page: 183 year: 2011 end-page: 193 article-title: Interactions in a host plant–virus‐vector–parasitoid system: modeling the consequences for virus transmission and disease dynamics publication-title: Virus Research – volume: 8 start-page: 261 year: 1939 end-page: 276 article-title: Populations of , with special reference to virus transmission publication-title: Journal of Animal Ecology – year: 2014 article-title: Preference by a virus vector for infected plants is reversed after virus acquisition publication-title: Virus Research – volume: 108 start-page: 9350 year: 2011 end-page: 9355 article-title: Infection with a plant virus modifies vector feeding behaviour publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 141 start-page: 201 year: 2009 end-page: 208 article-title: Emergence of new strains of in south‐eastern France: evidence for limited spread but rapid local population shift publication-title: Virus Research – volume: 142 start-page: 143 year: 2003 article-title: Geminiviruses: major threats to world agriculture publication-title: Annals of Applied Biology – volume: 157 start-page: 125 year: 2010 end-page: 133 article-title: Low frequency of horizontal and vertical transmission of two begomoviruses through whiteflies exhibits little relevance to the vector infectivity publication-title: Annals of Applied Biology – volume: 63 start-page: 1 year: 1969 end-page: 17 article-title: The behaviour of potato mop‐top virus in soil, and evidence for its transmission by (Wallr.) Lagerh publication-title: Annals of Applied Biology – volume: 69 start-page: 446 year: 1979 end-page: 449 article-title: Host plant reactions, some properties and serology of wild potato mosaic virus publication-title: Phytopatholgy – volume: 31 start-page: 321 year: 1986 end-page: 333 article-title: Plant viruses in rivers and lakes publication-title: Advances in Virus Research – volume: 144 start-page: 347 year: 2004 end-page: 355 article-title: reduction by straw mulch in organic potatoes publication-title: Annals of Applied Biology – volume: 128 start-page: 303 year: 1996 end-page: 315 article-title: Determining the effectiveness of resistance to subterranean clover mottle sobemovirus in different genotypes of subterranean clover in the field using the gazing animal as virus vector publication-title: Annals of Applied Biology – volume: 141 start-page: 45 year: 2002 end-page: 59 article-title: Effect of strain‐specific hypersensitive resistance on spatial patterns of virus spread publication-title: Annals of Applied Biology – volume: 125 start-page: 135 year: 2007 end-page: 144 article-title: Infection of potato plants with potato leafroll virus changes attraction and feeding behaviour of publication-title: Entomologia Experimentalis et Applicata – volume: 125 start-page: 311 year: 1994 end-page: 325 article-title: Geminivirus‐transmission and biological characterization of (Gennadius) biotypes from different geographic regions publication-title: Annals of Applied Biology – volume: 140 start-page: 37 year: 2002 end-page: 52 article-title: Temporal dynamics of spread of four viruses within mixed species perennial pastures publication-title: Annals of Applied Biology – year: 2012 – volume: 145 start-page: 231 year: 2004 end-page: 245 article-title: Patterns of spread of in field crops of lettuce and pepper: spatial dynamics and validation of control measures publication-title: Annals of Applied Biology – start-page: 224 year: 2003 end-page: 226 – volume: 118 start-page: 319 year: 1991 end-page: 329 article-title: Further studies on cucumber mosaic virus infection of narrow‐leafed lupin ( ): seed‐borne infection, aphid transmission, spread and effects on grain yield publication-title: Annals of Applied Biology – start-page: 349 year: 1983 end-page: 360 – volume: 7 start-page: e1002796 year: 2012 article-title: Effect of biodiversity changes in disease risk: exploring emergence in a plant‐virus system publication-title: PLoS Pathogens – volume: 42 start-page: 122 year: 1955 end-page: 128 article-title: Serological diagnosis of plant virus diseases publication-title: Annals of Applied Biology – volume: 58 start-page: 219 year: 1966 end-page: 230 article-title: Field experiments on the spread of blackcurrant reversion virus and its gall mite vector ( , Nal.) publication-title: Annals of Applied Biology – volume: 64 start-page: 1050 year: 1974 end-page: 1056 article-title: Vector relationships and development of epidemics – epidemiology of plant viruses publication-title: Phytopathology – volume: 4 start-page: 93 year: 1959 end-page: 135 – start-page: 13 year: 1986 end-page: 33 – volume: 100 start-page: 57 year: 2004 end-page: 65 article-title: The ecology and epidemiology of whitefly‐transmitted viruses in Latin America publication-title: Virus Research – volume: 94 start-page: 321 year: 1980 end-page: 333 article-title: A biologist's view of twenty‐five years of plant virus research publication-title: Annals of Applied Biology – ident: e_1_2_11_179_1 doi: 10.1146/annurev.py.20.090182.001205 – ident: e_1_2_11_49_1 doi: 10.1016/B978-0-12-374153-0.00011-4 – ident: e_1_2_11_141_1 doi: 10.1111/j.1744-7348.1985.tb03135.x – ident: e_1_2_11_17_1 doi: 10.1111/j.1744-7348.2003.tb00239.x – ident: e_1_2_11_50_1 doi: 10.1111/j.1744-7348.2010.00397.x – ident: e_1_2_11_171_1 doi: 10.1111/j.1744-7348.1966.tb04381.x – ident: e_1_2_11_25_1 doi: 10.1146/annurev.en.06.010161.002023 – volume: 67 start-page: 1 year: 2006 ident: e_1_2_11_187_1 article-title: Plant virus epidemiology publication-title: Advances in Virus Research – ident: e_1_2_11_121_1 doi: 10.1111/j.1744-7348.1996.tb07097.x – ident: e_1_2_11_51_1 doi: 10.1111/j.1744-7348.1981.tb02988.x – ident: e_1_2_11_72_1 doi: 10.1111/j.1744-7348.1988.tb03328.x – ident: e_1_2_11_208_1 doi: 10.1111/aab.12022 – ident: e_1_2_11_167_1 doi: 10.1073/pnas.1113227108 – ident: e_1_2_11_188_1 doi: 10.1016/S0065-3527(06)67007-3 – ident: e_1_2_11_123_1 doi: 10.1111/j.1744-7348.1974.tb01403.x – ident: e_1_2_11_145_1 doi: 10.1038/npg.els.0000759 – ident: e_1_2_11_210_1 doi: 10.1094/PDIS.2000.84.1.103C – ident: e_1_2_11_84_1 doi: 10.1111/j.1744-7348.1969.tb05461.x – ident: e_1_2_11_81_1 doi: 10.1079/PAVSNNR20127022 – ident: e_1_2_11_149_1 doi: 10.1371/journal.ppat.1003304 – ident: e_1_2_11_122_1 doi: 10.1111/j.1744-7348.1967.tb04417.x – start-page: 89 volume-title: Pests, Pathogens and Vegetation year: 1981 ident: e_1_2_11_70_1 – ident: e_1_2_11_95_1 doi: 10.1016/j.virusres.2008.11.020 – ident: e_1_2_11_169_1 doi: 10.1016/j.virusres.2012.03.016 – ident: e_1_2_11_125_1 doi: 10.1016/j.virusres.2011.04.011 – ident: e_1_2_11_48_1 doi: 10.1007/978-3-642-68153-0_15 – volume: 8 start-page: 1 year: 1983 ident: e_1_2_11_180_1 article-title: Progress curves of plant virus disease publication-title: Advances in Applied Biology – ident: e_1_2_11_205_1 doi: 10.1099/vir.0.2008/003590-0 – ident: e_1_2_11_18_1 doi: 10.1111/j.1744-7348.1950.tb00950.x – ident: e_1_2_11_194_1 doi: 10.1111/j.1744-7348.1984.tb03031.x – ident: e_1_2_11_202_1 doi: 10.1099/vir.0.016089-0 – ident: e_1_2_11_109_1 doi: 10.1071/AR9940183 – ident: e_1_2_11_182_1 doi: 10.1098/rstb.1983.0071 – ident: e_1_2_11_105_1 doi: 10.1111/j.1744-7348.1999.tb00867.x – ident: e_1_2_11_39_1 doi: 10.3390/v4113069 – volume-title: Mathews' Plant Virology year: 2002 ident: e_1_2_11_60_1 – ident: e_1_2_11_77_1 doi: 10.1016/S0065-3527(06)67006-1 – ident: e_1_2_11_32_1 doi: 10.1111/j.1744-7348.1976.tb00600.x – ident: e_1_2_11_94_1 doi: 10.1016/S0065-3527(08)60267-5 – ident: e_1_2_11_117_1 doi: 10.1111/j.1744-7348.2004.tb00349.x – ident: e_1_2_11_30_1 doi: 10.1111/j.1744-7348.1973.tb01309.x – ident: e_1_2_11_34_1 doi: 10.1111/j.1744-7348.2005.04033.x – volume-title: AAB Descriptions of Plant Viruses year: 2005 ident: e_1_2_11_120_1 – ident: e_1_2_11_165_1 doi: 10.1111/j.1744-7348.2006.00083.x – ident: e_1_2_11_219_1 doi: 10.1111/j.1744-7348.1992.tb03446.x – ident: e_1_2_11_14_1 doi: 10.1016/S0065-3527(08)60040-8 – ident: e_1_2_11_110_1 doi: 10.1111/j.1744-7348.1998.tb05187.x – ident: e_1_2_11_28_1 doi: 10.1371/journal.pone.0048177 – ident: e_1_2_11_62_1 doi: 10.1038/srep00578 – ident: e_1_2_11_65_1 doi: 10.1016/j.virusres.2011.04.027 – ident: e_1_2_11_99_1 doi: 10.1029/2006GL028443 – ident: e_1_2_11_21_1 doi: 10.1111/j.1744-7348.1951.tb07838.x – start-page: 255 volume-title: Viruses with Fungal Vectors year: 1988 ident: e_1_2_11_71_1 – ident: e_1_2_11_58_1 doi: 10.1111/j.1744-7348.1963.tb03748.x – ident: e_1_2_11_64_1 doi: 10.1146/annurev.py.28.090190.002141 – ident: e_1_2_11_138_1 doi: 10.1016/j.virusres.2011.05.016 – volume-title: Pests, Pathogens and Vegetation year: 1981 ident: e_1_2_11_177_1 – ident: e_1_2_11_73_1 doi: 10.1111/j.1744-7348.1993.tb04053.x – ident: e_1_2_11_157_1 doi: 10.1111/eea.12011 – ident: e_1_2_11_88_1 doi: 10.1111/j.1744-7348.2005.00013.x – ident: e_1_2_11_36_1 doi: 10.1111/j.1744-7348.2004.tb00379.x – ident: e_1_2_11_12_1 doi: 10.1111/j.1744-7348.1997.tb05158.x – ident: e_1_2_11_69_1 doi: 10.1111/j.1744-7348.1987.tb02033.x – ident: e_1_2_11_78_1 doi: 10.1016/j.virusres.2008.07.028 – ident: e_1_2_11_156_1 doi: 10.1016/S0065-3527(06)67008-5 – ident: e_1_2_11_115_1 doi: 10.1007/s007050170153 – start-page: 350 volume-title: Plant Virus Epidemics: Monitoring, Modeling and Predicting