Density-based clustering of static and dynamic functional MRI connectivity features obtained from subjects with cognitive impairment
Various machine-learning classification techniques have been employed previously to classify brain states in healthy and disease populations using functional magnetic resonance imaging (fMRI). These methods generally use supervised classifiers that are sensitive to outliers and require labeling of t...
        Saved in:
      
    
          | Published in | Brain informatics Vol. 7; no. 1; pp. 19 - 13 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Berlin/Heidelberg
          Springer Berlin Heidelberg
    
        26.11.2020
     Springer Nature B.V SpringerOpen  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2198-4018 2198-4026 2198-4026  | 
| DOI | 10.1186/s40708-020-00120-2 | 
Cover
| Abstract | Various machine-learning classification techniques have been employed previously to classify brain states in healthy and disease populations using functional magnetic resonance imaging (fMRI). These methods generally use supervised classifiers that are sensitive to outliers and require labeling of training data to generate a predictive model. Density-based clustering, which overcomes these issues, is a popular unsupervised learning approach whose utility for high-dimensional neuroimaging data has not been previously evaluated. Its advantages include insensitivity to outliers and ability to work with unlabeled data. Unlike the popular
k
-means clustering, the number of clusters need not be specified. In this study, we compare the performance of two popular density-based clustering methods, DBSCAN and OPTICS, in accurately identifying individuals with three stages of cognitive impairment, including Alzheimer’s disease. We used static and dynamic functional connectivity features for clustering, which captures the strength and temporal variation of brain connectivity respectively. To assess the robustness of clustering to noise/outliers, we propose a novel method called recursive-clustering using additive-noise (R-CLAN). Results demonstrated that both clustering algorithms were effective, although OPTICS with dynamic connectivity features outperformed in terms of cluster purity (95.46%) and robustness to noise/outliers. This study demonstrates that density-based clustering can accurately and robustly identify diagnostic classes in an unsupervised way using brain connectivity. | 
    
|---|---|
| AbstractList | Various machine-learning classification techniques have been employed previously to classify brain states in healthy and disease populations using functional magnetic resonance imaging (fMRI). These methods generally use supervised classifiers that are sensitive to outliers and require labeling of training data to generate a predictive model. Density-based clustering, which overcomes these issues, is a popular unsupervised learning approach whose utility for high-dimensional neuroimaging data has not been previously evaluated. Its advantages include insensitivity to outliers and ability to work with unlabeled data. Unlike the popular k-means clustering, the number of clusters need not be specified. In this study, we compare the performance of two popular density-based clustering methods, DBSCAN and OPTICS, in accurately identifying individuals with three stages of cognitive impairment, including Alzheimer’s disease. We used static and dynamic functional connectivity features for clustering, which captures the strength and temporal variation of brain connectivity respectively. To assess the robustness of clustering to noise/outliers, we propose a novel method called recursive-clustering using additive-noise (R-CLAN). Results demonstrated that both clustering algorithms were effective, although OPTICS with dynamic connectivity features outperformed in terms of cluster purity (95.46%) and robustness to noise/outliers. This study demonstrates that density-based clustering can accurately and robustly identify diagnostic classes in an unsupervised way using brain connectivity. Various machine-learning classification techniques have been employed previously to classify brain states in healthy and disease populations using functional magnetic resonance imaging (fMRI). These methods generally use supervised classifiers that are sensitive to outliers and require labeling of training data to generate a predictive model. Density-based clustering, which overcomes these issues, is a popular unsupervised learning approach whose utility for high-dimensional neuroimaging data has not been previously evaluated. Its advantages include insensitivity to outliers and ability to work with unlabeled data. Unlike the popular k-means clustering, the number of clusters need not be specified. In this study, we compare the performance of two popular density-based clustering methods, DBSCAN and OPTICS, in accurately identifying individuals with three stages of cognitive impairment, including Alzheimer's disease. We used static and dynamic functional connectivity features for clustering, which captures the strength and temporal variation of brain connectivity respectively. To assess the robustness of clustering to noise/outliers, we propose a novel method called recursive-clustering using additive-noise (R-CLAN). Results demonstrated that both clustering algorithms were effective, although OPTICS with dynamic connectivity features outperformed in terms of cluster purity (95.46%) and robustness to noise/outliers. This study demonstrates that density-based clustering can accurately and robustly identify diagnostic classes in an unsupervised way using brain connectivity.Various machine-learning classification techniques have been employed previously to classify brain states in healthy and disease populations using functional magnetic resonance imaging (fMRI). These methods generally use supervised classifiers that are sensitive to outliers and require labeling of training data to generate a predictive model. Density-based clustering, which overcomes these issues, is a popular unsupervised learning approach whose utility for high-dimensional neuroimaging data has not been previously evaluated. Its advantages include insensitivity to outliers and ability to work with unlabeled data. Unlike the popular k-means clustering, the number of clusters need not be specified. In this study, we compare the performance of two popular density-based clustering methods, DBSCAN and OPTICS, in accurately identifying individuals with three stages of cognitive impairment, including Alzheimer's disease. We used static and dynamic functional connectivity features for clustering, which captures the strength and temporal variation of brain connectivity respectively. To assess the robustness of clustering to noise/outliers, we propose a novel method called recursive-clustering using additive-noise (R-CLAN). Results demonstrated that both clustering algorithms were effective, although OPTICS with dynamic connectivity features outperformed in terms of cluster purity (95.46%) and robustness to noise/outliers. This study demonstrates that density-based clustering can accurately and robustly identify diagnostic classes in an unsupervised way using brain connectivity. Abstract Various machine-learning classification techniques have been employed previously to classify brain states in healthy and disease populations using functional magnetic resonance imaging (fMRI). These methods generally use supervised classifiers that are sensitive to outliers and require labeling of training data to generate a predictive model. Density-based clustering, which overcomes these issues, is a popular unsupervised learning approach whose utility for high-dimensional neuroimaging data has not been previously evaluated. Its advantages include insensitivity to outliers and ability to work with unlabeled data. Unlike the popular k-means clustering, the number of clusters need not be specified. In this study, we compare the performance of two popular density-based clustering methods, DBSCAN and OPTICS, in accurately identifying individuals with three stages of cognitive impairment, including Alzheimer’s disease. We used static and dynamic functional connectivity features for clustering, which captures the strength and temporal variation of brain connectivity respectively. To assess the robustness of clustering to noise/outliers, we propose a novel method called recursive-clustering using additive-noise (R-CLAN). Results demonstrated that both clustering algorithms were effective, although OPTICS with dynamic connectivity features outperformed in terms of cluster purity (95.46%) and robustness to noise/outliers. This study demonstrates that density-based clustering can accurately and robustly identify diagnostic classes in an unsupervised way using brain connectivity. Various machine-learning classification techniques have been employed previously to classify brain states in healthy and disease populations using functional magnetic resonance imaging (fMRI). These methods generally use supervised classifiers that are sensitive to outliers and require labeling of training data to generate a predictive model. Density-based clustering, which overcomes these issues, is a popular unsupervised learning approach whose utility for high-dimensional neuroimaging data has not been previously evaluated. Its advantages include insensitivity to outliers and ability to work with unlabeled data. Unlike the popular k -means clustering, the number of clusters need not be specified. In this study, we compare the performance of two popular density-based clustering methods, DBSCAN and OPTICS, in accurately identifying individuals with three stages of cognitive impairment, including Alzheimer’s disease. We used static and dynamic functional connectivity features for clustering, which captures the strength and temporal variation of brain connectivity respectively. To assess the robustness of clustering to noise/outliers, we propose a novel method called recursive-clustering using additive-noise (R-CLAN). Results demonstrated that both clustering algorithms were effective, although OPTICS with dynamic connectivity features outperformed in terms of cluster purity (95.46%) and robustness to noise/outliers. This study demonstrates that density-based clustering can accurately and robustly identify diagnostic classes in an unsupervised way using brain connectivity.  | 
    
| ArticleNumber | 19 | 
    
| Author | Rangaprakash, D. Odemuyiwa, Toluwanimi Deshpande, Gopikrishna Narayana Dutt, D.  | 
    
| Author_xml | – sequence: 1 givenname: D. surname: Rangaprakash fullname: Rangaprakash, D. organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Department of Radiology, Harvard Medical School, Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology – sequence: 2 givenname: Toluwanimi surname: Odemuyiwa fullname: Odemuyiwa, Toluwanimi organization: Division of Engineering Science, Faculty of Applied Science & Engineering, University of Toronto – sequence: 3 givenname: D. surname: Narayana Dutt fullname: Narayana Dutt, D. organization: Department of Electrical Communication Engineering, Indian Institute of Science – sequence: 4 givenname: Gopikrishna orcidid: 0000-0001-7471-5357 surname: Deshpande fullname: Deshpande, Gopikrishna email: gopi@auburn.edu organization: AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, Department of Psychological Sciences, Auburn University, Alabama Advanced Imaging Consortium, University of Alabama Birmingham, Center for Health Ecology and Equity Research, Auburn University, Center for Neuroscience, Auburn University, School of Psychology, Capital Normal University, Key Laboratory for Learning and Cognition, Capital Normal University, Department of Psychiatry, National Institute of Mental Health and Neurosciences  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33242116$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNUk1v1DAUjFARLaV_gAOyxIVLwF9xkgsSKl8rFSEhOFuO_bz1KrEXO2m1d344zmZZaA8VF_vpeWb0xvOeFic-eCiK5wS_JqQRbxLHNW5KTHGJMcknfVScUdI2JcdUnBxr0pwWFyltcEYJjFkrnhSnjFFOCRFnxa_34JMbd2WnEhik-ymNEJ1fo2BRGtXoNFLeILPzasi1nbweXfCqR1--rZAO3kNu3GQJZEGNU4SEQjcq57OcjWFAaeo2GZPQrRuvM2PtXSYAcsNWuTiAH58Vj63qE1wc7vPix8cP3y8_l1dfP60u312VmlcVLYloDdTMcms55bWAjra8xarWCixUwBnDHWW0AiGwamstSEcqZnj2yoQi7LxYLbomqI3cRjeouJNBOblvhLiWKmbHPcim0i0GXNW6BU5q1hhFiW45NcZYLaqsxRatyW_V7lb1_VGQYDlHJJeIZI5I7iOSNLPeLqzt1A1gdDYfVX9nlLsv3l3LdbiRtWgJxyILvDoIxPBzgjTKwSUNfa88hClJygUXuMJ8dvvyHnQTppiTm1E1Y02F9z5e_DvRcZQ_K5IBdAHoGFKKYP_PZ3OPpN28TGF25fqHqYePTdt5DyH-HfsB1m_dcfHR | 
    
| CitedBy_id | crossref_primary_10_1016_j_isci_2025_112104 crossref_primary_10_1093_schbul_sbae110 crossref_primary_10_12677_AAM_2022_112092 crossref_primary_10_1016_j_epsr_2022_108481 crossref_primary_10_1093_cercor_bhac293 crossref_primary_10_1016_j_bspc_2021_103293 crossref_primary_10_3390_brainsci14050456  | 
    
| Cites_doi | 10.1016/j.neuroimage.2005.08.009 10.1016/B978-012372560-8/50002-4 10.1007/s10462-004-0751-8 10.1613/jair.606 10.1145/304181.304187 10.1371/journal.pone.0106735 10.1016/j.patcog.2011.04.006 10.1002/hbm.23841 10.1109/TBME.2013.2258344 10.1007/s00357-006-0002-6 10.1023/B:MACH.0000035475.85309.1b 10.1089/brain.2013.0221 10.1371/journal.pone.0076315 10.1109/TCBB.2014.2351824 10.1002/hbm.23551 10.1002/hbm.21333 10.1016/S0031-3203(01)00086-3 10.1016/j.neurobiolaging.2010.04.025 10.1002/hbm.23676 10.1109/TCYB.2014.2379621 10.1007/s11682-008-9028-1 10.1109/TMI.2008.923987 10.1016/j.cortex.2015.02.008 10.1155/IJBI/2006/12014 10.1109/TSE.2007.70732 10.1016/j.patcog.2005.01.025 10.1089/brain.2014.0300 10.1007/978-4-431-73242-6 10.1038/nrn2201 10.1016/j.neuroimage.2009.11.046 10.3389/fnins.2012.00178 10.1016/j.schres.2012.04.021 10.3389/fnhum.2013.00670 10.1016/j.neuroimage.2006.04.233 10.1186/2047-217X-3-28 10.1371/journal.pone.0088476 10.1007/s10115-006-0022-x 10.1109/TSP.2010.2098400 10.1023/A:1012801612483 10.1186/s40064-015-0817-x 10.1016/j.jneumeth.2013.02.015 10.1016/j.brat.2014.07.010 10.1016/j.neuroimage.2008.11.007 10.1214/09-STS282 10.1109/TAMD.2015.2434733 10.1016/j.tics.2006.07.005 10.1109/TNN.2005.845141 10.2478/v10177-010-0037-9 10.3174/ajnr.A3263 10.1007/978-3-642-15314-3_38 10.1145/73393.73419 10.1142/9789814611107_0008 10.1007/3-540-36175-8_8 10.5120/8282-1278  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| CorporateAuthor | Alzheimer’s Disease Neuroimaging Initiative | 
    
| CorporateAuthor_xml | – name: Alzheimer’s Disease Neuroimaging Initiative | 
    
| DBID | C6C AAYXX CITATION NPM 3V. 7XB 8AL 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1186/s40708-020-00120-2 | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Psychology Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Anatomy & Physiology Computer Science  | 
    
| EISSN | 2198-4026 | 
    
| EndPage | 13 | 
    
| ExternalDocumentID | oai_doaj_org_article_85c90e057c9e41738da21c942dddfc65 10.1186/s40708-020-00120-2 PMC7691406 33242116 10_1186_s40708_020_00120_2  | 
    
| Genre | Journal Article | 
    
| GrantInformation_xml | – fundername: National institutes of health, USA grantid: U01 AG024904 – fundername: ; grantid: U01 AG024904  | 
    
| GroupedDBID | 0R~ 3V. 4.4 8FE 8FG AAFWJ AAJSJ AAKKN ABEEZ ABUWG ACACY ACGFS ACULB ADBBV ADINQ ADMLS ADRAZ AFGXO AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AOIJS ARAPS ASPBG AVWKF AZQEC BAPOH BCNDV BENPR BGLVJ BPHCQ C24 C6C CCPQU DWQXO EBLON EBS EJD GNUQQ GROUPED_DOAJ HCIFZ HYE IAO IPNFZ ISR ITC K6V K7- KQ8 M0N M48 M~E OK1 P62 PGMZT PIMPY PQQKQ PROAC PSYQQ RIG RPM RSV SOJ AASML AAYXX CITATION ICD PHGZM PHGZT PQGLB PUEGO NPM 7XB 8AL 8FK JQ2 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c4552-169de73f4ff42476eb29490a7caefe5e4330b2325e660a97c61b153d442136a13 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 2198-4018 2198-4026  | 
    
| IngestDate | Fri Oct 03 12:47:41 EDT 2025 Sun Oct 26 04:15:06 EDT 2025 Tue Sep 30 15:49:36 EDT 2025 Thu Sep 04 17:45:19 EDT 2025 Tue Oct 07 13:11:04 EDT 2025 Wed Feb 19 02:30:23 EST 2025 Wed Oct 01 03:17:22 EDT 2025 Thu Apr 24 23:09:26 EDT 2025 Fri Feb 21 02:34:17 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Brain networks and dynamic connectivity DBSCAN Functional MRI OPTICS Unsupervised learning and clustering Cognitive impairment and alzheimer’s disease  | 
    
| Language | English | 
    
| License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c4552-169de73f4ff42476eb29490a7caefe5e4330b2325e660a97c61b153d442136a13 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0001-7471-5357 | 
    
| OpenAccessLink | https://doaj.org/article/85c90e057c9e41738da21c942dddfc65 | 
    
| PMID | 33242116 | 
    
| PQID | 2473385065 | 
    
| PQPubID | 2046126 | 
    
| PageCount | 13 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_85c90e057c9e41738da21c942dddfc65 unpaywall_primary_10_1186_s40708_020_00120_2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7691406 proquest_miscellaneous_2464605041 proquest_journals_2473385065 pubmed_primary_33242116 crossref_primary_10_1186_s40708_020_00120_2 crossref_citationtrail_10_1186_s40708_020_00120_2 springer_journals_10_1186_s40708_020_00120_2  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20201126 | 
    
| PublicationDateYYYYMMDD | 2020-11-26 | 
    
| PublicationDate_xml | – month: 11 year: 2020 text: 20201126 day: 26  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Berlin/Heidelberg | 
    
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg  | 
    
| PublicationTitle | Brain informatics | 
    
| PublicationTitleAbbrev | Brain Inf | 
    
| PublicationTitleAlternate | Brain Inform | 
    
| PublicationYear | 2020 | 
    
| Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen  | 
    
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen  | 
    
| References | Brodley, Friedl (CR56) 1999; 11 Deshpande, Wang, Rangaprakash, Wilamowski (CR8) 2015; 45 Deshpande, Libero, Sreenivasan, Deshpande, Kana (CR7) 2013; 7 Kettenring (CR29) 2006; 23 CR37 Jiang, Zhang, Zhu (CR62) 2014; 4 Plant, Teipel, Oswald, Böhm, Meindl, Mourao-Miranda, Bokde, Hampel, Ewers (CR23) 2010; 50 Maqbool, Babri (CR31) 2007; 33 Liang, Li, Deshpande, Wang, Hu, Li (CR49) 2014; 9 Hutchison, Womelsdorf, Allen, Bandettini, Calhoun, Corbetta, Della Penna, Duyn, Glover, Gonzalez-Castillo, Handwerker, Keilholz, Kiviniemi, Leopold, de Pasquale, Sporns, Walter, Chang (CR42) 2013; 80 Rangaprakash, Deshpande, Daniel, Goodman, Robinson, Salibi, Katz, Denney, Dretsch (CR55) 2017; 38 Wang, Li (CR15) 2013; 8 Jin, Jia, Lanka, Rangaprakash, Li, Liu, Hu, Deshpande (CR47) 2017; 38 Jiang, Navab, Pluim, Viergever, Janoos, Machiraju, Sammet, Knopp, Mórocz (CR25) 2010 Warren Liao (CR20) 2005; 38 Jia, Hu, Deshpande (CR46) 2014; 4 Fox, Greicius (CR44) 2010; 4 Wink, Roerdink (CR59) 2006; 2006 Garg, Prasad, Coyle (CR41) 2013; 215 Libero, DeRamus, Lahti, Deshpande, Kana (CR9) 2015; 66 Craddock, James, Holtzheimer, Hu, Mayberg (CR52) 2012; 33 Onozuka, Yen, Chen, Tyler (CR40) 2008 Sato, Rondina, Mourão-Miranda (CR26) 2012; 6 Xu, Wunsch (CR36) 2005; 16 Fox, Raichle (CR45) 2007; 8 Venkataraman, Whitford, Westin, Golland, Kubicki (CR12) 2012; 139 Sakai, Tamura (CR33) 2015; 4 Hulse, Khoshgoftaar, Huang (CR57) 2007; 11 Heller, Stanley, Yekutieli, Rubin, Benjamini (CR16) 2006; 33 CR18 CR17 Michel, Gramfort, Varoquaux, Eger, Keribin, Thirion (CR13) 2012; 45 Katwal, Gore, Marois, Rogers (CR19) 2013; 60 Halkidi, Batistakis, Vazirgiannis (CR63) 2001; 17 Raczynski, Wozniak, Rubel, Zaremba (CR30) 2010; 56 CR10 CR54 Norman, Polyn, Detre, Haxby (CR4) 2006; 10 Noh, Solo (CR60) 2011; 59 Rangaprakash, Dretsch, Venkataraman, Katz, Denney, Deshpande (CR48) 2018; 39 Clark, Niehaus, Duff, Di Simplicio, Clifford, Smith, Mackay, Woolrich, Holmes (CR3) 2014; 62 Demirci, Clark, Magnotta, Andreasen, Lauriello, Kiehl, Pearlson, Calhoun (CR5) 2008; 2 Tench, Tanasescu, Auer, Cottam, Constantinescu (CR53) 2014; 9 Mitchell, Hutchinson, Niculescu, Pereira, Wang, Just, Newman (CR2) 2004; 57 Davatzikos, Ruparel, Fan, Shen, Acharyya, Loughead, Gur, Langleben (CR6) 2005; 28 Pereira, Mitchell, Botvinick (CR27) 2009; 45 CR28 Varoquaux, Thirion (CR11) 2014; 3 Xu, Wunsch (CR35) 2009 Wei, Huafu, Qin, Xu (CR14) 2008; 27 CR24 CR22 Yan, Zang (CR51) 2010; 4 Wang, Chattaraman, Kim, Deshpande (CR1) 2015; 7 CR21 Nettiksimmons, Harvey, Brewer, Carmichael, DeCarli, Jack, Petersen, Shaw, Trojanowski, Weiner, Beckett (CR64) 2010; 31 Friston, Ashburner, Kiebel, Nichols, Penny (CR50) 2007 Ankerst, Breunig, Kriegel, Sander (CR38) 1999; 28 CR61 Ashtawy, Mahapatra (CR34) 2015; 12 Lee, Smyser, Shimony (CR43) 2013; 34 Zhu, Wu (CR58) 2004; 22 Lindquist (CR39) 2008; 23 Antani, Kasturi, Jain (CR32) 2002; 35 R Xu (120_CR36) 2005; 16 120_CR10 JR Kettenring (120_CR29) 2006; 23 MD Fox (120_CR44) 2010; 4 120_CR54 MD Fox (120_CR45) 2007; 8 IA Clark (120_CR3) 2014; 62 C Yan (120_CR51) 2010; 4 M Onozuka (120_CR40) 2008 M Halkidi (120_CR63) 2001; 17 S Antani (120_CR32) 2002; 35 T Warren Liao (120_CR20) 2005; 38 D Rangaprakash (120_CR55) 2017; 38 O Maqbool (120_CR31) 2007; 33 T Sakai (120_CR33) 2015; 4 HM Ashtawy (120_CR34) 2015; 12 C Davatzikos (120_CR6) 2005; 28 G Deshpande (120_CR8) 2015; 45 L Raczynski (120_CR30) 2010; 56 120_CR21 C Jin (120_CR47) 2017; 38 120_CR22 R Heller (120_CR16) 2006; 33 Y Wang (120_CR1) 2015; 7 JR Sato (120_CR26) 2012; 6 120_CR61 A Venkataraman (120_CR12) 2012; 139 Y Wang (120_CR15) 2013; 8 120_CR17 M Ankerst (120_CR38) 1999; 28 O Demirci (120_CR5) 2008; 2 120_CR18 D Rangaprakash (120_CR48) 2018; 39 KJ Friston (120_CR50) 2007 LE Libero (120_CR9) 2015; 66 SB Katwal (120_CR19) 2013; 60 AM Wink (120_CR59) 2006; 2006 G Deshpande (120_CR7) 2013; 7 G Garg (120_CR41) 2013; 215 C Plant (120_CR23) 2010; 50 CR Tench (120_CR53) 2014; 9 T Jiang (120_CR25) 2010 F Pereira (120_CR27) 2009; 45 120_CR28 R Xu (120_CR35) 2009 MH Lee (120_CR43) 2013; 34 KA Norman (120_CR4) 2006; 10 120_CR24 RC Craddock (120_CR52) 2012; 33 JD Hulse (120_CR57) 2007; 11 G Varoquaux (120_CR11) 2014; 3 L Wei (120_CR14) 2008; 27 J Nettiksimmons (120_CR64) 2010; 31 X Jiang (120_CR62) 2014; 4 V Michel (120_CR13) 2012; 45 H Jia (120_CR46) 2014; 4 CE Brodley (120_CR56) 1999; 11 J Noh (120_CR60) 2011; 59 TM Mitchell (120_CR2) 2004; 57 P Liang (120_CR49) 2014; 9 120_CR37 MA Lindquist (120_CR39) 2008; 23 RM Hutchison (120_CR42) 2013; 80 X Zhu (120_CR58) 2004; 22  | 
    
| References_xml | – volume: 28 start-page: 663 issue: 3 year: 2005 end-page: 668 ident: CR6 article-title: Classifying spatial patterns of brain activity with machine learning methods: application to lie detection publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.08.009 – ident: CR22 – year: 2007 ident: CR50 publication-title: Statistical parametric mapping: the analysis of functional brain images doi: 10.1016/B978-012372560-8/50002-4 – volume: 22 start-page: 177 issue: 3 year: 2004 end-page: 210 ident: CR58 article-title: Class noise vs. attribute noise: a quantitative study of their impacts publication-title: Artif Intell Rev doi: 10.1007/s10462-004-0751-8 – volume: 11 start-page: 131 year: 1999 end-page: 167 ident: CR56 article-title: Identifying mislabeled training data publication-title: J Artif Intell Res doi: 10.1613/jair.606 – volume: 28 start-page: 49 issue: 2 year: 1999 end-page: 60 ident: CR38 article-title: OPTICS: ordering points to identify the clustering structure publication-title: SIGMOD Rec doi: 10.1145/304181.304187 – volume: 9 start-page: e106735 issue: 9 year: 2014 ident: CR53 article-title: Coordinate based meta-analysis of functional neuroimaging data using activation likelihood estimation; full width half max and group comparisons publication-title: PLoS ONE doi: 10.1371/journal.pone.0106735 – volume: 45 start-page: 2041 issue: 6 year: 2012 end-page: 2049 ident: CR13 article-title: A supervised clustering approach for fMRI-based inference of brain states publication-title: Pattern Recogn doi: 10.1016/j.patcog.2011.04.006 – ident: CR54 – ident: CR61 – volume: 39 start-page: 264 issue: 1 year: 2018 end-page: 287 ident: CR48 article-title: Identifying disease foci from static and dynamic effective connectivity networks: illustration in soldiers with trauma publication-title: Hum Brain Mapp doi: 10.1002/hbm.23841 – volume: 60 start-page: 2472 issue: 9 year: 2013 end-page: 2483 ident: CR19 article-title: Unsupervised spatiotemporal analysis of FMRI data using graph-based visualizations of self-organizing maps publication-title: IEEE Transact Bio-Med Engin doi: 10.1109/TBME.2013.2258344 – volume: 23 start-page: 3 issue: 1 year: 2006 end-page: 30 ident: CR29 article-title: The Practice of Cluster Analysis publication-title: J Classif doi: 10.1007/s00357-006-0002-6 – ident: CR21 – volume: 57 start-page: 145 issue: 1–2 year: 2004 end-page: 175 ident: CR2 article-title: Learning to Decode Cognitive States from Brain Images publication-title: Mach Learn doi: 10.1023/B:MACH.0000035475.85309.1b – volume: 4 start-page: 575 issue: 8 year: 2014 end-page: 586 ident: CR62 article-title: Intrinsic functional component analysis via sparse representation on Alzheimer's disease neuroimaging initiative database publication-title: Brain Connect doi: 10.1089/brain.2013.0221 – volume: 8 start-page: e76315 issue: 10 year: 2013 ident: CR15 article-title: Analysis of Whole-Brain Resting-State fMRI Data Using Hierarchical Clustering Approach publication-title: PLoS ONE doi: 10.1371/journal.pone.0076315 – volume: 12 start-page: 335 issue: 2 year: 2015 end-page: 347 ident: CR34 article-title: A comparative assessment of predictive accuracies of conventional and machine learning scoring functions for protein-ligand binding affinity prediction publication-title: IEEE/ACM Trans Comput Biol Bioinf doi: 10.1109/TCBB.2014.2351824 – volume: 38 start-page: 2843 issue: 6 year: 2017 end-page: 2864 ident: CR55 article-title: Compromised hippocampus-striatum pathway as a potential imaging biomarker of mild-traumatic brain injury and posttraumatic stress disorder publication-title: Hum Brain Mapp doi: 10.1002/hbm.23551 – volume: 33 start-page: 1914 year: 2012 end-page: 1928 ident: CR52 article-title: A whole brain fMRI atlas generated via spatially constrained spectral clustering publication-title: Hum Brain Mapp doi: 10.1002/hbm.21333 – volume: 35 start-page: 945 issue: 4 year: 2002 end-page: 965 ident: CR32 article-title: A survey on the use of pattern recognition methods for abstraction, indexing and retrieval of images and video publication-title: Pattern Recogn doi: 10.1016/S0031-3203(01)00086-3 – volume: 31 start-page: 1419 issue: 8 year: 2010 end-page: 1428 ident: CR64 article-title: Subtypes based on cerebrospinal fluid and magnetic resonance imaging markers in normal elderly predict cognitive decline publication-title: Neurobio Aging. doi: 10.1016/j.neurobiolaging.2010.04.025 – volume: 38 start-page: 4479 issue: 9 year: 2017 end-page: 4496 ident: CR47 article-title: Dynamic brain connectivity is a better predictor of PTSD than static connectivity publication-title: Hum Brain Mapp doi: 10.1002/hbm.23676 – volume: 45 start-page: 2668 issue: 12 year: 2015 end-page: 2679 ident: CR8 article-title: Fully connected cascade artificial neural network architecture for attention deficit hyperactivity disorder classification from functional magnetic resonance imaging data publication-title: IEEE Transact Cybernet doi: 10.1109/TCYB.2014.2379621 – volume: 2 start-page: 147 issue: 3 year: 2008 end-page: 226 ident: CR5 article-title: A review of challenges in the use of fMRI for disease classification / characterization and a projection pursuit application from Multi-site fMRI schizophrenia study publication-title: Brain Imag Behav doi: 10.1007/s11682-008-9028-1 – volume: 27 start-page: 1472 issue: 10 year: 2008 end-page: 1483 ident: CR14 article-title: Analysis of fMRI data using improved self-organizing mapping and spatio-temporal metric hierarchical clustering publication-title: IEEE Trans Med Imag doi: 10.1109/TMI.2008.923987 – volume: 66 start-page: 46 year: 2015 end-page: 59 ident: CR9 article-title: Multimodal neuroimaging based classification of Autism Spectrum Disorder using anatomical, neurochemical and white matter correlates publication-title: Cortex doi: 10.1016/j.cortex.2015.02.008 – ident: CR18 – volume: 2006 start-page: 12014 year: 2006 ident: CR59 article-title: BOLD noise assumptions in fMRI publication-title: Int J Biomed Imag doi: 10.1155/IJBI/2006/12014 – start-page: 201 year: 2010 end-page: 208 ident: CR25 publication-title: Unsupervised learning of brain states from fMRI data, medical image computing and computer-assisted intervention–MICCAI 2010 Lecture Notes in Computer Science – volume: 33 start-page: 759 issue: 11 year: 2007 end-page: 780 ident: CR31 article-title: Hierarchical Clustering for Software Architecture Recovery publication-title: IEEE Trans Software Eng doi: 10.1109/TSE.2007.70732 – start-page: 70 year: 2009 end-page: 71 ident: CR35 publication-title: Partitional Clustering, Clustering, IEEE Press Series on Computational Intelligence – ident: CR37 – volume: 38 start-page: 1857 issue: 11 year: 2005 end-page: 1874 ident: CR20 article-title: Clustering of time series data-a survey publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2005.01.025 – volume: 4 start-page: 741 issue: 9 year: 2014 end-page: 759 ident: CR46 article-title: Behavioral relevance of the dynamics of the functional brain connectome publication-title: Brain Connect doi: 10.1089/brain.2014.0300 – start-page: 63 year: 2008 end-page: 76 ident: CR40 publication-title: Spectral analysis of fMRI signal and noise, novel trends in brain science doi: 10.1007/978-4-431-73242-6 – ident: CR10 – volume: 8 start-page: 700 issue: 9 year: 2007 end-page: 711 ident: CR45 article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging publication-title: Nat Rev Neurosci doi: 10.1038/nrn2201 – volume: 50 start-page: 162 issue: 1 year: 2010 end-page: 174 ident: CR23 article-title: Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer's disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.11.046 – volume: 6 start-page: 178 year: 2012 ident: CR26 article-title: Measuring abnormal brains: building normative rules in neuroimaging using one-class support vector machines publication-title: Front Neurosci doi: 10.3389/fnins.2012.00178 – volume: 139 start-page: 7 issue: 1–3 year: 2012 end-page: 12 ident: CR12 article-title: Whole brain resting state functional connectivity abnormalities in schizophrenia publication-title: Schizophr Res doi: 10.1016/j.schres.2012.04.021 – volume: 7 start-page: 670 year: 2013 ident: CR7 article-title: Identification of neural connectivity signatures of autism using machine learning publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2013.00670 – volume: 33 start-page: 599 issue: 2 year: 2006 end-page: 608 ident: CR16 article-title: Cluster-based analysis of FMRI data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.04.233 – volume: 3 start-page: 28 year: 2014 ident: CR11 article-title: How machine learning is shaping cognitive neuroimaging publication-title: Giga Sci doi: 10.1186/2047-217X-3-28 – volume: 9 start-page: e88476 issue: 3 year: 2014 ident: CR49 article-title: Altered causal connectivity of resting state brain networks in amnesic MCI publication-title: PLoS ONE doi: 10.1371/journal.pone.0088476 – volume: 11 start-page: 171 issue: 2 year: 2007 end-page: 190 ident: CR57 article-title: The pairwise attribute noise detection algorithm publication-title: Knowl Inf Syst doi: 10.1007/s10115-006-0022-x – volume: 59 start-page: 1322 issue: 3 year: 2011 end-page: 1328 ident: CR60 article-title: Rician distributed FMRI: asymptotic power analysis and cramér-rao lower bounds publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2010.2098400 – volume: 17 start-page: 107 issue: 2–3 year: 2001 end-page: 145 ident: CR63 article-title: On clustering validation techniques publication-title: J Intell Informat Syst doi: 10.1023/A:1012801612483 – volume: 4 start-page: 162 year: 2015 ident: CR33 article-title: Real-time analysis application for identifying bursty local areas related to emergency topics publication-title: Springer Plus doi: 10.1186/s40064-015-0817-x – volume: 215 start-page: 71 issue: 1 year: 2013 end-page: 77 ident: CR41 article-title: Gaussian Mixture Model-based noise reduction in resting state fMRI data publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2013.02.015 – ident: CR17 – volume: 62 start-page: 37 year: 2014 end-page: 46 ident: CR3 article-title: First steps in using machine learning on fMRI data to predict intrusive memories of traumatic film footage publication-title: Behav Res Ther doi: 10.1016/j.brat.2014.07.010 – volume: 45 start-page: S199 issue: 1 year: 2009 end-page: S209 ident: CR27 article-title: Machine learning classifiers and fMRI: a tutorial overview publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.11.007 – volume: 23 start-page: 439 issue: 4 year: 2008 end-page: 464 ident: CR39 article-title: The statistical analysis of fMRI data publication-title: Stat Sci doi: 10.1214/09-STS282 – volume: 7 start-page: 248 issue: 3 year: 2015 end-page: 255 ident: CR1 article-title: Predicting purchase decisions based on spatio-temporal functional MRI features using machine learning publication-title: IEEE Transact Autonom Mental Devel doi: 10.1109/TAMD.2015.2434733 – volume: 10 start-page: 424 issue: 9 year: 2006 end-page: 430 ident: CR4 article-title: Beyond mind-reading: multi-voxel pattern analysis of fMRI data publication-title: Trends Cognit Sci doi: 10.1016/j.tics.2006.07.005 – ident: CR28 – volume: 16 start-page: 645 issue: 3 year: 2005 end-page: 678 ident: CR36 article-title: Survey of clustering algorithms publication-title: IEEE Transact Neural Netw. doi: 10.1109/TNN.2005.845141 – volume: 80 start-page: 360 year: 2013 end-page: 378 ident: CR42 article-title: Dynamic functional connectivity: promise, issues, and interpretations publication-title: Neuro Image – ident: CR24 – volume: 4 start-page: 19 year: 2010 ident: CR44 article-title: Clinical applications of resting state functional connectivity publication-title: Front Syst Neurosci – volume: 56 start-page: 281 issue: 3 year: 2010 ident: CR30 article-title: Application of density based clustering to microarray data analysis publication-title: Int J Electron Telecommunicat doi: 10.2478/v10177-010-0037-9 – volume: 34 start-page: 1866 issue: 10 year: 2013 end-page: 1872 ident: CR43 article-title: Resting-State fMRI: A review of methods and clinical applications publication-title: Am J Neuroradiol doi: 10.3174/ajnr.A3263 – volume: 4 start-page: 13 year: 2010 ident: CR51 article-title: DPARSF: a MATLAB toolbox for "pipeline" data analysis of resting-state fMRI publication-title: Front Syst Neurosci – volume: 33 start-page: 599 issue: 2 year: 2006 ident: 120_CR16 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.04.233 – volume: 12 start-page: 335 issue: 2 year: 2015 ident: 120_CR34 publication-title: IEEE/ACM Trans Comput Biol Bioinf doi: 10.1109/TCBB.2014.2351824 – volume: 28 start-page: 49 issue: 2 year: 1999 ident: 120_CR38 publication-title: SIGMOD Rec doi: 10.1145/304181.304187 – volume: 23 start-page: 439 issue: 4 year: 2008 ident: 120_CR39 publication-title: Stat Sci doi: 10.1214/09-STS282 – volume: 62 start-page: 37 year: 2014 ident: 120_CR3 publication-title: Behav Res Ther doi: 10.1016/j.brat.2014.07.010 – volume: 17 start-page: 107 issue: 2–3 year: 2001 ident: 120_CR63 publication-title: J Intell Informat Syst doi: 10.1023/A:1012801612483 – volume: 31 start-page: 1419 issue: 8 year: 2010 ident: 120_CR64 publication-title: Neurobio Aging. doi: 10.1016/j.neurobiolaging.2010.04.025 – volume: 4 start-page: 19 year: 2010 ident: 120_CR44 publication-title: Front Syst Neurosci – volume: 33 start-page: 1914 year: 2012 ident: 120_CR52 publication-title: Hum Brain Mapp doi: 10.1002/hbm.21333 – volume-title: Statistical parametric mapping: the analysis of functional brain images year: 2007 ident: 120_CR50 doi: 10.1016/B978-012372560-8/50002-4 – ident: 120_CR17 doi: 10.1007/978-3-642-15314-3_38 – ident: 120_CR22 – volume: 66 start-page: 46 year: 2015 ident: 120_CR9 publication-title: Cortex doi: 10.1016/j.cortex.2015.02.008 – volume: 45 start-page: 2041 issue: 6 year: 2012 ident: 120_CR13 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2011.04.006 – ident: 120_CR28 doi: 10.1145/73393.73419 – start-page: 70 volume-title: Partitional Clustering, Clustering, IEEE Press Series on Computational Intelligence year: 2009 ident: 120_CR35 – volume: 2 start-page: 147 issue: 3 year: 2008 ident: 120_CR5 publication-title: Brain Imag Behav doi: 10.1007/s11682-008-9028-1 – volume: 11 start-page: 131 year: 1999 ident: 120_CR56 publication-title: J Artif Intell Res doi: 10.1613/jair.606 – volume: 50 start-page: 162 issue: 1 year: 2010 ident: 120_CR23 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.11.046 – volume: 59 start-page: 1322 issue: 3 year: 2011 ident: 120_CR60 publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2010.2098400 – ident: 120_CR24 doi: 10.1142/9789814611107_0008 – volume: 23 start-page: 3 issue: 1 year: 2006 ident: 120_CR29 publication-title: J Classif doi: 10.1007/s00357-006-0002-6 – volume: 39 start-page: 264 issue: 1 year: 2018 ident: 120_CR48 publication-title: Hum Brain Mapp doi: 10.1002/hbm.23841 – volume: 16 start-page: 645 issue: 3 year: 2005 ident: 120_CR36 publication-title: IEEE Transact Neural Netw. doi: 10.1109/TNN.2005.845141 – volume: 2006 start-page: 12014 year: 2006 ident: 120_CR59 publication-title: Int J Biomed Imag doi: 10.1155/IJBI/2006/12014 – volume: 57 start-page: 145 issue: 1–2 year: 2004 ident: 120_CR2 publication-title: Mach Learn doi: 10.1023/B:MACH.0000035475.85309.1b – volume: 34 start-page: 1866 issue: 10 year: 2013 ident: 120_CR43 publication-title: Am J Neuroradiol doi: 10.3174/ajnr.A3263 – volume: 11 start-page: 171 issue: 2 year: 2007 ident: 120_CR57 publication-title: Knowl Inf Syst doi: 10.1007/s10115-006-0022-x – volume: 38 start-page: 1857 issue: 11 year: 2005 ident: 120_CR20 publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2005.01.025 – ident: 120_CR21 – volume: 4 start-page: 162 year: 2015 ident: 120_CR33 publication-title: Springer Plus doi: 10.1186/s40064-015-0817-x – start-page: 201 volume-title: Unsupervised learning of brain states from fMRI data, medical image computing and computer-assisted intervention–MICCAI 2010 Lecture Notes in Computer Science year: 2010 ident: 120_CR25 – ident: 120_CR61 doi: 10.1007/3-540-36175-8_8 – ident: 120_CR10 – volume: 3 start-page: 28 year: 2014 ident: 120_CR11 publication-title: Giga Sci doi: 10.1186/2047-217X-3-28 – volume: 33 start-page: 759 issue: 11 year: 2007 ident: 120_CR31 publication-title: IEEE Trans Software Eng doi: 10.1109/TSE.2007.70732 – volume: 9 start-page: e106735 issue: 9 year: 2014 ident: 120_CR53 publication-title: PLoS ONE doi: 10.1371/journal.pone.0106735 – ident: 120_CR37 – volume: 4 start-page: 575 issue: 8 year: 2014 ident: 120_CR62 publication-title: Brain Connect doi: 10.1089/brain.2013.0221 – volume: 10 start-page: 424 issue: 9 year: 2006 ident: 120_CR4 publication-title: Trends Cognit Sci doi: 10.1016/j.tics.2006.07.005 – volume: 38 start-page: 4479 issue: 9 year: 2017 ident: 120_CR47 publication-title: Hum Brain Mapp doi: 10.1002/hbm.23676 – volume: 139 start-page: 7 issue: 1–3 year: 2012 ident: 120_CR12 publication-title: Schizophr Res doi: 10.1016/j.schres.2012.04.021 – ident: 120_CR18 doi: 10.5120/8282-1278 – volume: 45 start-page: 2668 issue: 12 year: 2015 ident: 120_CR8 publication-title: IEEE Transact Cybernet doi: 10.1109/TCYB.2014.2379621 – volume: 45 start-page: S199 issue: 1 year: 2009 ident: 120_CR27 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.11.007 – volume: 8 start-page: e76315 issue: 10 year: 2013 ident: 120_CR15 publication-title: PLoS ONE doi: 10.1371/journal.pone.0076315 – volume: 22 start-page: 177 issue: 3 year: 2004 ident: 120_CR58 publication-title: Artif Intell Rev doi: 10.1007/s10462-004-0751-8 – volume: 4 start-page: 741 issue: 9 year: 2014 ident: 120_CR46 publication-title: Brain Connect doi: 10.1089/brain.2014.0300 – volume: 35 start-page: 945 issue: 4 year: 2002 ident: 120_CR32 publication-title: Pattern Recogn doi: 10.1016/S0031-3203(01)00086-3 – volume: 60 start-page: 2472 issue: 9 year: 2013 ident: 120_CR19 publication-title: IEEE Transact Bio-Med Engin doi: 10.1109/TBME.2013.2258344 – volume: 27 start-page: 1472 issue: 10 year: 2008 ident: 120_CR14 publication-title: IEEE Trans Med Imag doi: 10.1109/TMI.2008.923987 – volume: 7 start-page: 248 issue: 3 year: 2015 ident: 120_CR1 publication-title: IEEE Transact Autonom Mental Devel doi: 10.1109/TAMD.2015.2434733 – volume: 38 start-page: 2843 issue: 6 year: 2017 ident: 120_CR55 publication-title: Hum Brain Mapp doi: 10.1002/hbm.23551 – volume: 4 start-page: 13 year: 2010 ident: 120_CR51 publication-title: Front Syst Neurosci – ident: 120_CR54 – volume: 215 start-page: 71 issue: 1 year: 2013 ident: 120_CR41 publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2013.02.015 – start-page: 63 volume-title: Spectral analysis of fMRI signal and noise, novel trends in brain science year: 2008 ident: 120_CR40 doi: 10.1007/978-4-431-73242-6 – volume: 9 start-page: e88476 issue: 3 year: 2014 ident: 120_CR49 publication-title: PLoS ONE doi: 10.1371/journal.pone.0088476 – volume: 7 start-page: 670 year: 2013 ident: 120_CR7 publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2013.00670 – volume: 28 start-page: 663 issue: 3 year: 2005 ident: 120_CR6 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.08.009 – volume: 56 start-page: 281 issue: 3 year: 2010 ident: 120_CR30 publication-title: Int J Electron Telecommunicat doi: 10.2478/v10177-010-0037-9 – volume: 8 start-page: 700 issue: 9 year: 2007 ident: 120_CR45 publication-title: Nat Rev Neurosci doi: 10.1038/nrn2201 – volume: 6 start-page: 178 year: 2012 ident: 120_CR26 publication-title: Front Neurosci doi: 10.3389/fnins.2012.00178 – volume: 80 start-page: 360 year: 2013 ident: 120_CR42 publication-title: Neuro Image  | 
    
| SSID | ssj0001600396 | 
    
| Score | 2.2040534 | 
    
| Snippet | Various machine-learning classification techniques have been employed previously to classify brain states in healthy and disease populations using functional... Abstract Various machine-learning classification techniques have been employed previously to classify brain states in healthy and disease populations using...  | 
    
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref springer  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 19 | 
    
| SubjectTerms | Algorithms Artificial Intelligence Brain Brain networks and dynamic connectivity Cluster analysis Clustering Cognitive ability Cognitive impairment and alzheimer’s disease Cognitive Psychology Computation by Abstract Devices Computer Science Data analysis DBSCAN Density Diagnostic systems Functional MRI Health Informatics Impairment Machine learning Magnetic resonance imaging Medical imaging Neurosciences Noise OPTICS Outliers (statistics) Prediction models Robustness Unsupervised learning and clustering Vector quantization  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8ABAeWxUJCREBcaNXb8iI_lURWkckBU6s1y_BArLdmq2QjtnR_OjJMNuwIVDlxyWDuJd2acmW88D0JeBi9ZLGUqXJmLajehaMCwh0tVJdAHxmeH29kndXouPl7Ii61WXxgTNpQHHgh3VEtvSnia9iYKpqs6OM68ETyEkLzK1UvL2myBqexdUZh0mjvLAaoGkMTqTcZMrY46QDF46s8xqZrBle9opVy8_08W5--Bk9Pp6W1ys28v3fq7Wyy2FNTJXXJntCzp8fCP7pEbsb1P9o9bQNXf1vQVzbGe2Ym-T368w7j11bpAJRaoX_RYLwFeQZeJYo7R3FPXBhqGfvUUtd_gNKRnnz9Qj9Exfug7QVPMtUE7umzQzQCPw5QV2vUNung6ip5eOkUpUUzLnF-hT_IBOT95_-XtaTH2Yyi8kJIXTJkQdZVESoILrQCUG2FKp72LKcooqqpswEKTUanSGe0Va-CDGoTgrFKOVQ_JXrts42NCAZeGAPOElk4A5GlUNB4sCZci91LqGWEbflg_FivHnhkLm0FLrezAQws8tJmHls_I6-mey6FUx7Wz3yCbp5lYZjv_AMJnR-GzfxO-GTnYCIkd935ngTSA-2WJwy-mYdi1eBTj2rjscY7CA-lSsBl5NMjUtJIKbVzG1IzoHWnbWeruSDv_miuDa2UAMMOdhxu5_LWs60hxOMnuP1Duyf-g3FNyi-P-Y6zg6oDsra76-AzMu1XzPO_kn5KxSDs priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wB7QMD4CAxkJMQLixY7tpM8ILTBpoG0Ck1M2lvk2M6oVJKubYT6zh_OnfNRKlDFSx4ap3VzZ9_9zne_I-SNNZK5SJahjjypdmHDAhx7uMRxCfYgMz7gdjFW51fiy7W83iHjvhYG0yr7PdFv1LY2GCM_4iIBNCXBYn6Y3YbYNQpPV_sWGrprrWDfe4qxO2SXIzPWiOyenI6_Xq6jLgqLUX3HOUDbAJ5Y2lfSpOpoAegGswE4FlszuPINa-VJ_f_lif6dUDmcqu6Ru00106ufejr9w3CdPSD3O4-THrcq8pDsuOoR2T-uAG3_WNG31OeA-uD6Pvn1CfPZl6sQjZulZtogjwL8BK1LirVHE0N1Zalt-9hTtIptMJFeXH6mBrNmTNuPgpbOc4YuaF1g-AG-DktZ6KIpMPSzoBgBpkP2EsVyzckcY5WPydXZ6beP52HXpyE0QkoeMpVZl8SlKEsBYlIA1jORRTox2pVOOhHHUQGem3RKRTpLjGIFbLRWCM5ipVn8hIyqunLPCAW8ai2ME4nUAqBQoVxmwMPQpeNGyiQgrJdHbjoSc-ylMc09mElV3sowBxnmXoY5D8i74ZlZS-GxdfQJinkYifTb_oN6fpN3qzlPpckiUPHEZE6wJE6t5sxkgltrS6NkQA56Jcm7PWGRrzU4IK-H27Ca8YhGV65ucIzCg-pIsIA8bXVqmEmMvi9jKiDJhrZtTHXzTjX57hnDE5UBkIYnD3u9XE9r26s4HHT3P97c8-1_-gW5x3FlMRZydUBGy3njXoJDtyxedav0NxmRRhI priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LbtQw0ELlABx4tDwCBRkJcaER8Ts5lkJVkMoBUam3yLGdstKSVJuN0N75cGacB6yoKrjkEDuO5ZnxvGcIeeWdYiFTdWqzWFS78mkFgj08hKiBHxQuGtxOP-uTM_npXJ2PSWHdFO0-uSTjTR3JOtdvO1A90FXPMROawRMu3psgf3Bs2HA05jhEy4rGhNPYVQ40alCQWD5ly1y5zBZHioX7r5I2_w6anD2nd8itvrm0mx92ufyDOR3fJ3dHqZIeDmjwgNwIzS7ZO2xAo_6-oa9pjPOMBvRdcm9q5EBHut4jP99jGPt6kyJP89QteyyfAH-lbU0x5WjhqG089UP7eorMcLAh0tMvH6nDYBk3tKGgdYilQjvaVmh1gOUwg4V2fYUWn46i4ZfOQUsUszQXKzRRPiRnxx--Hp2kY3uG1EmleMp04YMRtaxryaXRoKMXssiscTbUQQUpRFaBwKaC1pktjNOsgvvVS8mZ0JaJR2SnaZvwhFBQU72HedIoK0EDqnQoHAgWtg7cKWUSwiYQlW6sXY4tNJZl1GFyXQ5gLQGsZQRryRPyZv7mcqjcce3sdwj5eSZW3Y4v2tVFORJxmStXZIDZxhVBMiNybzlzheTe-9pplZD9CW_K8SroSjgaIbAuIAy_nIeBiNEzY5vQ9jhHo386kywhjwc0m3ciUORlTCfEbCHg1la3R5rFt1go3OgC9Gf48mBC1d_buu4oDmZ0_oeTe_p_qz8jtzkSH2Mp1_tkZ73qw3OQ69bVi0jGvwDQrUJr priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3bbtMw1Jq6B-CB27gUBjIS4oWlix3baR7LZRpIqxCi0niKHNsZ1bqkahqh8syHc45zgcI0gcRLFNUniXt0fO4XQp5bI5kLZR7o0DfVzmyQgWIPlyjKQR4kxjvcTqbqeCben8rTHTLtamGyZjBCq7CZatSFJ3GYlOfc65U254dLmzcHfqwOKzBKMIjPsUaawRVY8q6SoJsPyO5s-mHyGSfMgXUNxpJ3-LX3XHVVNJe-ZEtS-Yb-l2mhfyZT9hHVG-RaXSz15qteLH4RWke3SNn93SZX5XxUr7OR-fZbJ8j_h4_b5Gar39JJQ5B3yI4r7pK9SQG2_cWGvqA-49S78vfI9zeYPb_eBChKLTWLGrs2wHdpmVOsdJobqgtL7abQF3CPMrhxXdKTj--owRwd00y_oLnzHUorWmbo7IDXYeEMreoMHU0VRX8z7XOlKBaHzlfoGb1HZkdvP70-DtqpEIERUvKAqcS6OMpFngsuYuUynogk1LHRLnfSiSgKM9ATpVMq1ElsFMuArVshOIuUZtF9MijKwj0kFKxjawFOxFILMLwy5RID-ozOHTdSxkPCOgpITdsyHSd3LFJvOo1V2qA6BVSnHtUpH5KX_TPLpmHIldCvkLB6SGz27X8oV2dpyzvSsTRJCAcqNokTLI7GVnNmEsGttblRckj2O7JMWw5UpYCaKMJ2hLD8rF8G3oEBIV24skYYhWHxULAhedBQcb-TCDVtxtSQxFv0vbXV7ZVi_sX3J49VAmY7PHnQEevPbV2FioP-tPwF5h79G_hjcp3jgWAs4GqfDNar2j0BdXKdPW15xA-MCmz_ priority: 102 providerName: Unpaywall  | 
    
| Title | Density-based clustering of static and dynamic functional MRI connectivity features obtained from subjects with cognitive impairment | 
    
| URI | https://link.springer.com/article/10.1186/s40708-020-00120-2 https://www.ncbi.nlm.nih.gov/pubmed/33242116 https://www.proquest.com/docview/2473385065 https://www.proquest.com/docview/2464605041 https://pubmed.ncbi.nlm.nih.gov/PMC7691406 https://braininformatics.springeropen.com/track/pdf/10.1186/s40708-020-00120-2 https://doaj.org/article/85c90e057c9e41738da21c942dddfc65  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 7 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2198-4026 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001600396 issn: 2198-4026 databaseCode: KQ8 dateStart: 20140101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2198-4026 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001600396 issn: 2198-4026 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2198-4026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001600396 issn: 2198-4026 databaseCode: ADMLS dateStart: 20160301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2198-4026 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001600396 issn: 2198-4026 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2198-4026 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001600396 issn: 2198-4026 databaseCode: RPM dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2198-4026 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001600396 issn: 2198-4026 databaseCode: BENPR dateStart: 20141201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2198-4026 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001600396 issn: 2198-4026 databaseCode: 8FG dateStart: 20141201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2198-4026 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0001600396 issn: 2198-4026 databaseCode: M48 dateStart: 20140901 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 2198-4026 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001600396 issn: 2198-4026 databaseCode: AAJSJ dateStart: 20141201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2198-4026 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001600396 issn: 2198-4026 databaseCode: C24 dateStart: 20141201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2198-4026 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001600396 issn: 2198-4026 databaseCode: C6C dateStart: 20141201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf28QA8IGB8FEZlJLQXFhY7ttM8INSVlYHUapqoNJ4ix3agUkm7fgj6zh_OnfMBFdW0F0uNncS173L3O98HIa-tkcyFMg906JNqZzbIQLGHJopykAeJ8Qa3wVCdj8TnK3m1Q2p322oBF1uhHdaTGs0nb39dr98Dw7_zDN9RJwsAJXiIzzFGmkHLj2bXARaWwgPYqsrGLtkH4ZVgdYdBhQC8GUZhdKovQQfwG9AU69ShNVufvCG-fJb_barp_x6WzTHrPXJnVcz0-qeeTP6RZP0H5H6lgtJuSTMPyY4rHpGDbgHw-8eaHlHvFOqt7Qfk9wd0cF-uA5R2lprJChMrwCvoNKcYjDQ2VBeW2rKwPUUxWVoX6eDyEzXoRmPKAhU0dz6J6IJOM7RHwOMwtoUuVhnaghYUTcK0cWeiGL85nqPx8jEZ9c--9M6DqnBDYISUPGAqsS6OcpHngotYAXpPRBLq2GiXO-lEFIUZqHLSKRXqJDaKZfDltUJwFinNoidkr5gW7hmhAGCthXEilloANsqUSwyoHDp33EgZtwir9yM1VVZzLK4xST266ai03MMU9jD1e5jyFnnT3DMrc3rcOPoUt7kZifm4_YXp_FtasXfakSYJgeZjkzjB4qhjNWcmEdxamxslW-SwJpK0pvEUliaKMGMgdL9quoG98cxGF266wjEKT65DwVrkaUlTzUwiVIYZUy0Sb1DbxlQ3e4rxd59CPFYJIGu487imy7_TumkpjhvavcXKPb_Fv3pB7nJkL8YCrg7J3nK-ci9BzVtmbbLb6X9sk_3Ts-HFJfzqcYGt6rW94aTtGRn6R8OL7tc_a2ZS9Q | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfG9jB4QMD4KAwwEvDCotWO7TQPE9rYppWtFZo2aW_BsR2o1CWlaTX1nb-Lv407N0mpQBUve4mqxkmc3Pnufuf7IOStNZK5tswC3fZFtVMbpGDYwyEMM9AHsfEOt15fnVyKz1fyao38qnNhMKyyloleUNvCoI98l4sI0JQEjflx9CPArlG4u1q30NBVawW750uMVYkdp252AxCu3OseAr3fcX58dPHpJKi6DARGSMkDpmLrojATWSbgIQqgZizito6MdpmTTgDiT8HukE6pto4jo1gKYsIKwVmoNAvhvnfIhghFDOBv4-Co_-V84eVRmPzqO9wBugewxjp15k5H7ZaApjD6gGNyN4MjX9KOvonAvyzfvwM4m13ce2Rzmo_07EYPh38oyuMH5H5l4dL9OUs-JGsuf0S29nNA99cz-p76mFPvzN8iPw8xfn4yC1CZWmqGU6zbAI-gRUYx12lgqM4ttbNcX8Nv1MJz5yXtnXepwSgdM-9_QTPna5SWtEjR3QG3w9QZWk5TdDWVFD3OtImWopgeOhijb_QxubwVij0h63mRu2eEAj62FsaJSGoB0CtVLjZg0ejMcSNl1CKspkdiqqLp2LtjmHjw1FHJnIYJ0DDxNEx4i3xorhnNS4asHH2AZG5GYrlv_0cx_pZU0iPpSBO3YUlFJnaCRWHHas5MLLi1NjNKtsh2zSRJJYPKZLFiWuRNcxqkB24J6dwVUxyjcGO8LViLPJ3zVDOTEG1txlSLREvctjTV5TP54LuvUB6pGIA7XLlT8-ViWqs-xU7Du__x5Z6vfunXZPPkoneWnHX7py_IXY6rjLGAq22yPhlP3UswJifpq2rFUvL1toXEb963gSI | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LbtQw0EJFAnrg0dKyUMBIiAuNGsePbI6lZdUCrRCiUm-W4westCSrfQjtnQ9nxnnQFVUFlxxix7E8M573DCGvnZXMpzIkJo1FtUuXlCDYw4PzAPygsNHgdnauTi7Eh0t5eSWLP0a7dy7JJqcBqzRVi4OpCw2JD9XBHNQQdNtnmBXN4AmX8G0B3A1J86jNd4hWFoXJp7HDHGjXoCyxYZc5c-0ya9wpFvG_TvL8O4Cy96JukrvLampWP81kcoVRjR6S-62ESQ8blHhEbvlqi2wfVqBd_1jRNzTGfEZj-hZ50DV1oC2Nb5NfxxjSvlglyN8ctZMlllKAv9I6UEw_GltqKkdd08qeImNs7In07MsptRg4Y5uWFDT4WDZ0TusSLRCwHGaz0PmyROvPnKIRmPYBTBQzNsczNFc-Jhej91-PTpK2VUNihZRZwlThfM6DCEFkIlegrxeiSE1ujQ9eesF5WoLwJr1SqSlyq1gJd60TImNcGcZ3yEZVV_4JoaCyOgfzRC6NAG2oVL6wIGSY4DMrZT4grAORtm0dc2ynMdFRnxkq3YBVA1h1BKvOBuRt_820qeJx4-x3CPl-Jlbgji_q2TfdErQeSlukgOW5LbxgOR86kzFbiMw5F6ySA7LX4Y1ur4W5hqPhHGsEwvCrfhgIGr00pvL1Euco9FWngg3IboNm_U44ir-MqQHJ1xBwbavrI9X4eywanqsCdGn4cr9D1T_buuko9nt0_oeTe_p_q78kdz4fj_Sn0_OPz8i9DOmQsSRTe2RjMVv65yDuLcoXkaJ_A0ehSZU | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3bbtMw1Jq6B-CB27gUBjIS4oWlix3baR7LZRpIqxCi0niKHNsZ1bqkahqh8syHc45zgcI0gcRLFNUniXt0fO4XQp5bI5kLZR7o0DfVzmyQgWIPlyjKQR4kxjvcTqbqeCben8rTHTLtamGyZjBCq7CZatSFJ3GYlOfc65U254dLmzcHfqwOKzBKMIjPsUaawRVY8q6SoJsPyO5s-mHyGSfMgXUNxpJ3-LX3XHVVNJe-ZEtS-Yb-l2mhfyZT9hHVG-RaXSz15qteLH4RWke3SNn93SZX5XxUr7OR-fZbJ8j_h4_b5Gar39JJQ5B3yI4r7pK9SQG2_cWGvqA-49S78vfI9zeYPb_eBChKLTWLGrs2wHdpmVOsdJobqgtL7abQF3CPMrhxXdKTj--owRwd00y_oLnzHUorWmbo7IDXYeEMreoMHU0VRX8z7XOlKBaHzlfoGb1HZkdvP70-DtqpEIERUvKAqcS6OMpFngsuYuUynogk1LHRLnfSiSgKM9ATpVMq1ElsFMuArVshOIuUZtF9MijKwj0kFKxjawFOxFILMLwy5RID-ozOHTdSxkPCOgpITdsyHSd3LFJvOo1V2qA6BVSnHtUpH5KX_TPLpmHIldCvkLB6SGz27X8oV2dpyzvSsTRJCAcqNokTLI7GVnNmEsGttblRckj2O7JMWw5UpYCaKMJ2hLD8rF8G3oEBIV24skYYhWHxULAhedBQcb-TCDVtxtSQxFv0vbXV7ZVi_sX3J49VAmY7PHnQEevPbV2FioP-tPwF5h79G_hjcp3jgWAs4GqfDNar2j0BdXKdPW15xA-MCmz_ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Density-based+clustering+of+static+and+dynamic+functional+MRI+connectivity+features+obtained+from+subjects+with+cognitive+impairment&rft.jtitle=Brain+informatics&rft.au=Rangaprakash%2C+D&rft.au=Odemuyiwa%2C+Toluwanimi&rft.au=Narayana+Dutt%2C+D&rft.au=Deshpande%2C+Gopikrishna&rft.date=2020-11-26&rft.issn=2198-4018&rft.eissn=2198-4026&rft.volume=7&rft.issue=1&rft.spage=19&rft_id=info:doi/10.1186%2Fs40708-020-00120-2&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-4018&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-4018&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-4018&client=summon |