A lower limb exoskeleton control system based on steady state visual evoked potentials
Objective. We have developed an asynchronous brain-machine interface (BMI)-based lower limb exoskeleton control system based on steady-state visual evoked potentials (SSVEPs). Approach. By decoding electroencephalography signals in real-time, users are able to walk forward, turn right, turn left, si...
        Saved in:
      
    
          | Published in | Journal of neural engineering Vol. 12; no. 5; pp. 56009 - 56022 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        England
          IOP Publishing
    
        01.10.2015
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1741-2560 1741-2552 1741-2552  | 
| DOI | 10.1088/1741-2560/12/5/056009 | 
Cover
| Abstract | Objective. We have developed an asynchronous brain-machine interface (BMI)-based lower limb exoskeleton control system based on steady-state visual evoked potentials (SSVEPs). Approach. By decoding electroencephalography signals in real-time, users are able to walk forward, turn right, turn left, sit, and stand while wearing the exoskeleton. SSVEP stimulation is implemented with a visual stimulation unit, consisting of five light emitting diodes fixed to the exoskeleton. A canonical correlation analysis (CCA) method for the extraction of frequency information associated with the SSVEP was used in combination with k-nearest neighbors. Main results. Overall, 11 healthy subjects participated in the experiment to evaluate performance. To achieve the best classification, CCA was first calibrated in an offline experiment. In the subsequent online experiment, our results exhibit accuracies of 91.3 5.73%, a response time of 3.28 1.82 s, an information transfer rate of 32.9 9.13 bits/min, and a completion time of 1100 154.92 s for the experimental parcour studied. Significance. The ability to achieve such high quality BMI control indicates that an SSVEP-based lower limb exoskeleton for gait assistance is becoming feasible. | 
    
|---|---|
| AbstractList | Objective. We have developed an asynchronous brain-machine interface (BMI)-based lower limb exoskeleton control system based on steady-state visual evoked potentials (SSVEPs). Approach. By decoding electroencephalography signals in real-time, users are able to walk forward, turn right, turn left, sit, and stand while wearing the exoskeleton. SSVEP stimulation is implemented with a visual stimulation unit, consisting of five light emitting diodes fixed to the exoskeleton. A canonical correlation analysis (CCA) method for the extraction of frequency information associated with the SSVEP was used in combination with k-nearest neighbors. Main results. Overall, 11 healthy subjects participated in the experiment to evaluate performance. To achieve the best classification, CCA was first calibrated in an offline experiment. In the subsequent online experiment, our results exhibit accuracies of 91.3 plus or minus 5.73%, a response time of 3.28 plus or minus 1.82 s, an information transfer rate of 32.9 plus or minus 9.13 bits/min, and a completion time of 1100 plus or minus 154.92 s for the experimental parcour studied. Significance. The ability to achieve such high quality BMI control indicates that an SSVEP-based lower limb exoskeleton for gait assistance is becoming feasible. We have developed an asynchronous brain-machine interface (BMI)-based lower limb exoskeleton control system based on steady-state visual evoked potentials (SSVEPs). By decoding electroencephalography signals in real-time, users are able to walk forward, turn right, turn left, sit, and stand while wearing the exoskeleton. SSVEP stimulation is implemented with a visual stimulation unit, consisting of five light emitting diodes fixed to the exoskeleton. A canonical correlation analysis (CCA) method for the extraction of frequency information associated with the SSVEP was used in combination with k-nearest neighbors. Overall, 11 healthy subjects participated in the experiment to evaluate performance. To achieve the best classification, CCA was first calibrated in an offline experiment. In the subsequent online experiment, our results exhibit accuracies of 91.3 ± 5.73%, a response time of 3.28 ± 1.82 s, an information transfer rate of 32.9 ± 9.13 bits/min, and a completion time of 1100 ± 154.92 s for the experimental parcour studied. The ability to achieve such high quality BMI control indicates that an SSVEP-based lower limb exoskeleton for gait assistance is becoming feasible. We have developed an asynchronous brain-machine interface (BMI)-based lower limb exoskeleton control system based on steady-state visual evoked potentials (SSVEPs).OBJECTIVEWe have developed an asynchronous brain-machine interface (BMI)-based lower limb exoskeleton control system based on steady-state visual evoked potentials (SSVEPs).By decoding electroencephalography signals in real-time, users are able to walk forward, turn right, turn left, sit, and stand while wearing the exoskeleton. SSVEP stimulation is implemented with a visual stimulation unit, consisting of five light emitting diodes fixed to the exoskeleton. A canonical correlation analysis (CCA) method for the extraction of frequency information associated with the SSVEP was used in combination with k-nearest neighbors.APPROACHBy decoding electroencephalography signals in real-time, users are able to walk forward, turn right, turn left, sit, and stand while wearing the exoskeleton. SSVEP stimulation is implemented with a visual stimulation unit, consisting of five light emitting diodes fixed to the exoskeleton. A canonical correlation analysis (CCA) method for the extraction of frequency information associated with the SSVEP was used in combination with k-nearest neighbors.Overall, 11 healthy subjects participated in the experiment to evaluate performance. To achieve the best classification, CCA was first calibrated in an offline experiment. In the subsequent online experiment, our results exhibit accuracies of 91.3 ± 5.73%, a response time of 3.28 ± 1.82 s, an information transfer rate of 32.9 ± 9.13 bits/min, and a completion time of 1100 ± 154.92 s for the experimental parcour studied.MAIN RESULTSOverall, 11 healthy subjects participated in the experiment to evaluate performance. To achieve the best classification, CCA was first calibrated in an offline experiment. In the subsequent online experiment, our results exhibit accuracies of 91.3 ± 5.73%, a response time of 3.28 ± 1.82 s, an information transfer rate of 32.9 ± 9.13 bits/min, and a completion time of 1100 ± 154.92 s for the experimental parcour studied.The ability to achieve such high quality BMI control indicates that an SSVEP-based lower limb exoskeleton for gait assistance is becoming feasible.SIGNIFICANCEThe ability to achieve such high quality BMI control indicates that an SSVEP-based lower limb exoskeleton for gait assistance is becoming feasible. Objective. We have developed an asynchronous brain-machine interface (BMI)-based lower limb exoskeleton control system based on steady-state visual evoked potentials (SSVEPs). Approach. By decoding electroencephalography signals in real-time, users are able to walk forward, turn right, turn left, sit, and stand while wearing the exoskeleton. SSVEP stimulation is implemented with a visual stimulation unit, consisting of five light emitting diodes fixed to the exoskeleton. A canonical correlation analysis (CCA) method for the extraction of frequency information associated with the SSVEP was used in combination with k-nearest neighbors. Main results. Overall, 11 healthy subjects participated in the experiment to evaluate performance. To achieve the best classification, CCA was first calibrated in an offline experiment. In the subsequent online experiment, our results exhibit accuracies of 91.3 5.73%, a response time of 3.28 1.82 s, an information transfer rate of 32.9 9.13 bits/min, and a completion time of 1100 154.92 s for the experimental parcour studied. Significance. The ability to achieve such high quality BMI control indicates that an SSVEP-based lower limb exoskeleton for gait assistance is becoming feasible.  | 
    
| Author | Müller, Klaus-Robert Kwak, No-Sang Lee, Seong-Whan  | 
    
| Author_xml | – sequence: 1 givenname: No-Sang surname: Kwak fullname: Kwak, No-Sang email: nskwak@korea.ac.kr organization: Department of Brain and Cognitive Engineering, Korea University , Anam-dong, Seongbuk-ku, Seoul, Korea – sequence: 2 givenname: Klaus-Robert surname: Müller fullname: Müller, Klaus-Robert email: klaus-robert.mueller@tu-berlin.de organization: Department of Computer Science Machine Learning Group, TU Berlin, Berlin, Germany – sequence: 3 givenname: Seong-Whan surname: Lee fullname: Lee, Seong-Whan organization: Department of Brain and Cognitive Engineering, Korea University , Anam-dong, Seongbuk-ku, Seoul, Korea  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26291321$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFUclOwzAUtBCIUuATQD5yKbUdbxWnCrFJSFyAq-U4L5KpE5c4KfTvcdXCgUtP85aZZ2tmjA7b2AJCF5RcU6L1lCpOJ0xIMqVsKqYkV2R2gE52c8EO_2pJRmic0gchBVUzcoxGTLIZLRg9Qe9zHOIXdDj4psTwHdMCAvSxxS62fRcDTuvUQ4NLm6DCeZ47W60z2B7wyqfBBgyruMjbZeyh7b0N6Qwd1RngfIen6O3-7vX2cfL88vB0O3-eOC54PwGlnOTCKlczgHpWcldVqlLAC1GVrtRWSrCa6_xhollVS3BCaEZJLYtaqOIUXW3vLrv4OUDqTeOTgxBsC3FIhmomuKBcF_upikomCkFopl7uqEPZQGWWnW9stza_tmXCzZbguphSB7VxPvvhN5ZZHwwlZhOS2QRgNgEYyoww25CyWvxT_z6wT0e3Oh-X5iMOXZut3aP5AfG-oyU | 
    
| CODEN | JNEIEZ | 
    
| CitedBy_id | crossref_primary_10_3389_fnins_2022_954387 crossref_primary_10_1109_TNSRE_2017_2703586 crossref_primary_10_3389_fnhum_2021_622535 crossref_primary_10_3390_app9153106 crossref_primary_10_1016_j_isci_2023_106675 crossref_primary_10_1109_ACCESS_2021_3068929 crossref_primary_10_1016_j_eswa_2022_117574 crossref_primary_10_1093_gigascience_giz133 crossref_primary_10_3389_fnhum_2018_00312 crossref_primary_10_1115_1_4055435 crossref_primary_10_11834_jig_230031 crossref_primary_10_1155_2022_4100381 crossref_primary_10_1109_TBME_2024_3406603 crossref_primary_10_3390_s18020615 crossref_primary_10_1021_acsnano_4c10525 crossref_primary_10_1186_s12984_019_0559_z crossref_primary_10_1109_ACCESS_2020_2983182 crossref_primary_10_1109_MIS_2016_105 crossref_primary_10_1371_journal_pone_0191673 crossref_primary_10_1136_svn_2022_001506 crossref_primary_10_3389_fnins_2024_1373377 crossref_primary_10_1371_journal_pone_0172578 crossref_primary_10_1109_TNSRE_2020_3040264 crossref_primary_10_4103_1673_5374_243694 crossref_primary_10_1007_s11277_020_07738_9 crossref_primary_10_1016_j_bbe_2019_12_002 crossref_primary_10_1109_TCYB_2021_3122969 crossref_primary_10_3390_s18103342 crossref_primary_10_1088_1741_2552_abd1bf crossref_primary_10_1109_TIM_2024_3417598 crossref_primary_10_3390_bioengineering11070695 crossref_primary_10_3390_s25010154 crossref_primary_10_3390_s21206863 crossref_primary_10_3389_frobt_2020_00108 crossref_primary_10_1088_1741_2552_ab08c8 crossref_primary_10_3390_app8112287 crossref_primary_10_1038_s41597_023_02243_7 crossref_primary_10_3389_fnins_2023_1154480 crossref_primary_10_1109_ACCESS_2023_3258969 crossref_primary_10_1109_TNSRE_2017_2736600 crossref_primary_10_1109_ACCESS_2020_2990384 crossref_primary_10_3390_s22207715 crossref_primary_10_1371_journal_pone_0184245 crossref_primary_10_20948_prepr_2017_83 crossref_primary_10_1109_ACCESS_2024_3439605 crossref_primary_10_3390_s20247309 crossref_primary_10_4995_riai_2018_9861 crossref_primary_10_1109_TIM_2024_3375980 crossref_primary_10_1142_S0129065721500155 crossref_primary_10_1016_j_bspc_2023_105698 crossref_primary_10_1016_j_measurement_2022_111524 crossref_primary_10_3390_s20030891 crossref_primary_10_1007_s10514_020_09938_5 crossref_primary_10_1007_s11831_021_09684_6 crossref_primary_10_3390_app9122471 crossref_primary_10_1146_annurev_control_012720_093904 crossref_primary_10_1109_TCSI_2022_3197186 crossref_primary_10_1109_TIM_2022_3218102 crossref_primary_10_1109_ACCESS_2018_2853628 crossref_primary_10_3389_fnins_2017_00630 crossref_primary_10_1007_s00542_016_3229_0 crossref_primary_10_1089_brain_2024_0005 crossref_primary_10_3389_fnbot_2020_00048 crossref_primary_10_1109_ACCESS_2021_3110595 crossref_primary_10_3389_fnins_2016_00343 crossref_primary_10_1038_s41597_021_01094_4 crossref_primary_10_3390_s24237611 crossref_primary_10_1631_jzus_B2400103 crossref_primary_10_17694_bajece_1088353 crossref_primary_10_3390_life13020391 crossref_primary_10_1038_s41598_024_65910_8 crossref_primary_10_1080_2326263X_2019_1697163 crossref_primary_10_1109_JSEN_2023_3328615 crossref_primary_10_1016_j_eswa_2024_123492 crossref_primary_10_3389_fnbot_2024_1443010 crossref_primary_10_3390_bios13100930 crossref_primary_10_1007_s00113_022_01270_0 crossref_primary_10_1109_TIFS_2017_2699944 crossref_primary_10_1109_TCYB_2019_2924237 crossref_primary_10_1109_ACCESS_2020_3011140 crossref_primary_10_1186_s10033_019_0389_8 crossref_primary_10_3389_fnins_2016_00359 crossref_primary_10_1142_S0129065720500380 crossref_primary_10_1152_jn_00089_2015 crossref_primary_10_1038_s41597_022_01372_9 crossref_primary_10_1007_s43154_022_00076_7 crossref_primary_10_1038_srep36267 crossref_primary_10_1016_j_eswa_2021_115572 crossref_primary_10_3389_fnhum_2021_772837 crossref_primary_10_3389_fnins_2023_1077479 crossref_primary_10_1007_s11277_021_08135_6 crossref_primary_10_1109_TNSRE_2020_3005771 crossref_primary_10_1109_ACCESS_2019_2924185 crossref_primary_10_1038_sdata_2018_211 crossref_primary_10_3389_fnbot_2022_845127 crossref_primary_10_1109_TNSRE_2020_2981659 crossref_primary_10_1093_gigascience_giaa098 crossref_primary_10_3389_fnins_2020_00578 crossref_primary_10_1109_TASE_2019_2956110 crossref_primary_10_1177_0954411918755828 crossref_primary_10_1109_TCSII_2022_3177616 crossref_primary_10_3390_act12110406 crossref_primary_10_1088_1741_2552_ab85b2 crossref_primary_10_1016_j_cobme_2021_100354 crossref_primary_10_3389_fnhum_2018_00377 crossref_primary_10_3389_fnins_2023_1129049 crossref_primary_10_1109_ACCESS_2019_2921375 crossref_primary_10_1109_TNSRE_2019_2914904 crossref_primary_10_3390_bioengineering9120768 crossref_primary_10_1088_2057_1976_aad714 crossref_primary_10_1109_JSEN_2020_3005968 crossref_primary_10_1177_1687814019875537 crossref_primary_10_1152_physrev_00027_2016 crossref_primary_10_1109_JBHI_2023_3239053 crossref_primary_10_3389_fninf_2019_00074 crossref_primary_10_1108_IR_03_2021_0062 crossref_primary_10_1063_1_5006461 crossref_primary_10_1063_5_0208524 crossref_primary_10_1109_TNSRE_2020_2966826 crossref_primary_10_1177_0954411919898293 crossref_primary_10_1016_j_bspc_2023_104957 crossref_primary_10_3389_fnins_2018_00540 crossref_primary_10_1016_j_medntd_2023_100213 crossref_primary_10_1088_1741_2552_aaa8c0  | 
    
| Cites_doi | 10.1038/nature04970 10.3389/fnhum.2010.00202 10.1016/j.neuroimage.2013.07.079 10.1109/JPROC.2015.2413993 10.1109/MRA.2012.2229936 10.1109/86.712231 10.1016/j.robot.2012.11.002 10.1016/j.bspc.2011.02.002 10.1109/TBME.2014.2300164 10.1155/2009/864564 10.1016/S0140-6736(12)61816-9 10.1109/RBME.2011.2170675 10.1177/1545968313520410 10.7551/mitpress/7493.001.0001 10.3109/14992020309101316 10.1016/j.tins.2006.07.004 10.1016/j.neuroimage.2010.06.048 10.1109/AIM.2013.6584231 10.1155/2010/702357 10.1088/1741-2560/7/2/026010 10.1523/JNEUROSCI.23-37-11621.2003 10.1016/j.jneumeth.2007.09.022 10.1109/TNSRE.2014.2364618 10.1109/EMBC.2013.6609816 10.1109/smc.2014.6974126 10.1186/1743-0003-10-111 10.1186/1743-0003-12-1 10.3389/fnins.2012.00169 10.1088/1741-2560/4/2/R01 10.1109/EMBC.2013.6609759 10.1016/j.pmrj.2010.06.016 10.1109/EMBC.2013.6610821 10.1016/j.neuroimage.2009.07.045 10.1186/1743-0003-11-92 10.1186/1743-0003-8-39 10.1109/5.939829 10.1109/RBME.2013.2290621 10.1016/S0304-3940(03)00947-9 10.1016/j.neuroimage.2010.03.022 10.1109/TNSRE.2010.2076364 10.1109/TBME.2007.897815 10.1016/j.neuroimage.2010.11.004 10.3389/fnhum.2014.00188 10.1109/TBME.2006.889197 10.1109/iww-BCI.2014.6782571 10.1109/TBME.2010.2082539 10.1109/MSP.2008.4408441 10.1186/1743-0003-10-77 10.1007/s40141-014-0051-4 10.1016/j.clinph.2007.07.028 10.1109/TPAMI.2012.69 10.1371/journal.pone.0111157  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2015 IOP Publishing Ltd | 
    
| Copyright_xml | – notice: 2015 IOP Publishing Ltd | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7SC 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1088/1741-2560/12/5/056009 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Computer and Information Systems Abstracts MEDLINE MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Anatomy & Physiology | 
    
| DocumentTitleAlternate | A lower limb exoskeleton control system based on steady state visual evoked potentials | 
    
| EISSN | 1741-2552 | 
    
| EndPage | 56022 | 
    
| ExternalDocumentID | 26291321 10_1088_1741_2560_12_5_056009 jne517335  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article  | 
    
| GroupedDBID | --- 1JI 4.4 53G 5B3 5GY 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A NT- NT. P2P PJBAE RIN RO9 ROL RPA SY9 W28 XPP AAYXX ADEQX AEINN CITATION 02O 1WK ACARI AERVB AHSEE ARNYC BBWZM CGR CUY CVF ECM EIF FEDTE HVGLF JCGBZ NPM Q02 RNS S3P 7X8 7SC 8FD JQ2 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c454t-e77c645a7cf2eef9b4cdd7d7e435dbcb8a66ea848262082df6ec558210f63f573 | 
    
| IEDL.DBID | IOP | 
    
| ISSN | 1741-2560 1741-2552  | 
    
| IngestDate | Tue Aug 05 09:44:45 EDT 2025 Thu Sep 04 17:54:50 EDT 2025 Thu Apr 03 07:00:12 EDT 2025 Wed Oct 01 02:41:27 EDT 2025 Thu Apr 24 23:09:58 EDT 2025 Wed Aug 21 03:33:55 EDT 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 5 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c454t-e77c645a7cf2eef9b4cdd7d7e435dbcb8a66ea848262082df6ec558210f63f573 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| PMID | 26291321 | 
    
| PQID | 1716253501 | 
    
| PQPubID | 23479 | 
    
| PageCount | 14 | 
    
| ParticipantIDs | pubmed_primary_26291321 proquest_miscellaneous_1825451483 proquest_miscellaneous_1716253501 iop_journals_10_1088_1741_2560_12_5_056009 crossref_citationtrail_10_1088_1741_2560_12_5_056009 crossref_primary_10_1088_1741_2560_12_5_056009  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2015-10-01 | 
    
| PublicationDateYYYYMMDD | 2015-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2015 text: 2015-10-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | England | 
    
| PublicationPlace_xml | – name: England | 
    
| PublicationTitle | Journal of neural engineering | 
    
| PublicationTitleAbbrev | JNE | 
    
| PublicationTitleAlternate | J. Neural Eng | 
    
| PublicationYear | 2015 | 
    
| Publisher | IOP Publishing | 
    
| Publisher_xml | – name: IOP Publishing | 
    
| References | 44 46 47 48 49 50 51 52 53 10 11 12 Kim I-H (31) 2015; 12 13 15 16 17 18 19 Pastor M A (45) 2003; 23 1 3 4 5 6 7 8 9 Luo A (25) 2010; 7 20 21 22 23 24 26 27 28 29 Lotte F (14) 2007; 4 30 32 33 34 35 36 37 38 39 Dornhege G (2) 2007 40 41 42 43  | 
    
| References_xml | – ident: 3 doi: 10.1038/nature04970 – ident: 20 doi: 10.3389/fnhum.2010.00202 – ident: 49 doi: 10.1016/j.neuroimage.2013.07.079 – ident: 47 doi: 10.1109/JPROC.2015.2413993 – ident: 6 doi: 10.1109/MRA.2012.2229936 – ident: 50 doi: 10.1109/86.712231 – ident: 5 doi: 10.1016/j.robot.2012.11.002 – ident: 26 doi: 10.1016/j.bspc.2011.02.002 – ident: 10 doi: 10.1109/TBME.2014.2300164 – ident: 24 doi: 10.1155/2009/864564 – ident: 4 doi: 10.1016/S0140-6736(12)61816-9 – ident: 46 doi: 10.1109/RBME.2011.2170675 – ident: 40 doi: 10.1177/1545968313520410 – year: 2007 ident: 2 publication-title: Toward Brain Computer Interfacing doi: 10.7551/mitpress/7493.001.0001 – ident: 48 doi: 10.3109/14992020309101316 – ident: 1 doi: 10.1016/j.tins.2006.07.004 – ident: 13 doi: 10.1016/j.neuroimage.2010.06.048 – ident: 28 doi: 10.1109/AIM.2013.6584231 – ident: 23 doi: 10.1155/2010/702357 – volume: 7 start-page: 26010 issn: 1741-2552 year: 2010 ident: 25 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/7/2/026010 – volume: 23 start-page: 11621 year: 2003 ident: 45 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.23-37-11621.2003 – ident: 32 doi: 10.1016/j.jneumeth.2007.09.022 – ident: 39 doi: 10.1109/TNSRE.2014.2364618 – ident: 36 doi: 10.1109/EMBC.2013.6609816 – ident: 42 doi: 10.1109/smc.2014.6974126 – ident: 34 doi: 10.1186/1743-0003-10-111 – ident: 43 doi: 10.1186/1743-0003-12-1 – ident: 53 doi: 10.3389/fnins.2012.00169 – volume: 12 issn: 1741-2552 year: 2015 ident: 31 publication-title: J. Neural Eng. – volume: 4 start-page: 1 issn: 1741-2552 year: 2007 ident: 14 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/4/2/R01 – ident: 30 doi: 10.1109/EMBC.2013.6609759 – ident: 8 doi: 10.1016/j.pmrj.2010.06.016 – ident: 35 doi: 10.1109/EMBC.2013.6610821 – ident: 18 doi: 10.1016/j.neuroimage.2009.07.045 – ident: 38 doi: 10.1186/1743-0003-11-92 – ident: 29 doi: 10.1186/1743-0003-8-39 – ident: 9 doi: 10.1109/5.939829 – ident: 52 doi: 10.1109/RBME.2013.2290621 – ident: 7 doi: 10.1016/S0304-3940(03)00947-9 – ident: 19 doi: 10.1016/j.neuroimage.2010.03.022 – ident: 22 doi: 10.1109/TNSRE.2010.2076364 – ident: 21 doi: 10.1109/TBME.2007.897815 – ident: 15 doi: 10.1016/j.neuroimage.2010.11.004 – ident: 41 doi: 10.3389/fnhum.2014.00188 – ident: 27 doi: 10.1109/TBME.2006.889197 – ident: 44 doi: 10.1109/iww-BCI.2014.6782571 – ident: 16 doi: 10.1109/TBME.2010.2082539 – ident: 12 doi: 10.1109/MSP.2008.4408441 – ident: 33 doi: 10.1186/1743-0003-10-77 – ident: 37 doi: 10.1007/s40141-014-0051-4 – ident: 51 doi: 10.1016/j.clinph.2007.07.028 – ident: 17 doi: 10.1109/TPAMI.2012.69 – ident: 11 doi: 10.1371/journal.pone.0111157  | 
    
| SSID | ssj0031790 | 
    
| Score | 2.512675 | 
    
| Snippet | Objective. We have developed an asynchronous brain-machine interface (BMI)-based lower limb exoskeleton control system based on steady-state visual evoked... We have developed an asynchronous brain-machine interface (BMI)-based lower limb exoskeleton control system based on steady-state visual evoked potentials...  | 
    
| SourceID | proquest pubmed crossref iop  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 56009 | 
    
| SubjectTerms | Adult Artificial Limbs Brain-Computer Interfaces brain-machine interface Classification Control systems electroencephalogram Electroencephalography - instrumentation Equipment Design Equipment Failure Analysis Evoked potentials Evoked Potentials, Visual exoskeleton control Exoskeleton Device Exoskeletons Extraction Feedback Gait Disorders, Neurologic - physiopathology Gait Disorders, Neurologic - rehabilitation Humans Limbs Lower Extremity Male Robotics - instrumentation steady state visual evoked potentials Stimulation Visual Visual Perception  | 
    
| Title | A lower limb exoskeleton control system based on steady state visual evoked potentials | 
    
| URI | https://iopscience.iop.org/article/10.1088/1741-2560/12/5/056009 https://www.ncbi.nlm.nih.gov/pubmed/26291321 https://www.proquest.com/docview/1716253501 https://www.proquest.com/docview/1825451483  | 
    
| Volume | 12 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Science Platform customDbUrl: eissn: 1741-2552 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0031790 issn: 1741-2560 databaseCode: IOP dateStart: 20040101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELb6uHAB2vLYQpGREAek7G7iR5zjClFVSG05UNSbFdsTabXbZMVmK9pfz0ycVIBUKsQtSjzJZOLxfI5nPjP2DlLjMi2mSZEFkci8gqQEgbNWr0oJWgdRUL3z6Zk-uZCfL9XlL1X882bVD_1jPIxEwdGEfUKcmSCGThOK1JM0m6jJlGJ2sc12hUF0TCV851-GsVgQ_1QsiYwiQw3Pfbf5LTptowb3A88uAB0_YeWgesw7WYw3rRv72z9YHf_n3Z6yxz065bPYfo9tQb3PDmY1zsyvbvh73uWLdj_iD9i3GV_SFmt8Ob9yHH406wWGMISSvE9_55ElmlOgDBzPdx3qhnc1TPx6vt7go-C6WeDVVdNS2hL6wjN2cfzp68eTpN-lIfFSyTaBPPdaqjL3VQZQFU76EPKQAwKx4LwzpdZQGmmI-t5kodLgFZXnTistKpWL52ynbmp4yXgoIRgcMJyQQQIQFVqBE5rgwSnsNGbE5PB1rO8pzGknjaXtltKNsWQ_S_azaWaVjfYbsfGd2CpyeDwk8AE_kO29ef1Q47dDD7HomrTeUtbQbFCM2LkUrdz-pQ3N0BG0GjFiL2L3utMRDVakIksP_0WdV-wRYjoV8w1fs532-waOEDe17k3nGj8B5DkIeA | 
    
| linkProvider | IOP Publishing | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDLe2ISFe-BqMG19BQjwg9XptkjZ9PDFO42vsgaG9RU3iStPd2tOuNzH-epymPQmkMSHeqjZuXdeO7cb-BeA1JsqkGZ9ERep4JPIKoxI5Za1WlgKzzPHC9zt_OcoOT8THU3m6BQebXphm2U_9YzoMQMFBhH1BnIophk4i76njJI1lPPE-u4iXrtqGWx1YiW_j-3o8zMfcY1CFtshANvTxXHer3zzUNnFxffDZOaHZPcCB_VB7Mh-vWzO2P_9Advzf97sPd_solU0DzQPYwvoh7E5rytDPr9gb1tWNdj_kd-H7lC38VmtscXZuGP5oVnNyZRRSsr4MngW0aOYdpmN0vlOsK9b1MrHLs9WaHoWXzZyuLpvWly-RTTyCk9n7b-8Oo363hsgKKdoI89xmQpa5rVLEqjDCOpe7HCkgc8YaVWYZlkooD4GvUldlaKVv051UGa9kzh_DTt3U-ASYK9EpmjgMF04geki0ghIbZ9FIUh41AjF8IW17KHO_o8ZCd0vqSmkvQ-1lqJNUSx1kOILxhmwZsDxuInhLH0n3Vr26afCrQUs0mahfdylrbNZE5lG6pF_B_csYn6lT8Kr4CPaCim14JIEVCU-T_X9h5yXcPj6Y6c8fjj49hTsU5slQgvgMdtqLNT6nUKo1LzpL-QUWFA3Z | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+lower+limb+exoskeleton+control+system+based+on+steady+state+visual+evoked+potentials&rft.jtitle=Journal+of+neural+engineering&rft.au=Kwak%2C+No-Sang&rft.au=M%C3%BCller%2C+Klaus-Robert&rft.au=Lee%2C+Seong-Whan&rft.date=2015-10-01&rft.issn=1741-2552&rft.eissn=1741-2552&rft.volume=12&rft.issue=5&rft.spage=056009&rft_id=info:doi/10.1088%2F1741-2560%2F12%2F5%2F056009&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon |