Effects of Supplemental Lighting within the Canopy at Different Developing Stages on Tomato Yield and Quality of Single-Truss Tomato Plants Grown at High Density
The single truss tomato production system (STTPS) was used to grow tomato plants at a density of 14.3 plants·m−2 for increasing the tomato yield in Japan. We applied supplemental lighting within the canopy at different tomato development stages to identify the most sensitive stage at which supplemen...
Saved in:
Published in | Environment control in biology Vol. 50; no. 1; pp. 1 - 11 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Japanese Society of Agricultural, Biological and Environmental Engineers and Scientists
2012
|
Subjects | |
Online Access | Get full text |
ISSN | 1880-554X 1883-0986 |
DOI | 10.2525/ecb.50.1 |
Cover
Abstract | The single truss tomato production system (STTPS) was used to grow tomato plants at a density of 14.3 plants·m−2 for increasing the tomato yield in Japan. We applied supplemental lighting within the canopy at different tomato development stages to identify the most sensitive stage at which supplemental lighting will most effectively increase yield and quality of tomato fruits. Fluorescent lamps were used to supply intra-canopy lighting to tomato plants (5:00–21:00) during the stages of anthesis (stage 1), rapid fruit development (stage 2), fruit ripening (stage 3), and from initial anthesis to red-ripe fruit (whole stage), respectively. Supplemental lighting applied to tomato plants during stage 2 and whole stage significantly increased the yield and sugar content of tomato fruits. Moreover, the contribution of supplemental lighting to the daily increase of tomato yield was highest at stage 2. The increase of fruit fresh weight and amount of supplemental lighting showed positive linear relationship. Supplemental lighting did not affect the ascorbic acid content of tomato fruits, fruit number per plant, and plant shoot weight among all the treatments. Thus, based on economic advantage, the use of supplemental lighting during the rapid fruit development stage of tomato plants under STTPS was most efficient. |
---|---|
AbstractList | The single truss tomato production system (STTPS) was used to grow tomato plants at a density of 14.3 plants·m−2 for increasing the tomato yield in Japan. We applied supplemental lighting within the canopy at different tomato development stages to identify the most sensitive stage at which supplemental lighting will most effectively increase yield and quality of tomato fruits. Fluorescent lamps were used to supply intra-canopy lighting to tomato plants (5:00–21:00) during the stages of anthesis (stage 1), rapid fruit development (stage 2), fruit ripening (stage 3), and from initial anthesis to red-ripe fruit (whole stage), respectively. Supplemental lighting applied to tomato plants during stage 2 and whole stage significantly increased the yield and sugar content of tomato fruits. Moreover, the contribution of supplemental lighting to the daily increase of tomato yield was highest at stage 2. The increase of fruit fresh weight and amount of supplemental lighting showed positive linear relationship. Supplemental lighting did not affect the ascorbic acid content of tomato fruits, fruit number per plant, and plant shoot weight among all the treatments. Thus, based on economic advantage, the use of supplemental lighting during the rapid fruit development stage of tomato plants under STTPS was most efficient. The single truss tomato production system (STTPS) was used to grow tomato plants at a density of 14.3 plants m-2 for increasing the tomato yield in Japan. We applied supplemental lighting within the canopy at different tomato development stages to identify the most sensitive stage at which supplemental lighting will most effectively increase yield and quality of tomato fruits. Fluorescent lamps were used to supply intra-canopy lighting to tomato plants (5:00-21:00) during the stages of anthesis (stage 1), rapid fruit development (stage 2), fruit ripening (stage 3), and from initial anthesis to red-ripe fruit (whole stage), respectively. Supplemental lighting applied to tomato plants during stage 2 and whole stage significantly increased the yield and sugar content of tomato fruits. Moreover, the contribution of supplemental lighting to the daily increase of tomato yield was highest at stage 2. The increase of fruit fresh weight and amount of supplemental lighting showed positive linear relationship. Supplemental lighting did not affect the ascorbic acid content of tomato fruits, fruit number per plant, and plant shoot weight among all the treatments. Thus, based on economic advantage, the use of supplemental lighting during the rapid fruit development stage of tomato plants under STTPS was most efficient. |
Author | MARUO, Toru ITO, Yoshikazu LU, Na JOHKAN, Masahumi ICHIMURA, Takuya SHINOHARA, Yutaka TSUKAGOSHI, Satoru HOHJO, Masaaki |
Author_xml | – sequence: 1 fullname: ITO, Yoshikazu organization: Center for Environment, Health and Field Sciences, Chiba University – sequence: 1 fullname: HOHJO, Masaaki organization: Center for Environment, Health and Field Sciences, Chiba University – sequence: 1 fullname: LU, Na organization: Graduate School of Horticulture, Chiba University – sequence: 1 fullname: MARUO, Toru organization: Graduate School of Horticulture, Chiba University – sequence: 1 fullname: SHINOHARA, Yutaka organization: Graduate School of Horticulture, Chiba University – sequence: 1 fullname: JOHKAN, Masahumi organization: Graduate School of Horticulture, Chiba University – sequence: 1 fullname: TSUKAGOSHI, Satoru organization: Center for Environment, Health and Field Sciences, Chiba University – sequence: 1 fullname: ICHIMURA, Takuya organization: Development Group of Industrial Film Development Center, Mitsubishi Plastics, Inc., Nagoya |
BookMark | eNptkc9qGzEQxkVJoWkS6CPo2Mu6knZla-mpOH_B0IS4kJyEVjuyVWRpK2kT_Dh908hx415ymRmG3_fNMPMZHfngAaEvlEwYZ_wb6G7CyYR-QMdUiLoirZgevdak4rx5-ITOUrIdIc204TPSHqO_F8aAzgkHg-_HYXCwAZ-Vwwu7WmfrV_jZ5rX1OK8Bz5UPwxarjM9tkcVC4nN4AheGHXmf1QqKk8fLsFE54EcLrsfK9_huVM7m7euUgjqolnFM6Q28dcqXHa5iePY7--syvDj7VDSn6KNRLsHZv3yCfl1eLOfX1eLn1c38x6LSDee0MrOmZr3SbSsMazVrKHSkE70ypilNIzh09ZQzYGzWt4L0bdMJAi0jgveqh_oEfd37DjH8GSFlubFJgyurQRiTpLScuGaEiIJO9qiOIaUIRmqbVbbB56isk5TI3TtkeYfkRNL_3gfBEO1Gxe176Pc9-jvtznkAVcxWOziA-_DW1WsVJfj6BfKUpXs |
CitedBy_id | crossref_primary_10_1007_s13580_019_00215_8 crossref_primary_10_1039_D1EE03474J crossref_primary_10_1016_j_ecoenv_2017_05_038 crossref_primary_10_3389_fpls_2022_831314 crossref_primary_10_3390_f14030579 crossref_primary_10_3389_fpls_2016_01832 crossref_primary_10_12719_KSIA_2024_36_3_229 crossref_primary_10_2503_jjshs1_82_317 crossref_primary_10_1016_j_scienta_2017_04_026 crossref_primary_10_3389_fpls_2021_596927 crossref_primary_10_3390_plants10071437 crossref_primary_10_2525_ecb_58_59 crossref_primary_10_1371_journal_pone_0206592 crossref_primary_10_2503_hortj_QH_029 crossref_primary_10_3390_ijms22052687 crossref_primary_10_2503_hortj_UTD_167 crossref_primary_10_3390_horticulturae8050423 crossref_primary_10_3390_agronomy10071002 crossref_primary_10_2478_johr_2023_0034 crossref_primary_10_3390_plants10091834 crossref_primary_10_17660_ActaHortic_2022_1337_5 crossref_primary_10_3390_agronomy10020237 crossref_primary_10_2503_hortj_OKD_060 crossref_primary_10_1002_fes3_83 crossref_primary_10_1080_19315260_2014_937022 crossref_primary_10_2525_ecb_50_63 crossref_primary_10_3390_agronomy12081878 crossref_primary_10_1371_journal_pone_0267989 crossref_primary_10_17660_ActaHortic_2018_1227_67 crossref_primary_10_2525_ecb_60_61 |
Cites_doi | 10.1093/jxb/29.4.815 10.2503/jjshs.64.291 10.17660/ActaHortic.2006.711.39 10.1007/s100870050017 10.21273/HORTTECH.1.1.110 10.17660/ActaHortic.1999.481.54 10.1080/00221589.1992.11516215 10.1016/S0304-4238(98)00097-1 10.2503/jjshs.46.487 10.21273/JASHS.114.5.746 10.17660/ActaHortic.2006.711.6 10.1016/j.scienta.2010.12.008 10.1002/j.1537-2197.1951.tb14849.x 10.2503/jjshs.69.69 10.21273/JASHS.134.4.460 10.1016/0304-4238(87)90066-5 10.1016/j.scienta.2004.04.003 10.1016/j.scienta.2007.11.010 10.1093/jxb/erj136 10.1080/14620316.1989.11515961 10.17660/ActaHortic.1994.361.6 10.2503/jjshs.60.319 10.1016/S0309-1708(02)00094-5 10.1016/0304-4238(88)90109-4 10.13031/2013.29200 |
ContentType | Journal Article |
Copyright | 2012 Japanese Society of Agricultural, Biological and Environmental Engineers and Scientists |
Copyright_xml | – notice: 2012 Japanese Society of Agricultural, Biological and Environmental Engineers and Scientists |
DBID | AAYXX CITATION 7SN 7ST 7TV C1K SOI |
DOI | 10.2525/ecb.50.1 |
DatabaseName | CrossRef Ecology Abstracts Environment Abstracts Pollution Abstracts Environmental Sciences and Pollution Management Environment Abstracts |
DatabaseTitle | CrossRef Ecology Abstracts Pollution Abstracts Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Ecology Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology Botany |
EISSN | 1883-0986 |
EndPage | 11 |
ExternalDocumentID | 10_2525_ecb_50_1 article_ecb_50_1_50_1_article_char_en |
GeographicLocations | Japan |
GeographicLocations_xml | – name: Japan |
GroupedDBID | 2WC 53G 5GY ACIWK ACPRK AFRAH ALMA_UNASSIGNED_HOLDINGS JSF JSH KQ8 OK1 RJT RZJ AAYXX CITATION 7SN 7ST 7TV C1K SOI |
ID | FETCH-LOGICAL-c4551-f7432dac998f29c241eb0b8daff4c99f85eb3652e227d980d94b80e92085dade3 |
ISSN | 1880-554X |
IngestDate | Fri Jul 11 02:56:27 EDT 2025 Tue Jul 01 04:08:12 EDT 2025 Thu Apr 24 23:00:56 EDT 2025 Wed Sep 03 06:25:35 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4551-f7432dac998f29c241eb0b8daff4c99f85eb3652e227d980d94b80e92085dade3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/ecb/50/1/50_1/_article/-char/en |
PQID | 1125232008 |
PQPubID | 23462 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1125232008 crossref_citationtrail_10_2525_ecb_50_1 crossref_primary_10_2525_ecb_50_1 jstage_primary_article_ecb_50_1_50_1_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-00-00 |
PublicationDateYYYYMMDD | 2012-01-01 |
PublicationDate_xml | – year: 2012 text: 2012-00-00 |
PublicationDecade | 2010 |
PublicationTitle | Environment control in biology |
PublicationTitleAlternate | Environ. Control Biol. |
PublicationYear | 2012 |
Publisher | Japanese Society of Agricultural, Biological and Environmental Engineers and Scientists |
Publisher_xml | – name: Japanese Society of Agricultural, Biological and Environmental Engineers and Scientists |
References | Scholberg, J., McNeal, B. L., Jones, J. W., Boote, K. J., Stanley, C. D., Obreza, T. A. 2000. Field-growth tomato: Growth and canopy characteristics of field-growth tomato. Agronomy Journal 92: 152–159. Shishido, Y., Yun, C. J., Yuhashi, T., Seyama, N., Imada, S. 1991. Changes in photosynthesis, translocation and distribution of14-C-assimilates during leaf development and the rate of contribution of each leaf to fruit growth in tomato. (in Japanese with English summary) J. Japan. Soc. Hort. Sci. 59: 771–779. McAvoy, R. J., Janes, H. W. 1988. Alternative production strategies for greenhouse tomatoes using supplemental lighting. Sci. Hortic. 35: 161–166. Fitz-Rodríguez, E., Giacomelli, G. A. 2009. Yield prediction and growth mode characterization of greenhouse tomatoes with neural networks and fuzzy logic. Trans. ASABE 52: 2115–2128. Somers, G. F., Kelly, W. C., Hamner, K. C. 1951. Influence of nitrate supply upon the ascorbic content of tomatoes. Am. J. Bot. 38: 472–475. Torres, C. A., Andrews, P. K., Davies, N. M. 2006. Physiological and biochemical responses of fruit exocarp of tomato (Lycopersicon esculentum Mill.) mutants to natural photo-oxidative conditions. J. Exp. Bot. 57: 1933–1947. Demers, D. A., Gosselin, A. 1999. Supplemental lighting of greenhouse vegetables: Limitations and problems related to long photoperiods. Acta Hort. 481: 469–473. Ting, K. C., Giacomelli, G. A., Fang, W. 1993. Decision support system for single truss tomato production. XXV CIOSTA — CIGR V Congress, Wageningen, The Netherlands. Massot, C., Génard, M., Stevens, R., Gautier, H. 2010. Fluctuations in sugar content are not determinant in explaining variations in vitamin C in tomato fruit. Plant Physiol. Biochem. 48: 751–757. Porporato, A., D'Odorico, P., Laio, F., Rodriguez-Iturbea, I. 2003. Hydrologic controls on soil carbon and nitrogen cycles. I. Modeling scheme. Advances in Water Resources 26: 45–58. Yanagi, T., Ueda, E., Sato, H., Hirai, H., Oda, Y. 1995. Effects of shading and fruit set order on fruit quality in single truss tomato. (in Japanese with English summary) J. Japan. Soc. Hort. Sci. 64: 291–297. Yasuba, K.-I., Suzuki, K., Sasaki, H., Higashide, T., Takaichi, M. 2011. Fruit yield and environmental condition under integrative environmental condition for high yield production at long-term culture of tomato. (in Japanese with English abstract) Bull. Natl. Inst. Veg. Tea Sci. 10: 85–93. Shishido, Y., Hori, Y. 1991. The role of leaf as affected by phyllotaxis and leaf histology on the development of the fruit in tomato. (in Japanese with English summary) J. Japan. Soc. Hort. Sci. 60: 319–327. Demers, D. A., Dorais, M., Wien, C. H., Gosselin, A. 1998. Effects of supplemental light duration on greenhouse tomato (Lycopersicon esculentum Mill.) plants and fruit yields. Sci. Hortic. 74: 295–306. Gautier, H., Diakou-Verdin, V., Bénard, C., Reich, M., Buret, M., Bourgaud, F., Poëssel, J., Caris-Veyrat, C., Génard, M. 2008. How does tomato quality (sugar, acid, and nutritional quality) vary with ripening stage, temperature, and irradiance. J. Agric. Food Chem. 56: 1241–1250. Mc Collum, J. P. 1946. Some factors affecting the ascorbic acid content of tomatoes. Proc. Am. Soc. Hort. Sci. 45: 382–386. Higashide, T., Heuvelink, E. 2009. Physiological and morphological changes over the past 50 years in yield components in tomato. J. Am. Soc. Hort. Sci. 134: 460–465. Gunnlaugsson, B., Adalsteinsson, S. 2006. Interlight and plant density in year-round production of tomato at northern latitudes. Acta Hort. 711: 71–75. McAvoy, R. J., Janes, H. W. 1989. Tomato plant photosynthetic activity as related to canopy age and tomato development. J. Am. Soc. Hort. Sci. 114: 478–482. Okano, K., Sakamoto, Y., Watanabe, S.-I. 2001. Source-sink relationship of13-C-photosynthates in single-truss tomato. (in Japanese with English synopsis) Bull. Natl. Inst. Veg. Tea Sci. 16: 351–361. Ho, L. C. 1996. Photoassimilate distribution in plants and crops: Source-sink relationships. In “Tomato” (ed. by Zamski, E., Schaffer, A. A.), Marcel Dekker Inc., New York, p 709–728. Hovi, T., Näkkilä, J., Tahvonen, R. 2004. Interlighting improves production of year-round cucumber. Sci. Hortic. 102: 283–294. McAvoy, R. J., Janes, H. W., Giacomelli, G. A., Giniger, M. S. 1989a. Validation of a computer model for a single truss tomato cropping system. J. Am. Soc. Hort. Sci. 114: 746–750. Giacomelli, G. A., Ting, K. C., Mears, D. R. 1994. Design of a single truss tomato production system (STTPS). Acta Hort. 361: 77–84. Kobayashi, S., Shimaji, H., Ikeda, H. 1998. A study on single-truss tomato production by hydroponics. II. Relationship between environmental parameters and plant growth. (in Japanese with English summary) J. Soc. Agr. Structures, Japan 28: 203–208. Demers, D. A., Gosselin, A. 2002. Growing greenhouse tomato and sweet pepper under supplemental lighting: Optimal photoperiod, negative effects of long photoperiod and their causes. Acta Hort. 580: 83–88. Cockshull, K. E., Graves, C. J., Cave, C. R. J. 1992. The influence of shading on yield of glasshouse tomatoes. J. Hortic. Sci. 67: 11–24. Grimstad, S. O. 1987. Supplementary lighting of early tomatoes after planting out in glass and acrylic greenhouses. Sci. Hortic. 33: 189–196. Gautier, H., Massot, C., Stevens, R., Sérino, S., Génard, M. 2009. Regulation of tomato fruit ascorbate content is more highly dependent on fruit irradiance than leaf irradiance. Ann. Bot. 103: 495–504. Matsuda, R., Nakano, A., Ahn, D.-H. Suzuki, K., Yasuba, K.-I., Takaichi, M. 2011a. Growth characteristic and sink strength of fruit at different CO2 concentrations in a Japanese and a Dutch tomato cultivar. Sci. Hortic. 127: 528–534. Kobayashi, S. 1999. A study on single-truss tomato production by hydroponics. III. Effects of plant density and number of leaf above the truss on plant growth and fruit yield. (in Japanese with English summary) J. Soc. Agr. Structures, Japan 30: 53–60. Hisaeda, K., Takayama, K., Nishina, H., Azuma, K., Arima, S. 2007. Studies on improvement of tomato productivity in large-scale greenhouse: Analysis of vertical distribution of light intensity and net CO2 fixation in tomato plant canopy. (in Japanese with English abstract) J. SHITA 19: 19–26. Hovi-Pekkanen, T., Tahvonen, R. 2008. Effects of interlighting on yield and external fruit quality in year-round cultivated cucumber. Sci. Hortic. 116: 152–161. Acock, B., Charles-Edwards, D. A., Fitter, D. J., Hand, D. W., Ludwig, L. J., Warren Wilson, J., Withers, A. C. 1978. The contribution of leaves from different levels within a tomato crop to canopy net photosynthesis: An experimental examination of two canopy models. J. Exp. Bot. 29: 815–827. Heuvelink, E., Dorais, M. 2005. Crop growth and yield. In “Tomatoes” (ed. by Heuvelink, E.), Crop production science in horticulture series 13. CABI Publishing, Wallingford, UK, p 85–144. Li, T.-L., Seino, T., Ohkawa, W., Kanahama, K. 2000. Relation between the vascular system and photosynthate translocation pathways in tomato plants. (in Japanese with English summary) J. Japan. Soc. Hort. Sci. 69: 69–75. Janes, H. W., McAvoy, R. J. 1991. Environmental control of a single-cluster greenhouse tomato crop. Hort. Technol. 1: 110–114. Hisatomi, T., Fujimoto, K. 1978. Studies on the single truss tomato culture I. Growth and yield for sowing at different dates over the year. J. Japan. Soc. Hort. Sci. 46: 487–494. McAvoy, R. J. 1984. Evaluation of a single flower cluster, high plant density greenhouse tomato crop system using high pressure sodium lights. Paper No. NAR84-405, ASAE, St. Joseph, MI 49085–9659, USA. McAvoy, R. J., Janes, H. W., Godfriaux, B. L., Secks, M., Duchai, D., Wittman, W. K. 1989b. The effect of total available photosynthetic photon flux on single truss tomato growth and production. J. Hortic. Sci. 64: 331–338. Kobayashi, S. 1997. A study on single-truss tomato production by hydroponics. I. Plant growth and fruit yield by different sowing dates over the year. J. Soc. Agr. Structures, Japan 27: 199–206. Trouwborst, G., Oosterkamp, J., Hogewoning, S. W., Harbinson, J., Ieperen, W. V. 2010. The responses of light interception, photosynthesis and fruit yield of cucumber to LED-lighting within the canopy. Physiologia Plantarum 138: 289–300. McAvoy, R. J., Janes, H. W., Giacomelli, G. A. 1989c. Development of a plant factory model: I. The organizational and operational model, II. A plant growth model: The single truss tomato crop. Acta Hort. 248: 85–94. Ménard, C., Dorais, M., Hovi, T., Gosselin, A. 2006. Developmental and physiological responses of tomato and cucumber to additional blue light. Acta Hort. 711: 291–296. Matsuda, R., Suzuki, K., Nakano, A., Higashide, T., Takaichi, M. 2011b. Responses of leaf photosynthesis and plant growth to altered source-sink balance in a Japanese and a Dutch tomato cultivar. Sci. Hortic. 127: 520–527. 22 23 24 25 26 27 28 29 30 31 10 32 11 33 12 34 13 35 14 36 15 37 16 38 17 39 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – reference: Grimstad, S. O. 1987. Supplementary lighting of early tomatoes after planting out in glass and acrylic greenhouses. Sci. Hortic. 33: 189–196. – reference: Gunnlaugsson, B., Adalsteinsson, S. 2006. Interlight and plant density in year-round production of tomato at northern latitudes. Acta Hort. 711: 71–75. – reference: Torres, C. A., Andrews, P. K., Davies, N. M. 2006. Physiological and biochemical responses of fruit exocarp of tomato (Lycopersicon esculentum Mill.) mutants to natural photo-oxidative conditions. J. Exp. Bot. 57: 1933–1947. – reference: Somers, G. F., Kelly, W. C., Hamner, K. C. 1951. Influence of nitrate supply upon the ascorbic content of tomatoes. Am. J. Bot. 38: 472–475. – reference: McAvoy, R. J., Janes, H. W., Giacomelli, G. A. 1989c. Development of a plant factory model: I. The organizational and operational model, II. A plant growth model: The single truss tomato crop. Acta Hort. 248: 85–94. – reference: Trouwborst, G., Oosterkamp, J., Hogewoning, S. W., Harbinson, J., Ieperen, W. V. 2010. The responses of light interception, photosynthesis and fruit yield of cucumber to LED-lighting within the canopy. Physiologia Plantarum 138: 289–300. – reference: Demers, D. A., Gosselin, A. 1999. Supplemental lighting of greenhouse vegetables: Limitations and problems related to long photoperiods. Acta Hort. 481: 469–473. – reference: Hisatomi, T., Fujimoto, K. 1978. Studies on the single truss tomato culture I. Growth and yield for sowing at different dates over the year. J. Japan. Soc. Hort. Sci. 46: 487–494. – reference: Hisaeda, K., Takayama, K., Nishina, H., Azuma, K., Arima, S. 2007. Studies on improvement of tomato productivity in large-scale greenhouse: Analysis of vertical distribution of light intensity and net CO2 fixation in tomato plant canopy. (in Japanese with English abstract) J. SHITA 19: 19–26. – reference: Hovi, T., Näkkilä, J., Tahvonen, R. 2004. Interlighting improves production of year-round cucumber. Sci. Hortic. 102: 283–294. – reference: Ménard, C., Dorais, M., Hovi, T., Gosselin, A. 2006. Developmental and physiological responses of tomato and cucumber to additional blue light. Acta Hort. 711: 291–296. – reference: Kobayashi, S. 1997. A study on single-truss tomato production by hydroponics. I. Plant growth and fruit yield by different sowing dates over the year. J. Soc. Agr. Structures, Japan 27: 199–206. – reference: Porporato, A., D'Odorico, P., Laio, F., Rodriguez-Iturbea, I. 2003. Hydrologic controls on soil carbon and nitrogen cycles. I. Modeling scheme. Advances in Water Resources 26: 45–58. – reference: Fitz-Rodríguez, E., Giacomelli, G. A. 2009. Yield prediction and growth mode characterization of greenhouse tomatoes with neural networks and fuzzy logic. Trans. ASABE 52: 2115–2128. – reference: Ting, K. C., Giacomelli, G. A., Fang, W. 1993. Decision support system for single truss tomato production. XXV CIOSTA — CIGR V Congress, Wageningen, The Netherlands. – reference: Gautier, H., Diakou-Verdin, V., Bénard, C., Reich, M., Buret, M., Bourgaud, F., Poëssel, J., Caris-Veyrat, C., Génard, M. 2008. How does tomato quality (sugar, acid, and nutritional quality) vary with ripening stage, temperature, and irradiance. J. Agric. Food Chem. 56: 1241–1250. – reference: Gautier, H., Massot, C., Stevens, R., Sérino, S., Génard, M. 2009. Regulation of tomato fruit ascorbate content is more highly dependent on fruit irradiance than leaf irradiance. Ann. Bot. 103: 495–504. – reference: Hovi-Pekkanen, T., Tahvonen, R. 2008. Effects of interlighting on yield and external fruit quality in year-round cultivated cucumber. Sci. Hortic. 116: 152–161. – reference: Janes, H. W., McAvoy, R. J. 1991. Environmental control of a single-cluster greenhouse tomato crop. Hort. Technol. 1: 110–114. – reference: Acock, B., Charles-Edwards, D. A., Fitter, D. J., Hand, D. W., Ludwig, L. J., Warren Wilson, J., Withers, A. C. 1978. The contribution of leaves from different levels within a tomato crop to canopy net photosynthesis: An experimental examination of two canopy models. J. Exp. Bot. 29: 815–827. – reference: Cockshull, K. E., Graves, C. J., Cave, C. R. J. 1992. The influence of shading on yield of glasshouse tomatoes. J. Hortic. Sci. 67: 11–24. – reference: Giacomelli, G. A., Ting, K. C., Mears, D. R. 1994. Design of a single truss tomato production system (STTPS). Acta Hort. 361: 77–84. – reference: Heuvelink, E., Dorais, M. 2005. Crop growth and yield. In “Tomatoes” (ed. by Heuvelink, E.), Crop production science in horticulture series 13. CABI Publishing, Wallingford, UK, p 85–144. – reference: Demers, D. A., Gosselin, A. 2002. Growing greenhouse tomato and sweet pepper under supplemental lighting: Optimal photoperiod, negative effects of long photoperiod and their causes. Acta Hort. 580: 83–88. – reference: Matsuda, R., Nakano, A., Ahn, D.-H. Suzuki, K., Yasuba, K.-I., Takaichi, M. 2011a. Growth characteristic and sink strength of fruit at different CO2 concentrations in a Japanese and a Dutch tomato cultivar. Sci. Hortic. 127: 528–534. – reference: McAvoy, R. J., Janes, H. W., Godfriaux, B. L., Secks, M., Duchai, D., Wittman, W. K. 1989b. The effect of total available photosynthetic photon flux on single truss tomato growth and production. J. Hortic. Sci. 64: 331–338. – reference: Ho, L. C. 1996. Photoassimilate distribution in plants and crops: Source-sink relationships. In “Tomato” (ed. by Zamski, E., Schaffer, A. A.), Marcel Dekker Inc., New York, p 709–728. – reference: Scholberg, J., McNeal, B. L., Jones, J. W., Boote, K. J., Stanley, C. D., Obreza, T. A. 2000. Field-growth tomato: Growth and canopy characteristics of field-growth tomato. Agronomy Journal 92: 152–159. – reference: Shishido, Y., Yun, C. J., Yuhashi, T., Seyama, N., Imada, S. 1991. Changes in photosynthesis, translocation and distribution of14-C-assimilates during leaf development and the rate of contribution of each leaf to fruit growth in tomato. (in Japanese with English summary) J. Japan. Soc. Hort. Sci. 59: 771–779. – reference: Demers, D. A., Dorais, M., Wien, C. H., Gosselin, A. 1998. Effects of supplemental light duration on greenhouse tomato (Lycopersicon esculentum Mill.) plants and fruit yields. Sci. Hortic. 74: 295–306. – reference: McAvoy, R. J., Janes, H. W., Giacomelli, G. A., Giniger, M. S. 1989a. Validation of a computer model for a single truss tomato cropping system. J. Am. Soc. Hort. Sci. 114: 746–750. – reference: Mc Collum, J. P. 1946. Some factors affecting the ascorbic acid content of tomatoes. Proc. Am. Soc. Hort. Sci. 45: 382–386. – reference: Yasuba, K.-I., Suzuki, K., Sasaki, H., Higashide, T., Takaichi, M. 2011. Fruit yield and environmental condition under integrative environmental condition for high yield production at long-term culture of tomato. (in Japanese with English abstract) Bull. Natl. Inst. Veg. Tea Sci. 10: 85–93. – reference: McAvoy, R. J. 1984. Evaluation of a single flower cluster, high plant density greenhouse tomato crop system using high pressure sodium lights. Paper No. NAR84-405, ASAE, St. Joseph, MI 49085–9659, USA. – reference: Massot, C., Génard, M., Stevens, R., Gautier, H. 2010. Fluctuations in sugar content are not determinant in explaining variations in vitamin C in tomato fruit. Plant Physiol. Biochem. 48: 751–757. – reference: Higashide, T., Heuvelink, E. 2009. Physiological and morphological changes over the past 50 years in yield components in tomato. J. Am. Soc. Hort. Sci. 134: 460–465. – reference: Shishido, Y., Hori, Y. 1991. The role of leaf as affected by phyllotaxis and leaf histology on the development of the fruit in tomato. (in Japanese with English summary) J. Japan. Soc. Hort. Sci. 60: 319–327. – reference: Okano, K., Sakamoto, Y., Watanabe, S.-I. 2001. Source-sink relationship of13-C-photosynthates in single-truss tomato. (in Japanese with English synopsis) Bull. Natl. Inst. Veg. Tea Sci. 16: 351–361. – reference: McAvoy, R. J., Janes, H. W. 1988. Alternative production strategies for greenhouse tomatoes using supplemental lighting. Sci. Hortic. 35: 161–166. – reference: Kobayashi, S. 1999. A study on single-truss tomato production by hydroponics. III. Effects of plant density and number of leaf above the truss on plant growth and fruit yield. (in Japanese with English summary) J. Soc. Agr. Structures, Japan 30: 53–60. – reference: Kobayashi, S., Shimaji, H., Ikeda, H. 1998. A study on single-truss tomato production by hydroponics. II. Relationship between environmental parameters and plant growth. (in Japanese with English summary) J. Soc. Agr. Structures, Japan 28: 203–208. – reference: McAvoy, R. J., Janes, H. W. 1989. Tomato plant photosynthetic activity as related to canopy age and tomato development. J. Am. Soc. Hort. Sci. 114: 478–482. – reference: Matsuda, R., Suzuki, K., Nakano, A., Higashide, T., Takaichi, M. 2011b. Responses of leaf photosynthesis and plant growth to altered source-sink balance in a Japanese and a Dutch tomato cultivar. Sci. Hortic. 127: 520–527. – reference: Li, T.-L., Seino, T., Ohkawa, W., Kanahama, K. 2000. Relation between the vascular system and photosynthate translocation pathways in tomato plants. (in Japanese with English summary) J. Japan. Soc. Hort. Sci. 69: 69–75. – reference: Yanagi, T., Ueda, E., Sato, H., Hirai, H., Oda, Y. 1995. Effects of shading and fruit set order on fruit quality in single truss tomato. (in Japanese with English summary) J. Japan. Soc. Hort. Sci. 64: 291–297. – ident: 1 doi: 10.1093/jxb/29.4.815 – ident: 18 – ident: 39 – ident: 38 doi: 10.2503/jjshs.64.291 – ident: 35 – ident: 37 – ident: 33 – ident: 10 – ident: 28 doi: 10.17660/ActaHortic.2006.711.39 – ident: 31 doi: 10.1007/s100870050017 – ident: 16 doi: 10.21273/HORTTECH.1.1.110 – ident: 4 doi: 10.17660/ActaHortic.1999.481.54 – ident: 2 doi: 10.1080/00221589.1992.11516215 – ident: 3 doi: 10.1016/S0304-4238(98)00097-1 – ident: 12 doi: 10.2503/jjshs.46.487 – ident: 26 doi: 10.21273/JASHS.114.5.746 – ident: 22 – ident: 17 – ident: 5 – ident: 9 doi: 10.17660/ActaHortic.2006.711.6 – ident: 21 doi: 10.1016/j.scienta.2010.12.008 – ident: 34 doi: 10.1002/j.1537-2197.1951.tb14849.x – ident: 20 doi: 10.2503/jjshs.69.69 – ident: 11 doi: 10.21273/JASHS.134.4.460 – ident: 8 doi: 10.1016/0304-4238(87)90066-5 – ident: 14 doi: 10.1016/j.scienta.2004.04.003 – ident: 15 doi: 10.1016/j.scienta.2007.11.010 – ident: 19 – ident: 36 doi: 10.1093/jxb/erj136 – ident: 13 – ident: 29 – ident: 27 doi: 10.1080/14620316.1989.11515961 – ident: 7 doi: 10.17660/ActaHortic.1994.361.6 – ident: 32 doi: 10.2503/jjshs.60.319 – ident: 30 doi: 10.1016/S0309-1708(02)00094-5 – ident: 24 doi: 10.1016/0304-4238(88)90109-4 – ident: 6 doi: 10.13031/2013.29200 – ident: 25 – ident: 23 |
SSID | ssib004645709 ssj0064869 ssib002484660 |
Score | 1.9915537 |
Snippet | The single truss tomato production system (STTPS) was used to grow tomato plants at a density of 14.3 plants·m−2 for increasing the tomato yield in Japan. We... The single truss tomato production system (STTPS) was used to grow tomato plants at a density of 14.3 plants m-2 for increasing the tomato yield in Japan. We... |
SourceID | proquest crossref jstage |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | canopy light insufficiency Lycopersicon esculentum STTPS supplemental lighting efficiency tomato |
Title | Effects of Supplemental Lighting within the Canopy at Different Developing Stages on Tomato Yield and Quality of Single-Truss Tomato Plants Grown at High Density |
URI | https://www.jstage.jst.go.jp/article/ecb/50/1/50_1/_article/-char/en https://www.proquest.com/docview/1125232008 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Environmental Control in Biology, 2012, Vol.50(1), pp.1-11 |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1883-0986 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064869 issn: 1880-554X databaseCode: KQ8 dateStart: 20050101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2MSReEAwmxpeMhMRTRpPYbfI4RqFUiApIpfEUJY4zBiOZ2uSh-2_4T7nzOW467WHsJaqsk-v2fs59-Pw7xl6HIxFjcOxlUak9IXLhRTLKPBEqGRfSz6PMFMh-GU7mYnoiT7a293tVS22TH6rLa--V3EarMAZ6xVuy_6FZNykMwGfQLzxBw_C8kY7H62IM051TW6b-zxhxd1lWW8h4nFX1xQrvLr63PVGarmKISLkzZHsALCT1H-wH8wNL28zRAtFsmJP47yB6rr1k0cL70Qpi2yNYw0eM53F6rByBmSss9tjI-6-v1JmEBZXIw-qoHaZL7X9KZsYu1MufZ7-zy9YBbzaZzuh60TIDv9eVEs3JSjjoHH2bG7mkXrT9pIa_Dn6n4CJg601XtIr--OnC8ZAY1J85u4D_wubyOxpHYrg2L8gGNkwv84kMdB54USdkArux0BvElpXbGgZixN3YAPSW93vuApmKq4YooK5SWuWHEszS2ti6EkgLmhREUgmBGD26UbxyBwjfZneCEXhQWGzwtR8mgtfYC2vxdNrQ8JEHMhSRaeXofiiRLuOa3nYr2nDDdn8tG0MxccUdMT5W8oDdt8ERP6LlPWRbutpju-9qCGBWe-zu2DCsrx6xvxb4vC55H_i8Az4n4HMAPifg86zhDvh8DXxOwOd1xQnP3ACfg1q5Bb75lh7wO0ECPjfAx-kR-NwC_zGbfxgnxxPP9hrxlICgwSvBkw6KTMVxVAaxAr9W54M8KrKyFDBYRlLn4VAGOghGRRwNiljk0UDH2OK2yAod7rOdqq70E8Zj5auRDpQvSiliWUQ-zKDCcqCUCiFcOmBvur8-VZaIH_vBnKcQkKOSHCYO2CsneUHkM9fICNKek7gRsmDqTtcpGBQ8JYR9V7fLFAIwCWEWxAZPbzf1M3YPtzTlKZ-znWbR6hfguTf5SwPjf4Yl-7o |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Supplemental+Lighting+within+the+Canopy+at+Different+Developing+Stages+on+Tomato+Yield+and+Quality+of+Single-Truss+Tomato+Plants+Grown+at+High+Density&rft.jtitle=Environmental+Control+in+Biology&rft.au=ITO%2C+Yoshikazu&rft.au=HOHJO%2C+Masaaki&rft.au=LU%2C+Na&rft.au=MARUO%2C+Toru&rft.date=2012&rft.pub=Japanese+Society+of+Agricultural%2C+Biological+and+Environmental+Engineers+and+Scientists&rft.issn=1880-554X&rft.eissn=1883-0986&rft.volume=50&rft.issue=1&rft.spage=1&rft.epage=11&rft_id=info:doi/10.2525%2Fecb.50.1&rft.externalDocID=article_ecb_50_1_50_1_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1880-554X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1880-554X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1880-554X&client=summon |