Outbreaks year: 1986 ident: e_1_2_11_183_1 – ident: e_1_2_11_5_1 doi: 10.1007/s10658-013-0317-1 – ident: e_1_2_11_74_1 doi: 10.1111/j.1744-7348.1994.tb04114.x – ident: e_1_2_11_166_1 doi: 10.1111/j.1744-7348.1988.tb02035.x – ident: e_1_2_11_11_1 doi: 10.1093/molbev/msr314 – ident: e_1_2_11_146_1 doi: 10.1111/mec.12232 – ident: e_1_2_11_137_1 doi: 10.1007/978-3-540-75763-4_2 – ident: e_1_2_11_119_1 doi: 10.1371/journal.pone.0061543 – ident: e_1_2_11_87_1 doi: 10.1111/j.1744-7348.1980.tb03896.x – ident: e_1_2_11_142_1 doi: 10.1016/j.virusres.2013.11.005 – ident: e_1_2_11_214_1 doi: 10.1111/j.1744-7348.1951.tb07847.x – ident: e_1_2_11_134_1 doi: 10.1080/11956860.2002.11682699 – ident: e_1_2_11_103_1 doi: 10.1111/aab.12074 – ident: e_1_2_11_159_1 doi: 10.1111/j.1744-7348.1955.tb02417.x – ident: e_1_2_11_170_1 doi: 10.1111/j.1744-7348.2003.tb00246.x – ident: e_1_2_11_56_1 doi: 10.1111/j.1744-7348.1981.tb04787.x – ident: e_1_2_11_133_1 doi: 10.2307/5892 – ident: e_1_2_11_40_1 doi: 10.1016/j.virusres.2008.08.018 – ident: e_1_2_11_79_1 doi: 10.1071/CP13108 – ident: e_1_2_11_96_1 doi: 10.1016/j.virusres.2011.05.004 – ident: e_1_2_11_203_1 doi: 10.1371/journal.pone.0081479 – ident: e_1_2_11_41_1 doi: 10.1111/j.1744-7348.1996.tb05752.x – ident: e_1_2_11_53_1 doi: 10.1111/j.1744-7348.1989.tb03361.x – ident: e_1_2_11_132_1 doi: 10.1111/j.1744-7348.1970.tb04590.x – ident: e_1_2_11_173_1 doi: 10.1146/annurev.py.12.090174.000551 – ident: e_1_2_11_100_1 doi: 10.1016/j.virusres.2008.12.007 – ident: e_1_2_11_215_1 doi: 10.1111/j.1744-7348.1975.tb00534.x – ident: e_1_2_11_22_1 doi: 10.1111/j.1365-2486.2008.01820.x – ident: e_1_2_11_35_1 doi: 10.1111/j.1744-7348.2004.tb00391.x – ident: e_1_2_11_139_1 doi: 10.1111/j.1744-7348.2003.tb00262.x – ident: e_1_2_11_9_1 doi: 10.1111/j.1744-7348.1955.tb02419.x – ident: e_1_2_11_118_1 doi: 10.1111/j.1744-7348.2007.00135.x – start-page: 61 volume-title: Plant Virology in Sub‐Saharan Africa year: 2003 ident: e_1_2_11_191_1 – ident: e_1_2_11_216_1 doi: 10.1111/j.1365-3059.2007.01653.x – ident: e_1_2_11_42_1 doi: 10.1111/j.1744-7348.1978.tb07695.x – ident: e_1_2_11_160_1 doi: 10.1111/j.1744-7348.1955.tb02416.x – volume: 5 start-page: 1 year: 1980 ident: e_1_2_11_176_1 article-title: The origins and epidemiology of some important plant virus diseases publication-title: Applied Biology – ident: e_1_2_11_108_1 doi: 10.1111/j.1365-2435.2012.02026.x – ident: e_1_2_11_107_1 doi: 10.1073/pnas.0907191107 – ident: e_1_2_11_199_1 doi: 10.1111/aab.12063 – ident: e_1_2_11_3_1 doi: 10.1111/j.1744-7348.1991.tb05649.x – ident: e_1_2_11_192_1 doi: 10.1111/j.1744-7348.1987.tb04187.x – ident: e_1_2_11_102_1 doi: 10.1016/j.virusres.2011.05.010 – ident: e_1_2_11_189_1 doi: 10.1016/S0065-3527(06)67003-6 – ident: e_1_2_11_211_1 doi: 10.1146/annurev.phyto.38.1.71 – ident: e_1_2_11_4_1 doi: 10.1016/j.virusres.2011.04.016 – ident: e_1_2_11_127_1 doi: 10.1371/journal.ppat.1002796 – volume-title: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel for Climate Change year: 2007 ident: e_1_2_11_131_1 – ident: e_1_2_11_204_1 doi: 10.1111/j.1744-7348.2003.tb00240.x – volume: 46 start-page: 95 year: 1996 ident: e_1_2_11_135_1 article-title: SADIE: software to measure and model spatial pattern publication-title: Aspects of Applied Biology – ident: e_1_2_11_140_1 doi: 10.3732/ajb.1100509 – ident: e_1_2_11_47_1 doi: 10.1016/S0168-1702(00)00183-0 – ident: e_1_2_11_61_1 doi: 10.1016/B978‐0‐12‐384871‐0.00014‐5 – ident: e_1_2_11_6_1 doi: 10.1111/j.1570-7458.2007.00607.x – ident: e_1_2_11_45_1 doi: 10.1111/j.1744-7348.1996.tb07325.x – ident: e_1_2_11_85_1 doi: 10.1111/j.1744-7348.1972.tb04715.x – ident: e_1_2_11_113_1 doi: 10.1111/j.1744-7348.2003.tb00253.x – ident: e_1_2_11_7_1 doi: 10.1016/j.tree.2004.07.021 – volume-title: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel for Climate Change year: 2007 ident: e_1_2_11_162_1 – ident: e_1_2_11_206_1 doi: 10.1111/j.1744-7348.2008.00262.x – ident: e_1_2_11_212_1 doi: 10.1111/j.1744-7348.2010.00403.x – start-page: 1 volume-title: Virus and Virus‐like Diseases of Major Crops in Developing Countries year: 2004 ident: e_1_2_11_186_1 – ident: e_1_2_11_218_1 doi: 10.1079/9781780644257.0000 – ident: e_1_2_11_163_1 doi: 10.1111/j.1744-7348.2004.tb00366.x – ident: e_1_2_11_31_1 doi: 10.1016/S0065-3527(06)67001-2 – ident: e_1_2_11_66_1 doi: 10.1016/j.virusres.2011.05.012 – ident: e_1_2_11_209_1 doi: 10.1371/journal.pone.0091224 – ident: e_1_2_11_89_1 doi: 10.1146/annurev-phyto-073009-114444 – ident: e_1_2_11_46_1 doi: 10.1016/S0168-1702(00)00184-2 – ident: e_1_2_11_15_1 doi: 10.1016/S0168-1702(00)00192-1 – ident: e_1_2_11_97_1 doi: 10.1016/j.virusres.2011.04.018 – ident: e_1_2_11_174_1 doi: 10.1111/j.1744-7348.1976.tb00577.x – ident: e_1_2_11_168_1 doi: 10.1111/j.1744-7348.2002.tb00194.x – ident: e_1_2_11_195_1 doi: 10.1111/j.1744-7348.1970.tb04597.x – ident: e_1_2_11_101_1 doi: 10.1111/j.1744-7348.2006.00073.x – volume: 22 start-page: 544 year: 1964 ident: e_1_2_11_54_1 article-title: Specific nematode vectors for serologically distinctive forms of raspberry ringspot and tomato black ring viruses publication-title: Annals of Applied Biology – ident: e_1_2_11_67_1 doi: 10.1371/journal.pone.0000182 – ident: e_1_2_11_93_1 doi: 10.1111/j.1744-7348.2011.00501.x – ident: e_1_2_11_8_1 doi: 10.1111/j.1744-7348.1995.tb05384.x – ident: e_1_2_11_68_1 doi: 10.1111/j.1744-7348.1979.tb02964.x – ident: e_1_2_11_43_1 doi: 10.1111/j.1744-7348.1985.tb03118.x – ident: e_1_2_11_52_1 doi: 10.1111/j.1744-7348.1977.tb00632.x – ident: e_1_2_11_116_1 doi: 10.1016/j.virusres.2003.12.014 – start-page: 53 volume-title: Pests, Pathogens and Vegetation year: 1981 ident: e_1_2_11_178_1 – ident: e_1_2_11_128_1 doi: 10.1111/j.1744-7348.2002.tb00209.x – ident: e_1_2_11_213_1 doi: 10.1111/j.1570-7458.2012.01278.x – ident: e_1_2_11_151_1 doi: 10.1111/j.1364-3703.2007.00460.x – start-page: 224 volume-title: Genes in the Environment year: 2003 ident: e_1_2_11_144_1 – ident: e_1_2_11_92_1 doi: 10.1111/j.1744-7348.1991.tb04875.x – ident: e_1_2_11_19_1 doi: 10.1111/j.1744-7348.1965.tb01227.x – ident: e_1_2_11_158_1 doi: 10.1111/j.1744-7348.2008.00245.x – ident: e_1_2_11_16_1 doi: 10.1016/j.virusres.2011.04.020 – volume-title: Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel for Climate Change year: 2007 ident: e_1_2_11_126_1 – ident: e_1_2_11_164_1 doi: 10.1073/pnas.1100773108 – ident: e_1_2_11_196_1 doi: 10.1016/j.virusres.2009.01.011 – ident: e_1_2_11_82_1 doi: 10.1111/j.1744-7348.2000.tb00067.x – ident: e_1_2_11_143_1 doi: 10.1111/j.1744-7348.1998.tb05819.x – volume-title: Plant Virus Epidemics: Monitoring, Modelling and Predicting Outbreaks year: 1986 ident: e_1_2_11_111_1 – ident: e_1_2_11_129_1 doi: 10.1038/srep02230 – ident: e_1_2_11_153_1 doi: 10.1111/j.1744-7348.2004.tb00350.x – ident: e_1_2_11_24_1 doi: 10.2307/1234 – ident: e_1_2_11_217_1 doi: 10.1371/journal.pone.0083066 – ident: e_1_2_11_38_1 doi: 10.1016/j.virusres.2011.04.014 – ident: e_1_2_11_75_1 doi: 10.1016/j.virusres.2003.12.011 – ident: e_1_2_11_86_1 doi: 10.1111/j.1744-7348.1991.tb05632.x – ident: e_1_2_11_220_1 doi: 10.1111/j.1365‐294X.2012.05457.x – ident: e_1_2_11_91_1 doi: 10.1111/j.1744-7348.1941.tb07556.x – start-page: 93 volume-title: Advances in Virus Research year: 1959 ident: e_1_2_11_20_1 – start-page: 57 volume-title: Comparative Epidemiology year: 1980 ident: e_1_2_11_175_1 – ident: e_1_2_11_114_1 doi: 10.1016/S0065-3527(06)67004-8 – ident: e_1_2_11_201_1 doi: 10.1111/j.1365-294X.2010.04682.x – ident: e_1_2_11_2_1 doi: 10.1094/PHYTO-01-11-0017 – start-page: 281 volume-title: Viruses with Fungal Vectors year: 1988 ident: e_1_2_11_154_1 – ident: e_1_2_11_26_1 doi: 10.1111/j.1744-7348.2002.tb00158.x – ident: e_1_2_11_33_1 doi: 10.1111/j.1744-7348.2002.tb00155.x – start-page: 9 volume-title: Virus Diseases and Crop Biosecurity, NATO Security through Science Series – C, Environmental Security year: 2006 ident: e_1_2_11_190_1 – ident: e_1_2_11_155_1 doi: 10.1080/07352680500365257 – start-page: 349 volume-title: Plant Virus Epidemiology – The Spread and Control of Insect‐borne Pathogens year: 1983 ident: e_1_2_11_181_1 – ident: e_1_2_11_55_1 doi: 10.1111/j.1744-7348.1980.tb03949.x – ident: e_1_2_11_27_1 doi: 10.1111/aab.12084 – ident: e_1_2_11_37_1 doi: 10.1071/AR07475 – ident: e_1_2_11_152_1 doi: 10.1111/j.1744-7348.2010.00423.x – ident: e_1_2_11_193_1 doi: 10.1111/j.1744-7348.1979.tb04720.x – volume: 11 start-page: 199 year: 2003 ident: e_1_2_11_185_1 article-title: Control of plant virus diseases in Sub‐Saharan Africa: the possibility and feasibility of an integrated approach publication-title: African Journal of Crop Science – ident: e_1_2_11_13_1 doi: 10.1016/B978-0-12-470240-0.50005-6 – ident: e_1_2_11_80_1 doi: 10.1016/j.virusres.2013.11.003 – ident: e_1_2_11_124_1 doi: 10.1146/annurev-phyto-072910-095235 – ident: e_1_2_11_150_1 doi: 10.1111/j.1744-7348.2006.00096.x – ident: e_1_2_11_29_1 doi: 10.1007/BF02979527 – ident: e_1_2_11_147_1 doi: 10.1111/j.1744-7348.2010.00441.x – ident: e_1_2_11_221_1 doi: 10.1146/annurev-phyto-082712-102234 – ident: e_1_2_11_90_1 doi: 10.1111/j.1744-7348.1998.tb05800.x – ident: e_1_2_11_198_1 doi: 10.1111/j.1744-7348.2011.00462.x – ident: e_1_2_11_197_1 doi: 10.1111/j.1744-7348.2010.00405.x – volume-title: Plant Virology year: 1970 ident: e_1_2_11_106_1 – ident: e_1_2_11_23_1 doi: 10.1016/j.virusres.2013.12.012 – ident: e_1_2_11_98_1 doi: 10.1111/j.1744-7348.1967.tb04416.x – ident: e_1_2_11_57_1 doi: 10.1111/j.1744-7348.2005.04111.x – start-page: 377 volume-title: Plant Virus Epidemiology: The Spread and Control of Insect‐borne Viruses year: 1983 ident: e_1_2_11_136_1 – ident: e_1_2_11_207_1 doi: 10.1111/j.1744-7348.2009.00359.x – ident: e_1_2_11_44_1 doi: 10.1146/annurev.phyto.44.120705.104644 – ident: e_1_2_11_83_1 doi: 10.1094/Phyto-69-446 – ident: e_1_2_11_161_1 doi: 10.1111/aab.12009 – ident: e_1_2_11_104_1 doi: 10.7554/eLife.00183 – ident: e_1_2_11_10_1 doi: 10.1111/j.1744-7348.1994.tb04972.x – ident: e_1_2_11_184_1 doi: 10.1111/j.1365-3059.1991.tb02386.x – ident: e_1_2_11_200_1 doi: 10.1094/PHYTO-98-6-0640 – ident: e_1_2_11_76_1 doi: 10.1111/j.1744-7348.2005.040096.x – ident: e_1_2_11_130_1 doi: 10.1016/j.virusres.2009.01.009 – ident: e_1_2_11_148_1 doi: 10.1146/annurev-genet-110711-155600 – volume: 64 start-page: 1050 year: 1974 ident: e_1_2_11_172_1 article-title: Vector relationships and development of epidemics – epidemiology of plant viruses publication-title: Phytopathology – volume-title: Climate Change 2007: Mitigation of Climate Change. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change year: 2007 ident: e_1_2_11_112_1 – ident: e_1_2_11_59_1 doi: 10.1111/j.1744-7348.1955.tb02418.x – start-page: 13 volume-title: Plant Virus Epidemics: Monitoring, Modelling and Predicting Outbreaks year: 1986 ident: e_1_2_11_63_1 |
SSID | ssj0009092 |
Score | 2.3226364 |
SecondaryResourceType | review_article |
Snippet | After clarifying the relationship between the closely related concepts of ecology and epidemiology as they are used in plant virology, this article provides a... |
SourceID | proquest pascalfrancis crossref wiley istex fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 320 |
SubjectTerms | Agro-ecological interface Agronomy. Soil science and plant productions biodiversity Biological and medical sciences Climate change disease outbreaks Ecology endangered species epidemics Epidemiology evolution field and molecular biology food availability food security Food supply Fundamental and applied biological sciences. Psychology future prospects General agroecology General agroecology. Agricultural and farming systems. Agricultural development. Rural area planning. Landscaping General agronomy. Plant production Generalities. Agricultural and farming systems. Agricultural development Historical account history Host plants insect vectors Insects molecular epidemiology Natural vegetation Phytopathology. Animal pests. Plant and forest protection Plant growth plant virology plant viruses Plant viruses and viroids progress Technological change technological innovation vegetation virology virus-vector interactions Viruses |
Title | Plant virus ecology and epidemiology: historical perspectives, recent progress and future prospects |
URI | https://api.istex.fr/ark:/67375/WNG-8TDPM5MK-6/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Faab.12123 https://www.proquest.com/docview/1514820022 https://www.proquest.com/docview/1524425189 https://www.proquest.com/docview/1663563355 |
Volume | 164 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbGJCRe2MYPLduYDEKIBzI5iePG8FTYxgTqhGAVe0CybMcBNJROTYsof_3u7CRdESDEm-WcpeR8d_6S3H1HyGNtkNacy1jaqoi5tUlspOPYNTVJjeFJ5esrRqfiZMzfnOfna-RFVwsT-CH6D27oGT5eo4Nr01xzcq0NUiOkyPSZZAJ58w_fL6mjJJNp1y2PD7hoWYUwi6dfuXIW3aj0BBAqKvcHZkjqBpRUhe4WK_DzOoj1p9DxBvnU3X9IPrk4mM_Mgf35C7Xjfz7gJrndolM6DOa0RdZcfYfcDP0qFzA68hzXi7vEYrOjGf3-dTpvqAuzVNcldcuOs4vn9EtPQkIvl1WdzTMKcRZOO-qzwyDW-qWB3gTnvGBzj4yPj85encRtv4bY8jzP4sIYYQAflizTrMqsYJXzeK6AsCFKzirO04HTsjQOa4wKIQZpZVOXZLy0SZndJ-v1pHbbhBZMupzpVHPJwF5APHMOEDavSulkaSPytNs5ZVsyc-yp8U11LzWgPeW1F5FHvehlYPD4ndA2bL_SnyGyqvGHFN87PdUa4xF54m2iX6ynF5gNN8jVx9PXqjg7fDfKR2-ViMj-itH0CwDBYSEmCOx1VqTaSNEoQFy8wEyZNCIP-8vg4_jjRtduMkcZAGEARAv5FxmEjiID-Ai68Wb156dVw-FLP9j5d9Fdcgu1EnI998j6bDp3DwCPzcy-d7wrbUwtuQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9tQwhe-EYLjGEQQjyQKR9OGiNeCmwUtlYIWm0vyLIdB9BQOjUtovz13DkfXREgxFuUnB98uTv_bN_9DuCR0kRrzoUvTJH53JjQ18Jy6poaRlrzsHD1FcNROpjwtyfJyQY8b2than6I7sCNPMPFa3JwOpA-5-VKaeJGiOJNuODu5wgSvV-RR4lARG2_PN7jacMrRHk83dC11WizUFPEqKTe75QjqSpUU1H3t1gDoOdhrFuHDq7Cx3YGdfrJ6d5irvfMj1_IHf93itfgSgNQWb-2qOuwYcsbcLFuWbnEp31Hc728CYb6Hc3Zty-zRcVs_ZapMmd21XR2-Yx97nhI2NmqsLN6yjDU4oLHXIIYhls3tGY4oXdOsLoFk4P98cuB37Rs8A1PktjPtE41QsQ8iFVQxCYNCusgXYaRI815UHAe9awSubZUZpSlaS8qTGTDmOcmzOPbsFVOS7sNLAuETQIVKS4CNBkUj61FkM2LXFiRGw-etL9OmobPnNpqfJXtvga1J532PHjYiZ7VJB6_E9rG_y_VJwyucvIhoq2nY1sLuAePnVF0g9XslBLieok8Hr2W2fjVu2EyPJSpB7trVtMNQBBHtZgosNOakWyCRSURdPGMkmUiDx50n9HN6e5GlXa6IBnEYYhFM_EXGUKPaYwIEnXj7OrPs5X9_gv3cOffRe_DpcF4eCSP3owO78Jl0lCd-rkDW_PZwt5DeDbXu84LfwI7LDHX |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2IRAvfKMFxjAIIR7IlA_HjeGpsJXBaDXBKvaAZNmODWgorZoWUf567pyPrggQ4i1yzg8-351_Tu5-R8gjpZHWnIlQGJeHzJg41MIy7JoaJ1qz2Pn6iuGIH47Zm9PsdIM8b2than6I7oMbeoaP1-jg08Kdc3KlNFIjJOkmucA4HJOIiN6tuKNEJJK2XR7rMd7QCmEaTzd17TDadGoCEBW1-x1TJFUFWnJ1e4s1_HkexfpjaHCVfGwXUGefnO0t5nrP_PiF2_E_V3iNXGngKe3X9nSdbNjyBrlYN6xcwtOBJ7le3iQGux3N6bcvs0VFbT1KVVlQu2o5u3xGP3csJHS6KuusnlIItHDcUZ8eBsHWT635TXDMC1a3yHhwcPLyMGwaNoSGZVka5lpzDQCxiFIVudTwyFkP6HKIG7xgkWMs6VklCm2xyCjnvJc4k9g4ZYWJi_Q22Sonpd0mNI-EzSKVKCYiMBgQT60FiM1cIawoTECetDsnTcNmjk01vsr2VgPak157AXnYiU5rCo_fCW3D9kv1CUKrHL9P8OLpudYiFpDH3ia6yWp2hulwvUx-GL2S-cn-8TAbHkkekN01o-kmAITDSkwQ2GmtSDahopIAuViOqTJJQB50r8HJ8c-NKu1kgTKAwgCJ5uIvMogdeQr4EXTjzerPq5X9_gv_cOffRe-TS8f7A_n29ejoLrmMCqrzPnfI1ny2sPcAm831rvfBn3tQMIY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plant+virus+ecology+and+epidemiology%3A+historical+perspectives%2C+recent+progress+and+future+prospects&rft.jtitle=Annals+of+applied+biology&rft.au=Jones%2C+R.A.C.&rft.date=2014-05-01&rft.issn=0003-4746&rft.eissn=1744-7348&rft.volume=164&rft.issue=3&rft.spage=320&rft.epage=347&rft_id=info:doi/10.1111%2Faab.12123&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_aab_12123 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-4746&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-4746&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-4746&client=summon |