Density-based clustering of static and dynamic functional MRI connectivity features obtained from subjects with cognitive impairment

Various machine-learning classification techniques have been employed previously to classify brain states in healthy and disease populations using functional magnetic resonance imaging (fMRI). These methods generally use supervised classifiers that are sensitive to outliers and require labeling of t...

Full description

Saved in:
Bibliographic Details
Published inBrain informatics Vol. 7; no. 1; pp. 19 - 13
Main Authors Rangaprakash, D., Odemuyiwa, Toluwanimi, Narayana Dutt, D., Deshpande, Gopikrishna
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 26.11.2020
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN2198-4018
2198-4026
2198-4026
DOI10.1186/s40708-020-00120-2

Cover

Abstract Various machine-learning classification techniques have been employed previously to classify brain states in healthy and disease populations using functional magnetic resonance imaging (fMRI). These methods generally use supervised classifiers that are sensitive to outliers and require labeling of training data to generate a predictive model. Density-based clustering, which overcomes these issues, is a popular unsupervised learning approach whose utility for high-dimensional neuroimaging data has not been previously evaluated. Its advantages include insensitivity to outliers and ability to work with unlabeled data. Unlike the popular k -means clustering, the number of clusters need not be specified. In this study, we compare the performance of two popular density-based clustering methods, DBSCAN and OPTICS, in accurately identifying individuals with three stages of cognitive impairment, including Alzheimer’s disease. We used static and dynamic functional connectivity features for clustering, which captures the strength and temporal variation of brain connectivity respectively. To assess the robustness of clustering to noise/outliers, we propose a novel method called recursive-clustering using additive-noise (R-CLAN). Results demonstrated that both clustering algorithms were effective, although OPTICS with dynamic connectivity features outperformed in terms of cluster purity (95.46%) and robustness to noise/outliers. This study demonstrates that density-based clustering can accurately and robustly identify diagnostic classes in an unsupervised way using brain connectivity.
AbstractList Various machine-learning classification techniques have been employed previously to classify brain states in healthy and disease populations using functional magnetic resonance imaging (fMRI). These methods generally use supervised classifiers that are sensitive to outliers and require labeling of training data to generate a predictive model. Density-based clustering, which overcomes these issues, is a popular unsupervised learning approach whose utility for high-dimensional neuroimaging data has not been previously evaluated. Its advantages include insensitivity to outliers and ability to work with unlabeled data. Unlike the popular k-means clustering, the number of clusters need not be specified. In this study, we compare the performance of two popular density-based clustering methods, DBSCAN and OPTICS, in accurately identifying individuals with three stages of cognitive impairment, including Alzheimer’s disease. We used static and dynamic functional connectivity features for clustering, which captures the strength and temporal variation of brain connectivity respectively. To assess the robustness of clustering to noise/outliers, we propose a novel method called recursive-clustering using additive-noise (R-CLAN). Results demonstrated that both clustering algorithms were effective, although OPTICS with dynamic connectivity features outperformed in terms of cluster purity (95.46%) and robustness to noise/outliers. This study demonstrates that density-based clustering can accurately and robustly identify diagnostic classes in an unsupervised way using brain connectivity.
Various machine-learning classification techniques have been employed previously to classify brain states in healthy and disease populations using functional magnetic resonance imaging (fMRI). These methods generally use supervised classifiers that are sensitive to outliers and require labeling of training data to generate a predictive model. Density-based clustering, which overcomes these issues, is a popular unsupervised learning approach whose utility for high-dimensional neuroimaging data has not been previously evaluated. Its advantages include insensitivity to outliers and ability to work with unlabeled data. Unlike the popular k-means clustering, the number of clusters need not be specified. In this study, we compare the performance of two popular density-based clustering methods, DBSCAN and OPTICS, in accurately identifying individuals with three stages of cognitive impairment, including Alzheimer's disease. We used static and dynamic functional connectivity features for clustering, which captures the strength and temporal variation of brain connectivity respectively. To assess the robustness of clustering to noise/outliers, we propose a novel method called recursive-clustering using additive-noise (R-CLAN). Results demonstrated that both clustering algorithms were effective, although OPTICS with dynamic connectivity features outperformed in terms of cluster purity (95.46%) and robustness to noise/outliers. This study demonstrates that density-based clustering can accurately and robustly identify diagnostic classes in an unsupervised way using brain connectivity.Various machine-learning classification techniques have been employed previously to classify brain states in healthy and disease populations using functional magnetic resonance imaging (fMRI). These methods generally use supervised classifiers that are sensitive to outliers and require labeling of training data to generate a predictive model. Density-based clustering, which overcomes these issues, is a popular unsupervised learning approach whose utility for high-dimensional neuroimaging data has not been previously evaluated. Its advantages include insensitivity to outliers and ability to work with unlabeled data. Unlike the popular k-means clustering, the number of clusters need not be specified. In this study, we compare the performance of two popular density-based clustering methods, DBSCAN and OPTICS, in accurately identifying individuals with three stages of cognitive impairment, including Alzheimer's disease. We used static and dynamic functional connectivity features for clustering, which captures the strength and temporal variation of brain connectivity respectively. To assess the robustness of clustering to noise/outliers, we propose a novel method called recursive-clustering using additive-noise (R-CLAN). Results demonstrated that both clustering algorithms were effective, although OPTICS with dynamic connectivity features outperformed in terms of cluster purity (95.46%) and robustness to noise/outliers. This study demonstrates that density-based clustering can accurately and robustly identify diagnostic classes in an unsupervised way using brain connectivity.
Abstract Various machine-learning classification techniques have been employed previously to classify brain states in healthy and disease populations using functional magnetic resonance imaging (fMRI). These methods generally use supervised classifiers that are sensitive to outliers and require labeling of training data to generate a predictive model. Density-based clustering, which overcomes these issues, is a popular unsupervised learning approach whose utility for high-dimensional neuroimaging data has not been previously evaluated. Its advantages include insensitivity to outliers and ability to work with unlabeled data. Unlike the popular k-means clustering, the number of clusters need not be specified. In this study, we compare the performance of two popular density-based clustering methods, DBSCAN and OPTICS, in accurately identifying individuals with three stages of cognitive impairment, including Alzheimer’s disease. We used static and dynamic functional connectivity features for clustering, which captures the strength and temporal variation of brain connectivity respectively. To assess the robustness of clustering to noise/outliers, we propose a novel method called recursive-clustering using additive-noise (R-CLAN). Results demonstrated that both clustering algorithms were effective, although OPTICS with dynamic connectivity features outperformed in terms of cluster purity (95.46%) and robustness to noise/outliers. This study demonstrates that density-based clustering can accurately and robustly identify diagnostic classes in an unsupervised way using brain connectivity.
Various machine-learning classification techniques have been employed previously to classify brain states in healthy and disease populations using functional magnetic resonance imaging (fMRI). These methods generally use supervised classifiers that are sensitive to outliers and require labeling of training data to generate a predictive model. Density-based clustering, which overcomes these issues, is a popular unsupervised learning approach whose utility for high-dimensional neuroimaging data has not been previously evaluated. Its advantages include insensitivity to outliers and ability to work with unlabeled data. Unlike the popular k -means clustering, the number of clusters need not be specified. In this study, we compare the performance of two popular density-based clustering methods, DBSCAN and OPTICS, in accurately identifying individuals with three stages of cognitive impairment, including Alzheimer’s disease. We used static and dynamic functional connectivity features for clustering, which captures the strength and temporal variation of brain connectivity respectively. To assess the robustness of clustering to noise/outliers, we propose a novel method called recursive-clustering using additive-noise (R-CLAN). Results demonstrated that both clustering algorithms were effective, although OPTICS with dynamic connectivity features outperformed in terms of cluster purity (95.46%) and robustness to noise/outliers. This study demonstrates that density-based clustering can accurately and robustly identify diagnostic classes in an unsupervised way using brain connectivity.
ArticleNumber 19
Author Rangaprakash, D.
Odemuyiwa, Toluwanimi
Deshpande, Gopikrishna
Narayana Dutt, D.
Author_xml – sequence: 1
  givenname: D.
  surname: Rangaprakash
  fullname: Rangaprakash, D.
  organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Department of Radiology, Harvard Medical School, Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology
– sequence: 2
  givenname: Toluwanimi
  surname: Odemuyiwa
  fullname: Odemuyiwa, Toluwanimi
  organization: Division of Engineering Science, Faculty of Applied Science & Engineering, University of Toronto
– sequence: 3
  givenname: D.
  surname: Narayana Dutt
  fullname: Narayana Dutt, D.
  organization: Department of Electrical Communication Engineering, Indian Institute of Science
– sequence: 4
  givenname: Gopikrishna
  orcidid: 0000-0001-7471-5357
  surname: Deshpande
  fullname: Deshpande, Gopikrishna
  email: gopi@auburn.edu
  organization: AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, Department of Psychological Sciences, Auburn University, Alabama Advanced Imaging Consortium, University of Alabama Birmingham, Center for Health Ecology and Equity Research, Auburn University, Center for Neuroscience, Auburn University, School of Psychology, Capital Normal University, Key Laboratory for Learning and Cognition, Capital Normal University, Department of Psychiatry, National Institute of Mental Health and Neurosciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33242116$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1v1DAUjFARLaV_gAOyxIVLwF9xkgsSKl8rFSEhOFuO_bz1KrEXO2m1d344zmZZaA8VF_vpeWb0xvOeFic-eCiK5wS_JqQRbxLHNW5KTHGJMcknfVScUdI2JcdUnBxr0pwWFyltcEYJjFkrnhSnjFFOCRFnxa_34JMbd2WnEhik-ymNEJ1fo2BRGtXoNFLeILPzasi1nbweXfCqR1--rZAO3kNu3GQJZEGNU4SEQjcq57OcjWFAaeo2GZPQrRuvM2PtXSYAcsNWuTiAH58Vj63qE1wc7vPix8cP3y8_l1dfP60u312VmlcVLYloDdTMcms55bWAjra8xarWCixUwBnDHWW0AiGwamstSEcqZnj2yoQi7LxYLbomqI3cRjeouJNBOblvhLiWKmbHPcim0i0GXNW6BU5q1hhFiW45NcZYLaqsxRatyW_V7lb1_VGQYDlHJJeIZI5I7iOSNLPeLqzt1A1gdDYfVX9nlLsv3l3LdbiRtWgJxyILvDoIxPBzgjTKwSUNfa88hClJygUXuMJ8dvvyHnQTppiTm1E1Y02F9z5e_DvRcZQ_K5IBdAHoGFKKYP_PZ3OPpN28TGF25fqHqYePTdt5DyH-HfsB1m_dcfHR
CitedBy_id crossref_primary_10_1016_j_isci_2025_112104
crossref_primary_10_1093_schbul_sbae110
crossref_primary_10_12677_AAM_2022_112092
crossref_primary_10_1016_j_epsr_2022_108481
crossref_primary_10_1093_cercor_bhac293
crossref_primary_10_1016_j_bspc_2021_103293
crossref_primary_10_3390_brainsci14050456
Cites_doi 10.1016/j.neuroimage.2005.08.009
10.1016/B978-012372560-8/50002-4
10.1007/s10462-004-0751-8
10.1613/jair.606
10.1145/304181.304187
10.1371/journal.pone.0106735
10.1016/j.patcog.2011.04.006
10.1002/hbm.23841
10.1109/TBME.2013.2258344
10.1007/s00357-006-0002-6
10.1023/B:MACH.0000035475.85309.1b
10.1089/brain.2013.0221
10.1371/journal.pone.0076315
10.1109/TCBB.2014.2351824
10.1002/hbm.23551
10.1002/hbm.21333
10.1016/S0031-3203(01)00086-3
10.1016/j.neurobiolaging.2010.04.025
10.1002/hbm.23676
10.1109/TCYB.2014.2379621
10.1007/s11682-008-9028-1
10.1109/TMI.2008.923987
10.1016/j.cortex.2015.02.008
10.1155/IJBI/2006/12014
10.1109/TSE.2007.70732
10.1016/j.patcog.2005.01.025
10.1089/brain.2014.0300
10.1007/978-4-431-73242-6
10.1038/nrn2201
10.1016/j.neuroimage.2009.11.046
10.3389/fnins.2012.00178
10.1016/j.schres.2012.04.021
10.3389/fnhum.2013.00670
10.1016/j.neuroimage.2006.04.233
10.1186/2047-217X-3-28
10.1371/journal.pone.0088476
10.1007/s10115-006-0022-x
10.1109/TSP.2010.2098400
10.1023/A:1012801612483
10.1186/s40064-015-0817-x
10.1016/j.jneumeth.2013.02.015
10.1016/j.brat.2014.07.010
10.1016/j.neuroimage.2008.11.007
10.1214/09-STS282
10.1109/TAMD.2015.2434733
10.1016/j.tics.2006.07.005
10.1109/TNN.2005.845141
10.2478/v10177-010-0037-9
10.3174/ajnr.A3263
10.1007/978-3-642-15314-3_38
10.1145/73393.73419
10.1142/9789814611107_0008
10.1007/3-540-36175-8_8
10.5120/8282-1278
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Alzheimer’s Disease Neuroimaging Initiative
CorporateAuthor_xml – name: Alzheimer’s Disease Neuroimaging Initiative
DBID C6C
AAYXX
CITATION
NPM
3V.
7XB
8AL
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s40708-020-00120-2
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

CrossRef
PubMed

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Computer Science
EISSN 2198-4026
EndPage 13
ExternalDocumentID oai_doaj_org_article_85c90e057c9e41738da21c942dddfc65
10.1186/s40708-020-00120-2
PMC7691406
33242116
10_1186_s40708_020_00120_2
Genre Journal Article
GrantInformation_xml – fundername: National institutes of health, USA
  grantid: U01 AG024904
– fundername: ;
  grantid: U01 AG024904
GroupedDBID 0R~
3V.
4.4
8FE
8FG
AAFWJ
AAJSJ
AAKKN
ABEEZ
ABUWG
ACACY
ACGFS
ACULB
ADBBV
ADINQ
ADMLS
ADRAZ
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
ARAPS
ASPBG
AVWKF
AZQEC
BAPOH
BCNDV
BENPR
BGLVJ
BPHCQ
C24
C6C
CCPQU
DWQXO
EBLON
EBS
EJD
GNUQQ
GROUPED_DOAJ
HCIFZ
HYE
IAO
IPNFZ
ISR
ITC
K6V
K7-
KQ8
M0N
M48
M~E
OK1
P62
PGMZT
PIMPY
PQQKQ
PROAC
PSYQQ
RIG
RPM
RSV
SOJ
AASML
AAYXX
CITATION
ICD
PHGZM
PHGZT
PQGLB
PUEGO
NPM
7XB
8AL
8FK
JQ2
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c4552-169de73f4ff42476eb29490a7caefe5e4330b2325e660a97c61b153d442136a13
IEDL.DBID M48
ISSN 2198-4018
2198-4026
IngestDate Fri Oct 03 12:47:41 EDT 2025
Sun Oct 26 04:15:06 EDT 2025
Tue Sep 30 15:49:36 EDT 2025
Thu Sep 04 17:45:19 EDT 2025
Tue Oct 07 13:11:04 EDT 2025
Wed Feb 19 02:30:23 EST 2025
Wed Oct 01 03:17:22 EDT 2025
Thu Apr 24 23:09:26 EDT 2025
Fri Feb 21 02:34:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Brain networks and dynamic connectivity
DBSCAN
Functional MRI
OPTICS
Unsupervised learning and clustering
Cognitive impairment and alzheimer’s disease
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4552-169de73f4ff42476eb29490a7caefe5e4330b2325e660a97c61b153d442136a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7471-5357
OpenAccessLink https://doaj.org/article/85c90e057c9e41738da21c942dddfc65
PMID 33242116
PQID 2473385065
PQPubID 2046126
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_85c90e057c9e41738da21c942dddfc65
unpaywall_primary_10_1186_s40708_020_00120_2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7691406
proquest_miscellaneous_2464605041
proquest_journals_2473385065
pubmed_primary_33242116
crossref_primary_10_1186_s40708_020_00120_2
crossref_citationtrail_10_1186_s40708_020_00120_2
springer_journals_10_1186_s40708_020_00120_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201126
PublicationDateYYYYMMDD 2020-11-26
PublicationDate_xml – month: 11
  year: 2020
  text: 20201126
  day: 26
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Brain informatics
PublicationTitleAbbrev Brain Inf
PublicationTitleAlternate Brain Inform
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References Brodley, Friedl (CR56) 1999; 11
Deshpande, Wang, Rangaprakash, Wilamowski (CR8) 2015; 45
Deshpande, Libero, Sreenivasan, Deshpande, Kana (CR7) 2013; 7
Kettenring (CR29) 2006; 23
CR37
Jiang, Zhang, Zhu (CR62) 2014; 4
Plant, Teipel, Oswald, Böhm, Meindl, Mourao-Miranda, Bokde, Hampel, Ewers (CR23) 2010; 50
Maqbool, Babri (CR31) 2007; 33
Liang, Li, Deshpande, Wang, Hu, Li (CR49) 2014; 9
Hutchison, Womelsdorf, Allen, Bandettini, Calhoun, Corbetta, Della Penna, Duyn, Glover, Gonzalez-Castillo, Handwerker, Keilholz, Kiviniemi, Leopold, de Pasquale, Sporns, Walter, Chang (CR42) 2013; 80
Rangaprakash, Deshpande, Daniel, Goodman, Robinson, Salibi, Katz, Denney, Dretsch (CR55) 2017; 38
Wang, Li (CR15) 2013; 8
Jin, Jia, Lanka, Rangaprakash, Li, Liu, Hu, Deshpande (CR47) 2017; 38
Jiang, Navab, Pluim, Viergever, Janoos, Machiraju, Sammet, Knopp, Mórocz (CR25) 2010
Warren Liao (CR20) 2005; 38
Jia, Hu, Deshpande (CR46) 2014; 4
Fox, Greicius (CR44) 2010; 4
Wink, Roerdink (CR59) 2006; 2006
Garg, Prasad, Coyle (CR41) 2013; 215
Libero, DeRamus, Lahti, Deshpande, Kana (CR9) 2015; 66
Craddock, James, Holtzheimer, Hu, Mayberg (CR52) 2012; 33
Onozuka, Yen, Chen, Tyler (CR40) 2008
Sato, Rondina, Mourão-Miranda (CR26) 2012; 6
Xu, Wunsch (CR36) 2005; 16
Fox, Raichle (CR45) 2007; 8
Venkataraman, Whitford, Westin, Golland, Kubicki (CR12) 2012; 139
Sakai, Tamura (CR33) 2015; 4
Hulse, Khoshgoftaar, Huang (CR57) 2007; 11
Heller, Stanley, Yekutieli, Rubin, Benjamini (CR16) 2006; 33
CR18
CR17
Michel, Gramfort, Varoquaux, Eger, Keribin, Thirion (CR13) 2012; 45
Katwal, Gore, Marois, Rogers (CR19) 2013; 60
Halkidi, Batistakis, Vazirgiannis (CR63) 2001; 17
Raczynski, Wozniak, Rubel, Zaremba (CR30) 2010; 56
CR10
CR54
Norman, Polyn, Detre, Haxby (CR4) 2006; 10
Noh, Solo (CR60) 2011; 59
Rangaprakash, Dretsch, Venkataraman, Katz, Denney, Deshpande (CR48) 2018; 39
Clark, Niehaus, Duff, Di Simplicio, Clifford, Smith, Mackay, Woolrich, Holmes (CR3) 2014; 62
Demirci, Clark, Magnotta, Andreasen, Lauriello, Kiehl, Pearlson, Calhoun (CR5) 2008; 2
Tench, Tanasescu, Auer, Cottam, Constantinescu (CR53) 2014; 9
Mitchell, Hutchinson, Niculescu, Pereira, Wang, Just, Newman (CR2) 2004; 57
Davatzikos, Ruparel, Fan, Shen, Acharyya, Loughead, Gur, Langleben (CR6) 2005; 28
Pereira, Mitchell, Botvinick (CR27) 2009; 45
CR28
Varoquaux, Thirion (CR11) 2014; 3
Xu, Wunsch (CR35) 2009
Wei, Huafu, Qin, Xu (CR14) 2008; 27
CR24
CR22
Yan, Zang (CR51) 2010; 4
Wang, Chattaraman, Kim, Deshpande (CR1) 2015; 7
CR21
Nettiksimmons, Harvey, Brewer, Carmichael, DeCarli, Jack, Petersen, Shaw, Trojanowski, Weiner, Beckett (CR64) 2010; 31
Friston, Ashburner, Kiebel, Nichols, Penny (CR50) 2007
Ankerst, Breunig, Kriegel, Sander (CR38) 1999; 28
CR61
Ashtawy, Mahapatra (CR34) 2015; 12
Lee, Smyser, Shimony (CR43) 2013; 34
Zhu, Wu (CR58) 2004; 22
Lindquist (CR39) 2008; 23
Antani, Kasturi, Jain (CR32) 2002; 35
R Xu (120_CR36) 2005; 16
120_CR10
JR Kettenring (120_CR29) 2006; 23
MD Fox (120_CR44) 2010; 4
120_CR54
MD Fox (120_CR45) 2007; 8
IA Clark (120_CR3) 2014; 62
C Yan (120_CR51) 2010; 4
M Onozuka (120_CR40) 2008
M Halkidi (120_CR63) 2001; 17
S Antani (120_CR32) 2002; 35
T Warren Liao (120_CR20) 2005; 38
D Rangaprakash (120_CR55) 2017; 38
O Maqbool (120_CR31) 2007; 33
T Sakai (120_CR33) 2015; 4
HM Ashtawy (120_CR34) 2015; 12
C Davatzikos (120_CR6) 2005; 28
G Deshpande (120_CR8) 2015; 45
L Raczynski (120_CR30) 2010; 56
120_CR21
C Jin (120_CR47) 2017; 38
120_CR22
R Heller (120_CR16) 2006; 33
Y Wang (120_CR1) 2015; 7
JR Sato (120_CR26) 2012; 6
120_CR61
A Venkataraman (120_CR12) 2012; 139
Y Wang (120_CR15) 2013; 8
120_CR17
M Ankerst (120_CR38) 1999; 28
O Demirci (120_CR5) 2008; 2
120_CR18
D Rangaprakash (120_CR48) 2018; 39
KJ Friston (120_CR50) 2007
LE Libero (120_CR9) 2015; 66
SB Katwal (120_CR19) 2013; 60
AM Wink (120_CR59) 2006; 2006
G Deshpande (120_CR7) 2013; 7
G Garg (120_CR41) 2013; 215
C Plant (120_CR23) 2010; 50
CR Tench (120_CR53) 2014; 9
T Jiang (120_CR25) 2010
F Pereira (120_CR27) 2009; 45
120_CR28
R Xu (120_CR35) 2009
MH Lee (120_CR43) 2013; 34
KA Norman (120_CR4) 2006; 10
120_CR24
RC Craddock (120_CR52) 2012; 33
JD Hulse (120_CR57) 2007; 11
G Varoquaux (120_CR11) 2014; 3
L Wei (120_CR14) 2008; 27
J Nettiksimmons (120_CR64) 2010; 31
X Jiang (120_CR62) 2014; 4
V Michel (120_CR13) 2012; 45
H Jia (120_CR46) 2014; 4
CE Brodley (120_CR56) 1999; 11
J Noh (120_CR60) 2011; 59
TM Mitchell (120_CR2) 2004; 57
P Liang (120_CR49) 2014; 9
120_CR37
MA Lindquist (120_CR39) 2008; 23
RM Hutchison (120_CR42) 2013; 80
X Zhu (120_CR58) 2004; 22
References_xml – volume: 28
  start-page: 663
  issue: 3
  year: 2005
  end-page: 668
  ident: CR6
  article-title: Classifying spatial patterns of brain activity with machine learning methods: application to lie detection
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.08.009
– ident: CR22
– year: 2007
  ident: CR50
  publication-title: Statistical parametric mapping: the analysis of functional brain images
  doi: 10.1016/B978-012372560-8/50002-4
– volume: 22
  start-page: 177
  issue: 3
  year: 2004
  end-page: 210
  ident: CR58
  article-title: Class noise vs. attribute noise: a quantitative study of their impacts
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-004-0751-8
– volume: 11
  start-page: 131
  year: 1999
  end-page: 167
  ident: CR56
  article-title: Identifying mislabeled training data
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.606
– volume: 28
  start-page: 49
  issue: 2
  year: 1999
  end-page: 60
  ident: CR38
  article-title: OPTICS: ordering points to identify the clustering structure
  publication-title: SIGMOD Rec
  doi: 10.1145/304181.304187
– volume: 9
  start-page: e106735
  issue: 9
  year: 2014
  ident: CR53
  article-title: Coordinate based meta-analysis of functional neuroimaging data using activation likelihood estimation; full width half max and group comparisons
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0106735
– volume: 45
  start-page: 2041
  issue: 6
  year: 2012
  end-page: 2049
  ident: CR13
  article-title: A supervised clustering approach for fMRI-based inference of brain states
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2011.04.006
– ident: CR54
– ident: CR61
– volume: 39
  start-page: 264
  issue: 1
  year: 2018
  end-page: 287
  ident: CR48
  article-title: Identifying disease foci from static and dynamic effective connectivity networks: illustration in soldiers with trauma
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.23841
– volume: 60
  start-page: 2472
  issue: 9
  year: 2013
  end-page: 2483
  ident: CR19
  article-title: Unsupervised spatiotemporal analysis of FMRI data using graph-based visualizations of self-organizing maps
  publication-title: IEEE Transact Bio-Med Engin
  doi: 10.1109/TBME.2013.2258344
– volume: 23
  start-page: 3
  issue: 1
  year: 2006
  end-page: 30
  ident: CR29
  article-title: The Practice of Cluster Analysis
  publication-title: J Classif
  doi: 10.1007/s00357-006-0002-6
– ident: CR21
– volume: 57
  start-page: 145
  issue: 1–2
  year: 2004
  end-page: 175
  ident: CR2
  article-title: Learning to Decode Cognitive States from Brain Images
  publication-title: Mach Learn
  doi: 10.1023/B:MACH.0000035475.85309.1b
– volume: 4
  start-page: 575
  issue: 8
  year: 2014
  end-page: 586
  ident: CR62
  article-title: Intrinsic functional component analysis via sparse representation on Alzheimer's disease neuroimaging initiative database
  publication-title: Brain Connect
  doi: 10.1089/brain.2013.0221
– volume: 8
  start-page: e76315
  issue: 10
  year: 2013
  ident: CR15
  article-title: Analysis of Whole-Brain Resting-State fMRI Data Using Hierarchical Clustering Approach
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0076315
– volume: 12
  start-page: 335
  issue: 2
  year: 2015
  end-page: 347
  ident: CR34
  article-title: A comparative assessment of predictive accuracies of conventional and machine learning scoring functions for protein-ligand binding affinity prediction
  publication-title: IEEE/ACM Trans Comput Biol Bioinf
  doi: 10.1109/TCBB.2014.2351824
– volume: 38
  start-page: 2843
  issue: 6
  year: 2017
  end-page: 2864
  ident: CR55
  article-title: Compromised hippocampus-striatum pathway as a potential imaging biomarker of mild-traumatic brain injury and posttraumatic stress disorder
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.23551
– volume: 33
  start-page: 1914
  year: 2012
  end-page: 1928
  ident: CR52
  article-title: A whole brain fMRI atlas generated via spatially constrained spectral clustering
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.21333
– volume: 35
  start-page: 945
  issue: 4
  year: 2002
  end-page: 965
  ident: CR32
  article-title: A survey on the use of pattern recognition methods for abstraction, indexing and retrieval of images and video
  publication-title: Pattern Recogn
  doi: 10.1016/S0031-3203(01)00086-3
– volume: 31
  start-page: 1419
  issue: 8
  year: 2010
  end-page: 1428
  ident: CR64
  article-title: Subtypes based on cerebrospinal fluid and magnetic resonance imaging markers in normal elderly predict cognitive decline
  publication-title: Neurobio Aging.
  doi: 10.1016/j.neurobiolaging.2010.04.025
– volume: 38
  start-page: 4479
  issue: 9
  year: 2017
  end-page: 4496
  ident: CR47
  article-title: Dynamic brain connectivity is a better predictor of PTSD than static connectivity
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.23676
– volume: 45
  start-page: 2668
  issue: 12
  year: 2015
  end-page: 2679
  ident: CR8
  article-title: Fully connected cascade artificial neural network architecture for attention deficit hyperactivity disorder classification from functional magnetic resonance imaging data
  publication-title: IEEE Transact Cybernet
  doi: 10.1109/TCYB.2014.2379621
– volume: 2
  start-page: 147
  issue: 3
  year: 2008
  end-page: 226
  ident: CR5
  article-title: A review of challenges in the use of fMRI for disease classification / characterization and a projection pursuit application from Multi-site fMRI schizophrenia study
  publication-title: Brain Imag Behav
  doi: 10.1007/s11682-008-9028-1
– volume: 27
  start-page: 1472
  issue: 10
  year: 2008
  end-page: 1483
  ident: CR14
  article-title: Analysis of fMRI data using improved self-organizing mapping and spatio-temporal metric hierarchical clustering
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2008.923987
– volume: 66
  start-page: 46
  year: 2015
  end-page: 59
  ident: CR9
  article-title: Multimodal neuroimaging based classification of Autism Spectrum Disorder using anatomical, neurochemical and white matter correlates
  publication-title: Cortex
  doi: 10.1016/j.cortex.2015.02.008
– ident: CR18
– volume: 2006
  start-page: 12014
  year: 2006
  ident: CR59
  article-title: BOLD noise assumptions in fMRI
  publication-title: Int J Biomed Imag
  doi: 10.1155/IJBI/2006/12014
– start-page: 201
  year: 2010
  end-page: 208
  ident: CR25
  publication-title: Unsupervised learning of brain states from fMRI data, medical image computing and computer-assisted intervention–MICCAI 2010 Lecture Notes in Computer Science
– volume: 33
  start-page: 759
  issue: 11
  year: 2007
  end-page: 780
  ident: CR31
  article-title: Hierarchical Clustering for Software Architecture Recovery
  publication-title: IEEE Trans Software Eng
  doi: 10.1109/TSE.2007.70732
– start-page: 70
  year: 2009
  end-page: 71
  ident: CR35
  publication-title: Partitional Clustering, Clustering, IEEE Press Series on Computational Intelligence
– ident: CR37
– volume: 38
  start-page: 1857
  issue: 11
  year: 2005
  end-page: 1874
  ident: CR20
  article-title: Clustering of time series data-a survey
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2005.01.025
– volume: 4
  start-page: 741
  issue: 9
  year: 2014
  end-page: 759
  ident: CR46
  article-title: Behavioral relevance of the dynamics of the functional brain connectome
  publication-title: Brain Connect
  doi: 10.1089/brain.2014.0300
– start-page: 63
  year: 2008
  end-page: 76
  ident: CR40
  publication-title: Spectral analysis of fMRI signal and noise, novel trends in brain science
  doi: 10.1007/978-4-431-73242-6
– ident: CR10
– volume: 8
  start-page: 700
  issue: 9
  year: 2007
  end-page: 711
  ident: CR45
  article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn2201
– volume: 50
  start-page: 162
  issue: 1
  year: 2010
  end-page: 174
  ident: CR23
  article-title: Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer's disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.11.046
– volume: 6
  start-page: 178
  year: 2012
  ident: CR26
  article-title: Measuring abnormal brains: building normative rules in neuroimaging using one-class support vector machines
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2012.00178
– volume: 139
  start-page: 7
  issue: 1–3
  year: 2012
  end-page: 12
  ident: CR12
  article-title: Whole brain resting state functional connectivity abnormalities in schizophrenia
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2012.04.021
– volume: 7
  start-page: 670
  year: 2013
  ident: CR7
  article-title: Identification of neural connectivity signatures of autism using machine learning
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2013.00670
– volume: 33
  start-page: 599
  issue: 2
  year: 2006
  end-page: 608
  ident: CR16
  article-title: Cluster-based analysis of FMRI data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.04.233
– volume: 3
  start-page: 28
  year: 2014
  ident: CR11
  article-title: How machine learning is shaping cognitive neuroimaging
  publication-title: Giga Sci
  doi: 10.1186/2047-217X-3-28
– volume: 9
  start-page: e88476
  issue: 3
  year: 2014
  ident: CR49
  article-title: Altered causal connectivity of resting state brain networks in amnesic MCI
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0088476
– volume: 11
  start-page: 171
  issue: 2
  year: 2007
  end-page: 190
  ident: CR57
  article-title: The pairwise attribute noise detection algorithm
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-006-0022-x
– volume: 59
  start-page: 1322
  issue: 3
  year: 2011
  end-page: 1328
  ident: CR60
  article-title: Rician distributed FMRI: asymptotic power analysis and cramér-rao lower bounds
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2010.2098400
– volume: 17
  start-page: 107
  issue: 2–3
  year: 2001
  end-page: 145
  ident: CR63
  article-title: On clustering validation techniques
  publication-title: J Intell Informat Syst
  doi: 10.1023/A:1012801612483
– volume: 4
  start-page: 162
  year: 2015
  ident: CR33
  article-title: Real-time analysis application for identifying bursty local areas related to emergency topics
  publication-title: Springer Plus
  doi: 10.1186/s40064-015-0817-x
– volume: 215
  start-page: 71
  issue: 1
  year: 2013
  end-page: 77
  ident: CR41
  article-title: Gaussian Mixture Model-based noise reduction in resting state fMRI data
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2013.02.015
– ident: CR17
– volume: 62
  start-page: 37
  year: 2014
  end-page: 46
  ident: CR3
  article-title: First steps in using machine learning on fMRI data to predict intrusive memories of traumatic film footage
  publication-title: Behav Res Ther
  doi: 10.1016/j.brat.2014.07.010
– volume: 45
  start-page: S199
  issue: 1
  year: 2009
  end-page: S209
  ident: CR27
  article-title: Machine learning classifiers and fMRI: a tutorial overview
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.11.007
– volume: 23
  start-page: 439
  issue: 4
  year: 2008
  end-page: 464
  ident: CR39
  article-title: The statistical analysis of fMRI data
  publication-title: Stat Sci
  doi: 10.1214/09-STS282
– volume: 7
  start-page: 248
  issue: 3
  year: 2015
  end-page: 255
  ident: CR1
  article-title: Predicting purchase decisions based on spatio-temporal functional MRI features using machine learning
  publication-title: IEEE Transact Autonom Mental Devel
  doi: 10.1109/TAMD.2015.2434733
– volume: 10
  start-page: 424
  issue: 9
  year: 2006
  end-page: 430
  ident: CR4
  article-title: Beyond mind-reading: multi-voxel pattern analysis of fMRI data
  publication-title: Trends Cognit Sci
  doi: 10.1016/j.tics.2006.07.005
– ident: CR28
– volume: 16
  start-page: 645
  issue: 3
  year: 2005
  end-page: 678
  ident: CR36
  article-title: Survey of clustering algorithms
  publication-title: IEEE Transact Neural Netw.
  doi: 10.1109/TNN.2005.845141
– volume: 80
  start-page: 360
  year: 2013
  end-page: 378
  ident: CR42
  article-title: Dynamic functional connectivity: promise, issues, and interpretations
  publication-title: Neuro Image
– ident: CR24
– volume: 4
  start-page: 19
  year: 2010
  ident: CR44
  article-title: Clinical applications of resting state functional connectivity
  publication-title: Front Syst Neurosci
– volume: 56
  start-page: 281
  issue: 3
  year: 2010
  ident: CR30
  article-title: Application of density based clustering to microarray data analysis
  publication-title: Int J Electron Telecommunicat
  doi: 10.2478/v10177-010-0037-9
– volume: 34
  start-page: 1866
  issue: 10
  year: 2013
  end-page: 1872
  ident: CR43
  article-title: Resting-State fMRI: A review of methods and clinical applications
  publication-title: Am J Neuroradiol
  doi: 10.3174/ajnr.A3263
– volume: 4
  start-page: 13
  year: 2010
  ident: CR51
  article-title: DPARSF: a MATLAB toolbox for "pipeline" data analysis of resting-state fMRI
  publication-title: Front Syst Neurosci
– volume: 33
  start-page: 599
  issue: 2
  year: 2006
  ident: 120_CR16
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.04.233
– volume: 12
  start-page: 335
  issue: 2
  year: 2015
  ident: 120_CR34
  publication-title: IEEE/ACM Trans Comput Biol Bioinf
  doi: 10.1109/TCBB.2014.2351824
– volume: 28
  start-page: 49
  issue: 2
  year: 1999
  ident: 120_CR38
  publication-title: SIGMOD Rec
  doi: 10.1145/304181.304187
– volume: 23
  start-page: 439
  issue: 4
  year: 2008
  ident: 120_CR39
  publication-title: Stat Sci
  doi: 10.1214/09-STS282
– volume: 62
  start-page: 37
  year: 2014
  ident: 120_CR3
  publication-title: Behav Res Ther
  doi: 10.1016/j.brat.2014.07.010
– volume: 17
  start-page: 107
  issue: 2–3
  year: 2001
  ident: 120_CR63
  publication-title: J Intell Informat Syst
  doi: 10.1023/A:1012801612483
– volume: 31
  start-page: 1419
  issue: 8
  year: 2010
  ident: 120_CR64
  publication-title: Neurobio Aging.
  doi: 10.1016/j.neurobiolaging.2010.04.025
– volume: 4
  start-page: 19
  year: 2010
  ident: 120_CR44
  publication-title: Front Syst Neurosci
– volume: 33
  start-page: 1914
  year: 2012
  ident: 120_CR52
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.21333
– volume-title: Statistical parametric mapping: the analysis of functional brain images
  year: 2007
  ident: 120_CR50
  doi: 10.1016/B978-012372560-8/50002-4
– ident: 120_CR17
  doi: 10.1007/978-3-642-15314-3_38
– ident: 120_CR22
– volume: 66
  start-page: 46
  year: 2015
  ident: 120_CR9
  publication-title: Cortex
  doi: 10.1016/j.cortex.2015.02.008
– volume: 45
  start-page: 2041
  issue: 6
  year: 2012
  ident: 120_CR13
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2011.04.006
– ident: 120_CR28
  doi: 10.1145/73393.73419
– start-page: 70
  volume-title: Partitional Clustering, Clustering, IEEE Press Series on Computational Intelligence
  year: 2009
  ident: 120_CR35
– volume: 2
  start-page: 147
  issue: 3
  year: 2008
  ident: 120_CR5
  publication-title: Brain Imag Behav
  doi: 10.1007/s11682-008-9028-1
– volume: 11
  start-page: 131
  year: 1999
  ident: 120_CR56
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.606
– volume: 50
  start-page: 162
  issue: 1
  year: 2010
  ident: 120_CR23
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.11.046
– volume: 59
  start-page: 1322
  issue: 3
  year: 2011
  ident: 120_CR60
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2010.2098400
– ident: 120_CR24
  doi: 10.1142/9789814611107_0008
– volume: 23
  start-page: 3
  issue: 1
  year: 2006
  ident: 120_CR29
  publication-title: J Classif
  doi: 10.1007/s00357-006-0002-6
– volume: 39
  start-page: 264
  issue: 1
  year: 2018
  ident: 120_CR48
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.23841
– volume: 16
  start-page: 645
  issue: 3
  year: 2005
  ident: 120_CR36
  publication-title: IEEE Transact Neural Netw.
  doi: 10.1109/TNN.2005.845141
– volume: 2006
  start-page: 12014
  year: 2006
  ident: 120_CR59
  publication-title: Int J Biomed Imag
  doi: 10.1155/IJBI/2006/12014
– volume: 57
  start-page: 145
  issue: 1–2
  year: 2004
  ident: 120_CR2
  publication-title: Mach Learn
  doi: 10.1023/B:MACH.0000035475.85309.1b
– volume: 34
  start-page: 1866
  issue: 10
  year: 2013
  ident: 120_CR43
  publication-title: Am J Neuroradiol
  doi: 10.3174/ajnr.A3263
– volume: 11
  start-page: 171
  issue: 2
  year: 2007
  ident: 120_CR57
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-006-0022-x
– volume: 38
  start-page: 1857
  issue: 11
  year: 2005
  ident: 120_CR20
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2005.01.025
– ident: 120_CR21
– volume: 4
  start-page: 162
  year: 2015
  ident: 120_CR33
  publication-title: Springer Plus
  doi: 10.1186/s40064-015-0817-x
– start-page: 201
  volume-title: Unsupervised learning of brain states from fMRI data, medical image computing and computer-assisted intervention–MICCAI 2010 Lecture Notes in Computer Science
  year: 2010
  ident: 120_CR25
– ident: 120_CR61
  doi: 10.1007/3-540-36175-8_8
– ident: 120_CR10
– volume: 3
  start-page: 28
  year: 2014
  ident: 120_CR11
  publication-title: Giga Sci
  doi: 10.1186/2047-217X-3-28
– volume: 33
  start-page: 759
  issue: 11
  year: 2007
  ident: 120_CR31
  publication-title: IEEE Trans Software Eng
  doi: 10.1109/TSE.2007.70732
– volume: 9
  start-page: e106735
  issue: 9
  year: 2014
  ident: 120_CR53
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0106735
– ident: 120_CR37
– volume: 4
  start-page: 575
  issue: 8
  year: 2014
  ident: 120_CR62
  publication-title: Brain Connect
  doi: 10.1089/brain.2013.0221
– volume: 10
  start-page: 424
  issue: 9
  year: 2006
  ident: 120_CR4
  publication-title: Trends Cognit Sci
  doi: 10.1016/j.tics.2006.07.005
– volume: 38
  start-page: 4479
  issue: 9
  year: 2017
  ident: 120_CR47
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.23676
– volume: 139
  start-page: 7
  issue: 1–3
  year: 2012
  ident: 120_CR12
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2012.04.021
– ident: 120_CR18
  doi: 10.5120/8282-1278
– volume: 45
  start-page: 2668
  issue: 12
  year: 2015
  ident: 120_CR8
  publication-title: IEEE Transact Cybernet
  doi: 10.1109/TCYB.2014.2379621
– volume: 45
  start-page: S199
  issue: 1
  year: 2009
  ident: 120_CR27
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.11.007
– volume: 8
  start-page: e76315
  issue: 10
  year: 2013
  ident: 120_CR15
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0076315
– volume: 22
  start-page: 177
  issue: 3
  year: 2004
  ident: 120_CR58
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-004-0751-8
– volume: 4
  start-page: 741
  issue: 9
  year: 2014
  ident: 120_CR46
  publication-title: Brain Connect
  doi: 10.1089/brain.2014.0300
– volume: 35
  start-page: 945
  issue: 4
  year: 2002
  ident: 120_CR32
  publication-title: Pattern Recogn
  doi: 10.1016/S0031-3203(01)00086-3
– volume: 60
  start-page: 2472
  issue: 9
  year: 2013
  ident: 120_CR19
  publication-title: IEEE Transact Bio-Med Engin
  doi: 10.1109/TBME.2013.2258344
– volume: 27
  start-page: 1472
  issue: 10
  year: 2008
  ident: 120_CR14
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2008.923987
– volume: 7
  start-page: 248
  issue: 3
  year: 2015
  ident: 120_CR1
  publication-title: IEEE Transact Autonom Mental Devel
  doi: 10.1109/TAMD.2015.2434733
– volume: 38
  start-page: 2843
  issue: 6
  year: 2017
  ident: 120_CR55
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.23551
– volume: 4
  start-page: 13
  year: 2010
  ident: 120_CR51
  publication-title: Front Syst Neurosci
– ident: 120_CR54
– volume: 215
  start-page: 71
  issue: 1
  year: 2013
  ident: 120_CR41
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2013.02.015
– start-page: 63
  volume-title: Spectral analysis of fMRI signal and noise, novel trends in brain science
  year: 2008
  ident: 120_CR40
  doi: 10.1007/978-4-431-73242-6
– volume: 9
  start-page: e88476
  issue: 3
  year: 2014
  ident: 120_CR49
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0088476
– volume: 7
  start-page: 670
  year: 2013
  ident: 120_CR7
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2013.00670
– volume: 28
  start-page: 663
  issue: 3
  year: 2005
  ident: 120_CR6
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.08.009
– volume: 56
  start-page: 281
  issue: 3
  year: 2010
  ident: 120_CR30
  publication-title: Int J Electron Telecommunicat
  doi: 10.2478/v10177-010-0037-9
– volume: 8
  start-page: 700
  issue: 9
  year: 2007
  ident: 120_CR45
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn2201
– volume: 6
  start-page: 178
  year: 2012
  ident: 120_CR26
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2012.00178
– volume: 80
  start-page: 360
  year: 2013
  ident: 120_CR42
  publication-title: Neuro Image
SSID ssj0001600396
Score 2.2040534
Snippet Various machine-learning classification techniques have been employed previously to classify brain states in healthy and disease populations using functional...
Abstract Various machine-learning classification techniques have been employed previously to classify brain states in healthy and disease populations using...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 19
SubjectTerms Algorithms
Artificial Intelligence
Brain
Brain networks and dynamic connectivity
Cluster analysis
Clustering
Cognitive ability
Cognitive impairment and alzheimer’s disease
Cognitive Psychology
Computation by Abstract Devices
Computer Science
Data analysis
DBSCAN
Density
Diagnostic systems
Functional MRI
Health Informatics
Impairment
Machine learning
Magnetic resonance imaging
Medical imaging
Neurosciences
Noise
OPTICS
Outliers (statistics)
Prediction models
Robustness
Unsupervised learning and clustering
Vector quantization
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8ABAeWxUJCREBcaNXb8iI_lURWkckBU6s1y_BArLdmq2QjtnR_OjJMNuwIVDlxyWDuJd2acmW88D0JeBi9ZLGUqXJmLajehaMCwh0tVJdAHxmeH29kndXouPl7Ii61WXxgTNpQHHgh3VEtvSnia9iYKpqs6OM68ETyEkLzK1UvL2myBqexdUZh0mjvLAaoGkMTqTcZMrY46QDF46s8xqZrBle9opVy8_08W5--Bk9Pp6W1ys28v3fq7Wyy2FNTJXXJntCzp8fCP7pEbsb1P9o9bQNXf1vQVzbGe2Ym-T368w7j11bpAJRaoX_RYLwFeQZeJYo7R3FPXBhqGfvUUtd_gNKRnnz9Qj9Exfug7QVPMtUE7umzQzQCPw5QV2vUNung6ip5eOkUpUUzLnF-hT_IBOT95_-XtaTH2Yyi8kJIXTJkQdZVESoILrQCUG2FKp72LKcooqqpswEKTUanSGe0Va-CDGoTgrFKOVQ_JXrts42NCAZeGAPOElk4A5GlUNB4sCZci91LqGWEbflg_FivHnhkLm0FLrezAQws8tJmHls_I6-mey6FUx7Wz3yCbp5lYZjv_AMJnR-GzfxO-GTnYCIkd935ngTSA-2WJwy-mYdi1eBTj2rjscY7CA-lSsBl5NMjUtJIKbVzG1IzoHWnbWeruSDv_miuDa2UAMMOdhxu5_LWs60hxOMnuP1Duyf-g3FNyi-P-Y6zg6oDsra76-AzMu1XzPO_kn5KxSDs
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wB7QMD4CAxkJMQLixY7tpM8ILTBpoG0Ck1M2lvk2M6oVJKubYT6zh_OnfNRKlDFSx4ap3VzZ9_9zne_I-SNNZK5SJahjjypdmHDAhx7uMRxCfYgMz7gdjFW51fiy7W83iHjvhYG0yr7PdFv1LY2GCM_4iIBNCXBYn6Y3YbYNQpPV_sWGrprrWDfe4qxO2SXIzPWiOyenI6_Xq6jLgqLUX3HOUDbAJ5Y2lfSpOpoAegGswE4FlszuPINa-VJ_f_lif6dUDmcqu6Ru00106ufejr9w3CdPSD3O4-THrcq8pDsuOoR2T-uAG3_WNG31OeA-uD6Pvn1CfPZl6sQjZulZtogjwL8BK1LirVHE0N1Zalt-9hTtIptMJFeXH6mBrNmTNuPgpbOc4YuaF1g-AG-DktZ6KIpMPSzoBgBpkP2EsVyzckcY5WPydXZ6beP52HXpyE0QkoeMpVZl8SlKEsBYlIA1jORRTox2pVOOhHHUQGem3RKRTpLjGIFbLRWCM5ipVn8hIyqunLPCAW8ai2ME4nUAqBQoVxmwMPQpeNGyiQgrJdHbjoSc-ylMc09mElV3sowBxnmXoY5D8i74ZlZS-GxdfQJinkYifTb_oN6fpN3qzlPpckiUPHEZE6wJE6t5sxkgltrS6NkQA56Jcm7PWGRrzU4IK-H27Ca8YhGV65ucIzCg-pIsIA8bXVqmEmMvi9jKiDJhrZtTHXzTjX57hnDE5UBkIYnD3u9XE9r26s4HHT3P97c8-1_-gW5x3FlMRZydUBGy3njXoJDtyxedav0NxmRRhI
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LbtQw0ELlABx4tDwCBRkJcaER8Ts5lkJVkMoBUam3yLGdstKSVJuN0N75cGacB6yoKrjkEDuO5ZnxvGcIeeWdYiFTdWqzWFS78mkFgj08hKiBHxQuGtxOP-uTM_npXJ2PSWHdFO0-uSTjTR3JOtdvO1A90FXPMROawRMu3psgf3Bs2HA05jhEy4rGhNPYVQ40alCQWD5ly1y5zBZHioX7r5I2_w6anD2nd8itvrm0mx92ufyDOR3fJ3dHqZIeDmjwgNwIzS7ZO2xAo_6-oa9pjPOMBvRdcm9q5EBHut4jP99jGPt6kyJP89QteyyfAH-lbU0x5WjhqG089UP7eorMcLAh0tMvH6nDYBk3tKGgdYilQjvaVmh1gOUwg4V2fYUWn46i4ZfOQUsUszQXKzRRPiRnxx--Hp2kY3uG1EmleMp04YMRtaxryaXRoKMXssiscTbUQQUpRFaBwKaC1pktjNOsgvvVS8mZ0JaJR2SnaZvwhFBQU72HedIoK0EDqnQoHAgWtg7cKWUSwiYQlW6sXY4tNJZl1GFyXQ5gLQGsZQRryRPyZv7mcqjcce3sdwj5eSZW3Y4v2tVFORJxmStXZIDZxhVBMiNybzlzheTe-9pplZD9CW_K8SroSjgaIbAuIAy_nIeBiNEzY5vQ9jhHo386kywhjwc0m3ciUORlTCfEbCHg1la3R5rFt1go3OgC9Gf48mBC1d_buu4oDmZ0_oeTe_p_qz8jtzkSH2Mp1_tkZ73qw3OQ69bVi0jGvwDQrUJr
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3bbtMw1Jq6B-CB27gUBjIS4oWlix3baR7LZRpIqxCi0niKHNsZ1bqkahqh8syHc45zgcI0gcRLFNUniXt0fO4XQp5bI5kLZR7o0DfVzmyQgWIPlyjKQR4kxjvcTqbqeCben8rTHTLtamGyZjBCq7CZatSFJ3GYlOfc65U254dLmzcHfqwOKzBKMIjPsUaawRVY8q6SoJsPyO5s-mHyGSfMgXUNxpJ3-LX3XHVVNJe-ZEtS-Yb-l2mhfyZT9hHVG-RaXSz15qteLH4RWke3SNn93SZX5XxUr7OR-fZbJ8j_h4_b5Gar39JJQ5B3yI4r7pK9SQG2_cWGvqA-49S78vfI9zeYPb_eBChKLTWLGrs2wHdpmVOsdJobqgtL7abQF3CPMrhxXdKTj--owRwd00y_oLnzHUorWmbo7IDXYeEMreoMHU0VRX8z7XOlKBaHzlfoGb1HZkdvP70-DtqpEIERUvKAqcS6OMpFngsuYuUynogk1LHRLnfSiSgKM9ATpVMq1ElsFMuArVshOIuUZtF9MijKwj0kFKxjawFOxFILMLwy5RID-ozOHTdSxkPCOgpITdsyHSd3LFJvOo1V2qA6BVSnHtUpH5KX_TPLpmHIldCvkLB6SGz27X8oV2dpyzvSsTRJCAcqNokTLI7GVnNmEsGttblRckj2O7JMWw5UpYCaKMJ2hLD8rF8G3oEBIV24skYYhWHxULAhedBQcb-TCDVtxtSQxFv0vbXV7ZVi_sX3J49VAmY7PHnQEevPbV2FioP-tPwF5h79G_hjcp3jgWAs4GqfDNar2j0BdXKdPW15xA-MCmz_
  priority: 102
  providerName: Unpaywall
Title Density-based clustering of static and dynamic functional MRI connectivity features obtained from subjects with cognitive impairment
URI https://link.springer.com/article/10.1186/s40708-020-00120-2
https://www.ncbi.nlm.nih.gov/pubmed/33242116
https://www.proquest.com/docview/2473385065
https://www.proquest.com/docview/2464605041
https://pubmed.ncbi.nlm.nih.gov/PMC7691406
https://braininformatics.springeropen.com/track/pdf/10.1186/s40708-020-00120-2
https://doaj.org/article/85c90e057c9e41738da21c942dddfc65
UnpaywallVersion publishedVersion
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2198-4026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001600396
  issn: 2198-4026
  databaseCode: KQ8
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2198-4026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001600396
  issn: 2198-4026
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2198-4026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001600396
  issn: 2198-4026
  databaseCode: ADMLS
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2198-4026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001600396
  issn: 2198-4026
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2198-4026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001600396
  issn: 2198-4026
  databaseCode: RPM
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2198-4026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001600396
  issn: 2198-4026
  databaseCode: BENPR
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2198-4026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001600396
  issn: 2198-4026
  databaseCode: 8FG
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2198-4026
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0001600396
  issn: 2198-4026
  databaseCode: M48
  dateStart: 20140901
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 2198-4026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001600396
  issn: 2198-4026
  databaseCode: AAJSJ
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2198-4026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001600396
  issn: 2198-4026
  databaseCode: C24
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2198-4026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001600396
  issn: 2198-4026
  databaseCode: C6C
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf28QA8IGB8FEZlJLQXFhY7ttM8INSVlYHUapqoNJ4ix3agUkm7fgj6zh_OnfMBFdW0F0uNncS173L3O98HIa-tkcyFMg906JNqZzbIQLGHJopykAeJ8Qa3wVCdj8TnK3m1Q2p322oBF1uhHdaTGs0nb39dr98Dw7_zDN9RJwsAJXiIzzFGmkHLj2bXARaWwgPYqsrGLtkH4ZVgdYdBhQC8GUZhdKovQQfwG9AU69ShNVufvCG-fJb_barp_x6WzTHrPXJnVcz0-qeeTP6RZP0H5H6lgtJuSTMPyY4rHpGDbgHw-8eaHlHvFOqt7Qfk9wd0cF-uA5R2lprJChMrwCvoNKcYjDQ2VBeW2rKwPUUxWVoX6eDyEzXoRmPKAhU0dz6J6IJOM7RHwOMwtoUuVhnaghYUTcK0cWeiGL85nqPx8jEZ9c--9M6DqnBDYISUPGAqsS6OcpHngotYAXpPRBLq2GiXO-lEFIUZqHLSKRXqJDaKZfDltUJwFinNoidkr5gW7hmhAGCthXEilloANsqUSwyoHDp33EgZtwir9yM1VVZzLK4xST266ai03MMU9jD1e5jyFnnT3DMrc3rcOPoUt7kZifm4_YXp_FtasXfakSYJgeZjkzjB4qhjNWcmEdxamxslW-SwJpK0pvEUliaKMGMgdL9quoG98cxGF266wjEKT65DwVrkaUlTzUwiVIYZUy0Sb1DbxlQ3e4rxd59CPFYJIGu487imy7_TumkpjhvavcXKPb_Fv3pB7nJkL8YCrg7J3nK-ci9BzVtmbbLb6X9sk_3Ts-HFJfzqcYGt6rW94aTtGRn6R8OL7tc_a2ZS9Q
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfG9jB4QMD4KAwwEvDCotWO7TQPE9rYppWtFZo2aW_BsR2o1CWlaTX1nb-Lv407N0mpQBUve4mqxkmc3Pnufuf7IOStNZK5tswC3fZFtVMbpGDYwyEMM9AHsfEOt15fnVyKz1fyao38qnNhMKyyloleUNvCoI98l4sI0JQEjflx9CPArlG4u1q30NBVawW750uMVYkdp252AxCu3OseAr3fcX58dPHpJKi6DARGSMkDpmLrojATWSbgIQqgZizito6MdpmTTgDiT8HukE6pto4jo1gKYsIKwVmoNAvhvnfIhghFDOBv4-Co_-V84eVRmPzqO9wBugewxjp15k5H7ZaApjD6gGNyN4MjX9KOvonAvyzfvwM4m13ce2Rzmo_07EYPh38oyuMH5H5l4dL9OUs-JGsuf0S29nNA99cz-p76mFPvzN8iPw8xfn4yC1CZWmqGU6zbAI-gRUYx12lgqM4ttbNcX8Nv1MJz5yXtnXepwSgdM-9_QTPna5SWtEjR3QG3w9QZWk5TdDWVFD3OtImWopgeOhijb_QxubwVij0h63mRu2eEAj62FsaJSGoB0CtVLjZg0ejMcSNl1CKspkdiqqLp2LtjmHjw1FHJnIYJ0DDxNEx4i3xorhnNS4asHH2AZG5GYrlv_0cx_pZU0iPpSBO3YUlFJnaCRWHHas5MLLi1NjNKtsh2zSRJJYPKZLFiWuRNcxqkB24J6dwVUxyjcGO8LViLPJ3zVDOTEG1txlSLREvctjTV5TP54LuvUB6pGIA7XLlT8-ViWqs-xU7Du__x5Z6vfunXZPPkoneWnHX7py_IXY6rjLGAq22yPhlP3UswJifpq2rFUvL1toXEb963gSI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LbtQw0EJFAnrg0dKyUMBIiAuNGsePbI6lZdUCrRCiUm-W4westCSrfQjtnQ9nxnnQFVUFlxxix7E8M573DCGvnZXMpzIkJo1FtUuXlCDYw4PzAPygsNHgdnauTi7Eh0t5eSWLP0a7dy7JJqcBqzRVi4OpCw2JD9XBHNQQdNtnmBXN4AmX8G0B3A1J86jNd4hWFoXJp7HDHGjXoCyxYZc5c-0ya9wpFvG_TvL8O4Cy96JukrvLampWP81kcoVRjR6S-62ESQ8blHhEbvlqi2wfVqBd_1jRNzTGfEZj-hZ50DV1oC2Nb5NfxxjSvlglyN8ctZMlllKAv9I6UEw_GltqKkdd08qeImNs7In07MsptRg4Y5uWFDT4WDZ0TusSLRCwHGaz0PmyROvPnKIRmPYBTBQzNsczNFc-Jhej91-PTpK2VUNihZRZwlThfM6DCEFkIlegrxeiSE1ujQ9eesF5WoLwJr1SqSlyq1gJd60TImNcGcZ3yEZVV_4JoaCyOgfzRC6NAG2oVL6wIGSY4DMrZT4grAORtm0dc2ynMdFRnxkq3YBVA1h1BKvOBuRt_820qeJx4-x3CPl-Jlbgji_q2TfdErQeSlukgOW5LbxgOR86kzFbiMw5F6ySA7LX4Y1ur4W5hqPhHGsEwvCrfhgIGr00pvL1Euco9FWngg3IboNm_U44ir-MqQHJ1xBwbavrI9X4eywanqsCdGn4cr9D1T_buuko9nt0_oeTe_p_q78kdz4fj_Sn0_OPz8i9DOmQsSRTe2RjMVv65yDuLcoXkaJ_A0ehSZU
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3bbtMw1Jq6B-CB27gUBjIS4oWlix3baR7LZRpIqxCi0niKHNsZ1bqkahqh8syHc45zgcI0gcRLFNUniXt0fO4XQp5bI5kLZR7o0DfVzmyQgWIPlyjKQR4kxjvcTqbqeCben8rTHTLtamGyZjBCq7CZatSFJ3GYlOfc65U254dLmzcHfqwOKzBKMIjPsUaawRVY8q6SoJsPyO5s-mHyGSfMgXUNxpJ3-LX3XHVVNJe-ZEtS-Yb-l2mhfyZT9hHVG-RaXSz15qteLH4RWke3SNn93SZX5XxUr7OR-fZbJ8j_h4_b5Gar39JJQ5B3yI4r7pK9SQG2_cWGvqA-49S78vfI9zeYPb_eBChKLTWLGrs2wHdpmVOsdJobqgtL7abQF3CPMrhxXdKTj--owRwd00y_oLnzHUorWmbo7IDXYeEMreoMHU0VRX8z7XOlKBaHzlfoGb1HZkdvP70-DtqpEIERUvKAqcS6OMpFngsuYuUynogk1LHRLnfSiSgKM9ATpVMq1ElsFMuArVshOIuUZtF9MijKwj0kFKxjawFOxFILMLwy5RID-ozOHTdSxkPCOgpITdsyHSd3LFJvOo1V2qA6BVSnHtUpH5KX_TPLpmHIldCvkLB6SGz27X8oV2dpyzvSsTRJCAcqNokTLI7GVnNmEsGttblRckj2O7JMWw5UpYCaKMJ2hLD8rF8G3oEBIV24skYYhWHxULAhedBQcb-TCDVtxtSQxFv0vbXV7ZVi_sX3J49VAmY7PHnQEevPbV2FioP-tPwF5h79G_hjcp3jgWAs4GqfDNar2j0BdXKdPW15xA-MCmz_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Density-based+clustering+of+static+and+dynamic+functional+MRI+connectivity+features+obtained+from+subjects+with+cognitive+impairment&rft.jtitle=Brain+informatics&rft.au=Rangaprakash%2C+D&rft.au=Odemuyiwa%2C+Toluwanimi&rft.au=Narayana+Dutt%2C+D&rft.au=Deshpande%2C+Gopikrishna&rft.date=2020-11-26&rft.issn=2198-4018&rft.eissn=2198-4026&rft.volume=7&rft.issue=1&rft.spage=19&rft_id=info:doi/10.1186%2Fs40708-020-00120-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-4018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-4018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-4018&client=summon