Weak coordination between leaf drought tolerance and proxy traits in herbaceous plants

Increased drought is predicted to have a major impact on plant performance under environmental change. Yet leaf hydraulic traits directly related to drought tolerance, such as leaf turgor loss point (πtlp), are under‐represented in trait‐based studies and have been largely overlooked within the main...

Full description

Saved in:
Bibliographic Details
Published inFunctional ecology Vol. 35; no. 6; pp. 1299 - 1311
Main Authors Májeková, Maria, Hájek, Tomáš, Albert, Ágnes J., Bello, Francesco, Doležal, Jiří, Götzenberger, Lars, Janeček, Štěpán, Lepš, Jan, Liancourt, Pierre, Mudrák, Ondřej
Format Journal Article
LanguageEnglish
Published London Wiley Subscription Services, Inc 01.06.2021
Subjects
Online AccessGet full text
ISSN0269-8463
1365-2435
DOI10.1111/1365-2435.13792

Cover

Abstract Increased drought is predicted to have a major impact on plant performance under environmental change. Yet leaf hydraulic traits directly related to drought tolerance, such as leaf turgor loss point (πtlp), are under‐represented in trait‐based studies and have been largely overlooked within the main frameworks evaluating trait–trait coordination and trade‐offs—the leaf economics spectrum (LES) and the global spectrum of plant form and function. Using 122 herbaceous species from the Central European temperate grasslands, we investigated (a) the coordination between πtlp and traits often used as proxies for drought tolerance, namely SLA, leaf area (LA), leaf dry matter content (LDMC), leaf thickness (LT), plant height and intrinsic water use efficiency (iWUE); (b) whether the strength of the trait–trait relationships differed across plant functional types (PFTs: graminoids and forbs) and depended on species phylogeny; and (c) whether single or multiple traits, combined with either PFTs or phylogenetic relatedness, provide a good prediction of πtlp. A more negative πtlp (higher leaf drought tolerance) was coordinated with higher LDMC and higher iWUE. This pattern was consistent among PFTs and also after accounting for phylogenetic relatedness. However, the coordination of πtlp with other traits was weak. For LT and height, it was driven by the differences between PFTs. For SLA and LA, it was only observed after accounting for phylogenetic relatedness. The most parsimonious model predicting πtlp as a function of other traits retained LDMC and LA (adj. R2 = 0.37). Since πtlp showed a strong phylogenetic signal, accounting for the influence of phylogenetic relatedness further improved πtlp prediction by 17%. In herbaceous temperate plants, there is relatively weak coordination between leaf drought tolerance (πtlp) and traits representing key dimensions of the LES and the global spectrum of plant form and function. None of the proxy traits considered here, alone or in combination, provided a strong prediction of πtlp across a large number of grassland plant species. Therefore, our work emphasizes the need for direct measurements of leaf hydraulics when estimating plant drought responses to better understand and predict species responses to environmental change. A free Plain Language Summary can be found within the Supporting Information of this article. A free Plain Language Summary can be found within the Supporting Information of this article.
AbstractList Increased drought is predicted to have a major impact on plant performance under environmental change. Yet leaf hydraulic traits directly related to drought tolerance, such as leaf turgor loss point (πₜₗₚ), are under‐represented in trait‐based studies and have been largely overlooked within the main frameworks evaluating trait–trait coordination and trade‐offs—the leaf economics spectrum (LES) and the global spectrum of plant form and function. Using 122 herbaceous species from the Central European temperate grasslands, we investigated (a) the coordination between πₜₗₚ and traits often used as proxies for drought tolerance, namely SLA, leaf area (LA), leaf dry matter content (LDMC), leaf thickness (LT), plant height and intrinsic water use efficiency (iWUE); (b) whether the strength of the trait–trait relationships differed across plant functional types (PFTs: graminoids and forbs) and depended on species phylogeny; and (c) whether single or multiple traits, combined with either PFTs or phylogenetic relatedness, provide a good prediction of πₜₗₚ. A more negative πₜₗₚ (higher leaf drought tolerance) was coordinated with higher LDMC and higher iWUE. This pattern was consistent among PFTs and also after accounting for phylogenetic relatedness. However, the coordination of πₜₗₚ with other traits was weak. For LT and height, it was driven by the differences between PFTs. For SLA and LA, it was only observed after accounting for phylogenetic relatedness. The most parsimonious model predicting πₜₗₚ as a function of other traits retained LDMC and LA (adj. R² = 0.37). Since πₜₗₚ showed a strong phylogenetic signal, accounting for the influence of phylogenetic relatedness further improved πₜₗₚ prediction by 17%. In herbaceous temperate plants, there is relatively weak coordination between leaf drought tolerance (πₜₗₚ) and traits representing key dimensions of the LES and the global spectrum of plant form and function. None of the proxy traits considered here, alone or in combination, provided a strong prediction of πₜₗₚ across a large number of grassland plant species. Therefore, our work emphasizes the need for direct measurements of leaf hydraulics when estimating plant drought responses to better understand and predict species responses to environmental change. A free Plain Language Summary can be found within the Supporting Information of this article.
Increased drought is predicted to have a major impact on plant performance under environmental change. Yet leaf hydraulic traits directly related to drought tolerance, such as leaf turgor loss point (πtlp), are under‐represented in trait‐based studies and have been largely overlooked within the main frameworks evaluating trait–trait coordination and trade‐offs—the leaf economics spectrum (LES) and the global spectrum of plant form and function.Using 122 herbaceous species from the Central European temperate grasslands, we investigated (a) the coordination between πtlp and traits often used as proxies for drought tolerance, namely SLA, leaf area (LA), leaf dry matter content (LDMC), leaf thickness (LT), plant height and intrinsic water use efficiency (iWUE); (b) whether the strength of the trait–trait relationships differed across plant functional types (PFTs: graminoids and forbs) and depended on species phylogeny; and (c) whether single or multiple traits, combined with either PFTs or phylogenetic relatedness, provide a good prediction of πtlp.A more negative πtlp (higher leaf drought tolerance) was coordinated with higher LDMC and higher iWUE. This pattern was consistent among PFTs and also after accounting for phylogenetic relatedness. However, the coordination of πtlp with other traits was weak. For LT and height, it was driven by the differences between PFTs. For SLA and LA, it was only observed after accounting for phylogenetic relatedness.The most parsimonious model predicting πtlp as a function of other traits retained LDMC and LA (adj. R2 = 0.37). Since πtlp showed a strong phylogenetic signal, accounting for the influence of phylogenetic relatedness further improved πtlp prediction by 17%.In herbaceous temperate plants, there is relatively weak coordination between leaf drought tolerance (πtlp) and traits representing key dimensions of the LES and the global spectrum of plant form and function. None of the proxy traits considered here, alone or in combination, provided a strong prediction of πtlp across a large number of grassland plant species. Therefore, our work emphasizes the need for direct measurements of leaf hydraulics when estimating plant drought responses to better understand and predict species responses to environmental change.A free Plain Language Summary can be found within the Supporting Information of this article.
Increased drought is predicted to have a major impact on plant performance under environmental change. Yet leaf hydraulic traits directly related to drought tolerance, such as leaf turgor loss point ( π tlp ), are under‐represented in trait‐based studies and have been largely overlooked within the main frameworks evaluating trait–trait coordination and trade‐offs—the leaf economics spectrum (LES) and the global spectrum of plant form and function. Using 122 herbaceous species from the Central European temperate grasslands, we investigated (a) the coordination between π tlp and traits often used as proxies for drought tolerance, namely SLA, leaf area (LA), leaf dry matter content (LDMC), leaf thickness (LT), plant height and intrinsic water use efficiency (iWUE); (b) whether the strength of the trait–trait relationships differed across plant functional types (PFTs: graminoids and forbs) and depended on species phylogeny; and (c) whether single or multiple traits, combined with either PFTs or phylogenetic relatedness, provide a good prediction of π tlp . A more negative π tlp (higher leaf drought tolerance) was coordinated with higher LDMC and higher iWUE. This pattern was consistent among PFTs and also after accounting for phylogenetic relatedness. However, the coordination of π tlp with other traits was weak. For LT and height, it was driven by the differences between PFTs. For SLA and LA, it was only observed after accounting for phylogenetic relatedness. The most parsimonious model predicting π tlp as a function of other traits retained LDMC and LA (adj. R 2  = 0.37). Since π tlp showed a strong phylogenetic signal, accounting for the influence of phylogenetic relatedness further improved π tlp prediction by 17%. In herbaceous temperate plants, there is relatively weak coordination between leaf drought tolerance ( π tlp ) and traits representing key dimensions of the LES and the global spectrum of plant form and function. None of the proxy traits considered here, alone or in combination, provided a strong prediction of π tlp across a large number of grassland plant species. Therefore, our work emphasizes the need for direct measurements of leaf hydraulics when estimating plant drought responses to better understand and predict species responses to environmental change. A free Plain Language Summary can be found within the Supporting Information of this article.
Increased drought is predicted to have a major impact on plant performance under environmental change. Yet leaf hydraulic traits directly related to drought tolerance, such as leaf turgor loss point (πtlp), are under‐represented in trait‐based studies and have been largely overlooked within the main frameworks evaluating trait–trait coordination and trade‐offs—the leaf economics spectrum (LES) and the global spectrum of plant form and function. Using 122 herbaceous species from the Central European temperate grasslands, we investigated (a) the coordination between πtlp and traits often used as proxies for drought tolerance, namely SLA, leaf area (LA), leaf dry matter content (LDMC), leaf thickness (LT), plant height and intrinsic water use efficiency (iWUE); (b) whether the strength of the trait–trait relationships differed across plant functional types (PFTs: graminoids and forbs) and depended on species phylogeny; and (c) whether single or multiple traits, combined with either PFTs or phylogenetic relatedness, provide a good prediction of πtlp. A more negative πtlp (higher leaf drought tolerance) was coordinated with higher LDMC and higher iWUE. This pattern was consistent among PFTs and also after accounting for phylogenetic relatedness. However, the coordination of πtlp with other traits was weak. For LT and height, it was driven by the differences between PFTs. For SLA and LA, it was only observed after accounting for phylogenetic relatedness. The most parsimonious model predicting πtlp as a function of other traits retained LDMC and LA (adj. R2 = 0.37). Since πtlp showed a strong phylogenetic signal, accounting for the influence of phylogenetic relatedness further improved πtlp prediction by 17%. In herbaceous temperate plants, there is relatively weak coordination between leaf drought tolerance (πtlp) and traits representing key dimensions of the LES and the global spectrum of plant form and function. None of the proxy traits considered here, alone or in combination, provided a strong prediction of πtlp across a large number of grassland plant species. Therefore, our work emphasizes the need for direct measurements of leaf hydraulics when estimating plant drought responses to better understand and predict species responses to environmental change. A free Plain Language Summary can be found within the Supporting Information of this article. A free Plain Language Summary can be found within the Supporting Information of this article.
Author Lepš, Jan
Götzenberger, Lars
Hájek, Tomáš
Albert, Ágnes J.
Janeček, Štěpán
Liancourt, Pierre
Mudrák, Ondřej
Doležal, Jiří
Májeková, Maria
Bello, Francesco
Author_xml – sequence: 1
  givenname: Maria
  orcidid: 0000-0001-6892-5462
  surname: Májeková
  fullname: Májeková, Maria
  email: maria.majekova@uni-tuebingen.de
  organization: Comenius University
– sequence: 2
  givenname: Tomáš
  orcidid: 0000-0002-5981-5840
  surname: Hájek
  fullname: Hájek, Tomáš
  organization: Czech Academy of Sciences
– sequence: 3
  givenname: Ágnes J.
  surname: Albert
  fullname: Albert, Ágnes J.
  organization: Czech Academy of Sciences
– sequence: 4
  givenname: Francesco
  orcidid: 0000-0001-9202-8198
  surname: Bello
  fullname: Bello, Francesco
  organization: CIDE‐CSIC
– sequence: 5
  givenname: Jiří
  orcidid: 0000-0002-5829-4051
  surname: Doležal
  fullname: Doležal, Jiří
  organization: Czech Academy of Sciences
– sequence: 6
  givenname: Lars
  orcidid: 0000-0003-3040-2900
  surname: Götzenberger
  fullname: Götzenberger, Lars
  organization: Czech Academy of Sciences
– sequence: 7
  givenname: Štěpán
  orcidid: 0000-0003-1285-6490
  surname: Janeček
  fullname: Janeček, Štěpán
  organization: Charles University
– sequence: 8
  givenname: Jan
  orcidid: 0000-0002-4822-7429
  surname: Lepš
  fullname: Lepš, Jan
  organization: University of South Bohemia
– sequence: 9
  givenname: Pierre
  orcidid: 0000-0002-3109-8755
  surname: Liancourt
  fullname: Liancourt, Pierre
  organization: Czech Academy of Sciences
– sequence: 10
  givenname: Ondřej
  orcidid: 0000-0001-7775-0414
  surname: Mudrák
  fullname: Mudrák, Ondřej
  organization: Czech Academy of Sciences
BookMark eNqFkDtPwzAURi0EEuUxs1piYUmJn7FHVPGSkFh4jJbr3EAg2MV2Bf33OC1iYKmXK9nfd310DtCuDx4QOiH1lJRzTpgUFeVMTAlrNN1Bk7-bXTSpqdSV4pLto4OU3uq61oLSCXp6BvuOXQix7b3NffB4DvkLwOMBbIfbGJYvrxnnMEC03gG2vsWLGL5XOEfb54R7j18hzq2DsEx4MVif0xHa6-yQ4Ph3HqLHq8uH2U11d399O7u4qxwXglZaS8YUp7wDBlxIoXUrldSulVoKxcFx2ThuLW8ISK4tYba8W6dkp9q5Y4fobLO3EH0uIWXz0ScHQ4EYaQzVShLClWhK9PRf9C0soy90hgrWqEYVlpI636RcDClF6Mwi9h82rgypzejZjFbNaNWsPZeG-NdwfV6bHP0M23tf_QCrbd-Yq8vZpvcDrnGRJA
CitedBy_id crossref_primary_10_1111_1365_2435_14737
crossref_primary_10_3390_f14020322
crossref_primary_10_1002_ecy_3826
crossref_primary_10_3389_fpls_2022_949531
crossref_primary_10_1093_icb_icac016
crossref_primary_10_1111_ele_14176
crossref_primary_10_1111_1365_2664_14430
crossref_primary_10_1111_oik_10303
crossref_primary_10_1016_j_flora_2025_152676
crossref_primary_10_1111_gcb_70084
crossref_primary_10_1007_s11104_021_05031_7
crossref_primary_10_1111_1365_2435_14495
crossref_primary_10_1080_15230430_2021_2000567
crossref_primary_10_1111_pce_15096
crossref_primary_10_1186_s12870_022_03818_z
Cites_doi 10.1051/forest:2006101
10.1111/nph.14620
10.1038/nature05747
10.1071/BT12225
10.1111/1365-2664.12255
10.1111/1365-2745.12397
10.1093/treephys/tpy013
10.1111/j.1558-5646.1998.tb02006.x
10.1007/s10531-013-0442-3
10.2307/3565272
10.1111/j.1469-8137.1987.tb04687.x
10.1111/j.2041-210X.2011.00169.x
10.1007/s00442-007-0932-7
10.1111/j.1469-8137.2005.01349.x
10.1038/nclimate1633
10.1002/ecy.1500
10.1111/1365-2745.13321
10.1890/12-0743.1
10.1111/j.1365-3040.2005.01478.x
10.1111/j.1469-8137.2007.02342.x
10.1111/gcb.13662
10.1126/science.289.5487.2068
10.1111/1365-2435.13287
10.1126/science.aal4760
10.1093/jxb/eru430
10.1111/1365-2435.13135
10.1146/annurev.ecolsys.33.010802.150452
10.1111/j.1469-8137.2009.02830.x
10.1146/annurev.pp.40.060189.002443
10.1093/aob/mcs092
10.1093/sysbio/41.1.18
10.1111/1365-2435.12452
10.1111/1365-2745.12211
10.1038/44766
10.1111/j.2041-210X.2011.00153.x
10.1111/j.1469-8137.2012.04298.x
10.1007/s00442-019-04336-w
10.1093/aob/mcr225
10.1111/j.1461-0248.2012.01751.x
10.1007/978-94-009-2255-6
10.1111/j.2041-210X.2012.00230.x
10.1111/j.1471-8286.2004.00828.x
10.1111/1365-2435.13312
10.1111/boj.12385
10.1046/j.0269-8463.2001.00563.x
10.1111/1365-2435.13522
10.1111/ele.12739
10.1093/bioinformatics/btg412
10.1111/2041-210X.12232
10.1111/gcb.14062
10.1038/nature16489
10.1021/jf035497l
10.1111/nph.16448
10.1111/aec.12577
10.1007/s00442-019-04567-x
10.1111/1365-2435.12095
10.1086/284325
10.1093/sysbio/syr118
10.1111/1365-2745.13454
10.1111/j.1654-1103.2012.01389.x
10.1093/aob/mci264
ContentType Journal Article
Copyright 2021 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society
2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society
– notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
7S9
L.6
DOI 10.1111/1365-2435.13792
DatabaseName Wiley Online Library Open Access
CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Animal Behavior Abstracts
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Entomology Abstracts
CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
Economics
EISSN 1365-2435
EndPage 1311
ExternalDocumentID 10_1111_1365_2435_13792
FEC13792
Genre article
GrantInformation_xml – fundername: Czech Academy of Sciences
  funderid: RVO 67985939
– fundername: Open Access funding enabled and organized by Projekt DEAL. WOA Institution: Eberhard Karls Universitat Tubingen; Blended DEAL: Projekt DEAL
– fundername: Czech Science Foundation
  funderid: GAČR 20‐08900S
– fundername: Plan Nacional de I + D + i
  funderid: PGC2018‐099027‐B‐I00
– fundername: MSMT INTER‐EXCELLENCE
  funderid: LTAUSA18007
– fundername: Hungarian Eötvös Scholarship
– fundername: Slovak Science Foundation
  funderid: VEGA 2/0096/19,; 2/0147/21
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1OC
24P
29H
2AX
2WC
31~
33P
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAISJ
AAKGQ
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABLJU
ABPLY
ABPVW
ABTAH
ABTLG
ABXSQ
ACAHQ
ACCFJ
ACCMX
ACCZN
ACFBH
ACGFO
ACGFS
ACHIC
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHXOZ
AIAGR
AILXY
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
UB1
V8K
VOH
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XSW
ZCA
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAYXX
ABSQW
AGHNM
AGUYK
CITATION
7QG
7SN
7SS
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
P64
RC3
7S9
L.6
ID FETCH-LOGICAL-c4552-996338424fe3e456599d6869cd696584ec467c4aa471e649a13a686ac86f8dbc3
IEDL.DBID DR2
ISSN 0269-8463
IngestDate Fri Jul 11 18:32:56 EDT 2025
Sun Jul 13 04:45:41 EDT 2025
Tue Jul 01 01:15:52 EDT 2025
Thu Apr 24 23:04:49 EDT 2025
Wed Jan 22 16:30:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4552-996338424fe3e456599d6869cd696584ec467c4aa471e649a13a686ac86f8dbc3
Notes Adam Martin
Handling Editor
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9202-8198
0000-0002-5981-5840
0000-0003-3040-2900
0000-0002-4822-7429
0000-0002-5829-4051
0000-0001-7775-0414
0000-0002-3109-8755
0000-0003-1285-6490
0000-0001-6892-5462
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.13792
PQID 2537878633
PQPubID 1066355
PageCount 0
ParticipantIDs proquest_miscellaneous_2986114857
proquest_journals_2537878633
crossref_primary_10_1111_1365_2435_13792
crossref_citationtrail_10_1111_1365_2435_13792
wiley_primary_10_1111_1365_2435_13792_FEC13792
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2021
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Functional ecology
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2012; 61
1989; 40
2004; 20
2013; 3
1987; 106
2015; 103
2013; 61
2016; 181
2018; 43
1999; 401
2017; 357
2014; 5
2000; 289
2015; 87
2006; 29
2001; 15
1995; 125
2007; 64
1998; 52
2014; 51
2008; 155
2012; 23
2018; 32
2018; 38
1995; 161
1989
1992; 41
2013; 1999
2017; 20
2015; 5
2007; 447
2019; 33
2009; 182
2016; 529
2017; 23
2002; 33
2020; 226
2016; 97
2008
2020; 34
2003
2004; 428
2012a; 3
2020; 108
2017; 215
2019; 189
2018; 24
2004; 11
2012; 93
2012; 196
2004; 52
2012; 110
2011; 108
2012; 3
1989; 54
2015; 29
2021
2013; September
2020; 192
2015; 66
2005; 96
2016
2012b; 15
2014
2005; 2
2008; 178
2014; 102
e_1_2_9_31_1
e_1_2_9_52_1
Kramer P. J. (e_1_2_9_38_1) 1995; 161
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_33_1
e_1_2_9_54_1
Burnham K. P. (e_1_2_9_11_1) 2003
e_1_2_9_71_1
Chytrý M. (e_1_2_9_12_1) 2015; 87
Jongepierová I. (e_1_2_9_36_1) 2008
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
Liu H. (e_1_2_9_42_1) 2015; 5
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_70_1
R Core Team (e_1_2_9_56_1) 2016
e_1_2_9_15_1
e_1_2_9_17_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
Májeková M. (e_1_2_9_43_1) 2021
e_1_2_9_3_1
IPCC (e_1_2_9_34_1) 2014
e_1_2_9_9_1
e_1_2_9_25_1
Abràmoff M. D. (e_1_2_9_2_1) 2004; 11
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 66
  start-page: 761
  issue: 3
  year: 2015
  end-page: 773
  article-title: Water relations traits of C4 grasses depend on phylogenetic lineage, photosynthetic pathway, and habitat water availability
  publication-title: Journal of Experimental Botany
– volume: 43
  start-page: 397
  issue: 4
  year: 2018
  end-page: 408
  article-title: Correlation of drought traits and the predictability of osmotic potential at full leaf turgor in vegetation from New Zealand
  publication-title: Austral Ecology
– volume: 108
  start-page: 1030
  issue: 3
  year: 2020
  end-page: 1045
  article-title: Leaf drought tolerance cannot be inferred from classic leaf traits in a tropical rainforest
  publication-title: Journal of Ecology
– volume: 3
  start-page: 217
  issue: 2
  year: 2012
  end-page: 223
  article-title: phytools: An R package for phylogenetic comparative biology (and other things)
  publication-title: Methods in Ecology and Evolution
– volume: 33
  start-page: 746
  year: 2019
  end-page: 755
  article-title: Variation in plant functional traits is best explained by the species identity: Stability of trait – Based species ranking across meadow management regimes
  publication-title: Functional Ecology
– volume: 96
  start-page: 1129
  issue: 6
  year: 2005
  end-page: 1136
  article-title: Specific leaf area and dry matter content estimate thickness in laminar leaves
  publication-title: Annals of Botany
– volume: 41
  start-page: 18
  issue: 1
  year: 1992
  end-page: 32
  article-title: Procedures for the analysis of comparative data using phylogenetically independent contrasts
  publication-title: Systematic Biology
– volume: 3
  start-page: 52
  issue: 1
  year: 2013
  end-page: 58
  article-title: Increasing drought under global warming in observations and models
  publication-title: Nature Climate Change
– volume: 33
  start-page: 774
  issue: 5
  year: 2019
  end-page: 785
  article-title: Grassland plants show no relationship between leaf drought tolerance and soil moisture affinity, but rapidly adjust to changes in soil moisture
  publication-title: Functional Ecology
– volume: 529
  start-page: 167
  issue: 7585
  year: 2016
  end-page: 171
  article-title: The global spectrum of plant form and function
  publication-title: Nature
– volume: 20
  start-page: 289
  issue: 2
  year: 2004
  end-page: 290
  article-title: APE: Analyses of phylogenetics and evolution in R language
  publication-title: Bioinformatics
– volume: 182
  start-page: 565
  issue: 3
  year: 2009
  end-page: 588
  article-title: Causes and consequences of variation in leaf mass per area (LMA): A meta‐analysis
  publication-title: New Phytologist
– year: 1989
– volume: 15
  start-page: 393
  issue: 5
  year: 2012b
  end-page: 405
  article-title: The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: A global meta‐analysis
  publication-title: Ecology Letters
– volume: 1999
  start-page: 1002
  year: 2013
  end-page: 1010
  article-title: Allocating CSR plant functional types: The use of leaf economics and size traits to classify woody and herbaceous vascular plants
  publication-title: Functional Ecology
– volume: 33
  start-page: 125
  year: 2002
  end-page: 159
  article-title: Plant ecological strategies: Some leading dimensions of variation between species
  publication-title: Annual Review of Ecology and Systematics
– volume: 64
  start-page: 169
  issue: 2
  year: 2007
  end-page: 176
  article-title: The successional status of tropical rainforest tree species is associated with differences in leaf carbon isotope discrimination and functional traits
  publication-title: Annals of Forest Science
– volume: 52
  start-page: 3713
  issue: 12
  year: 2004
  end-page: 3720
  article-title: Comparison of the acetyl bromide spectrophotometric method with other analytical lignin methods for determining lignin concentration in forage samples
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 2
  start-page: 184
  year: 2005
  end-page: 186
  article-title: HIERFSTAT, a package for R to compute and test hierarchical F‐statistics
  publication-title: Molecular Ecology Notes
– volume: 15
  start-page: 688
  issue: 5
  year: 2001
  end-page: 695
  article-title: A standardized protocol for the determination of specific leaf area and leaf dry matter content
  publication-title: Functional Ecology
– volume: 29
  start-page: 367
  issue: 3
  year: 2006
  end-page: 381
  article-title: The hydraulic limitation hypothesis revisited
  publication-title: Plant, Cell and Environment
– year: 2014
– volume: 51
  start-page: 978
  year: 2014
  end-page: 987
  article-title: Scale‐ and time‐dependent effects of fertilization, mowing and dominant removal on a grassland community during a 15‐year experiment
  publication-title: Journal of Applied Ecology
– volume: 125
  start-page: 1
  issue: 1
  year: 1995
  end-page: 15
  article-title: Phylogenies and the comparative method
  publication-title: The American Naturalist
– volume: 34
  start-page: 788
  issue: 4
  year: 2020
  end-page: 798
  article-title: Drought survival is positively associated with high turgor loss points in temperate perennial grassland species
  publication-title: Functional Ecology
– volume: 181
  start-page: 1
  issue: 1
  year: 2016
  end-page: 20
  article-title: An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV
  publication-title: Botanical Journal of the Linnean Society
– volume: 29
  start-page: 1268
  issue: 10
  year: 2015
  end-page: 1277
  article-title: Drought tolerance as predicted by leaf water potential at turgor loss point varies strongly across species within an Amazonian forest
  publication-title: Functional Ecology
– volume: 192
  start-page: 55
  issue: 1
  year: 2020
  end-page: 66
  article-title: Identification of suites of traits that explains drought resistance and phenological patterns of plants in a semi‐arid grassland community
  publication-title: Oecologia
– volume: 52
  start-page: 1247
  issue: 5
  year: 1998
  end-page: 1262
  article-title: An eigenvector method for estimating phylogenetic inertia
  publication-title: Evolution
– volume: 102
  start-page: 275
  issue: 2
  year: 2014
  end-page: 301
  article-title: The world‐wide ‘fast‐slow’ plant economics spectrum: A traits manifesto
  publication-title: Journal of Ecology
– year: 2008
– volume: 3
  start-page: 257
  issue: 2
  year: 2012
  end-page: 259
  article-title: smatr 3 – An R package for estimation and inference about allometric lines
  publication-title: Methods in Ecology and Evolution
– volume: 23
  start-page: 2473
  issue: 6
  year: 2017
  end-page: 2481
  article-title: Effects of extreme drought on specific leaf area of grassland species: A meta‐analysis of experimental studies in temperate and sub‐Mediterranean systems
  publication-title: Global Change Biology
– volume: 61
  start-page: 382
  issue: 3
  year: 2012
  end-page: 391
  article-title: Independent contrasts and PGLS regression estimators are equivalent
  publication-title: Systematic Biology
– volume: 61
  start-page: 167
  issue: 34
  year: 2013
  end-page: 234
  article-title: New Handbook for standardized measurment of plant functional traits worldwide
  publication-title: Australian Journal of Botany
– volume: 196
  start-page: 681
  issue: 3
  year: 2012
  end-page: 694
  article-title: Phylogenetic niche conservatism: What are the underlying evolutionary and ecological causes?
  publication-title: New Phytologist
– volume: 20
  start-page: 412
  issue: 4
  year: 2017
  end-page: 425
  article-title: The anatomical and compositional basis of leaf mass per area
  publication-title: Ecology Letters
– volume: 161
  start-page: 1
  year: 1995
  end-page: 509
  article-title: Water relations of plants and soils
  publication-title: Soil Science
– volume: 106
  start-page: 131
  year: 1987
  end-page: 160
  article-title: Comparative studies of leaf form: Assessing the relative roles of selective pressures and phylogenetic constraints
  publication-title: New Phytologist
– volume: 103
  start-page: 648
  issue: 3
  year: 2015
  end-page: 656
  article-title: Daily environmental conditions determine the competition‐facilitation balance for plant water status
  publication-title: Journal of Ecology
– volume: 3
  start-page: 880
  issue: 5
  year: 2012a
  end-page: 888
  article-title: Rapid determination of comparative drought tolerance traits: Using an osmometer to predict turgor loss point
  publication-title: Methods in Ecology and Evolution
– volume: 110
  start-page: 189
  issue: 1
  year: 2012
  end-page: 199
  article-title: Stem hydraulic traits and leaf water‐stress tolerance are coordinated with the leaf phenology of angiosperm trees in an Asian tropical dry karst forest
  publication-title: Annals of Botany
– volume: 178
  start-page: 24
  issue: 1
  year: 2008
  end-page: 40
  article-title: Carbon isotopes in terrestrial ecosystem pools and CO fluxes
  publication-title: New Phytologist
– volume: 32
  start-page: 1746
  issue: 7
  year: 2018
  end-page: 1756
  article-title: Trait selection and community weighting are key to understanding ecosystem responses to changing precipitation regimes
  publication-title: Functional Ecology
– volume: September
  start-page: 2151
  year: 2013
  end-page: 2166
  article-title: Topographically controlled soil moisture drives plant diversity patterns within grasslands
  publication-title: Biodiversity and Conservation
– volume: 357
  start-page: 917
  issue: 6354
  year: 2017
  end-page: 921
  article-title: Global climatic drivers of leaf size
  publication-title: Science
– volume: 108
  start-page: 1337
  issue: 7
  year: 2011
  end-page: 1345
  article-title: Is leaf dry matter content a better predictor of soil fertility than specific leaf area?
  publication-title: Annals of Botany
– volume: 289
  start-page: 2068
  issue: September
  year: 2000
  end-page: 2074
  article-title: Climate extremes: Observations, modeling, and impacts
  publication-title: Science
– volume: 447
  start-page: 80
  issue: 7140
  year: 2007
  end-page: 82
  article-title: Drought sensitivity shapes species distribution patterns in tropical forests
  publication-title: Nature
– year: 2021
  article-title: Data from: Weak coordination between leaf drought tolerance and proxy traits in herbaceous plants
  publication-title: Dryad Digital Repository
– volume: 97
  start-page: 2791
  issue: 10
  year: 2016
  end-page: 2801
  article-title: Can trait patterns along gradients predict plant community responses to climate changes?
  publication-title: Ecology
– volume: 5
  start-page: 1
  issue: June
  year: 2015
  end-page: 12
  article-title: Strong phylogenetic signals and phylogenetic niche conservatism in ecophysiological traits across divergent lineages of Magnoliaceae
  publication-title: Scientific Reports
– year: 2003
– volume: 108
  start-page: 2336
  issue: 6
  year: 2020
  end-page: 2351
  article-title: Traits link drought resistance with herbivore defence and plant economics in semi‐arid grasslands: The central roles of phenology and leaf dry matter content
  publication-title: Journal of Ecology
– volume: 40
  start-page: 503
  issue: 1
  year: 1989
  end-page: 537
  article-title: Carbon isotope discrimination and photosynthesis
  publication-title: Annual Review of Plant Physiology and Plant Molecular Biology
– volume: 24
  start-page: 2929
  issue: 7
  year: 2018
  end-page: 2938
  article-title: A unified framework of plant adaptive strategies to drought: Crossing scales and disciplines
  publication-title: Global Change Biology
– volume: 87
  start-page: 217
  year: 2015
  end-page: 278
  article-title: The most species‐rich plant communities in the Czech Republic and Slovakia (with new world records)
  publication-title: Preslia
– volume: 23
  start-page: 709
  issue: 4
  year: 2012
  end-page: 720
  article-title: Different plant trait scaling in dry versus wet Central European meadows
  publication-title: Journal of Vegetation Science
– year: 2016
– volume: 5
  start-page: 961
  year: 2014
  end-page: 970
  article-title: Imputation of missing data in life‐history trait datasets: Which approach performs the best?
  publication-title: Methods in Ecology and Evolution
– volume: 155
  start-page: 441
  issue: 3
  year: 2008
  end-page: 454
  article-title: Carbon isotopes and water use efficiency: Sense and sensitivity
  publication-title: Oecologia
– volume: 428
  start-page: 821
  year: 2004
  end-page: 827
  article-title: The worldwide leaf economics spectrum
  publication-title: Nature
– volume: 93
  start-page: 2297
  issue: 10
  year: 2012
  article-title: Daphne: A dated phylogeny of a large European flora for phylogenetically informed ecological analyses
  publication-title: Ecology
– volume: 215
  start-page: 9
  year: 2017
  end-page: 11
  article-title: Commentary progressing from ‘functional’ to mechanistic traits
  publication-title: New Phytologist
– volume: 11
  start-page: 36
  issue: 7
  year: 2004
  end-page: 41
  article-title: Image processing with imageJ
  publication-title: Biophotonics International
– volume: 189
  start-page: 353
  issue: 2
  year: 2019
  end-page: 363
  article-title: Extending the osmometer method for assessing drought tolerance in herbaceous species
  publication-title: Oecologia
– volume: 226
  start-page: 727
  issue: 3
  year: 2020
  end-page: 740
  article-title: Climatic limits of temperate rainforest tree species are explained by xylem embolism resistance among angiosperms but not among conifers
  publication-title: New Phytologist
– volume: 54
  start-page: 234
  issue: 2
  year: 1989
  end-page: 241
  article-title: Competitive hierarchies in herbaceous plant communities
  publication-title: Oikos
– volume: 401
  start-page: 877
  issue: 6756
  year: 1999
  end-page: 884
  article-title: Inferring the historical patterns of biological evolution
  publication-title: Nature
– volume: 38
  start-page: 658
  issue: 5
  year: 2018
  end-page: 663
  article-title: Leaf turgor loss point is correlated with drought tolerance and leaf carbon economics traits
  publication-title: Tree Physiology
– ident: e_1_2_9_8_1
  doi: 10.1051/forest:2006101
– ident: e_1_2_9_10_1
  doi: 10.1111/nph.14620
– volume-title: R: A language and environment for statistical computing
  year: 2016
  ident: e_1_2_9_56_1
– ident: e_1_2_9_20_1
  doi: 10.1038/nature05747
– ident: e_1_2_9_53_1
  doi: 10.1071/BT12225
– ident: e_1_2_9_40_1
  doi: 10.1111/1365-2664.12255
– year: 2021
  ident: e_1_2_9_43_1
  article-title: Data from: Weak coordination between leaf drought tolerance and proxy traits in herbaceous plants
  publication-title: Dryad Digital Repository
– ident: e_1_2_9_68_1
  doi: 10.1111/1365-2745.12397
– ident: e_1_2_9_71_1
  doi: 10.1093/treephys/tpy013
– ident: e_1_2_9_17_1
  doi: 10.1111/j.1558-5646.1998.tb02006.x
– ident: e_1_2_9_47_1
  doi: 10.1007/s10531-013-0442-3
– volume-title: Grasslands of the white carpathian mountains
  year: 2008
  ident: e_1_2_9_36_1
– ident: e_1_2_9_37_1
  doi: 10.2307/3565272
– volume: 11
  start-page: 36
  issue: 7
  year: 2004
  ident: e_1_2_9_2_1
  article-title: Image processing with imageJ
  publication-title: Biophotonics International
– ident: e_1_2_9_28_1
  doi: 10.1111/j.1469-8137.1987.tb04687.x
– ident: e_1_2_9_58_1
  doi: 10.1111/j.2041-210X.2011.00169.x
– ident: e_1_2_9_60_1
  doi: 10.1007/s00442-007-0932-7
– ident: e_1_2_9_70_1
  doi: 10.1111/j.1469-8137.2005.01349.x
– ident: e_1_2_9_14_1
  doi: 10.1038/nclimate1633
– ident: e_1_2_9_32_1
  doi: 10.1002/ecy.1500
– ident: e_1_2_9_46_1
  doi: 10.1111/1365-2745.13321
– ident: e_1_2_9_18_1
  doi: 10.1890/12-0743.1
– ident: e_1_2_9_59_1
  doi: 10.1111/j.1365-3040.2005.01478.x
– ident: e_1_2_9_9_1
  doi: 10.1111/j.1469-8137.2007.02342.x
– ident: e_1_2_9_66_1
  doi: 10.1111/gcb.13662
– volume-title: Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2014
  ident: e_1_2_9_34_1
– volume: 161
  start-page: 1
  year: 1995
  ident: e_1_2_9_38_1
  article-title: Water relations of plants and soils
  publication-title: Soil Science
– ident: e_1_2_9_19_1
  doi: 10.1126/science.289.5487.2068
– ident: e_1_2_9_48_1
  doi: 10.1111/1365-2435.13287
– ident: e_1_2_9_69_1
  doi: 10.1126/science.aal4760
– ident: e_1_2_9_41_1
  doi: 10.1093/jxb/eru430
– ident: e_1_2_9_30_1
  doi: 10.1111/1365-2435.13135
– ident: e_1_2_9_67_1
  doi: 10.1146/annurev.ecolsys.33.010802.150452
– ident: e_1_2_9_55_1
  doi: 10.1111/j.1469-8137.2009.02830.x
– volume: 87
  start-page: 217
  year: 2015
  ident: e_1_2_9_12_1
  article-title: The most species‐rich plant communities in the Czech Republic and Slovakia (with new world records)
  publication-title: Preslia
– ident: e_1_2_9_22_1
  doi: 10.1146/annurev.pp.40.060189.002443
– ident: e_1_2_9_24_1
  doi: 10.1093/aob/mcs092
– ident: e_1_2_9_26_1
  doi: 10.1093/sysbio/41.1.18
– volume: 5
  start-page: 1
  year: 2015
  ident: e_1_2_9_42_1
  article-title: Strong phylogenetic signals and phylogenetic niche conservatism in ecophysiological traits across divergent lineages of Magnoliaceae
  publication-title: Scientific Reports
– ident: e_1_2_9_45_1
  doi: 10.1111/1365-2435.12452
– ident: e_1_2_9_57_1
  doi: 10.1111/1365-2745.12211
– ident: e_1_2_9_50_1
  doi: 10.1038/44766
– ident: e_1_2_9_65_1
  doi: 10.1111/j.2041-210X.2011.00153.x
– ident: e_1_2_9_13_1
  doi: 10.1111/j.1469-8137.2012.04298.x
– ident: e_1_2_9_31_1
  doi: 10.1007/s00442-019-04336-w
– ident: e_1_2_9_33_1
  doi: 10.1093/aob/mcr225
– ident: e_1_2_9_5_1
  doi: 10.1111/j.1461-0248.2012.01751.x
– volume-title: Model selection and multimodel inference: A practical information‐theoretic approach
  year: 2003
  ident: e_1_2_9_11_1
– ident: e_1_2_9_3_1
  doi: 10.1007/978-94-009-2255-6
– ident: e_1_2_9_4_1
  doi: 10.1111/j.2041-210X.2012.00230.x
– ident: e_1_2_9_29_1
  doi: 10.1111/j.1471-8286.2004.00828.x
– ident: e_1_2_9_44_1
  doi: 10.1111/1365-2435.13312
– ident: e_1_2_9_62_1
  doi: 10.1111/boj.12385
– ident: e_1_2_9_27_1
  doi: 10.1046/j.0269-8463.2001.00563.x
– ident: e_1_2_9_61_1
  doi: 10.1111/1365-2435.13522
– ident: e_1_2_9_35_1
  doi: 10.1111/ele.12739
– ident: e_1_2_9_51_1
  doi: 10.1093/bioinformatics/btg412
– ident: e_1_2_9_52_1
  doi: 10.1111/2041-210X.12232
– ident: e_1_2_9_64_1
  doi: 10.1111/gcb.14062
– ident: e_1_2_9_16_1
  doi: 10.1038/nature16489
– ident: e_1_2_9_25_1
  doi: 10.1021/jf035497l
– ident: e_1_2_9_39_1
  doi: 10.1111/nph.16448
– ident: e_1_2_9_21_1
  doi: 10.1111/aec.12577
– ident: e_1_2_9_49_1
  doi: 10.1007/s00442-019-04567-x
– ident: e_1_2_9_54_1
  doi: 10.1111/1365-2435.12095
– ident: e_1_2_9_23_1
  doi: 10.1086/284325
– ident: e_1_2_9_6_1
  doi: 10.1093/sysbio/syr118
– ident: e_1_2_9_7_1
  doi: 10.1111/1365-2745.13454
– ident: e_1_2_9_15_1
  doi: 10.1111/j.1654-1103.2012.01389.x
– ident: e_1_2_9_63_1
  doi: 10.1093/aob/mci264
SSID ssj0009522
Score 2.4520216
Snippet Increased drought is predicted to have a major impact on plant performance under environmental change. Yet leaf hydraulic traits directly related to drought...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1299
SubjectTerms Computational fluid dynamics
Coordination
drought
Drought resistance
drought tolerance
Dry matter
ecology
economics
Environmental changes
Fluid flow
fluid mechanics
Forbs
graminoids
Grasslands
herbaceous plants
Hydraulics
LDMC
Leaf area
leaf dry matter content
leaf economics spectrum
leaf thickness
Leaves
Phylogenetics
Phylogeny
plant architecture
plant functional types
plant height
Plant species
Plants
prediction
Predictions
SLA
Species
Turgor
turgor loss point
Water use
Water use efficiency
Title Weak coordination between leaf drought tolerance and proxy traits in herbaceous plants
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.13792
https://www.proquest.com/docview/2537878633
https://www.proquest.com/docview/2986114857
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA4qCF7cxXEjggcvHZxsbY6iM4igiLjdSpqkIA6dwXYO-ut9L23HURARb6Hto9nempfvEXKUJ6BINc-jExfLSBgjo6SXm0hy0C7CMcFDQP_qWl3ci8sn2WYT4l2YGh9iGnBDzgjyGhncZOUMk9f5WaDtuz0ea5TC8ATR889v2Qzsbn2OwJSOQNPyBtwHc3m-0X_VS5_G5qzJGnTOYIVkbW_rVJOX7qTKuvb9G5Djv4azSpYbi5Se1ltojcz5Yp0s1jUq36DVt01rq_95KQ4IGqlQbpCHR29eqB2BH_tcBxdpk_5Fh97k1IVSQBWtRkOPdTw8NYWjYVQUS1RUJX0uKGyezFg_mpR0PMTsnE1yP-jfnV1ETb2GyAopWQSuEzi8goncc4-WotZOJUpbpxBiRngLUtnCfgCF6JXQpscNvDc2UXniMsu3yEIxKvw2oZnUBsSftD2TAUGcCO2dYk5w53gesw7ptquV2gbMHDs8TFunBuczxflMw3x2yPGUYFzjePz86V67_GnD0GXKJAfRlsAAO-Rw-hpYEc9XTIGTkzKdKHQvZQzdC2v926_SQf8sNHb-SrBLlhhm14R40B5ZqF4nfh_Moyo7IPNM3BwEPvgADVgCOg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LSsQwMIgiehGfuD4jePBScfNqcxTZZdVVPPi6hTRJQVy64taDf-9M2n0oiHgLpNMmM51nJjOEHBcZKFLNi-TMpzIR1sokaxc2kRy0i_BM8BjQv7lVvQdx9SyfZ-7C1PUhJgE35Iwor5HBMSA9w-V1ghao-9M2TzWI4QWhwIHB6s7ibqbwbn2SwJROQNfyprwPZvP8eMF3zTQ1N2eN1qh1uqtkpTEX6XlN3zUyF8p1slg3kPyEUcc1o63O9MYaADQsO9ogj0_BvlI3BCfzpY780SY3iw6CLaiPfXoqWg0HAZtsBGpLT2N2C8X-EdWIvpQUKJtbF4YfI_o2wNSZTfLQ7dxf9JKmmULihJQsAb8GvFHBRBF4QDNOa68ypZ1XWP9FBAci0wGxQFsFJbRtcwvz1mWqyHzu-BaZL4dl2CY0l9qCbJKubXMASDOhg1fMC-49L1LWIqdjRBrXVBrHBQ_M2ONAzBvEvImYb5GTCcBbXWTj90f3xpQxDbeNDJMc5E4GG2yRo8k08AkeftgSkWOYzhT6fjKF5UWK_vUp0-1cxMHOfwEOyVLv_qZv-pe317tkmWEaTAzc7JH56v0j7IMdU-UH8Uf9Ai5g5B4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LSsQwMIiieBGfuD4jePBScfNqcxTdxTcefN1CmqSwuHQXtx78e2fS7roKIt4C6bTpTOaZyQwhh0UGilTzIjnxqUyEtTLJ2oVNJAftIjwTPAb0b-_UxaO4epHjbEK8C1PXh5gE3JAzorxGBh_6YorJ6_ws0PbHbZ5qkMJzAnYfbnIm7qfq7tYHCUzpBFQtb6r7YDLPjxd8V0xf1ua0zRqVTneZLDXWIj2tybtCZkK5Subr_pEfMOq4ZrTR-bqwBgANx47WyNNzsK_UDcDH7NWBP9qkZtF-sAX1sU1PRatBP2CPjUBt6WlMbqHYPqIa0V5JgbC5dWHwPqLDPmbOrJPHbufh7CJpeikkTkjJEnBrwBkVTBSBB7TitPYqU9p5heVfRHAgMR3QCpRVUELbNrcwb12misznjm-Q2XJQhk1Cc6ktiCbp2jYHgDQTOnjFvODe8yJlLXI8RqRxTaFxXHDfjB0OxLxBzJuI-RY5mgAM6xobvz-6M6aMaZhtZJjkIHYy-MEWOZhMA5vg2YctETmG6Uyh6ydTWF6k6F-fMt3OWRxs_Rdgnyzcn3fNzeXd9TZZZJgEE8M2O2S2ensPu2DFVPle3Kef_4bjWQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weak+coordination+between+leaf+drought+tolerance+and+proxy+traits+in+herbaceous+plants&rft.jtitle=Functional+ecology&rft.au=M%C3%A1jekov%C3%A1%2C+Maria&rft.au=H%C3%A1jek%2C+Tom%C3%A1%C5%A1&rft.au=Albert%2C+%C3%81gnes+J&rft.au=de+Bello%2C+Francesco&rft.date=2021-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0269-8463&rft.eissn=1365-2435&rft.volume=35&rft.issue=6&rft.spage=1299&rft.epage=1311&rft_id=info:doi/10.1111%2F1365-2435.13792&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon