Anti-Tau Antibodies that Block Tau Aggregate Seeding In Vitro Markedly Decrease Pathology and Improve Cognition In Vivo
Tau aggregation occurs in neurodegenerative diseases including Alzheimer’s disease and many other disorders collectively termed tauopathies. trans-cellular propagation of tau pathology, mediated by extracellular tau aggregates, may underlie pathogenesis of these conditions. P301S tau transgenic mice...
Saved in:
Published in | Neuron (Cambridge, Mass.) Vol. 80; no. 2; pp. 402 - 414 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
16.10.2013
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 0896-6273 1097-4199 1097-4199 |
DOI | 10.1016/j.neuron.2013.07.046 |
Cover
Abstract | Tau aggregation occurs in neurodegenerative diseases including Alzheimer’s disease and many other disorders collectively termed tauopathies. trans-cellular propagation of tau pathology, mediated by extracellular tau aggregates, may underlie pathogenesis of these conditions. P301S tau transgenic mice express mutant human tau protein and develop progressive tau pathology. Using a cell-based biosensor assay, we screened anti-tau monoclonal antibodies for their ability to block seeding activity present in P301S brain lysates. We infused three effective antibodies or controls into the lateral ventricle of P301S mice for 3 months. The antibodies markedly reduced hyperphosphorylated, aggregated, and insoluble tau. They also blocked development of tau seeding activity detected in brain lysates using the biosensor assay, reduced microglial activation, and improved cognitive deficits. These data imply a central role for extracellular tau aggregates in the development of pathology. They also suggest that immunotherapy specifically designed to block trans-cellular aggregate propagation will be a productive treatment strategy.
•Anti-tau antibodies block intracellular tau aggregation induced by tau seeds•Anti-tau antibodies strongly reduce tau pathology in vivo•Anti-tau antibodies decrease tau seeding activity in vivo•Anti-tau antibodies improve cognition
Yanamandra et al. find that antibodies that block aggregated forms of the tau protein from entering cells and seeding further tau aggregation have beneficial effects in an animal model that is relevant for Alzheimer’s disease and related disorders. |
---|---|
AbstractList | Tau aggregation occurs in neurodegenerative diseases including Alzheimer’s disease and many other disorders collectively termed tauopathies. trans-cellular propagation of tau pathology, mediated by extracellular tau aggregates, may underlie pathogenesis of these conditions. P301S tau transgenic mice express mutant human tau protein and develop progressive tau pathology. Using a cell-based biosensor assay, we screened anti-tau monoclonal antibodies for their ability to block seeding activity present in P301S brain lysates. We infused three effective antibodies or controls into the lateral ventricle of P301S mice for 3 months. The antibodies markedly reduced hyperphosphorylated, aggregated, and insoluble tau. They also blocked development of tau seeding activity detected in brain lysates using the biosensor assay, reduced microglial activation, and improved cognitive deficits. These data imply a central role for extracellular tau aggregates in the development of pathology. They also suggest that immunotherapy specifically designed to block trans-cellular aggregate propagation will be a productive treatment strategy.
•Anti-tau antibodies block intracellular tau aggregation induced by tau seeds•Anti-tau antibodies strongly reduce tau pathology in vivo•Anti-tau antibodies decrease tau seeding activity in vivo•Anti-tau antibodies improve cognition
Yanamandra et al. find that antibodies that block aggregated forms of the tau protein from entering cells and seeding further tau aggregation have beneficial effects in an animal model that is relevant for Alzheimer’s disease and related disorders. Tau aggregation occurs in neurodegenerative diseases including Alzheimer's disease and many other disorders collectively termed tauopathies.trans-cellular propagation of tau pathology, mediated by extracellular tau aggregates, may underlie pathogenesis of these conditions. P301S tau transgenic mice express mutant human tau protein and develop progressive tau pathology. Using a cell-based biosensor assay, we screened anti-tau monoclonal antibodies for their ability to block seeding activity present in P301S brain lysates. We infused three effective antibodies or controls into the lateral ventricle of P301S mice for 3 months. The antibodies markedly reduced hyperphosphorylated, aggregated, and insoluble tau. They also blocked development of tau seeding activity detected in brain lysates using the biosensor assay, reduced microglial activation, and improved cognitive deficits. These data imply a central role for extracellular tau aggregates in the development of pathology. They also suggest that immunotherapy specifically designed to blocktrans-cellular aggregate propagation will be a productive treatment strategy. Tau aggregation occurs in neurodegenerative diseases including Alzheimer's disease and many other disorders collectively termed tauopathies. Trans-cellular propagation of tau pathology, mediated by extracellular tau aggregates, may underlie pathogenesis of these conditions. P301S tau transgenic mice express mutant human tau protein, and develop progressive tau pathology. Using a cell-based biosensor assay, we screened anti-tau monoclonal antibodies for their ability to block seeding activity present in P301S brain lysates. We infused 3 effective antibodies or controls into the lateral ventricle of P301S mice for 3 months. The antibodies markedly reduced hyperphosphorylated, aggregated, and insoluble tau. They also blocked development of tau seeding activity detected in brain lysates using the biosensor assay, reduced microglial activation, and improved cognitive deficits. These data imply a central role for extracellular tau aggregates in the development of pathology. They also suggest immunotherapy specifically designed to block trans-cellular aggregate propagation will be a productive treatment strategy. Tau aggregation occurs in neurodegenerative diseases including Alzheimer's disease and many other disorders collectively termed tauopathies. trans-cellular propagation of tau pathology, mediated by extracellular tau aggregates, may underlie pathogenesis of these conditions. P301S tau transgenic mice express mutant human tau protein and develop progressive tau pathology. Using a cell-based biosensor assay, we screened anti-tau monoclonal antibodies for their ability to block seeding activity present in P301S brain lysates. We infused three effective antibodies or controls into the lateral ventricle of P301S mice for 3 months. The antibodies markedly reduced hyperphosphorylated, aggregated, and insoluble tau. They also blocked development of tau seeding activity detected in brain lysates using the biosensor assay, reduced microglial activation, and improved cognitive deficits. These data imply a central role for extracellular tau aggregates in the development of pathology. They also suggest that immunotherapy specifically designed to block trans-cellular aggregate propagation will be a productive treatment strategy. Tau aggregation occurs in neurodegenerative diseases including Alzheimers disease and many other disorders collectively termed tauopathies. trans-cellular propagation of tau pathology, mediated by extracellular tau aggregates, may underlie pathogenesis of these conditions. P301S tau transgenic mice express mutant human tau protein and develop progressive tau pathology. Using a cell-based biosensor assay, we screened anti-tau monoclonal antibodies for their ability to block seeding activity present in P301S brain lysates. We infused three effective antibodies or controls into the lateral ventricle of P301S mice for 3 months. The antibodies markedly reduced hyperphosphorylated, aggregated, and insoluble tau. They also blocked development of tau seeding activity detected in brain lysates using the biosensor assay, reduced microglial activation, and improved cognitive deficits. These data imply a central role for extracellular tau aggregates in the development of pathology. They also suggest that immunotherapy specifically designed to block trans-cellular aggregate propagation will be a productive treatment strategy. Tau aggregation occurs in neurodegenerative diseases including Alzheimer's disease and many other disorders collectively termed tauopathies. trans-cellular propagation of tau pathology, mediated by extracellular tau aggregates, may underlie pathogenesis of these conditions. P301S tau transgenic mice express mutant human tau protein and develop progressive tau pathology. Using a cell-based biosensor assay, we screened anti-tau monoclonal antibodies for their ability to block seeding activity present in P301S brain lysates. We infused three effective antibodies or controls into the lateral ventricle of P301S mice for 3 months. The antibodies markedly reduced hyperphosphorylated, aggregated, and insoluble tau. They also blocked development of tau seeding activity detected in brain lysates using the biosensor assay, reduced microglial activation, and improved cognitive deficits. These data imply a central role for extracellular tau aggregates in the development of pathology. They also suggest that immunotherapy specifically designed to block trans-cellular aggregate propagation will be a productive treatment strategy.Tau aggregation occurs in neurodegenerative diseases including Alzheimer's disease and many other disorders collectively termed tauopathies. trans-cellular propagation of tau pathology, mediated by extracellular tau aggregates, may underlie pathogenesis of these conditions. P301S tau transgenic mice express mutant human tau protein and develop progressive tau pathology. Using a cell-based biosensor assay, we screened anti-tau monoclonal antibodies for their ability to block seeding activity present in P301S brain lysates. We infused three effective antibodies or controls into the lateral ventricle of P301S mice for 3 months. The antibodies markedly reduced hyperphosphorylated, aggregated, and insoluble tau. They also blocked development of tau seeding activity detected in brain lysates using the biosensor assay, reduced microglial activation, and improved cognitive deficits. These data imply a central role for extracellular tau aggregates in the development of pathology. They also suggest that immunotherapy specifically designed to block trans-cellular aggregate propagation will be a productive treatment strategy. |
Author | Holtzman, David M. Kfoury, Najla Yanamandra, Kiran Mahan, Thomas E. Ma, Shengmei Wozniak, David F. Diamond, Marc I. Jiang, Hong Maloney, Susan E. |
AuthorAffiliation | 1 Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA 3 Charles F and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA 2 Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA 4 Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA |
AuthorAffiliation_xml | – name: 1 Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA – name: 4 Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA – name: 2 Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA – name: 3 Charles F and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA |
Author_xml | – sequence: 1 givenname: Kiran surname: Yanamandra fullname: Yanamandra, Kiran organization: Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA – sequence: 2 givenname: Najla surname: Kfoury fullname: Kfoury, Najla organization: Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA – sequence: 3 givenname: Hong surname: Jiang fullname: Jiang, Hong organization: Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA – sequence: 4 givenname: Thomas E. surname: Mahan fullname: Mahan, Thomas E. organization: Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA – sequence: 5 givenname: Shengmei surname: Ma fullname: Ma, Shengmei organization: Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA – sequence: 6 givenname: Susan E. surname: Maloney fullname: Maloney, Susan E. organization: Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA – sequence: 7 givenname: David F. surname: Wozniak fullname: Wozniak, David F. organization: Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA – sequence: 8 givenname: Marc I. surname: Diamond fullname: Diamond, Marc I. email: diamondm@neuro.wustl.edu organization: Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA – sequence: 9 givenname: David M. surname: Holtzman fullname: Holtzman, David M. email: holtzman@neuro.wustl.edu organization: Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24075978$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUl1v0zAUtdAQ6wb_ACFLvPCSYMdOnPCANMpXpSGQGLxarnOTukvtznYq9d_wW_hlOLRDsAcmP9jSPef43nPPGTqxzgJCTynJKaHVy3VuYfTO5gWhLCciJ7x6gGaUNCLjtGlO0IzUTZVVhWCn6CyENSGUlw19hE4LTkTZiHqG9hc2muxKjXh6LF1rIOC4UhG_GZy-xr8rfe-hVxHwV4DW2B4v7M8f3030Dn9S_hraYY_fgvagAuAvKq7c4Po9VrbFi83Wux3gueuticbZI3fnHqOHnRoCPDne5-jb-3dX84_Z5ecPi_nFZaZ5yWOmatECpIGWuuvYUijeFLyrNalVXRCehuhYWzFaAymU5qxlzVKprqpKoKStBTtHrw-623G5gVaDjV4NcuvNRvm9dMrIfyvWrGTvdpKlj0rBksCLo4B3NyOEKDcmaBgGZcGNQdKSVoLTior7oZyzpmE1nVSf34Gu3ehtciIJlgVJhxYJ9ezv5v90fbvABHh1AGjvQvDQSW2imoxOs5hBUiKntMi1PKRFTmmRRMiUlkTmd8i3-vfQjo5CWtvOgJdBG7A6ZcODjrJ15v8CvwBR9N24 |
CitedBy_id | crossref_primary_10_1016_S1474_4422_17_30157_6 crossref_primary_10_3389_fnmol_2020_590896 crossref_primary_10_1523_JNEUROSCI_2016_16_2016 crossref_primary_10_1186_s40659_022_00404_3 crossref_primary_10_15252_emmm_201910919 crossref_primary_10_1186_s13024_020_00389_1 crossref_primary_10_1002_glia_23794 crossref_primary_10_1038_nrneurol_2015_65 crossref_primary_10_1186_s40478_019_0664_z crossref_primary_10_2174_1568026619666191203113745 crossref_primary_10_1186_s40035_021_00270_1 crossref_primary_10_1038_nrd_2017_155 crossref_primary_10_1016_j_bcp_2013_12_020 crossref_primary_10_1111_jnc_12821 crossref_primary_10_1002_pro_3275 crossref_primary_10_1007_s00018_015_1949_4 crossref_primary_10_1016_j_brainres_2021_147308 crossref_primary_10_1016_j_neurobiolaging_2015_09_017 crossref_primary_10_1016_j_celrep_2014_05_033 crossref_primary_10_3233_JAD_201334 crossref_primary_10_1016_j_parkreldis_2018_10_006 crossref_primary_10_1038_s41598_019_41105_4 crossref_primary_10_1016_j_neuron_2017_05_026 crossref_primary_10_1016_j_nbd_2018_07_003 crossref_primary_10_3233_JAD_180422 crossref_primary_10_1038_s43587_023_00523_w crossref_primary_10_1016_S1474_4422_19_30139_5 crossref_primary_10_1186_s13195_018_0378_7 crossref_primary_10_1111_jnc_12845 crossref_primary_10_1007_s42399_021_01092_y crossref_primary_10_1186_s40478_018_0585_2 crossref_primary_10_1080_14737175_2018_1489241 crossref_primary_10_3892_mmr_2016_5618 crossref_primary_10_1186_s13024_019_0340_6 crossref_primary_10_1186_s13195_018_0441_4 crossref_primary_10_1016_j_neuron_2017_05_001 crossref_primary_10_1038_s41598_019_45234_8 crossref_primary_10_1007_s00441_023_03821_2 crossref_primary_10_1186_s40478_018_0562_9 crossref_primary_10_1523_JNEUROSCI_4989_14_2015 crossref_primary_10_3390_cells13090731 crossref_primary_10_1007_s00401_024_02704_2 crossref_primary_10_1097_WCO_0000000000000836 crossref_primary_10_1111_neup_12890 crossref_primary_10_1186_alzrt233 crossref_primary_10_1186_s12929_022_00871_6 crossref_primary_10_1080_14737175_2024_2314183 crossref_primary_10_1186_alzrt237 crossref_primary_10_1016_j_bbadis_2019_165584 crossref_primary_10_1016_j_patbio_2014_01_003 crossref_primary_10_1007_s00401_018_1869_0 crossref_primary_10_1126_sciadv_abe1611 crossref_primary_10_1186_s13024_017_0172_1 crossref_primary_10_3389_fnins_2019_00698 crossref_primary_10_1007_s11910_018_0898_3 crossref_primary_10_1016_j_bbrc_2016_12_101 crossref_primary_10_1038_nrd4179 crossref_primary_10_1371_journal_pone_0259335 crossref_primary_10_5582_bst_2023_01288 crossref_primary_10_1016_j_brainres_2024_149205 crossref_primary_10_1177_1179069518772380 crossref_primary_10_3233_JAD_180404 crossref_primary_10_3233_JAD_210297 crossref_primary_10_1016_j_ymeth_2017_08_003 crossref_primary_10_1111_febs_17150 crossref_primary_10_1126_scitranslmed_aal2029 crossref_primary_10_1038_srep28912 crossref_primary_10_1038_nature24016 crossref_primary_10_1007_s11940_014_0319_0 crossref_primary_10_1007_s12035_022_02809_3 crossref_primary_10_1186_s12974_019_1453_0 crossref_primary_10_1016_j_ymthe_2020_10_007 crossref_primary_10_1038_ncomms7768 crossref_primary_10_1186_s40478_020_01034_0 crossref_primary_10_1016_j_ijbiomac_2020_11_192 crossref_primary_10_1080_13543784_2019_1619694 crossref_primary_10_1038_s41541_020_0172_y crossref_primary_10_1038_labinvest_2014_78 crossref_primary_10_1038_s41593_024_01777_2 crossref_primary_10_1016_j_molmed_2015_03_003 crossref_primary_10_1093_brain_aww339 crossref_primary_10_1038_s41582_018_0013_z crossref_primary_10_1016_j_jbc_2023_105252 crossref_primary_10_7554_eLife_58499 crossref_primary_10_1186_s13024_018_0299_8 crossref_primary_10_1371_journal_pone_0271737 crossref_primary_10_3390_ijms252212448 crossref_primary_10_1101_cshperspect_a024331 crossref_primary_10_1186_s13195_024_01561_1 crossref_primary_10_1093_brain_aww334 crossref_primary_10_1038_s41598_017_17313_1 crossref_primary_10_1007_s12035_024_04295_1 crossref_primary_10_1038_s43587_021_00070_2 crossref_primary_10_1016_j_neuron_2018_06_003 crossref_primary_10_1186_s40478_021_01185_8 crossref_primary_10_1038_s41591_020_0938_9 crossref_primary_10_1098_rsob_240035 crossref_primary_10_1038_s41467_024_45692_3 crossref_primary_10_1186_alzrt261 crossref_primary_10_3233_JAD_221279 crossref_primary_10_3390_ijms19030645 crossref_primary_10_1038_nrd4363 crossref_primary_10_3390_biom12030469 crossref_primary_10_1186_s13195_016_0227_5 crossref_primary_10_1016_j_nicl_2017_09_016 crossref_primary_10_1016_j_celrep_2018_03_021 crossref_primary_10_3233_JAD_231163 crossref_primary_10_1016_j_pneurobio_2022_102306 crossref_primary_10_1007_s00401_014_1371_2 crossref_primary_10_1016_j_arr_2024_102192 crossref_primary_10_1186_alzrt277 crossref_primary_10_1038_s41380_020_0738_0 crossref_primary_10_1016_j_ajpath_2017_01_022 crossref_primary_10_2967_jnumed_117_190082 crossref_primary_10_1016_j_arr_2013_10_001 crossref_primary_10_1093_brain_aww230 crossref_primary_10_7554_eLife_36584 crossref_primary_10_1016_j_neuron_2017_04_010 crossref_primary_10_3390_ijms21239318 crossref_primary_10_1111_jnc_14830 crossref_primary_10_1126_scitranslmed_abo6889 crossref_primary_10_1038_s41598_020_77164_1 crossref_primary_10_1172_JCI168553 crossref_primary_10_1111_jon_13001 crossref_primary_10_15252_emmm_201607054 crossref_primary_10_1038_srep11161 crossref_primary_10_1002_alz_12452 crossref_primary_10_1002_alz_12451 crossref_primary_10_1016_j_trci_2018_10_007 crossref_primary_10_1002_alz_12453 crossref_primary_10_1016_j_jalz_2016_02_011 crossref_primary_10_1016_j_trci_2016_09_002 crossref_primary_10_1093_braincomms_fcac045 crossref_primary_10_1186_s13024_024_00793_x crossref_primary_10_1097_TA_0000000000001248 crossref_primary_10_1073_pnas_1607215114 crossref_primary_10_31083_j_jin_2020_01_1249 crossref_primary_10_3233_JAD_191266 crossref_primary_10_1084_jem_20211275 crossref_primary_10_1007_s11910_014_0495_z crossref_primary_10_1016_j_neuron_2014_05_004 crossref_primary_10_1146_annurev_biochem_061516_045049 crossref_primary_10_1016_j_biopsych_2017_04_003 crossref_primary_10_3390_jcm13113098 crossref_primary_10_3233_ADR_230130 crossref_primary_10_3390_ijms23116080 crossref_primary_10_2174_0929867325666180430150940 crossref_primary_10_1126_scitranslmed_aag0481 crossref_primary_10_1007_s40263_021_00813_0 crossref_primary_10_1111_cns_13970 crossref_primary_10_1016_j_tins_2014_08_004 crossref_primary_10_1074_jbc_RA120_013271 crossref_primary_10_1038_s41541_018_0046_8 crossref_primary_10_1186_s40478_019_0770_y crossref_primary_10_1002_chem_201701218 crossref_primary_10_1146_annurev_cellbio_100617_062636 crossref_primary_10_1038_s41598_018_34759_z crossref_primary_10_1016_j_conb_2015_09_004 crossref_primary_10_1039_C7CP02849K crossref_primary_10_1186_s40478_020_0884_2 crossref_primary_10_1016_j_addr_2022_114517 crossref_primary_10_1007_s12035_018_0974_3 crossref_primary_10_3389_fncel_2014_00113 crossref_primary_10_3390_vaccines2030601 crossref_primary_10_1002_mds_25855 crossref_primary_10_1007_s00259_014_2740_8 crossref_primary_10_1016_j_pneurobio_2019_101644 crossref_primary_10_1186_s13024_017_0192_x crossref_primary_10_3390_ijms19040998 crossref_primary_10_1002_acn3_171 crossref_primary_10_1002_acn3_176 crossref_primary_10_3390_ijms18061319 crossref_primary_10_1111_nan_12192 crossref_primary_10_1016_j_pharmthera_2018_11_006 crossref_primary_10_1016_j_npep_2022_102285 crossref_primary_10_1016_j_drudis_2022_103338 crossref_primary_10_1021_acschemneuro_4c00360 crossref_primary_10_1126_scitranslmed_abb2639 crossref_primary_10_1186_s13024_016_0126_z crossref_primary_10_1371_journal_pbio_2002183 crossref_primary_10_1186_s40478_020_01003_7 crossref_primary_10_1101_cshperspect_a024612 crossref_primary_10_1155_2020_8878412 crossref_primary_10_1007_s00401_016_1644_z crossref_primary_10_21926_obm_neurobiol_2403238 crossref_primary_10_2478_s13380_014_0222_x crossref_primary_10_1016_j_neuron_2014_06_004 crossref_primary_10_1016_j_jconrel_2022_07_026 crossref_primary_10_1016_S1474_4422_21_00035_1 crossref_primary_10_1093_brain_awy117 crossref_primary_10_1038_s41582_023_00883_2 crossref_primary_10_7554_eLife_45457 crossref_primary_10_1093_brain_awx052 crossref_primary_10_1159_000358875 crossref_primary_10_1523_JNEUROSCI_2755_14_2014 crossref_primary_10_1080_13543784_2018_1460356 crossref_primary_10_1007_s11481_015_9637_6 crossref_primary_10_1093_braincomms_fcab096 crossref_primary_10_1016_j_neulet_2020_134919 crossref_primary_10_1016_S1474_4422_20_30489_0 crossref_primary_10_1002_adtp_202300181 crossref_primary_10_1016_j_expneurol_2018_02_004 crossref_primary_10_1371_journal_pone_0195211 crossref_primary_10_1002_trc2_12097 crossref_primary_10_1142_S0192415X22500677 crossref_primary_10_3233_JAD_160695 crossref_primary_10_1016_j_str_2018_08_012 crossref_primary_10_1073_pnas_2123487119 crossref_primary_10_20517_and_2023_20 crossref_primary_10_1590_1980_57642016dn11_030006 crossref_primary_10_1016_j_jalz_2016_03_018 crossref_primary_10_1016_j_neuron_2013_10_009 crossref_primary_10_3390_ijms24119439 crossref_primary_10_1038_s41541_022_00544_3 crossref_primary_10_1016_S1474_4422_13_70257_6 crossref_primary_10_1051_medsci_20153102006 crossref_primary_10_1002_cbic_202300727 crossref_primary_10_1016_j_nantod_2020_101027 crossref_primary_10_1021_bi501272x crossref_primary_10_1126_scisignal_adi8743 crossref_primary_10_1111_jnc_14207 crossref_primary_10_1074_jbc_M114_627919 crossref_primary_10_1021_acs_analchem_6b01825 crossref_primary_10_18632_oncotarget_17371 crossref_primary_10_3233_JAD_170187 crossref_primary_10_1016_j_neuron_2014_04_047 crossref_primary_10_1098_rsob_220098 crossref_primary_10_1016_j_jbc_2022_102163 crossref_primary_10_1016_j_neuropharm_2020_108104 crossref_primary_10_1016_j_pharep_2018_09_006 crossref_primary_10_1016_j_pneurobio_2018_05_001 crossref_primary_10_1002_alz_14125 crossref_primary_10_1093_braincomms_fcaa039 crossref_primary_10_1074_jbc_RA120_015882 crossref_primary_10_1080_21678707_2017_1335596 crossref_primary_10_3390_pharmaceutics13071002 crossref_primary_10_1186_s13024_020_00404_5 crossref_primary_10_1016_j_ebiom_2019_03_033 crossref_primary_10_1073_pnas_1411649111 crossref_primary_10_1021_acs_analchem_3c04081 crossref_primary_10_1038_d41586_018_05723_8 crossref_primary_10_1186_s13024_015_0052_5 crossref_primary_10_1007_s00401_017_1705_y crossref_primary_10_1016_j_expneurol_2023_114392 crossref_primary_10_3390_ijms231911610 crossref_primary_10_1002_acn3_308 crossref_primary_10_1159_000440842 crossref_primary_10_3390_ijms232315230 crossref_primary_10_1080_14728214_2019_1609450 crossref_primary_10_1016_j_neuron_2014_12_064 crossref_primary_10_1186_s13024_016_0143_y crossref_primary_10_1002_mdc3_12142 crossref_primary_10_1074_jbc_RA120_014890 crossref_primary_10_1146_annurev_neuro_070815_014015 crossref_primary_10_1016_j_parkreldis_2015_09_033 crossref_primary_10_1016_j_bcp_2018_09_026 crossref_primary_10_1073_pnas_1710311114 crossref_primary_10_1007_s44194_024_00035_8 crossref_primary_10_3389_fcell_2021_707268 crossref_primary_10_3390_ijms21238948 crossref_primary_10_1016_j_jalz_2016_01_013 crossref_primary_10_2174_1874467215666220903095837 crossref_primary_10_1007_s00702_018_1851_y crossref_primary_10_1016_j_expneurol_2021_113756 crossref_primary_10_1016_j_molmed_2020_03_012 crossref_primary_10_3389_fnins_2019_01274 crossref_primary_10_1016_j_vaccine_2017_03_020 crossref_primary_10_2174_1567205017666200304085513 crossref_primary_10_1186_s40478_017_0458_0 crossref_primary_10_1016_j_medp_2024_100060 crossref_primary_10_3233_JAD_179907 crossref_primary_10_1126_science_aav2546 crossref_primary_10_1074_jbc_M115_657924 crossref_primary_10_1523_JNEUROSCI_3192_13_2014 crossref_primary_10_1016_j_neuron_2018_02_015 crossref_primary_10_4103_1673_5374_259613 crossref_primary_10_1016_j_omtn_2019_07_008 crossref_primary_10_1016_j_jagp_2023_11_011 crossref_primary_10_1186_s40035_024_00432_x crossref_primary_10_1186_s13041_017_0298_7 crossref_primary_10_1007_s10571_019_00741_0 crossref_primary_10_1016_j_parkreldis_2020_03_003 crossref_primary_10_1021_acsami_4c18679 crossref_primary_10_3389_fnagi_2016_00315 crossref_primary_10_1186_s12974_014_0152_0 crossref_primary_10_1007_s00401_015_1413_4 crossref_primary_10_1016_j_bcp_2014_01_002 crossref_primary_10_1038_s41467_018_06783_0 crossref_primary_10_1080_17460441_2018_1445084 crossref_primary_10_1016_S0140_6736_15_00461_4 crossref_primary_10_1002_mdc3_13326 crossref_primary_10_1016_j_mtbio_2024_101145 crossref_primary_10_2478_s13380_014_0225_7 crossref_primary_10_1016_j_jalz_2015_06_1884 crossref_primary_10_1016_j_neurobiolaging_2014_12_002 crossref_primary_10_1126_science_abn1366 crossref_primary_10_1016_j_nbd_2019_104707 crossref_primary_10_1186_s40478_021_01147_0 crossref_primary_10_1186_s40035_022_00293_2 crossref_primary_10_1038_nm_3809 crossref_primary_10_1016_j_bbamcr_2023_119477 crossref_primary_10_1016_j_neurol_2022_03_010 crossref_primary_10_1159_000487641 crossref_primary_10_1007_s40265_021_01546_6 crossref_primary_10_1002_alz_14250 crossref_primary_10_1016_j_ab_2015_12_002 crossref_primary_10_1186_1750_1326_9_34 crossref_primary_10_1016_j_ebiom_2018_08_041 crossref_primary_10_1016_j_neuron_2024_02_017 crossref_primary_10_1016_j_jconrel_2025_01_056 crossref_primary_10_3389_fimmu_2019_01139 crossref_primary_10_1002_cm_21822 crossref_primary_10_1016_j_celrep_2016_06_099 crossref_primary_10_1007_s12035_022_02824_4 crossref_primary_10_1080_21645515_2017_1393594 crossref_primary_10_7554_eLife_10891 crossref_primary_10_1016_j_nbd_2022_105632 crossref_primary_10_1038_s41582_021_00541_5 crossref_primary_10_1007_s10571_017_0574_1 crossref_primary_10_1038_s41586_019_1688_z crossref_primary_10_3233_JAD_230603 crossref_primary_10_1002_glia_22988 crossref_primary_10_1039_C8RA03620A crossref_primary_10_1515_revneuro_2015_0008 crossref_primary_10_1007_s00216_019_02350_8 crossref_primary_10_1016_j_trci_2018_09_005 crossref_primary_10_1186_s40478_019_0754_y crossref_primary_10_1186_1750_1326_9_51 crossref_primary_10_1007_s00401_024_02701_5 crossref_primary_10_1007_s40120_024_00614_9 crossref_primary_10_2174_1871527322666230306085937 crossref_primary_10_1146_annurev_neuro_072116_031153 crossref_primary_10_1186_s40478_018_0543_z crossref_primary_10_1007_s00401_015_1483_3 crossref_primary_10_1016_S1474_4422_21_00283_0 crossref_primary_10_1093_brain_awae254 crossref_primary_10_1080_14728222_2023_2206561 crossref_primary_10_1007_s00401_021_02301_7 crossref_primary_10_1007_s00401_015_1507_z crossref_primary_10_1016_j_bbadis_2021_166234 crossref_primary_10_1016_j_ymthe_2022_01_009 crossref_primary_10_1084_jem_20172158 crossref_primary_10_1007_s00702_014_1315_y crossref_primary_10_1016_j_neuron_2017_11_028 crossref_primary_10_1038_s41541_021_00424_2 crossref_primary_10_1038_nrn_2015_1 crossref_primary_10_1111_jnc_13640 crossref_primary_10_2217_imt_2016_0019 crossref_primary_10_1038_nrd4593 crossref_primary_10_1084_jem_20162125 crossref_primary_10_1007_s00401_018_1891_2 crossref_primary_10_14802_jmd_19057 crossref_primary_10_3389_fphys_2015_00277 crossref_primary_10_3233_JHD_230569 crossref_primary_10_1074_jbc_M115_652693 crossref_primary_10_1111_jnc_15713 crossref_primary_10_1038_s41598_019_51809_2 crossref_primary_10_1080_14760584_2018_1500905 crossref_primary_10_1093_brain_awad024 crossref_primary_10_3233_JAD_179937 crossref_primary_10_1007_s00115_015_0041_5 crossref_primary_10_1186_s40035_024_00407_y crossref_primary_10_1016_j_neuropharm_2019_107842 crossref_primary_10_1038_s41467_020_16984_1 crossref_primary_10_1016_j_semcdb_2021_12_002 crossref_primary_10_1136_jnnp_2014_308004 crossref_primary_10_1111_jnc_13668 crossref_primary_10_1016_j_bmc_2019_115175 crossref_primary_10_1016_j_neurobiolaging_2014_11_022 crossref_primary_10_3390_biomedicines12112636 crossref_primary_10_1186_s40035_017_0100_x crossref_primary_10_1001_jamaneurol_2018_2505 crossref_primary_10_1186_s40478_021_01127_4 crossref_primary_10_1007_s13311_020_00853_2 crossref_primary_10_1002_bies_201400094 crossref_primary_10_3389_fpsyt_2019_00075 crossref_primary_10_3390_ph16101498 crossref_primary_10_1016_j_cell_2019_09_001 crossref_primary_10_1155_2020_7829842 crossref_primary_10_1186_2051_5960_2_14 crossref_primary_10_1038_nrneurol_2015_225 crossref_primary_10_1038_s41541_019_0118_4 crossref_primary_10_1093_ijnp_pyv088 crossref_primary_10_1126_scitranslmed_adj5958 crossref_primary_10_1007_s13311_020_00888_5 crossref_primary_10_1186_s40478_017_0488_7 crossref_primary_10_1186_s40478_017_0442_8 crossref_primary_10_3389_fneur_2020_580732 crossref_primary_10_1016_j_bbrc_2017_04_125 crossref_primary_10_3389_fimmu_2019_02049 crossref_primary_10_1007_s11910_017_0779_1 crossref_primary_10_1007_s00018_024_05225_z crossref_primary_10_1021_cn500143n crossref_primary_10_3390_biom6020021 crossref_primary_10_1186_s40478_020_00948_z crossref_primary_10_17116_jnevro201911909218 crossref_primary_10_1016_j_nbd_2020_105010 crossref_primary_10_1101_cshperspect_a024026 crossref_primary_10_1371_journal_pone_0125614 crossref_primary_10_2174_011574888X267673231120061600 crossref_primary_10_1016_j_trci_2016_06_004 crossref_primary_10_1038_s41593_019_0433_0 crossref_primary_10_1074_jbc_R114_549295 crossref_primary_10_1111_ner_13305 crossref_primary_10_1101_cshperspect_a024141 crossref_primary_10_4103_1673_5374_385853 crossref_primary_10_1016_j_jbc_2023_105545 crossref_primary_10_3390_antib4030170 crossref_primary_10_1186_s13195_018_0341_7 crossref_primary_10_1042_NS20220086 crossref_primary_10_1172_JCI138179 crossref_primary_10_1039_D3AN01328F crossref_primary_10_1007_s11011_020_00591_6 crossref_primary_10_1371_journal_pone_0135774 crossref_primary_10_1007_s00401_019_02087_9 crossref_primary_10_3390_biom6010006 crossref_primary_10_1016_j_jneuroim_2015_08_008 crossref_primary_10_1053_j_semnuclmed_2020_12_008 crossref_primary_10_1038_srep38224 crossref_primary_10_1016_S1474_4422_17_30037_6 crossref_primary_10_3389_fnins_2018_00267 crossref_primary_10_1097_WCO_0000000000000355 crossref_primary_10_3390_antib12020041 crossref_primary_10_1093_brain_awu213 crossref_primary_10_18502_jovr_v14i4_5459 |
Cites_doi | 10.1074/jbc.M808759200 10.1073/pnas.73.11.4070 10.1016/S0197-4580(97)00062-6 10.1038/nature08890 10.1016/j.neuron.2011.12.040 10.1021/mp300518e 10.3791/838 10.1016/0304-3940(95)11484-E 10.1523/JNEUROSCI.2361-07.2007 10.1523/JNEUROSCI.1292-12.2012 10.1101/cshperspect.a006247 10.1523/JNEUROSCI.22-15-06331.2002 10.1001/archneur.63.10.1459 10.1074/jbc.M110.209296 10.1016/j.nbd.2006.11.014 10.1074/jbc.M307996200 10.1016/j.nbd.2011.08.029 10.1016/j.neuron.2007.01.010 10.1074/jbc.M111.229633 10.2174/156720512800492503 10.1038/nn842 10.1523/JNEUROSCI.4922-11.2012 10.2174/156720509789207930 10.1073/pnas.1014074107 10.1146/annurev.immunol.19.1.275 10.1016/0304-3940(93)90590-H 10.1038/nrn2786 10.1073/pnas.151261398 10.1523/JNEUROSCI.23-09-03745.2003 10.1523/JNEUROSCI.3579-11.2011 10.1523/JNEUROSCI.4363-10.2010 10.1016/j.neuron.2009.03.024 10.1371/journal.pone.0031302 10.1523/JNEUROSCI.2642-12.2013 10.1371/journal.pone.0026860 10.1074/jbc.M112.346072 10.1016/j.neuron.2008.11.007 10.1074/jbc.M111.323279 10.1111/j.1471-4159.2011.07337.x 10.3233/JAD-2010-1273 10.1371/journal.pone.0048180 10.1002/jnr.10271 10.1074/jbc.M111.288746 10.1038/78682 10.1016/j.neuron.2012.03.004 10.1523/JNEUROSCI.1065-09.2009 10.1523/JNEUROSCI.19-17-07486.1999 10.1016/j.expneurol.2010.05.010 10.1091/mbc.3.10.1141 10.1002/jnr.490390607 10.1021/bi800783d 10.1038/ncb1901 10.1371/journal.pone.0019338 10.1096/fj.02-1169fje 10.1523/JNEUROSCI.2569-11.2011 10.1038/ni.2548 10.1212/WNL.42.3.631 10.1016/j.neuron.2011.11.033 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Inc. Copyright © 2013 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Oct 16, 2013 |
Copyright_xml | – notice: 2013 Elsevier Inc. – notice: Copyright © 2013 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Oct 16, 2013 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 8FD FR3 K9. NAPCQ P64 RC3 7X8 5PM |
DOI | 10.1016/j.neuron.2013.07.046 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Genetics Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Nursing & Allied Health Premium MEDLINE Neurosciences Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1097-4199 |
EndPage | 414 |
ExternalDocumentID | PMC3924573 3396557501 24075978 10_1016_j_neuron_2013_07_046 S0896627313006703 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS071835 – fundername: National Institute of Neurological Disorders and Stroke : NINDS grantid: R01 NS071835 || NS |
GroupedDBID | --- --K -DZ -~X 0R~ 123 1RT 1~5 26- 2WC 3V. 4.4 457 4G. 53G 5RE 5VS 62- 6I. 7-5 7RV 7X7 8C1 8FE 8FH AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKRW AAKUH AALRI AAQFI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV ADEZE ADFRT ADJPV AEFWE AENEX AEXQZ AFKRA AFTJW AGHFR AGKMS AHHHB AHMBA AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ AQUVI ASPBG AVWKF AZFZN BAWUL BBNVY BENPR BHPHI BKEYQ BKNYI BPHCQ BVXVI CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HCIFZ HVGLF IAO IHE IHR INH IXB J1W JIG K-O KQ8 L7B LK8 LX5 M0R M0T M2M M2O M3Z M41 M7P N9A NCXOZ O-L O9- OK1 P2P P6G PQQKQ PROAC RCE RIG ROL RPZ SCP SDP SES SSZ TR2 WOW WQ6 ZA5 .55 .GJ 29N 3O- AAFWJ AAMRU AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FGOYB G-2 HZ~ ITC MVM OZT R2- X7M ZGI ZKB CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 8FD EFKBS FR3 K9. NAPCQ P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c454t-a87dee419bcff3b7a4924f8c08a8204978f3d6318e02ac43d39baaf665e10d873 |
IEDL.DBID | IXB |
ISSN | 0896-6273 1097-4199 |
IngestDate | Thu Aug 21 18:34:09 EDT 2025 Thu Sep 04 19:39:18 EDT 2025 Thu Sep 04 20:22:00 EDT 2025 Fri Jul 25 11:11:59 EDT 2025 Thu Apr 03 07:07:26 EDT 2025 Thu Apr 24 23:10:25 EDT 2025 Tue Jul 01 01:16:06 EDT 2025 Fri Feb 23 02:11:25 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 Copyright © 2013 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c454t-a87dee419bcff3b7a4924f8c08a8204978f3d6318e02ac43d39baaf665e10d873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0896627313006703 |
PMID | 24075978 |
PQID | 1552020212 |
PQPubID | 2031076 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3924573 proquest_miscellaneous_1516741617 proquest_miscellaneous_1443993813 proquest_journals_1552020212 pubmed_primary_24075978 crossref_citationtrail_10_1016_j_neuron_2013_07_046 crossref_primary_10_1016_j_neuron_2013_07_046 elsevier_sciencedirect_doi_10_1016_j_neuron_2013_07_046 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-10-16 |
PublicationDateYYYYMMDD | 2013-10-16 |
PublicationDate_xml | – month: 10 year: 2013 text: 2013-10-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Cambridge |
PublicationTitle | Neuron (Cambridge, Mass.) |
PublicationTitleAlternate | Neuron |
PublicationYear | 2013 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Frost, Diamond (bib20) 2010; 11 Bancher, Braak, Fischer, Jellinger (bib5) 1993; 162 Bae, Lee, Rockenstein, Ho, Park, Yang, Desplats, Masliah, Lee (bib4) 2012; 32 Troquier, Caillierez, Burnouf, Fernandez-Gomez, Grosjean, Zommer, Sergeant, Schraen-Maschke, Blum, Buee (bib51) 2012; 9 Braak, Braak (bib12) 1997; 18 Ghoshal, Dearborn, Wozniak, Cairns (bib22) 2012; 45 Bi, Ittner, Ke, Götz, Ittner (bib8) 2011; 6 Jicha, Weaver, Lane, Vianna, Kress, Rockwood, Davies (bib28) 1999; 19 Yoshiyama, Higuchi, Zhang, Huang, Iwata, Saido, Maeda, Suhara, Trojanowski, Lee (bib56) 2007; 53 Bard, Cannon, Barbour, Burke, Games, Grajeda, Guido, Hu, Huang, Johnson-Wood (bib6) 2000; 6 Boimel, Grigoriadis, Lourbopoulos, Haber, Abramsky, Rosenmann (bib9) 2010; 224 Clavaguera, Bolmont, Crowther, Abramowski, Frank, Probst, Fraser, Stalder, Beibel, Staufenbiel (bib14) 2009; 11 Masliah, Rockenstein, Mante, Crews, Spencer, Adame, Patrick, Trejo, Ubhi, Rohn (bib37) 2011; 6 Kfoury, Holmes, Jiang, Holtzman, Diamond (bib29) 2012; 287 Raj, Kuceyeski, Weiner (bib42) 2012; 73 Mohamed, Mosier, Zou, Siklós, Alexianu, Engelhardt, Beers, Le, Appel (bib39) 2002; 69 Halfmann, Lindquist (bib25) 2008 Polydoro, Acker, Duff, Castillo, Davies (bib41) 2009; 29 Wilcock, DiCarlo, Henderson, Jackson, Clarke, Ugen, Gordon, Morgan (bib52) 2003; 23 Small, Duff (bib49) 2008; 60 Kim, Lee, Jung, Ahmed, Lee, Hall (bib30) 2010; 19 Sigurdsson (bib48) 2009; 6 Zhang, Carroll, Trojanowski, Yao, Iba, Potuzak, Hogan, Xie, Ballatore, Smith (bib57) 2012; 32 Liu, Drouet, Wu, Witter, Small, Clelland, Duff (bib33) 2012; 7 Chai, Wu, Murray, Kinley, Cella, Sims, Buckner, Hanmer, Davies, O’Neill (bib13) 2011; 286 de Calignon, Polydoro, Suárez-Calvet, William, Adamowicz, Kopeikina, Pitstick, Sahara, Ashe, Carlson (bib16) 2012; 73 Kryndushkin, Alexandrov, Ter-Avanesyan, Kushnirov (bib32) 2003; 278 Macauley, Pekny, Sands (bib34) 2011; 31 Guo, Lee (bib24) 2011; 286 de Calignon, Fox, Pitstick, Carlson, Bacskai, Spires-Jones, Hyman (bib15) 2010; 464 Otvos, Feiner, Lang, Szendrei, Goedert, Lee (bib40) 1994; 39 Drechsel, Hyman, Cobb, Kirschner (bib19) 1992; 3 Zhou, Gennatas, Kramer, Miller, Seeley (bib58) 2012; 73 Jeganathan, von Bergen, Mandelkow, Mandelkow (bib27) 2008; 47 DeMattos, Bales, Cummins, Dodart, Paul, Holtzman (bib17) 2001; 98 Dodart, Bales, Gannon, Greene, DeMattos, Mathis, DeLong, Wu, Wu, Holtzman, Paul (bib18) 2002; 5 Mandelkow, Mandelkow (bib36) 2012; 2 Boutajangout, Quartermain, Sigurdsson (bib10) 2010; 30 Asuni, Boutajangout, Quartermain, Sigurdsson (bib3) 2007; 27 McEwan, Tam, Watkinson, Bidgood, Mallery, James (bib38) 2013; 14 Santa-Maria, Varghese, Ksiezak-Reding, Dzhun, Wang, Pasinetti (bib45) 2012; 287 Boutajangout, Ingadottir, Davies, Sigurdsson (bib11) 2011; 118 Kotilinek, Bacskai, Westerman, Kawarabayashi, Younkin, Hyman, Younkin, Ashe (bib31) 2002; 22 Iba, Guo, McBride, Zhang, Trojanowski, Lee (bib26) 2013; 33 Rosenmann, Grigoriadis, Karussis, Boimel, Touloumi, Ovadia, Abramsky (bib44) 2006; 63 Mallery, McEwan, Bidgood, Towers, Johnson, James (bib35) 2010; 107 Goedert, Jakes, Vanmechelen (bib23) 1995; 189 Andoh, Kuraishi (bib1) 2004; 18 Wozniak, Xiao, Xu, Yamada, Ornitz (bib54) 2007; 26 Arriagada, Growdon, Hedley-Whyte, Hyman (bib2) 1992; 42 Yamada, Cirrito, Stewart, Jiang, Finn, Holmes, Binder, Mandelkow, Diamond, Lee, Holtzman (bib55) 2011; 31 Frost, Jacks, Diamond (bib21) 2009; 284 Strazielle, Ghersi-Egea (bib50) 2013; 10 Sato, Turkoz, Dearborn, Wozniak, Kopan, Hass (bib46) 2012; 7 Basak, Verghese, Yoon, Kim, Holtzman (bib7) 2012; 287 Ravetch, Bolland (bib43) 2001; 19 Seeley, Crawford, Zhou, Miller, Greicius (bib47) 2009; 62 Witman, Cleveland, Weingarten, Kirschner (bib53) 1976; 73 de Calignon (10.1016/j.neuron.2013.07.046_bib15) 2010; 464 Basak (10.1016/j.neuron.2013.07.046_bib7) 2012; 287 Mandelkow (10.1016/j.neuron.2013.07.046_bib36) 2012; 2 Mallery (10.1016/j.neuron.2013.07.046_bib35) 2010; 107 Polydoro (10.1016/j.neuron.2013.07.046_bib41) 2009; 29 Small (10.1016/j.neuron.2013.07.046_bib49) 2008; 60 Witman (10.1016/j.neuron.2013.07.046_bib53) 1976; 73 Yamada (10.1016/j.neuron.2013.07.046_bib55) 2011; 31 Bi (10.1016/j.neuron.2013.07.046_bib8) 2011; 6 Kfoury (10.1016/j.neuron.2013.07.046_bib29) 2012; 287 Chai (10.1016/j.neuron.2013.07.046_bib13) 2011; 286 Seeley (10.1016/j.neuron.2013.07.046_bib47) 2009; 62 Sigurdsson (10.1016/j.neuron.2013.07.046_bib48) 2009; 6 Bard (10.1016/j.neuron.2013.07.046_bib6) 2000; 6 Frost (10.1016/j.neuron.2013.07.046_bib21) 2009; 284 Liu (10.1016/j.neuron.2013.07.046_bib33) 2012; 7 Yoshiyama (10.1016/j.neuron.2013.07.046_bib56) 2007; 53 Asuni (10.1016/j.neuron.2013.07.046_bib3) 2007; 27 Masliah (10.1016/j.neuron.2013.07.046_bib37) 2011; 6 Drechsel (10.1016/j.neuron.2013.07.046_bib19) 1992; 3 Braak (10.1016/j.neuron.2013.07.046_bib12) 1997; 18 Raj (10.1016/j.neuron.2013.07.046_bib42) 2012; 73 Guo (10.1016/j.neuron.2013.07.046_bib24) 2011; 286 Kim (10.1016/j.neuron.2013.07.046_bib30) 2010; 19 Bae (10.1016/j.neuron.2013.07.046_bib4) 2012; 32 Jeganathan (10.1016/j.neuron.2013.07.046_bib27) 2008; 47 Kryndushkin (10.1016/j.neuron.2013.07.046_bib32) 2003; 278 Strazielle (10.1016/j.neuron.2013.07.046_bib50) 2013; 10 Dodart (10.1016/j.neuron.2013.07.046_bib18) 2002; 5 Boutajangout (10.1016/j.neuron.2013.07.046_bib11) 2011; 118 Mohamed (10.1016/j.neuron.2013.07.046_bib39) 2002; 69 Clavaguera (10.1016/j.neuron.2013.07.046_bib14) 2009; 11 Ghoshal (10.1016/j.neuron.2013.07.046_bib22) 2012; 45 Goedert (10.1016/j.neuron.2013.07.046_bib23) 1995; 189 Arriagada (10.1016/j.neuron.2013.07.046_bib2) 1992; 42 Troquier (10.1016/j.neuron.2013.07.046_bib51) 2012; 9 Zhang (10.1016/j.neuron.2013.07.046_bib57) 2012; 32 Otvos (10.1016/j.neuron.2013.07.046_bib40) 1994; 39 Macauley (10.1016/j.neuron.2013.07.046_bib34) 2011; 31 de Calignon (10.1016/j.neuron.2013.07.046_bib16) 2012; 73 Sato (10.1016/j.neuron.2013.07.046_bib46) 2012; 7 Andoh (10.1016/j.neuron.2013.07.046_bib1) 2004; 18 Jicha (10.1016/j.neuron.2013.07.046_bib28) 1999; 19 Halfmann (10.1016/j.neuron.2013.07.046_bib25) 2008 McEwan (10.1016/j.neuron.2013.07.046_bib38) 2013; 14 Boimel (10.1016/j.neuron.2013.07.046_bib9) 2010; 224 Rosenmann (10.1016/j.neuron.2013.07.046_bib44) 2006; 63 Frost (10.1016/j.neuron.2013.07.046_bib20) 2010; 11 Boutajangout (10.1016/j.neuron.2013.07.046_bib10) 2010; 30 Wozniak (10.1016/j.neuron.2013.07.046_bib54) 2007; 26 Zhou (10.1016/j.neuron.2013.07.046_bib58) 2012; 73 Santa-Maria (10.1016/j.neuron.2013.07.046_bib45) 2012; 287 Bancher (10.1016/j.neuron.2013.07.046_bib5) 1993; 162 DeMattos (10.1016/j.neuron.2013.07.046_bib17) 2001; 98 Wilcock (10.1016/j.neuron.2013.07.046_bib52) 2003; 23 Iba (10.1016/j.neuron.2013.07.046_bib26) 2013; 33 Kotilinek (10.1016/j.neuron.2013.07.046_bib31) 2002; 22 Ravetch (10.1016/j.neuron.2013.07.046_bib43) 2001; 19 14507919 - J Biol Chem. 2003 Dec 5;278(49):49636-43 7624036 - Neurosci Lett. 1995 Apr 21;189(3):167-9 20357768 - Nature. 2010 Apr 22;464(7292):1201-4 22461630 - J Biol Chem. 2012 Jun 1;287(23):19440-51 23110206 - PLoS One. 2012;7(10):e48180 23298398 - Mol Pharm. 2013 May 6;10(5):1473-91 19282288 - J Biol Chem. 2009 May 8;284(19):12845-52 21147995 - J Neurosci. 2010 Dec 8;30(49):16559-66 12151510 - J Neurosci. 2002 Aug 1;22(15):6331-5 20110609 - J Alzheimers Dis. 2010;19(2):647-64 19503072 - Nat Cell Biol. 2009 Jul;11(7):909-13 9330992 - Neurobiol Aging. 1997 Jul-Aug;18(4 Suppl):S85-8 21644996 - J Neurochem. 2011 Aug;118(4):658-67 1069293 - Proc Natl Acad Sci U S A. 1976 Nov;73(11):4070-4 22762014 - Cold Spring Harb Perspect Med. 2012 Jul;2(7):a006247 21917794 - J Neurosci. 2011 Sep 14;31(37):13110-7 23015436 - J Neurosci. 2012 Sep 26;32(39):13454-69 24232374 - Nat Rev Drug Discov. 2013 Dec;12(12):904 21559417 - PLoS One. 2011;6(4):e19338 22423084 - J Neurosci. 2012 Mar 14;32(11):3601-11 22445348 - Neuron. 2012 Mar 22;73(6):1216-27 11244038 - Annu Rev Immunol. 2001;19:275-90 17715348 - J Neurosci. 2007 Aug 22;27(34):9115-29 11438712 - Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8850-5 19710325 - J Neurosci. 2009 Aug 26;29(34):10741-9 17236779 - Neurobiol Dis. 2007 Apr;26(1):14-26 23325240 - J Neurosci. 2013 Jan 16;33(3):1024-37 22174735 - PLoS One. 2011;6(12):e26860 17030663 - Arch Neurol. 2006 Oct;63(10):1459-67 1549228 - Neurology. 1992 Mar;42(3 Pt 1):631-9 19038212 - Neuron. 2008 Nov 26;60(4):534-42 19376066 - Neuron. 2009 Apr 16;62(1):42-52 22496370 - J Biol Chem. 2012 Jun 8;287(24):20522-33 20546729 - Exp Neurol. 2010 Aug;224(2):472-85 14630707 - FASEB J. 2004 Jan;18(1):182-4 22312444 - PLoS One. 2012;7(2):e31302 1421571 - Mol Biol Cell. 1992 Oct;3(10):1141-54 22365544 - Neuron. 2012 Feb 23;73(4):685-97 22445347 - Neuron. 2012 Mar 22;73(6):1204-15 22272619 - Curr Alzheimer Res. 2012 May;9(4):397-405 11941374 - Nat Neurosci. 2002 May;5(5):452-7 12736345 - J Neurosci. 2003 May 1;23(9):3745-51 23455675 - Nat Immunol. 2013 Apr;14(4):327-36 24139027 - Neuron. 2013 Oct 16;80(2):254-6 21045130 - Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):19985-90 12111822 - J Neurosci Res. 2002 Jul 1;69(1):110-6 21841002 - J Biol Chem. 2011 Sep 30;286(39):34457-67 10932230 - Nat Med. 2000 Aug;6(8):916-9 10460255 - J Neurosci. 1999 Sep 1;19(17):7486-94 21933710 - Neurobiol Dis. 2012 Jan;45(1):395-408 20029438 - Nat Rev Neurosci. 2010 Mar;11(3):155-9 22031903 - J Neurosci. 2011 Oct 26;31(43):15575-85 7534834 - J Neurosci Res. 1994 Dec 15;39(6):669-73 19874269 - Curr Alzheimer Res. 2009 Oct;6(5):446-50 21372138 - J Biol Chem. 2011 Apr 29;286(17):15317-31 22383525 - J Biol Chem. 2012 Apr 20;287(17):13959-71 18783251 - Biochemistry. 2008 Oct 7;47(40):10526-39 8121624 - Neurosci Lett. 1993 Nov 12;162(1-2):179-82 17270732 - Neuron. 2007 Feb 1;53(3):337-51 19066511 - J Vis Exp. 2008;(17). pii: 838. doi: 10.3791/838 |
References_xml | – volume: 31 start-page: 13110 year: 2011 end-page: 13117 ident: bib55 article-title: In vivo microdialysis reveals age-dependent decrease of brain interstitial fluid tau levels in P301S human tau transgenic mice publication-title: J. Neurosci. – volume: 14 start-page: 327 year: 2013 end-page: 336 ident: bib38 article-title: Intracellular antibody-bound pathogens stimulate immune signaling via the Fc receptor TRIM21 publication-title: Nat. Immunol. – volume: 19 start-page: 275 year: 2001 end-page: 290 ident: bib43 article-title: IgG Fc receptors publication-title: Annu. Rev. Immunol. – volume: 73 start-page: 1204 year: 2012 end-page: 1215 ident: bib42 article-title: A network diffusion model of disease progression in dementia publication-title: Neuron – volume: 18 start-page: 182 year: 2004 end-page: 184 ident: bib1 article-title: Direct action of immunoglobulin G on primary sensory neurons through Fc gamma receptor I publication-title: FASEB J. – volume: 26 start-page: 14 year: 2007 end-page: 26 ident: bib54 article-title: Impaired spatial learning and defective theta burst induced LTP in mice lacking fibroblast growth factor 14 publication-title: Neurobiol. Dis. – volume: 63 start-page: 1459 year: 2006 end-page: 1467 ident: bib44 article-title: Tauopathy-like abnormalities and neurologic deficits in mice immunized with neuronal tau protein publication-title: Arch. Neurol. – volume: 189 start-page: 167 year: 1995 end-page: 169 ident: bib23 article-title: Monoclonal antibody AT8 recognises tau protein phosphorylated at both serine 202 and threonine 205 publication-title: Neurosci. Lett. – volume: 224 start-page: 472 year: 2010 end-page: 485 ident: bib9 article-title: Efficacy and safety of immunization with phosphorylated tau against neurofibrillary tangles in mice publication-title: Exp. Neurol. – volume: 73 start-page: 4070 year: 1976 end-page: 4074 ident: bib53 article-title: Tubulin requires tau for growth onto microtubule initiating sites publication-title: Proc. Natl. Acad. Sci. USA – volume: 286 start-page: 34457 year: 2011 end-page: 34467 ident: bib13 article-title: Passive immunization with anti-Tau antibodies in two transgenic models: reduction of Tau pathology and delay of disease progression publication-title: J. Biol. Chem. – volume: 18 start-page: S85 year: 1997 end-page: S88 ident: bib12 article-title: Diagnostic criteria for neuropathologic assessment of Alzheimer’s disease publication-title: Neurobiol. Aging – volume: 31 start-page: 15575 year: 2011 end-page: 15585 ident: bib34 article-title: The role of attenuated astrocyte activation in infantile neuronal ceroid lipofuscinosis publication-title: J. Neurosci. – volume: 27 start-page: 9115 year: 2007 end-page: 9129 ident: bib3 article-title: Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements publication-title: J. Neurosci. – volume: 287 start-page: 20522 year: 2012 end-page: 20533 ident: bib45 article-title: Paired helical filaments from Alzheimer disease brain induce intracellular accumulation of Tau protein in aggresomes publication-title: J. Biol. Chem. – volume: 7 start-page: e31302 year: 2012 ident: bib33 article-title: Trans-synaptic spread of tau pathology in vivo publication-title: PLoS ONE – volume: 11 start-page: 155 year: 2010 end-page: 159 ident: bib20 article-title: Prion-like mechanisms in neurodegenerative diseases publication-title: Nat. Rev. Neurosci. – volume: 29 start-page: 10741 year: 2009 end-page: 10749 ident: bib41 article-title: Age-dependent impairment of cognitive and synaptic function in the htau mouse model of tau pathology publication-title: J. Neurosci. – volume: 287 start-page: 13959 year: 2012 end-page: 13971 ident: bib7 article-title: Low-density lipoprotein receptor represents an apolipoprotein E-independent pathway of Aβ uptake and degradation by astrocytes publication-title: J. Biol. Chem. – volume: 6 start-page: e26860 year: 2011 ident: bib8 article-title: Tau-targeted immunization impedes progression of neurofibrillary histopathology in aged P301L tau transgenic mice publication-title: PLoS ONE – year: 2008 ident: bib25 article-title: Screening for amyloid aggregation by semi-denaturing detergent-agarose gel electrophoresis publication-title: J. Vis. Exp. – volume: 162 start-page: 179 year: 1993 end-page: 182 ident: bib5 article-title: Neuropathological staging of Alzheimer lesions and intellectual status in Alzheimer’s and Parkinson’s disease patients publication-title: Neurosci. Lett. – volume: 287 start-page: 19440 year: 2012 end-page: 19451 ident: bib29 article-title: Trans-cellular propagation of Tau aggregation by fibrillar species publication-title: J. Biol. Chem. – volume: 23 start-page: 3745 year: 2003 end-page: 3751 ident: bib52 article-title: Intracranially administered anti-Abeta antibodies reduce beta-amyloid deposition by mechanisms both independent of and associated with microglial activation publication-title: J. Neurosci. – volume: 32 start-page: 3601 year: 2012 end-page: 3611 ident: bib57 article-title: The microtubule-stabilizing agent, epothilone D, reduces axonal dysfunction, neurotoxicity, cognitive deficits, and Alzheimer-like pathology in an interventional study with aged tau transgenic mice publication-title: J. Neurosci. – volume: 22 start-page: 6331 year: 2002 end-page: 6335 ident: bib31 article-title: Reversible memory loss in a mouse transgenic model of Alzheimer’s disease publication-title: J. Neurosci. – volume: 6 start-page: 916 year: 2000 end-page: 919 ident: bib6 article-title: Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease publication-title: Nat. Med. – volume: 69 start-page: 110 year: 2002 end-page: 116 ident: bib39 article-title: Immunoglobulin Fc gamma receptor promotes immunoglobulin uptake, immunoglobulin-mediated calcium increase, and neurotransmitter release in motor neurons publication-title: J. Neurosci. Res. – volume: 30 start-page: 16559 year: 2010 end-page: 16566 ident: bib10 article-title: Immunotherapy targeting pathological tau prevents cognitive decline in a new tangle mouse model publication-title: J. Neurosci. – volume: 5 start-page: 452 year: 2002 end-page: 457 ident: bib18 article-title: Immunization reverses memory deficits without reducing brain Abeta burden in Alzheimer’s disease model publication-title: Nat. Neurosci. – volume: 7 start-page: e48180 year: 2012 ident: bib46 article-title: Loss of RBPj in postnatal excitatory neurons does not cause neurodegeneration or memory impairments in aged mice publication-title: PLoS ONE – volume: 19 start-page: 7486 year: 1999 end-page: 7494 ident: bib28 article-title: cAMP-dependent protein kinase phosphorylations on tau in Alzheimer’s disease publication-title: J. Neurosci. – volume: 6 start-page: 446 year: 2009 end-page: 450 ident: bib48 article-title: Tau-focused immunotherapy for Alzheimer’s disease and related tauopathies publication-title: Curr. Alzheimer Res. – volume: 278 start-page: 49636 year: 2003 end-page: 49643 ident: bib32 article-title: Yeast [PSI+] prion aggregates are formed by small Sup35 polymers fragmented by Hsp104 publication-title: J. Biol. Chem. – volume: 60 start-page: 534 year: 2008 end-page: 542 ident: bib49 article-title: Linking Abeta and tau in late-onset Alzheimer’s disease: a dual pathway hypothesis publication-title: Neuron – volume: 45 start-page: 395 year: 2012 end-page: 408 ident: bib22 article-title: Core features of frontotemporal dementia recapitulated in progranulin knockout mice publication-title: Neurobiol. Dis. – volume: 73 start-page: 685 year: 2012 end-page: 697 ident: bib16 article-title: Propagation of tau pathology in a model of early Alzheimer’s disease publication-title: Neuron – volume: 10 start-page: 1473 year: 2013 end-page: 1491 ident: bib50 article-title: Physiology of blood-brain interfaces in relation to brain disposition of small compounds and macromolecules publication-title: Mol. Pharm. – volume: 98 start-page: 8850 year: 2001 end-page: 8855 ident: bib17 article-title: Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer’s disease publication-title: Proc. Natl. Acad. Sci. USA – volume: 62 start-page: 42 year: 2009 end-page: 52 ident: bib47 article-title: Neurodegenerative diseases target large-scale human brain networks publication-title: Neuron – volume: 39 start-page: 669 year: 1994 end-page: 673 ident: bib40 article-title: Monoclonal antibody PHF-1 recognizes tau protein phosphorylated at serine residues 396 and 404 publication-title: J. Neurosci. Res. – volume: 42 start-page: 631 year: 1992 end-page: 639 ident: bib2 article-title: Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease publication-title: Neurology – volume: 3 start-page: 1141 year: 1992 end-page: 1154 ident: bib19 article-title: Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau publication-title: Mol. Biol. Cell – volume: 47 start-page: 10526 year: 2008 end-page: 10539 ident: bib27 article-title: The natively unfolded character of tau and its aggregation to Alzheimer-like paired helical filaments publication-title: Biochemistry – volume: 9 start-page: 397 year: 2012 end-page: 405 ident: bib51 article-title: Targeting phospho-Ser422 by active Tau Immunotherapy in the THYTau22 mouse model: a suitable therapeutic approach publication-title: Curr. Alzheimer Res. – volume: 32 start-page: 13454 year: 2012 end-page: 13469 ident: bib4 article-title: Antibody-aided clearance of extracellular α-synuclein prevents cell-to-cell aggregate transmission publication-title: J. Neurosci. – volume: 19 start-page: 647 year: 2010 end-page: 664 ident: bib30 article-title: Interneuronal transfer of human tau between Lamprey central neurons in situ publication-title: J. Alzheimers Dis. – volume: 464 start-page: 1201 year: 2010 end-page: 1204 ident: bib15 article-title: Caspase activation precedes and leads to tangles publication-title: Nature – volume: 73 start-page: 1216 year: 2012 end-page: 1227 ident: bib58 article-title: Predicting regional neurodegeneration from the healthy brain functional connectome publication-title: Neuron – volume: 118 start-page: 658 year: 2011 end-page: 667 ident: bib11 article-title: Passive immunization targeting pathological phospho-tau protein in a mouse model reduces functional decline and clears tau aggregates from the brain publication-title: J. Neurochem. – volume: 286 start-page: 15317 year: 2011 end-page: 15331 ident: bib24 article-title: Seeding of normal Tau by pathological Tau conformers drives pathogenesis of Alzheimer-like tangles publication-title: J. Biol. Chem. – volume: 107 start-page: 19985 year: 2010 end-page: 19990 ident: bib35 article-title: Antibodies mediate intracellular immunity through tripartite motif-containing 21 (TRIM21) publication-title: Proc. Natl. Acad. Sci. USA – volume: 11 start-page: 909 year: 2009 end-page: 913 ident: bib14 article-title: Transmission and spreading of tauopathy in transgenic mouse brain publication-title: Nat. Cell Biol. – volume: 6 start-page: e19338 year: 2011 ident: bib37 article-title: Passive immunization reduces behavioral and neuropathological deficits in an alpha-synuclein transgenic model of Lewy body disease publication-title: PLoS ONE – volume: 284 start-page: 12845 year: 2009 end-page: 12852 ident: bib21 article-title: Propagation of tau misfolding from the outside to the inside of a cell publication-title: J. Biol. Chem. – volume: 53 start-page: 337 year: 2007 end-page: 351 ident: bib56 article-title: Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model publication-title: Neuron – volume: 2 start-page: a006247 year: 2012 ident: bib36 article-title: Biochemistry and cell biology of tau protein in neurofibrillary degeneration publication-title: Cold Spring Harb Perspect Med – volume: 33 start-page: 1024 year: 2013 end-page: 1037 ident: bib26 article-title: Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer’s-like tauopathy publication-title: J. Neurosci. – volume: 284 start-page: 12845 year: 2009 ident: 10.1016/j.neuron.2013.07.046_bib21 article-title: Propagation of tau misfolding from the outside to the inside of a cell publication-title: J. Biol. Chem. doi: 10.1074/jbc.M808759200 – volume: 73 start-page: 4070 year: 1976 ident: 10.1016/j.neuron.2013.07.046_bib53 article-title: Tubulin requires tau for growth onto microtubule initiating sites publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.73.11.4070 – volume: 18 start-page: S85 issue: Suppl year: 1997 ident: 10.1016/j.neuron.2013.07.046_bib12 article-title: Diagnostic criteria for neuropathologic assessment of Alzheimer’s disease publication-title: Neurobiol. Aging doi: 10.1016/S0197-4580(97)00062-6 – volume: 464 start-page: 1201 year: 2010 ident: 10.1016/j.neuron.2013.07.046_bib15 article-title: Caspase activation precedes and leads to tangles publication-title: Nature doi: 10.1038/nature08890 – volume: 73 start-page: 1204 year: 2012 ident: 10.1016/j.neuron.2013.07.046_bib42 article-title: A network diffusion model of disease progression in dementia publication-title: Neuron doi: 10.1016/j.neuron.2011.12.040 – volume: 10 start-page: 1473 year: 2013 ident: 10.1016/j.neuron.2013.07.046_bib50 article-title: Physiology of blood-brain interfaces in relation to brain disposition of small compounds and macromolecules publication-title: Mol. Pharm. doi: 10.1021/mp300518e – year: 2008 ident: 10.1016/j.neuron.2013.07.046_bib25 article-title: Screening for amyloid aggregation by semi-denaturing detergent-agarose gel electrophoresis publication-title: J. Vis. Exp. doi: 10.3791/838 – volume: 189 start-page: 167 year: 1995 ident: 10.1016/j.neuron.2013.07.046_bib23 article-title: Monoclonal antibody AT8 recognises tau protein phosphorylated at both serine 202 and threonine 205 publication-title: Neurosci. Lett. doi: 10.1016/0304-3940(95)11484-E – volume: 27 start-page: 9115 year: 2007 ident: 10.1016/j.neuron.2013.07.046_bib3 article-title: Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2361-07.2007 – volume: 32 start-page: 13454 year: 2012 ident: 10.1016/j.neuron.2013.07.046_bib4 article-title: Antibody-aided clearance of extracellular α-synuclein prevents cell-to-cell aggregate transmission publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1292-12.2012 – volume: 2 start-page: a006247 year: 2012 ident: 10.1016/j.neuron.2013.07.046_bib36 article-title: Biochemistry and cell biology of tau protein in neurofibrillary degeneration publication-title: Cold Spring Harb Perspect Med doi: 10.1101/cshperspect.a006247 – volume: 22 start-page: 6331 year: 2002 ident: 10.1016/j.neuron.2013.07.046_bib31 article-title: Reversible memory loss in a mouse transgenic model of Alzheimer’s disease publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.22-15-06331.2002 – volume: 63 start-page: 1459 year: 2006 ident: 10.1016/j.neuron.2013.07.046_bib44 article-title: Tauopathy-like abnormalities and neurologic deficits in mice immunized with neuronal tau protein publication-title: Arch. Neurol. doi: 10.1001/archneur.63.10.1459 – volume: 286 start-page: 15317 year: 2011 ident: 10.1016/j.neuron.2013.07.046_bib24 article-title: Seeding of normal Tau by pathological Tau conformers drives pathogenesis of Alzheimer-like tangles publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.209296 – volume: 26 start-page: 14 year: 2007 ident: 10.1016/j.neuron.2013.07.046_bib54 article-title: Impaired spatial learning and defective theta burst induced LTP in mice lacking fibroblast growth factor 14 publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2006.11.014 – volume: 278 start-page: 49636 year: 2003 ident: 10.1016/j.neuron.2013.07.046_bib32 article-title: Yeast [PSI+] prion aggregates are formed by small Sup35 polymers fragmented by Hsp104 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M307996200 – volume: 45 start-page: 395 year: 2012 ident: 10.1016/j.neuron.2013.07.046_bib22 article-title: Core features of frontotemporal dementia recapitulated in progranulin knockout mice publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2011.08.029 – volume: 53 start-page: 337 year: 2007 ident: 10.1016/j.neuron.2013.07.046_bib56 article-title: Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model publication-title: Neuron doi: 10.1016/j.neuron.2007.01.010 – volume: 286 start-page: 34457 year: 2011 ident: 10.1016/j.neuron.2013.07.046_bib13 article-title: Passive immunization with anti-Tau antibodies in two transgenic models: reduction of Tau pathology and delay of disease progression publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.229633 – volume: 9 start-page: 397 year: 2012 ident: 10.1016/j.neuron.2013.07.046_bib51 article-title: Targeting phospho-Ser422 by active Tau Immunotherapy in the THYTau22 mouse model: a suitable therapeutic approach publication-title: Curr. Alzheimer Res. doi: 10.2174/156720512800492503 – volume: 5 start-page: 452 year: 2002 ident: 10.1016/j.neuron.2013.07.046_bib18 article-title: Immunization reverses memory deficits without reducing brain Abeta burden in Alzheimer’s disease model publication-title: Nat. Neurosci. doi: 10.1038/nn842 – volume: 32 start-page: 3601 year: 2012 ident: 10.1016/j.neuron.2013.07.046_bib57 article-title: The microtubule-stabilizing agent, epothilone D, reduces axonal dysfunction, neurotoxicity, cognitive deficits, and Alzheimer-like pathology in an interventional study with aged tau transgenic mice publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4922-11.2012 – volume: 6 start-page: 446 year: 2009 ident: 10.1016/j.neuron.2013.07.046_bib48 article-title: Tau-focused immunotherapy for Alzheimer’s disease and related tauopathies publication-title: Curr. Alzheimer Res. doi: 10.2174/156720509789207930 – volume: 107 start-page: 19985 year: 2010 ident: 10.1016/j.neuron.2013.07.046_bib35 article-title: Antibodies mediate intracellular immunity through tripartite motif-containing 21 (TRIM21) publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1014074107 – volume: 19 start-page: 275 year: 2001 ident: 10.1016/j.neuron.2013.07.046_bib43 article-title: IgG Fc receptors publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev.immunol.19.1.275 – volume: 162 start-page: 179 year: 1993 ident: 10.1016/j.neuron.2013.07.046_bib5 article-title: Neuropathological staging of Alzheimer lesions and intellectual status in Alzheimer’s and Parkinson’s disease patients publication-title: Neurosci. Lett. doi: 10.1016/0304-3940(93)90590-H – volume: 11 start-page: 155 year: 2010 ident: 10.1016/j.neuron.2013.07.046_bib20 article-title: Prion-like mechanisms in neurodegenerative diseases publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2786 – volume: 98 start-page: 8850 year: 2001 ident: 10.1016/j.neuron.2013.07.046_bib17 article-title: Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer’s disease publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.151261398 – volume: 23 start-page: 3745 year: 2003 ident: 10.1016/j.neuron.2013.07.046_bib52 article-title: Intracranially administered anti-Abeta antibodies reduce beta-amyloid deposition by mechanisms both independent of and associated with microglial activation publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.23-09-03745.2003 – volume: 31 start-page: 15575 year: 2011 ident: 10.1016/j.neuron.2013.07.046_bib34 article-title: The role of attenuated astrocyte activation in infantile neuronal ceroid lipofuscinosis publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3579-11.2011 – volume: 30 start-page: 16559 year: 2010 ident: 10.1016/j.neuron.2013.07.046_bib10 article-title: Immunotherapy targeting pathological tau prevents cognitive decline in a new tangle mouse model publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4363-10.2010 – volume: 62 start-page: 42 year: 2009 ident: 10.1016/j.neuron.2013.07.046_bib47 article-title: Neurodegenerative diseases target large-scale human brain networks publication-title: Neuron doi: 10.1016/j.neuron.2009.03.024 – volume: 7 start-page: e31302 year: 2012 ident: 10.1016/j.neuron.2013.07.046_bib33 article-title: Trans-synaptic spread of tau pathology in vivo publication-title: PLoS ONE doi: 10.1371/journal.pone.0031302 – volume: 33 start-page: 1024 year: 2013 ident: 10.1016/j.neuron.2013.07.046_bib26 article-title: Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer’s-like tauopathy publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2642-12.2013 – volume: 6 start-page: e26860 year: 2011 ident: 10.1016/j.neuron.2013.07.046_bib8 article-title: Tau-targeted immunization impedes progression of neurofibrillary histopathology in aged P301L tau transgenic mice publication-title: PLoS ONE doi: 10.1371/journal.pone.0026860 – volume: 287 start-page: 19440 year: 2012 ident: 10.1016/j.neuron.2013.07.046_bib29 article-title: Trans-cellular propagation of Tau aggregation by fibrillar species publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.346072 – volume: 60 start-page: 534 year: 2008 ident: 10.1016/j.neuron.2013.07.046_bib49 article-title: Linking Abeta and tau in late-onset Alzheimer’s disease: a dual pathway hypothesis publication-title: Neuron doi: 10.1016/j.neuron.2008.11.007 – volume: 287 start-page: 20522 year: 2012 ident: 10.1016/j.neuron.2013.07.046_bib45 article-title: Paired helical filaments from Alzheimer disease brain induce intracellular accumulation of Tau protein in aggresomes publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.323279 – volume: 118 start-page: 658 year: 2011 ident: 10.1016/j.neuron.2013.07.046_bib11 article-title: Passive immunization targeting pathological phospho-tau protein in a mouse model reduces functional decline and clears tau aggregates from the brain publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2011.07337.x – volume: 19 start-page: 647 year: 2010 ident: 10.1016/j.neuron.2013.07.046_bib30 article-title: Interneuronal transfer of human tau between Lamprey central neurons in situ publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-2010-1273 – volume: 7 start-page: e48180 year: 2012 ident: 10.1016/j.neuron.2013.07.046_bib46 article-title: Loss of RBPj in postnatal excitatory neurons does not cause neurodegeneration or memory impairments in aged mice publication-title: PLoS ONE doi: 10.1371/journal.pone.0048180 – volume: 69 start-page: 110 year: 2002 ident: 10.1016/j.neuron.2013.07.046_bib39 article-title: Immunoglobulin Fc gamma receptor promotes immunoglobulin uptake, immunoglobulin-mediated calcium increase, and neurotransmitter release in motor neurons publication-title: J. Neurosci. Res. doi: 10.1002/jnr.10271 – volume: 287 start-page: 13959 year: 2012 ident: 10.1016/j.neuron.2013.07.046_bib7 article-title: Low-density lipoprotein receptor represents an apolipoprotein E-independent pathway of Aβ uptake and degradation by astrocytes publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.288746 – volume: 6 start-page: 916 year: 2000 ident: 10.1016/j.neuron.2013.07.046_bib6 article-title: Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease publication-title: Nat. Med. doi: 10.1038/78682 – volume: 73 start-page: 1216 year: 2012 ident: 10.1016/j.neuron.2013.07.046_bib58 article-title: Predicting regional neurodegeneration from the healthy brain functional connectome publication-title: Neuron doi: 10.1016/j.neuron.2012.03.004 – volume: 29 start-page: 10741 year: 2009 ident: 10.1016/j.neuron.2013.07.046_bib41 article-title: Age-dependent impairment of cognitive and synaptic function in the htau mouse model of tau pathology publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1065-09.2009 – volume: 19 start-page: 7486 year: 1999 ident: 10.1016/j.neuron.2013.07.046_bib28 article-title: cAMP-dependent protein kinase phosphorylations on tau in Alzheimer’s disease publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.19-17-07486.1999 – volume: 224 start-page: 472 year: 2010 ident: 10.1016/j.neuron.2013.07.046_bib9 article-title: Efficacy and safety of immunization with phosphorylated tau against neurofibrillary tangles in mice publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2010.05.010 – volume: 3 start-page: 1141 year: 1992 ident: 10.1016/j.neuron.2013.07.046_bib19 article-title: Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau publication-title: Mol. Biol. Cell doi: 10.1091/mbc.3.10.1141 – volume: 39 start-page: 669 year: 1994 ident: 10.1016/j.neuron.2013.07.046_bib40 article-title: Monoclonal antibody PHF-1 recognizes tau protein phosphorylated at serine residues 396 and 404 publication-title: J. Neurosci. Res. doi: 10.1002/jnr.490390607 – volume: 47 start-page: 10526 year: 2008 ident: 10.1016/j.neuron.2013.07.046_bib27 article-title: The natively unfolded character of tau and its aggregation to Alzheimer-like paired helical filaments publication-title: Biochemistry doi: 10.1021/bi800783d – volume: 11 start-page: 909 year: 2009 ident: 10.1016/j.neuron.2013.07.046_bib14 article-title: Transmission and spreading of tauopathy in transgenic mouse brain publication-title: Nat. Cell Biol. doi: 10.1038/ncb1901 – volume: 6 start-page: e19338 year: 2011 ident: 10.1016/j.neuron.2013.07.046_bib37 article-title: Passive immunization reduces behavioral and neuropathological deficits in an alpha-synuclein transgenic model of Lewy body disease publication-title: PLoS ONE doi: 10.1371/journal.pone.0019338 – volume: 18 start-page: 182 year: 2004 ident: 10.1016/j.neuron.2013.07.046_bib1 article-title: Direct action of immunoglobulin G on primary sensory neurons through Fc gamma receptor I publication-title: FASEB J. doi: 10.1096/fj.02-1169fje – volume: 31 start-page: 13110 year: 2011 ident: 10.1016/j.neuron.2013.07.046_bib55 article-title: In vivo microdialysis reveals age-dependent decrease of brain interstitial fluid tau levels in P301S human tau transgenic mice publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2569-11.2011 – volume: 14 start-page: 327 year: 2013 ident: 10.1016/j.neuron.2013.07.046_bib38 article-title: Intracellular antibody-bound pathogens stimulate immune signaling via the Fc receptor TRIM21 publication-title: Nat. Immunol. doi: 10.1038/ni.2548 – volume: 42 start-page: 631 year: 1992 ident: 10.1016/j.neuron.2013.07.046_bib2 article-title: Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease publication-title: Neurology doi: 10.1212/WNL.42.3.631 – volume: 73 start-page: 685 year: 2012 ident: 10.1016/j.neuron.2013.07.046_bib16 article-title: Propagation of tau pathology in a model of early Alzheimer’s disease publication-title: Neuron doi: 10.1016/j.neuron.2011.11.033 – reference: 22365544 - Neuron. 2012 Feb 23;73(4):685-97 – reference: 22445347 - Neuron. 2012 Mar 22;73(6):1204-15 – reference: 19282288 - J Biol Chem. 2009 May 8;284(19):12845-52 – reference: 21644996 - J Neurochem. 2011 Aug;118(4):658-67 – reference: 10932230 - Nat Med. 2000 Aug;6(8):916-9 – reference: 20110609 - J Alzheimers Dis. 2010;19(2):647-64 – reference: 11244038 - Annu Rev Immunol. 2001;19:275-90 – reference: 22445348 - Neuron. 2012 Mar 22;73(6):1216-27 – reference: 9330992 - Neurobiol Aging. 1997 Jul-Aug;18(4 Suppl):S85-8 – reference: 22174735 - PLoS One. 2011;6(12):e26860 – reference: 22762014 - Cold Spring Harb Perspect Med. 2012 Jul;2(7):a006247 – reference: 11438712 - Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8850-5 – reference: 17030663 - Arch Neurol. 2006 Oct;63(10):1459-67 – reference: 21841002 - J Biol Chem. 2011 Sep 30;286(39):34457-67 – reference: 20546729 - Exp Neurol. 2010 Aug;224(2):472-85 – reference: 10460255 - J Neurosci. 1999 Sep 1;19(17):7486-94 – reference: 22272619 - Curr Alzheimer Res. 2012 May;9(4):397-405 – reference: 23110206 - PLoS One. 2012;7(10):e48180 – reference: 19710325 - J Neurosci. 2009 Aug 26;29(34):10741-9 – reference: 23455675 - Nat Immunol. 2013 Apr;14(4):327-36 – reference: 23298398 - Mol Pharm. 2013 May 6;10(5):1473-91 – reference: 7534834 - J Neurosci Res. 1994 Dec 15;39(6):669-73 – reference: 19503072 - Nat Cell Biol. 2009 Jul;11(7):909-13 – reference: 19376066 - Neuron. 2009 Apr 16;62(1):42-52 – reference: 24232374 - Nat Rev Drug Discov. 2013 Dec;12(12):904 – reference: 14630707 - FASEB J. 2004 Jan;18(1):182-4 – reference: 22496370 - J Biol Chem. 2012 Jun 8;287(24):20522-33 – reference: 21372138 - J Biol Chem. 2011 Apr 29;286(17):15317-31 – reference: 22031903 - J Neurosci. 2011 Oct 26;31(43):15575-85 – reference: 8121624 - Neurosci Lett. 1993 Nov 12;162(1-2):179-82 – reference: 22423084 - J Neurosci. 2012 Mar 14;32(11):3601-11 – reference: 22312444 - PLoS One. 2012;7(2):e31302 – reference: 22461630 - J Biol Chem. 2012 Jun 1;287(23):19440-51 – reference: 20357768 - Nature. 2010 Apr 22;464(7292):1201-4 – reference: 12736345 - J Neurosci. 2003 May 1;23(9):3745-51 – reference: 24139027 - Neuron. 2013 Oct 16;80(2):254-6 – reference: 1069293 - Proc Natl Acad Sci U S A. 1976 Nov;73(11):4070-4 – reference: 17236779 - Neurobiol Dis. 2007 Apr;26(1):14-26 – reference: 11941374 - Nat Neurosci. 2002 May;5(5):452-7 – reference: 21045130 - Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):19985-90 – reference: 1421571 - Mol Biol Cell. 1992 Oct;3(10):1141-54 – reference: 23015436 - J Neurosci. 2012 Sep 26;32(39):13454-69 – reference: 17270732 - Neuron. 2007 Feb 1;53(3):337-51 – reference: 7624036 - Neurosci Lett. 1995 Apr 21;189(3):167-9 – reference: 20029438 - Nat Rev Neurosci. 2010 Mar;11(3):155-9 – reference: 19874269 - Curr Alzheimer Res. 2009 Oct;6(5):446-50 – reference: 19066511 - J Vis Exp. 2008;(17). pii: 838. doi: 10.3791/838 – reference: 21933710 - Neurobiol Dis. 2012 Jan;45(1):395-408 – reference: 14507919 - J Biol Chem. 2003 Dec 5;278(49):49636-43 – reference: 21917794 - J Neurosci. 2011 Sep 14;31(37):13110-7 – reference: 17715348 - J Neurosci. 2007 Aug 22;27(34):9115-29 – reference: 22383525 - J Biol Chem. 2012 Apr 20;287(17):13959-71 – reference: 19038212 - Neuron. 2008 Nov 26;60(4):534-42 – reference: 18783251 - Biochemistry. 2008 Oct 7;47(40):10526-39 – reference: 12111822 - J Neurosci Res. 2002 Jul 1;69(1):110-6 – reference: 21559417 - PLoS One. 2011;6(4):e19338 – reference: 1549228 - Neurology. 1992 Mar;42(3 Pt 1):631-9 – reference: 23325240 - J Neurosci. 2013 Jan 16;33(3):1024-37 – reference: 21147995 - J Neurosci. 2010 Dec 8;30(49):16559-66 – reference: 12151510 - J Neurosci. 2002 Aug 1;22(15):6331-5 |
SSID | ssj0014591 |
Score | 2.6022618 |
Snippet | Tau aggregation occurs in neurodegenerative diseases including Alzheimer’s disease and many other disorders collectively termed tauopathies. trans-cellular... Tau aggregation occurs in neurodegenerative diseases including Alzheimer's disease and many other disorders collectively termed tauopathies. trans-cellular... Tau aggregation occurs in neurodegenerative diseases including Alzheimer's disease and many other disorders collectively termed tauopathies.trans-cellular... Tau aggregation occurs in neurodegenerative diseases including Alzheimers disease and many other disorders collectively termed tauopathies. trans-cellular... Tau aggregation occurs in neurodegenerative diseases including Alzheimer's disease and many other disorders collectively termed tauopathies. Trans-cellular... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 402 |
SubjectTerms | Animals Antibodies, Monoclonal - administration & dosage Antibodies, Monoclonal - immunology Antibodies, Monoclonal - therapeutic use Brain - drug effects Brain - metabolism Brain - pathology Cells, Cultured Cognition Disorders - complications Cognition Disorders - drug therapy Cognition Disorders - physiopathology Disease Gender Humans Immunization Infusions, Intraventricular Mice Mice, Transgenic Microglia - drug effects Pathology Rodents Software Statistical analysis Studies tau Proteins - antagonists & inhibitors tau Proteins - immunology tau Proteins - metabolism tau Proteins - toxicity Tauopathies - complications Tauopathies - drug therapy Tauopathies - pathology Tauopathies - psychology |
Title | Anti-Tau Antibodies that Block Tau Aggregate Seeding In Vitro Markedly Decrease Pathology and Improve Cognition In Vivo |
URI | https://dx.doi.org/10.1016/j.neuron.2013.07.046 https://www.ncbi.nlm.nih.gov/pubmed/24075978 https://www.proquest.com/docview/1552020212 https://www.proquest.com/docview/1443993813 https://www.proquest.com/docview/1516741617 https://pubmed.ncbi.nlm.nih.gov/PMC3924573 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9UwFA9jIPgibvPP1SkRxLdwW5M27ePd1TEFRdgm9y0kbeI6Zzq23kG_jZ_FT-Y5SVu8Kg58a5sTaJvknN9JzvkdQl6W0siyzhJm8sIwUdSWmZpnzKVcQJ_EcY0Jzh8-5ken4v0qW22R5ZgLg2GVg-6POj1o6-HJfPib88ummR8nRYns5RwPZHIZGD8xqxST-FYH00mCyGLVPBBmKD2mz4UYr8AZiSyoKQ8UngiD_26e_oSfv0dR_mKWDu-TewOepIv4yjtky_pdsrfw4Et_6-krGiI8w9b5LrkTC0_2e6Rf-K5hJ3pN8cK0GEpIuzPd0QMwbl9paPkCrjhustHjaOHoO__j--emu2opZvjY-qKnbwLqvLb0k-6CHu2p9jWNWxWWLmNwUuuHvjftA3J6-PZkecSGIgysEpnomC5kba1IS1M5x43UAjw2V1RJoQE8YH06x-scNINNXutK8JqXRmuX55lNk7qQ_CHZ9q23jwlNrACDyUvnBPIM5kVSVkYi33xmJeCOGeHjv1fVwFCOhTIu1BiKdq7iiCkcMZVIBSM2I2zqdRkZOm6Rl-Owqo2ZpsCI3NJzf5wFaljp1wop7AByAwKYkRdTM6xRPHjR3rZrkBHo9QE24v-QyTAfBL3NGXkUJ9b0Oeh1g-NXwKtvTLlJADnCN1t8cxa4wgH-ikzyJ__90U_JXbxDc53m-2S7u1rbZ4DDOvM8LLSfXhM0Aw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELemIQQvCDb-FAYYCfFmNcVOnDx2hamFbUJah_pm2YnDAsOZthQp34bPwifjzk4iCohJvFX1WUri893v7LvfEfIyk0ZmRRwxk6SGibSwzBQ8ZuWEC5gTlVxjgfPRcTI_Fe9W8WqLzPpaGEyr7Gx_sOneWnf_jLuvOb6oqvFJlGbIXs7xQiaRyPh5A9BAhKq9WO0PVwkiDm3zQJqheF8_55O8PGkk0qBOuOfwRBz8d__0J_78PY3yF790cJfc6QAlnYZnvke2rNshu1MHwfTXlr6iPsXTn53vkJuh82S7S9qpayq21GuKP0yNuYS0OdMN3Qfv9oX6kU8Qi-MpGz0JLo4u3I_vH6vmsqZY4mOL85a-8bDzytIPuvGGtKXaFTScVVg6C9lJtevmfqvvk9ODt8vZnHVdGFguYtEwncrCWjHJTF6W3EgtIGQr0zxKNaAHbFBX8iIB02Cj1zoXvOCZ0bpMkthOoiKV_AHZdrWzjwiNrACPybOyFEg0mKRRlhuJhPOxlQA8RoT3317lHUU5dso4V30u2mcVVkzhiqlIKlixEWHDrItA0XGNvOyXVW2omgIvcs3MvV4LVLfVrxRy2AHmBggwIi-GYdikePOina3XICMw7ANwxP8hE2NBCIabI_IwKNbwOhh2Q-SXwqNvqNwggCThmyOuOvNk4YB_RSz54_9-6efk1nx5dKgOF8fvn5DbOIK-e5Lske3mcm2fAihrzDO_6X4C2jQ3Jg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anti-Tau+Antibodies+that+Block+Tau+Aggregate+Seeding+In+Vitro+Markedly+Decrease+Pathology+and+Improve+Cognition+In+Vivo&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Yanamandra%2C+Kiran&rft.au=Kfoury%2C+Najla&rft.au=Jiang%2C+Hong&rft.au=Mahan%2C+Thomas%C2%A0E&rft.date=2013-10-16&rft.pub=Elsevier+Limited&rft.issn=0896-6273&rft.eissn=1097-4199&rft.volume=80&rft.issue=2&rft.spage=402&rft_id=info:doi/10.1016%2Fj.neuron.2013.07.046&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3396557501 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-6273&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-6273&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-6273&client=summon |