A lower limb exoskeleton control system based on steady state visual evoked potentials

Objective. We have developed an asynchronous brain-machine interface (BMI)-based lower limb exoskeleton control system based on steady-state visual evoked potentials (SSVEPs). Approach. By decoding electroencephalography signals in real-time, users are able to walk forward, turn right, turn left, si...

Full description

Saved in:
Bibliographic Details
Published inJournal of neural engineering Vol. 12; no. 5; pp. 56009 - 56022
Main Authors Kwak, No-Sang, Müller, Klaus-Robert, Lee, Seong-Whan
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.10.2015
Subjects
Online AccessGet full text
ISSN1741-2560
1741-2552
1741-2552
DOI10.1088/1741-2560/12/5/056009

Cover

Abstract Objective. We have developed an asynchronous brain-machine interface (BMI)-based lower limb exoskeleton control system based on steady-state visual evoked potentials (SSVEPs). Approach. By decoding electroencephalography signals in real-time, users are able to walk forward, turn right, turn left, sit, and stand while wearing the exoskeleton. SSVEP stimulation is implemented with a visual stimulation unit, consisting of five light emitting diodes fixed to the exoskeleton. A canonical correlation analysis (CCA) method for the extraction of frequency information associated with the SSVEP was used in combination with k-nearest neighbors. Main results. Overall, 11 healthy subjects participated in the experiment to evaluate performance. To achieve the best classification, CCA was first calibrated in an offline experiment. In the subsequent online experiment, our results exhibit accuracies of 91.3 5.73%, a response time of 3.28 1.82 s, an information transfer rate of 32.9 9.13 bits/min, and a completion time of 1100 154.92 s for the experimental parcour studied. Significance. The ability to achieve such high quality BMI control indicates that an SSVEP-based lower limb exoskeleton for gait assistance is becoming feasible.
AbstractList Objective. We have developed an asynchronous brain-machine interface (BMI)-based lower limb exoskeleton control system based on steady-state visual evoked potentials (SSVEPs). Approach. By decoding electroencephalography signals in real-time, users are able to walk forward, turn right, turn left, sit, and stand while wearing the exoskeleton. SSVEP stimulation is implemented with a visual stimulation unit, consisting of five light emitting diodes fixed to the exoskeleton. A canonical correlation analysis (CCA) method for the extraction of frequency information associated with the SSVEP was used in combination with k-nearest neighbors. Main results. Overall, 11 healthy subjects participated in the experiment to evaluate performance. To achieve the best classification, CCA was first calibrated in an offline experiment. In the subsequent online experiment, our results exhibit accuracies of 91.3 plus or minus 5.73%, a response time of 3.28 plus or minus 1.82 s, an information transfer rate of 32.9 plus or minus 9.13 bits/min, and a completion time of 1100 plus or minus 154.92 s for the experimental parcour studied. Significance. The ability to achieve such high quality BMI control indicates that an SSVEP-based lower limb exoskeleton for gait assistance is becoming feasible.
We have developed an asynchronous brain-machine interface (BMI)-based lower limb exoskeleton control system based on steady-state visual evoked potentials (SSVEPs). By decoding electroencephalography signals in real-time, users are able to walk forward, turn right, turn left, sit, and stand while wearing the exoskeleton. SSVEP stimulation is implemented with a visual stimulation unit, consisting of five light emitting diodes fixed to the exoskeleton. A canonical correlation analysis (CCA) method for the extraction of frequency information associated with the SSVEP was used in combination with k-nearest neighbors. Overall, 11 healthy subjects participated in the experiment to evaluate performance. To achieve the best classification, CCA was first calibrated in an offline experiment. In the subsequent online experiment, our results exhibit accuracies of 91.3 ± 5.73%, a response time of 3.28 ± 1.82 s, an information transfer rate of 32.9 ± 9.13 bits/min, and a completion time of 1100 ± 154.92 s for the experimental parcour studied. The ability to achieve such high quality BMI control indicates that an SSVEP-based lower limb exoskeleton for gait assistance is becoming feasible.
We have developed an asynchronous brain-machine interface (BMI)-based lower limb exoskeleton control system based on steady-state visual evoked potentials (SSVEPs).OBJECTIVEWe have developed an asynchronous brain-machine interface (BMI)-based lower limb exoskeleton control system based on steady-state visual evoked potentials (SSVEPs).By decoding electroencephalography signals in real-time, users are able to walk forward, turn right, turn left, sit, and stand while wearing the exoskeleton. SSVEP stimulation is implemented with a visual stimulation unit, consisting of five light emitting diodes fixed to the exoskeleton. A canonical correlation analysis (CCA) method for the extraction of frequency information associated with the SSVEP was used in combination with k-nearest neighbors.APPROACHBy decoding electroencephalography signals in real-time, users are able to walk forward, turn right, turn left, sit, and stand while wearing the exoskeleton. SSVEP stimulation is implemented with a visual stimulation unit, consisting of five light emitting diodes fixed to the exoskeleton. A canonical correlation analysis (CCA) method for the extraction of frequency information associated with the SSVEP was used in combination with k-nearest neighbors.Overall, 11 healthy subjects participated in the experiment to evaluate performance. To achieve the best classification, CCA was first calibrated in an offline experiment. In the subsequent online experiment, our results exhibit accuracies of 91.3 ± 5.73%, a response time of 3.28 ± 1.82 s, an information transfer rate of 32.9 ± 9.13 bits/min, and a completion time of 1100 ± 154.92 s for the experimental parcour studied.MAIN RESULTSOverall, 11 healthy subjects participated in the experiment to evaluate performance. To achieve the best classification, CCA was first calibrated in an offline experiment. In the subsequent online experiment, our results exhibit accuracies of 91.3 ± 5.73%, a response time of 3.28 ± 1.82 s, an information transfer rate of 32.9 ± 9.13 bits/min, and a completion time of 1100 ± 154.92 s for the experimental parcour studied.The ability to achieve such high quality BMI control indicates that an SSVEP-based lower limb exoskeleton for gait assistance is becoming feasible.SIGNIFICANCEThe ability to achieve such high quality BMI control indicates that an SSVEP-based lower limb exoskeleton for gait assistance is becoming feasible.
Objective. We have developed an asynchronous brain-machine interface (BMI)-based lower limb exoskeleton control system based on steady-state visual evoked potentials (SSVEPs). Approach. By decoding electroencephalography signals in real-time, users are able to walk forward, turn right, turn left, sit, and stand while wearing the exoskeleton. SSVEP stimulation is implemented with a visual stimulation unit, consisting of five light emitting diodes fixed to the exoskeleton. A canonical correlation analysis (CCA) method for the extraction of frequency information associated with the SSVEP was used in combination with k-nearest neighbors. Main results. Overall, 11 healthy subjects participated in the experiment to evaluate performance. To achieve the best classification, CCA was first calibrated in an offline experiment. In the subsequent online experiment, our results exhibit accuracies of 91.3 5.73%, a response time of 3.28 1.82 s, an information transfer rate of 32.9 9.13 bits/min, and a completion time of 1100 154.92 s for the experimental parcour studied. Significance. The ability to achieve such high quality BMI control indicates that an SSVEP-based lower limb exoskeleton for gait assistance is becoming feasible.
Author Müller, Klaus-Robert
Kwak, No-Sang
Lee, Seong-Whan
Author_xml – sequence: 1
  givenname: No-Sang
  surname: Kwak
  fullname: Kwak, No-Sang
  email: nskwak@korea.ac.kr
  organization: Department of Brain and Cognitive Engineering, Korea University , Anam-dong, Seongbuk-ku, Seoul, Korea
– sequence: 2
  givenname: Klaus-Robert
  surname: Müller
  fullname: Müller, Klaus-Robert
  email: klaus-robert.mueller@tu-berlin.de
  organization: Department of Computer Science Machine Learning Group, TU Berlin, Berlin, Germany
– sequence: 3
  givenname: Seong-Whan
  surname: Lee
  fullname: Lee, Seong-Whan
  organization: Department of Brain and Cognitive Engineering, Korea University , Anam-dong, Seongbuk-ku, Seoul, Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26291321$$D View this record in MEDLINE/PubMed
BookMark eNqFUclOwzAUtBCIUuATQD5yKbUdbxWnCrFJSFyAq-U4L5KpE5c4KfTvcdXCgUtP85aZZ2tmjA7b2AJCF5RcU6L1lCpOJ0xIMqVsKqYkV2R2gE52c8EO_2pJRmic0gchBVUzcoxGTLIZLRg9Qe9zHOIXdDj4psTwHdMCAvSxxS62fRcDTuvUQ4NLm6DCeZ47W60z2B7wyqfBBgyruMjbZeyh7b0N6Qwd1RngfIen6O3-7vX2cfL88vB0O3-eOC54PwGlnOTCKlczgHpWcldVqlLAC1GVrtRWSrCa6_xhollVS3BCaEZJLYtaqOIUXW3vLrv4OUDqTeOTgxBsC3FIhmomuKBcF_upikomCkFopl7uqEPZQGWWnW9stza_tmXCzZbguphSB7VxPvvhN5ZZHwwlZhOS2QRgNgEYyoww25CyWvxT_z6wT0e3Oh-X5iMOXZut3aP5AfG-oyU
CODEN JNEIEZ
CitedBy_id crossref_primary_10_3389_fnins_2022_954387
crossref_primary_10_1109_TNSRE_2017_2703586
crossref_primary_10_3389_fnhum_2021_622535
crossref_primary_10_3390_app9153106
crossref_primary_10_1016_j_isci_2023_106675
crossref_primary_10_1109_ACCESS_2021_3068929
crossref_primary_10_1016_j_eswa_2022_117574
crossref_primary_10_1093_gigascience_giz133
crossref_primary_10_3389_fnhum_2018_00312
crossref_primary_10_1115_1_4055435
crossref_primary_10_11834_jig_230031
crossref_primary_10_1155_2022_4100381
crossref_primary_10_1109_TBME_2024_3406603
crossref_primary_10_3390_s18020615
crossref_primary_10_1021_acsnano_4c10525
crossref_primary_10_1186_s12984_019_0559_z
crossref_primary_10_1109_ACCESS_2020_2983182
crossref_primary_10_1109_MIS_2016_105
crossref_primary_10_1371_journal_pone_0191673
crossref_primary_10_1136_svn_2022_001506
crossref_primary_10_3389_fnins_2024_1373377
crossref_primary_10_1371_journal_pone_0172578
crossref_primary_10_1109_TNSRE_2020_3040264
crossref_primary_10_4103_1673_5374_243694
crossref_primary_10_1007_s11277_020_07738_9
crossref_primary_10_1016_j_bbe_2019_12_002
crossref_primary_10_1109_TCYB_2021_3122969
crossref_primary_10_3390_s18103342
crossref_primary_10_1088_1741_2552_abd1bf
crossref_primary_10_1109_TIM_2024_3417598
crossref_primary_10_3390_bioengineering11070695
crossref_primary_10_3390_s25010154
crossref_primary_10_3390_s21206863
crossref_primary_10_3389_frobt_2020_00108
crossref_primary_10_1088_1741_2552_ab08c8
crossref_primary_10_3390_app8112287
crossref_primary_10_1038_s41597_023_02243_7
crossref_primary_10_3389_fnins_2023_1154480
crossref_primary_10_1109_ACCESS_2023_3258969
crossref_primary_10_1109_TNSRE_2017_2736600
crossref_primary_10_1109_ACCESS_2020_2990384
crossref_primary_10_3390_s22207715
crossref_primary_10_1371_journal_pone_0184245
crossref_primary_10_20948_prepr_2017_83
crossref_primary_10_1109_ACCESS_2024_3439605
crossref_primary_10_3390_s20247309
crossref_primary_10_4995_riai_2018_9861
crossref_primary_10_1109_TIM_2024_3375980
crossref_primary_10_1142_S0129065721500155
crossref_primary_10_1016_j_bspc_2023_105698
crossref_primary_10_1016_j_measurement_2022_111524
crossref_primary_10_3390_s20030891
crossref_primary_10_1007_s10514_020_09938_5
crossref_primary_10_1007_s11831_021_09684_6
crossref_primary_10_3390_app9122471
crossref_primary_10_1146_annurev_control_012720_093904
crossref_primary_10_1109_TCSI_2022_3197186
crossref_primary_10_1109_TIM_2022_3218102
crossref_primary_10_1109_ACCESS_2018_2853628
crossref_primary_10_3389_fnins_2017_00630
crossref_primary_10_1007_s00542_016_3229_0
crossref_primary_10_1089_brain_2024_0005
crossref_primary_10_3389_fnbot_2020_00048
crossref_primary_10_1109_ACCESS_2021_3110595
crossref_primary_10_3389_fnins_2016_00343
crossref_primary_10_1038_s41597_021_01094_4
crossref_primary_10_3390_s24237611
crossref_primary_10_1631_jzus_B2400103
crossref_primary_10_17694_bajece_1088353
crossref_primary_10_3390_life13020391
crossref_primary_10_1038_s41598_024_65910_8
crossref_primary_10_1080_2326263X_2019_1697163
crossref_primary_10_1109_JSEN_2023_3328615
crossref_primary_10_1016_j_eswa_2024_123492
crossref_primary_10_3389_fnbot_2024_1443010
crossref_primary_10_3390_bios13100930
crossref_primary_10_1007_s00113_022_01270_0
crossref_primary_10_1109_TIFS_2017_2699944
crossref_primary_10_1109_TCYB_2019_2924237
crossref_primary_10_1109_ACCESS_2020_3011140
crossref_primary_10_1186_s10033_019_0389_8
crossref_primary_10_3389_fnins_2016_00359
crossref_primary_10_1142_S0129065720500380
crossref_primary_10_1152_jn_00089_2015
crossref_primary_10_1038_s41597_022_01372_9
crossref_primary_10_1007_s43154_022_00076_7
crossref_primary_10_1038_srep36267
crossref_primary_10_1016_j_eswa_2021_115572
crossref_primary_10_3389_fnhum_2021_772837
crossref_primary_10_3389_fnins_2023_1077479
crossref_primary_10_1007_s11277_021_08135_6
crossref_primary_10_1109_TNSRE_2020_3005771
crossref_primary_10_1109_ACCESS_2019_2924185
crossref_primary_10_1038_sdata_2018_211
crossref_primary_10_3389_fnbot_2022_845127
crossref_primary_10_1109_TNSRE_2020_2981659
crossref_primary_10_1093_gigascience_giaa098
crossref_primary_10_3389_fnins_2020_00578
crossref_primary_10_1109_TASE_2019_2956110
crossref_primary_10_1177_0954411918755828
crossref_primary_10_1109_TCSII_2022_3177616
crossref_primary_10_3390_act12110406
crossref_primary_10_1088_1741_2552_ab85b2
crossref_primary_10_1016_j_cobme_2021_100354
crossref_primary_10_3389_fnhum_2018_00377
crossref_primary_10_3389_fnins_2023_1129049
crossref_primary_10_1109_ACCESS_2019_2921375
crossref_primary_10_1109_TNSRE_2019_2914904
crossref_primary_10_3390_bioengineering9120768
crossref_primary_10_1088_2057_1976_aad714
crossref_primary_10_1109_JSEN_2020_3005968
crossref_primary_10_1177_1687814019875537
crossref_primary_10_1152_physrev_00027_2016
crossref_primary_10_1109_JBHI_2023_3239053
crossref_primary_10_3389_fninf_2019_00074
crossref_primary_10_1108_IR_03_2021_0062
crossref_primary_10_1063_1_5006461
crossref_primary_10_1063_5_0208524
crossref_primary_10_1109_TNSRE_2020_2966826
crossref_primary_10_1177_0954411919898293
crossref_primary_10_1016_j_bspc_2023_104957
crossref_primary_10_3389_fnins_2018_00540
crossref_primary_10_1016_j_medntd_2023_100213
crossref_primary_10_1088_1741_2552_aaa8c0
Cites_doi 10.1038/nature04970
10.3389/fnhum.2010.00202
10.1016/j.neuroimage.2013.07.079
10.1109/JPROC.2015.2413993
10.1109/MRA.2012.2229936
10.1109/86.712231
10.1016/j.robot.2012.11.002
10.1016/j.bspc.2011.02.002
10.1109/TBME.2014.2300164
10.1155/2009/864564
10.1016/S0140-6736(12)61816-9
10.1109/RBME.2011.2170675
10.1177/1545968313520410
10.7551/mitpress/7493.001.0001
10.3109/14992020309101316
10.1016/j.tins.2006.07.004
10.1016/j.neuroimage.2010.06.048
10.1109/AIM.2013.6584231
10.1155/2010/702357
10.1088/1741-2560/7/2/026010
10.1523/JNEUROSCI.23-37-11621.2003
10.1016/j.jneumeth.2007.09.022
10.1109/TNSRE.2014.2364618
10.1109/EMBC.2013.6609816
10.1109/smc.2014.6974126
10.1186/1743-0003-10-111
10.1186/1743-0003-12-1
10.3389/fnins.2012.00169
10.1088/1741-2560/4/2/R01
10.1109/EMBC.2013.6609759
10.1016/j.pmrj.2010.06.016
10.1109/EMBC.2013.6610821
10.1016/j.neuroimage.2009.07.045
10.1186/1743-0003-11-92
10.1186/1743-0003-8-39
10.1109/5.939829
10.1109/RBME.2013.2290621
10.1016/S0304-3940(03)00947-9
10.1016/j.neuroimage.2010.03.022
10.1109/TNSRE.2010.2076364
10.1109/TBME.2007.897815
10.1016/j.neuroimage.2010.11.004
10.3389/fnhum.2014.00188
10.1109/TBME.2006.889197
10.1109/iww-BCI.2014.6782571
10.1109/TBME.2010.2082539
10.1109/MSP.2008.4408441
10.1186/1743-0003-10-77
10.1007/s40141-014-0051-4
10.1016/j.clinph.2007.07.028
10.1109/TPAMI.2012.69
10.1371/journal.pone.0111157
ContentType Journal Article
Copyright 2015 IOP Publishing Ltd
Copyright_xml – notice: 2015 IOP Publishing Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1088/1741-2560/12/5/056009
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
DocumentTitleAlternate A lower limb exoskeleton control system based on steady state visual evoked potentials
EISSN 1741-2552
EndPage 56022
ExternalDocumentID 26291321
10_1088_1741_2560_12_5_056009
jne517335
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
1JI
4.4
53G
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
RIN
RO9
ROL
RPA
SY9
W28
XPP
AAYXX
ADEQX
AEINN
CITATION
02O
1WK
ACARI
AERVB
AHSEE
ARNYC
BBWZM
CGR
CUY
CVF
ECM
EIF
FEDTE
HVGLF
JCGBZ
NPM
Q02
RNS
S3P
7X8
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c454t-e77c645a7cf2eef9b4cdd7d7e435dbcb8a66ea848262082df6ec558210f63f573
IEDL.DBID IOP
ISSN 1741-2560
1741-2552
IngestDate Tue Aug 05 09:44:45 EDT 2025
Thu Sep 04 17:54:50 EDT 2025
Thu Apr 03 07:00:12 EDT 2025
Wed Oct 01 02:41:27 EDT 2025
Thu Apr 24 23:09:58 EDT 2025
Wed Aug 21 03:33:55 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c454t-e77c645a7cf2eef9b4cdd7d7e435dbcb8a66ea848262082df6ec558210f63f573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26291321
PQID 1716253501
PQPubID 23479
PageCount 14
ParticipantIDs pubmed_primary_26291321
proquest_miscellaneous_1825451483
proquest_miscellaneous_1716253501
iop_journals_10_1088_1741_2560_12_5_056009
crossref_citationtrail_10_1088_1741_2560_12_5_056009
crossref_primary_10_1088_1741_2560_12_5_056009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-10-01
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of neural engineering
PublicationTitleAbbrev JNE
PublicationTitleAlternate J. Neural Eng
PublicationYear 2015
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 44
46
47
48
49
50
51
52
53
10
11
12
Kim I-H (31) 2015; 12
13
15
16
17
18
19
Pastor M A (45) 2003; 23
1
3
4
5
6
7
8
9
Luo A (25) 2010; 7
20
21
22
23
24
26
27
28
29
Lotte F (14) 2007; 4
30
32
33
34
35
36
37
38
39
Dornhege G (2) 2007
40
41
42
43
References_xml – ident: 3
  doi: 10.1038/nature04970
– ident: 20
  doi: 10.3389/fnhum.2010.00202
– ident: 49
  doi: 10.1016/j.neuroimage.2013.07.079
– ident: 47
  doi: 10.1109/JPROC.2015.2413993
– ident: 6
  doi: 10.1109/MRA.2012.2229936
– ident: 50
  doi: 10.1109/86.712231
– ident: 5
  doi: 10.1016/j.robot.2012.11.002
– ident: 26
  doi: 10.1016/j.bspc.2011.02.002
– ident: 10
  doi: 10.1109/TBME.2014.2300164
– ident: 24
  doi: 10.1155/2009/864564
– ident: 4
  doi: 10.1016/S0140-6736(12)61816-9
– ident: 46
  doi: 10.1109/RBME.2011.2170675
– ident: 40
  doi: 10.1177/1545968313520410
– year: 2007
  ident: 2
  publication-title: Toward Brain Computer Interfacing
  doi: 10.7551/mitpress/7493.001.0001
– ident: 48
  doi: 10.3109/14992020309101316
– ident: 1
  doi: 10.1016/j.tins.2006.07.004
– ident: 13
  doi: 10.1016/j.neuroimage.2010.06.048
– ident: 28
  doi: 10.1109/AIM.2013.6584231
– ident: 23
  doi: 10.1155/2010/702357
– volume: 7
  start-page: 26010
  issn: 1741-2552
  year: 2010
  ident: 25
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/7/2/026010
– volume: 23
  start-page: 11621
  year: 2003
  ident: 45
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.23-37-11621.2003
– ident: 32
  doi: 10.1016/j.jneumeth.2007.09.022
– ident: 39
  doi: 10.1109/TNSRE.2014.2364618
– ident: 36
  doi: 10.1109/EMBC.2013.6609816
– ident: 42
  doi: 10.1109/smc.2014.6974126
– ident: 34
  doi: 10.1186/1743-0003-10-111
– ident: 43
  doi: 10.1186/1743-0003-12-1
– ident: 53
  doi: 10.3389/fnins.2012.00169
– volume: 12
  issn: 1741-2552
  year: 2015
  ident: 31
  publication-title: J. Neural Eng.
– volume: 4
  start-page: 1
  issn: 1741-2552
  year: 2007
  ident: 14
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/4/2/R01
– ident: 30
  doi: 10.1109/EMBC.2013.6609759
– ident: 8
  doi: 10.1016/j.pmrj.2010.06.016
– ident: 35
  doi: 10.1109/EMBC.2013.6610821
– ident: 18
  doi: 10.1016/j.neuroimage.2009.07.045
– ident: 38
  doi: 10.1186/1743-0003-11-92
– ident: 29
  doi: 10.1186/1743-0003-8-39
– ident: 9
  doi: 10.1109/5.939829
– ident: 52
  doi: 10.1109/RBME.2013.2290621
– ident: 7
  doi: 10.1016/S0304-3940(03)00947-9
– ident: 19
  doi: 10.1016/j.neuroimage.2010.03.022
– ident: 22
  doi: 10.1109/TNSRE.2010.2076364
– ident: 21
  doi: 10.1109/TBME.2007.897815
– ident: 15
  doi: 10.1016/j.neuroimage.2010.11.004
– ident: 41
  doi: 10.3389/fnhum.2014.00188
– ident: 27
  doi: 10.1109/TBME.2006.889197
– ident: 44
  doi: 10.1109/iww-BCI.2014.6782571
– ident: 16
  doi: 10.1109/TBME.2010.2082539
– ident: 12
  doi: 10.1109/MSP.2008.4408441
– ident: 33
  doi: 10.1186/1743-0003-10-77
– ident: 37
  doi: 10.1007/s40141-014-0051-4
– ident: 51
  doi: 10.1016/j.clinph.2007.07.028
– ident: 17
  doi: 10.1109/TPAMI.2012.69
– ident: 11
  doi: 10.1371/journal.pone.0111157
SSID ssj0031790
Score 2.512675
Snippet Objective. We have developed an asynchronous brain-machine interface (BMI)-based lower limb exoskeleton control system based on steady-state visual evoked...
We have developed an asynchronous brain-machine interface (BMI)-based lower limb exoskeleton control system based on steady-state visual evoked potentials...
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 56009
SubjectTerms Adult
Artificial Limbs
Brain-Computer Interfaces
brain-machine interface
Classification
Control systems
electroencephalogram
Electroencephalography - instrumentation
Equipment Design
Equipment Failure Analysis
Evoked potentials
Evoked Potentials, Visual
exoskeleton control
Exoskeleton Device
Exoskeletons
Extraction
Feedback
Gait Disorders, Neurologic - physiopathology
Gait Disorders, Neurologic - rehabilitation
Humans
Limbs
Lower Extremity
Male
Robotics - instrumentation
steady state visual evoked potentials
Stimulation
Visual
Visual Perception
Title A lower limb exoskeleton control system based on steady state visual evoked potentials
URI https://iopscience.iop.org/article/10.1088/1741-2560/12/5/056009
https://www.ncbi.nlm.nih.gov/pubmed/26291321
https://www.proquest.com/docview/1716253501
https://www.proquest.com/docview/1825451483
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 1741-2552
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0031790
  issn: 1741-2560
  databaseCode: IOP
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELb6uHAB2vLYQpGREAek7G7iR5zjClFVSG05UNSbFdsTabXbZMVmK9pfz0ycVIBUKsQtSjzJZOLxfI5nPjP2DlLjMi2mSZEFkci8gqQEgbNWr0oJWgdRUL3z6Zk-uZCfL9XlL1X882bVD_1jPIxEwdGEfUKcmSCGThOK1JM0m6jJlGJ2sc12hUF0TCV851-GsVgQ_1QsiYwiQw3Pfbf5LTptowb3A88uAB0_YeWgesw7WYw3rRv72z9YHf_n3Z6yxz065bPYfo9tQb3PDmY1zsyvbvh73uWLdj_iD9i3GV_SFmt8Ob9yHH406wWGMISSvE9_55ElmlOgDBzPdx3qhnc1TPx6vt7go-C6WeDVVdNS2hL6wjN2cfzp68eTpN-lIfFSyTaBPPdaqjL3VQZQFU76EPKQAwKx4LwzpdZQGmmI-t5kodLgFZXnTistKpWL52ynbmp4yXgoIRgcMJyQQQIQFVqBE5rgwSnsNGbE5PB1rO8pzGknjaXtltKNsWQ_S_azaWaVjfYbsfGd2CpyeDwk8AE_kO29ef1Q47dDD7HomrTeUtbQbFCM2LkUrdz-pQ3N0BG0GjFiL2L3utMRDVakIksP_0WdV-wRYjoV8w1fs532-waOEDe17k3nGj8B5DkIeA
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDLe2ISFe-BqMG19BQjwg9XptkjZ9PDFO42vsgaG9RU3iStPd2tOuNzH-epymPQmkMSHeqjZuXdeO7cb-BeA1JsqkGZ9ERep4JPIKoxI5Za1WlgKzzPHC9zt_OcoOT8THU3m6BQebXphm2U_9YzoMQMFBhH1BnIophk4i76njJI1lPPE-u4iXrtqGWx1YiW_j-3o8zMfcY1CFtshANvTxXHer3zzUNnFxffDZOaHZPcCB_VB7Mh-vWzO2P_9Advzf97sPd_solU0DzQPYwvoh7E5rytDPr9gb1tWNdj_kd-H7lC38VmtscXZuGP5oVnNyZRRSsr4MngW0aOYdpmN0vlOsK9b1MrHLs9WaHoWXzZyuLpvWly-RTTyCk9n7b-8Oo363hsgKKdoI89xmQpa5rVLEqjDCOpe7HCkgc8YaVWYZlkooD4GvUldlaKVv051UGa9kzh_DTt3U-ASYK9EpmjgMF04geki0ghIbZ9FIUh41AjF8IW17KHO_o8ZCd0vqSmkvQ-1lqJNUSx1kOILxhmwZsDxuInhLH0n3Vr26afCrQUs0mahfdylrbNZE5lG6pF_B_csYn6lT8Kr4CPaCim14JIEVCU-T_X9h5yXcPj6Y6c8fjj49hTsU5slQgvgMdtqLNT6nUKo1LzpL-QUWFA3Z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+lower+limb+exoskeleton+control+system+based+on+steady+state+visual+evoked+potentials&rft.jtitle=Journal+of+neural+engineering&rft.au=Kwak%2C+No-Sang&rft.au=M%C3%BCller%2C+Klaus-Robert&rft.au=Lee%2C+Seong-Whan&rft.date=2015-10-01&rft.issn=1741-2552&rft.eissn=1741-2552&rft.volume=12&rft.issue=5&rft.spage=056009&rft_id=info:doi/10.1088%2F1741-2560%2F12%2F5%2F056009&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon