Anti-Tau Antibodies that Block Tau Aggregate Seeding In Vitro Markedly Decrease Pathology and Improve Cognition In Vivo

Tau aggregation occurs in neurodegenerative diseases including Alzheimer’s disease and many other disorders collectively termed tauopathies. trans-cellular propagation of tau pathology, mediated by extracellular tau aggregates, may underlie pathogenesis of these conditions. P301S tau transgenic mice...

Full description

Saved in:
Bibliographic Details
Published inNeuron (Cambridge, Mass.) Vol. 80; no. 2; pp. 402 - 414
Main Authors Yanamandra, Kiran, Kfoury, Najla, Jiang, Hong, Mahan, Thomas E., Ma, Shengmei, Maloney, Susan E., Wozniak, David F., Diamond, Marc I., Holtzman, David M.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 16.10.2013
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0896-6273
1097-4199
1097-4199
DOI10.1016/j.neuron.2013.07.046

Cover

Abstract Tau aggregation occurs in neurodegenerative diseases including Alzheimer’s disease and many other disorders collectively termed tauopathies. trans-cellular propagation of tau pathology, mediated by extracellular tau aggregates, may underlie pathogenesis of these conditions. P301S tau transgenic mice express mutant human tau protein and develop progressive tau pathology. Using a cell-based biosensor assay, we screened anti-tau monoclonal antibodies for their ability to block seeding activity present in P301S brain lysates. We infused three effective antibodies or controls into the lateral ventricle of P301S mice for 3 months. The antibodies markedly reduced hyperphosphorylated, aggregated, and insoluble tau. They also blocked development of tau seeding activity detected in brain lysates using the biosensor assay, reduced microglial activation, and improved cognitive deficits. These data imply a central role for extracellular tau aggregates in the development of pathology. They also suggest that immunotherapy specifically designed to block trans-cellular aggregate propagation will be a productive treatment strategy. •Anti-tau antibodies block intracellular tau aggregation induced by tau seeds•Anti-tau antibodies strongly reduce tau pathology in vivo•Anti-tau antibodies decrease tau seeding activity in vivo•Anti-tau antibodies improve cognition Yanamandra et al. find that antibodies that block aggregated forms of the tau protein from entering cells and seeding further tau aggregation have beneficial effects in an animal model that is relevant for Alzheimer’s disease and related disorders.
AbstractList Tau aggregation occurs in neurodegenerative diseases including Alzheimer’s disease and many other disorders collectively termed tauopathies. trans-cellular propagation of tau pathology, mediated by extracellular tau aggregates, may underlie pathogenesis of these conditions. P301S tau transgenic mice express mutant human tau protein and develop progressive tau pathology. Using a cell-based biosensor assay, we screened anti-tau monoclonal antibodies for their ability to block seeding activity present in P301S brain lysates. We infused three effective antibodies or controls into the lateral ventricle of P301S mice for 3 months. The antibodies markedly reduced hyperphosphorylated, aggregated, and insoluble tau. They also blocked development of tau seeding activity detected in brain lysates using the biosensor assay, reduced microglial activation, and improved cognitive deficits. These data imply a central role for extracellular tau aggregates in the development of pathology. They also suggest that immunotherapy specifically designed to block trans-cellular aggregate propagation will be a productive treatment strategy. •Anti-tau antibodies block intracellular tau aggregation induced by tau seeds•Anti-tau antibodies strongly reduce tau pathology in vivo•Anti-tau antibodies decrease tau seeding activity in vivo•Anti-tau antibodies improve cognition Yanamandra et al. find that antibodies that block aggregated forms of the tau protein from entering cells and seeding further tau aggregation have beneficial effects in an animal model that is relevant for Alzheimer’s disease and related disorders.
Tau aggregation occurs in neurodegenerative diseases including Alzheimer's disease and many other disorders collectively termed tauopathies.trans-cellular propagation of tau pathology, mediated by extracellular tau aggregates, may underlie pathogenesis of these conditions. P301S tau transgenic mice express mutant human tau protein and develop progressive tau pathology. Using a cell-based biosensor assay, we screened anti-tau monoclonal antibodies for their ability to block seeding activity present in P301S brain lysates. We infused three effective antibodies or controls into the lateral ventricle of P301S mice for 3 months. The antibodies markedly reduced hyperphosphorylated, aggregated, and insoluble tau. They also blocked development of tau seeding activity detected in brain lysates using the biosensor assay, reduced microglial activation, and improved cognitive deficits. These data imply a central role for extracellular tau aggregates in the development of pathology. They also suggest that immunotherapy specifically designed to blocktrans-cellular aggregate propagation will be a productive treatment strategy.
Tau aggregation occurs in neurodegenerative diseases including Alzheimer's disease and many other disorders collectively termed tauopathies. Trans-cellular propagation of tau pathology, mediated by extracellular tau aggregates, may underlie pathogenesis of these conditions. P301S tau transgenic mice express mutant human tau protein, and develop progressive tau pathology. Using a cell-based biosensor assay, we screened anti-tau monoclonal antibodies for their ability to block seeding activity present in P301S brain lysates. We infused 3 effective antibodies or controls into the lateral ventricle of P301S mice for 3 months. The antibodies markedly reduced hyperphosphorylated, aggregated, and insoluble tau. They also blocked development of tau seeding activity detected in brain lysates using the biosensor assay, reduced microglial activation, and improved cognitive deficits. These data imply a central role for extracellular tau aggregates in the development of pathology. They also suggest immunotherapy specifically designed to block trans-cellular aggregate propagation will be a productive treatment strategy.
Tau aggregation occurs in neurodegenerative diseases including Alzheimer's disease and many other disorders collectively termed tauopathies. trans-cellular propagation of tau pathology, mediated by extracellular tau aggregates, may underlie pathogenesis of these conditions. P301S tau transgenic mice express mutant human tau protein and develop progressive tau pathology. Using a cell-based biosensor assay, we screened anti-tau monoclonal antibodies for their ability to block seeding activity present in P301S brain lysates. We infused three effective antibodies or controls into the lateral ventricle of P301S mice for 3 months. The antibodies markedly reduced hyperphosphorylated, aggregated, and insoluble tau. They also blocked development of tau seeding activity detected in brain lysates using the biosensor assay, reduced microglial activation, and improved cognitive deficits. These data imply a central role for extracellular tau aggregates in the development of pathology. They also suggest that immunotherapy specifically designed to block trans-cellular aggregate propagation will be a productive treatment strategy.
Tau aggregation occurs in neurodegenerative diseases including Alzheimers disease and many other disorders collectively termed tauopathies. trans-cellular propagation of tau pathology, mediated by extracellular tau aggregates, may underlie pathogenesis of these conditions. P301S tau transgenic mice express mutant human tau protein and develop progressive tau pathology. Using a cell-based biosensor assay, we screened anti-tau monoclonal antibodies for their ability to block seeding activity present in P301S brain lysates. We infused three effective antibodies or controls into the lateral ventricle of P301S mice for 3 months. The antibodies markedly reduced hyperphosphorylated, aggregated, and insoluble tau. They also blocked development of tau seeding activity detected in brain lysates using the biosensor assay, reduced microglial activation, and improved cognitive deficits. These data imply a central role for extracellular tau aggregates in the development of pathology. They also suggest that immunotherapy specifically designed to block trans-cellular aggregate propagation will be a productive treatment strategy.
Tau aggregation occurs in neurodegenerative diseases including Alzheimer's disease and many other disorders collectively termed tauopathies. trans-cellular propagation of tau pathology, mediated by extracellular tau aggregates, may underlie pathogenesis of these conditions. P301S tau transgenic mice express mutant human tau protein and develop progressive tau pathology. Using a cell-based biosensor assay, we screened anti-tau monoclonal antibodies for their ability to block seeding activity present in P301S brain lysates. We infused three effective antibodies or controls into the lateral ventricle of P301S mice for 3 months. The antibodies markedly reduced hyperphosphorylated, aggregated, and insoluble tau. They also blocked development of tau seeding activity detected in brain lysates using the biosensor assay, reduced microglial activation, and improved cognitive deficits. These data imply a central role for extracellular tau aggregates in the development of pathology. They also suggest that immunotherapy specifically designed to block trans-cellular aggregate propagation will be a productive treatment strategy.Tau aggregation occurs in neurodegenerative diseases including Alzheimer's disease and many other disorders collectively termed tauopathies. trans-cellular propagation of tau pathology, mediated by extracellular tau aggregates, may underlie pathogenesis of these conditions. P301S tau transgenic mice express mutant human tau protein and develop progressive tau pathology. Using a cell-based biosensor assay, we screened anti-tau monoclonal antibodies for their ability to block seeding activity present in P301S brain lysates. We infused three effective antibodies or controls into the lateral ventricle of P301S mice for 3 months. The antibodies markedly reduced hyperphosphorylated, aggregated, and insoluble tau. They also blocked development of tau seeding activity detected in brain lysates using the biosensor assay, reduced microglial activation, and improved cognitive deficits. These data imply a central role for extracellular tau aggregates in the development of pathology. They also suggest that immunotherapy specifically designed to block trans-cellular aggregate propagation will be a productive treatment strategy.
Author Holtzman, David M.
Kfoury, Najla
Yanamandra, Kiran
Mahan, Thomas E.
Ma, Shengmei
Wozniak, David F.
Diamond, Marc I.
Jiang, Hong
Maloney, Susan E.
AuthorAffiliation 1 Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
3 Charles F and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
2 Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
4 Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
AuthorAffiliation_xml – name: 1 Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
– name: 4 Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
– name: 2 Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
– name: 3 Charles F and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
Author_xml – sequence: 1
  givenname: Kiran
  surname: Yanamandra
  fullname: Yanamandra, Kiran
  organization: Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
– sequence: 2
  givenname: Najla
  surname: Kfoury
  fullname: Kfoury, Najla
  organization: Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
– sequence: 3
  givenname: Hong
  surname: Jiang
  fullname: Jiang, Hong
  organization: Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
– sequence: 4
  givenname: Thomas E.
  surname: Mahan
  fullname: Mahan, Thomas E.
  organization: Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
– sequence: 5
  givenname: Shengmei
  surname: Ma
  fullname: Ma, Shengmei
  organization: Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
– sequence: 6
  givenname: Susan E.
  surname: Maloney
  fullname: Maloney, Susan E.
  organization: Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
– sequence: 7
  givenname: David F.
  surname: Wozniak
  fullname: Wozniak, David F.
  organization: Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
– sequence: 8
  givenname: Marc I.
  surname: Diamond
  fullname: Diamond, Marc I.
  email: diamondm@neuro.wustl.edu
  organization: Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
– sequence: 9
  givenname: David M.
  surname: Holtzman
  fullname: Holtzman, David M.
  email: holtzman@neuro.wustl.edu
  organization: Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24075978$$D View this record in MEDLINE/PubMed
BookMark eNqFUl1v0zAUtdAQ6wb_ACFLvPCSYMdOnPCANMpXpSGQGLxarnOTukvtznYq9d_wW_hlOLRDsAcmP9jSPef43nPPGTqxzgJCTynJKaHVy3VuYfTO5gWhLCciJ7x6gGaUNCLjtGlO0IzUTZVVhWCn6CyENSGUlw19hE4LTkTZiHqG9hc2muxKjXh6LF1rIOC4UhG_GZy-xr8rfe-hVxHwV4DW2B4v7M8f3030Dn9S_hraYY_fgvagAuAvKq7c4Po9VrbFi83Wux3gueuticbZI3fnHqOHnRoCPDne5-jb-3dX84_Z5ecPi_nFZaZ5yWOmatECpIGWuuvYUijeFLyrNalVXRCehuhYWzFaAymU5qxlzVKprqpKoKStBTtHrw-623G5gVaDjV4NcuvNRvm9dMrIfyvWrGTvdpKlj0rBksCLo4B3NyOEKDcmaBgGZcGNQdKSVoLTior7oZyzpmE1nVSf34Gu3ehtciIJlgVJhxYJ9ezv5v90fbvABHh1AGjvQvDQSW2imoxOs5hBUiKntMi1PKRFTmmRRMiUlkTmd8i3-vfQjo5CWtvOgJdBG7A6ZcODjrJ15v8CvwBR9N24
CitedBy_id crossref_primary_10_1016_S1474_4422_17_30157_6
crossref_primary_10_3389_fnmol_2020_590896
crossref_primary_10_1523_JNEUROSCI_2016_16_2016
crossref_primary_10_1186_s40659_022_00404_3
crossref_primary_10_15252_emmm_201910919
crossref_primary_10_1186_s13024_020_00389_1
crossref_primary_10_1002_glia_23794
crossref_primary_10_1038_nrneurol_2015_65
crossref_primary_10_1186_s40478_019_0664_z
crossref_primary_10_2174_1568026619666191203113745
crossref_primary_10_1186_s40035_021_00270_1
crossref_primary_10_1038_nrd_2017_155
crossref_primary_10_1016_j_bcp_2013_12_020
crossref_primary_10_1111_jnc_12821
crossref_primary_10_1002_pro_3275
crossref_primary_10_1007_s00018_015_1949_4
crossref_primary_10_1016_j_brainres_2021_147308
crossref_primary_10_1016_j_neurobiolaging_2015_09_017
crossref_primary_10_1016_j_celrep_2014_05_033
crossref_primary_10_3233_JAD_201334
crossref_primary_10_1016_j_parkreldis_2018_10_006
crossref_primary_10_1038_s41598_019_41105_4
crossref_primary_10_1016_j_neuron_2017_05_026
crossref_primary_10_1016_j_nbd_2018_07_003
crossref_primary_10_3233_JAD_180422
crossref_primary_10_1038_s43587_023_00523_w
crossref_primary_10_1016_S1474_4422_19_30139_5
crossref_primary_10_1186_s13195_018_0378_7
crossref_primary_10_1111_jnc_12845
crossref_primary_10_1007_s42399_021_01092_y
crossref_primary_10_1186_s40478_018_0585_2
crossref_primary_10_1080_14737175_2018_1489241
crossref_primary_10_3892_mmr_2016_5618
crossref_primary_10_1186_s13024_019_0340_6
crossref_primary_10_1186_s13195_018_0441_4
crossref_primary_10_1016_j_neuron_2017_05_001
crossref_primary_10_1038_s41598_019_45234_8
crossref_primary_10_1007_s00441_023_03821_2
crossref_primary_10_1186_s40478_018_0562_9
crossref_primary_10_1523_JNEUROSCI_4989_14_2015
crossref_primary_10_3390_cells13090731
crossref_primary_10_1007_s00401_024_02704_2
crossref_primary_10_1097_WCO_0000000000000836
crossref_primary_10_1111_neup_12890
crossref_primary_10_1186_alzrt233
crossref_primary_10_1186_s12929_022_00871_6
crossref_primary_10_1080_14737175_2024_2314183
crossref_primary_10_1186_alzrt237
crossref_primary_10_1016_j_bbadis_2019_165584
crossref_primary_10_1016_j_patbio_2014_01_003
crossref_primary_10_1007_s00401_018_1869_0
crossref_primary_10_1126_sciadv_abe1611
crossref_primary_10_1186_s13024_017_0172_1
crossref_primary_10_3389_fnins_2019_00698
crossref_primary_10_1007_s11910_018_0898_3
crossref_primary_10_1016_j_bbrc_2016_12_101
crossref_primary_10_1038_nrd4179
crossref_primary_10_1371_journal_pone_0259335
crossref_primary_10_5582_bst_2023_01288
crossref_primary_10_1016_j_brainres_2024_149205
crossref_primary_10_1177_1179069518772380
crossref_primary_10_3233_JAD_180404
crossref_primary_10_3233_JAD_210297
crossref_primary_10_1016_j_ymeth_2017_08_003
crossref_primary_10_1111_febs_17150
crossref_primary_10_1126_scitranslmed_aal2029
crossref_primary_10_1038_srep28912
crossref_primary_10_1038_nature24016
crossref_primary_10_1007_s11940_014_0319_0
crossref_primary_10_1007_s12035_022_02809_3
crossref_primary_10_1186_s12974_019_1453_0
crossref_primary_10_1016_j_ymthe_2020_10_007
crossref_primary_10_1038_ncomms7768
crossref_primary_10_1186_s40478_020_01034_0
crossref_primary_10_1016_j_ijbiomac_2020_11_192
crossref_primary_10_1080_13543784_2019_1619694
crossref_primary_10_1038_s41541_020_0172_y
crossref_primary_10_1038_labinvest_2014_78
crossref_primary_10_1038_s41593_024_01777_2
crossref_primary_10_1016_j_molmed_2015_03_003
crossref_primary_10_1093_brain_aww339
crossref_primary_10_1038_s41582_018_0013_z
crossref_primary_10_1016_j_jbc_2023_105252
crossref_primary_10_7554_eLife_58499
crossref_primary_10_1186_s13024_018_0299_8
crossref_primary_10_1371_journal_pone_0271737
crossref_primary_10_3390_ijms252212448
crossref_primary_10_1101_cshperspect_a024331
crossref_primary_10_1186_s13195_024_01561_1
crossref_primary_10_1093_brain_aww334
crossref_primary_10_1038_s41598_017_17313_1
crossref_primary_10_1007_s12035_024_04295_1
crossref_primary_10_1038_s43587_021_00070_2
crossref_primary_10_1016_j_neuron_2018_06_003
crossref_primary_10_1186_s40478_021_01185_8
crossref_primary_10_1038_s41591_020_0938_9
crossref_primary_10_1098_rsob_240035
crossref_primary_10_1038_s41467_024_45692_3
crossref_primary_10_1186_alzrt261
crossref_primary_10_3233_JAD_221279
crossref_primary_10_3390_ijms19030645
crossref_primary_10_1038_nrd4363
crossref_primary_10_3390_biom12030469
crossref_primary_10_1186_s13195_016_0227_5
crossref_primary_10_1016_j_nicl_2017_09_016
crossref_primary_10_1016_j_celrep_2018_03_021
crossref_primary_10_3233_JAD_231163
crossref_primary_10_1016_j_pneurobio_2022_102306
crossref_primary_10_1007_s00401_014_1371_2
crossref_primary_10_1016_j_arr_2024_102192
crossref_primary_10_1186_alzrt277
crossref_primary_10_1038_s41380_020_0738_0
crossref_primary_10_1016_j_ajpath_2017_01_022
crossref_primary_10_2967_jnumed_117_190082
crossref_primary_10_1016_j_arr_2013_10_001
crossref_primary_10_1093_brain_aww230
crossref_primary_10_7554_eLife_36584
crossref_primary_10_1016_j_neuron_2017_04_010
crossref_primary_10_3390_ijms21239318
crossref_primary_10_1111_jnc_14830
crossref_primary_10_1126_scitranslmed_abo6889
crossref_primary_10_1038_s41598_020_77164_1
crossref_primary_10_1172_JCI168553
crossref_primary_10_1111_jon_13001
crossref_primary_10_15252_emmm_201607054
crossref_primary_10_1038_srep11161
crossref_primary_10_1002_alz_12452
crossref_primary_10_1002_alz_12451
crossref_primary_10_1016_j_trci_2018_10_007
crossref_primary_10_1002_alz_12453
crossref_primary_10_1016_j_jalz_2016_02_011
crossref_primary_10_1016_j_trci_2016_09_002
crossref_primary_10_1093_braincomms_fcac045
crossref_primary_10_1186_s13024_024_00793_x
crossref_primary_10_1097_TA_0000000000001248
crossref_primary_10_1073_pnas_1607215114
crossref_primary_10_31083_j_jin_2020_01_1249
crossref_primary_10_3233_JAD_191266
crossref_primary_10_1084_jem_20211275
crossref_primary_10_1007_s11910_014_0495_z
crossref_primary_10_1016_j_neuron_2014_05_004
crossref_primary_10_1146_annurev_biochem_061516_045049
crossref_primary_10_1016_j_biopsych_2017_04_003
crossref_primary_10_3390_jcm13113098
crossref_primary_10_3233_ADR_230130
crossref_primary_10_3390_ijms23116080
crossref_primary_10_2174_0929867325666180430150940
crossref_primary_10_1126_scitranslmed_aag0481
crossref_primary_10_1007_s40263_021_00813_0
crossref_primary_10_1111_cns_13970
crossref_primary_10_1016_j_tins_2014_08_004
crossref_primary_10_1074_jbc_RA120_013271
crossref_primary_10_1038_s41541_018_0046_8
crossref_primary_10_1186_s40478_019_0770_y
crossref_primary_10_1002_chem_201701218
crossref_primary_10_1146_annurev_cellbio_100617_062636
crossref_primary_10_1038_s41598_018_34759_z
crossref_primary_10_1016_j_conb_2015_09_004
crossref_primary_10_1039_C7CP02849K
crossref_primary_10_1186_s40478_020_0884_2
crossref_primary_10_1016_j_addr_2022_114517
crossref_primary_10_1007_s12035_018_0974_3
crossref_primary_10_3389_fncel_2014_00113
crossref_primary_10_3390_vaccines2030601
crossref_primary_10_1002_mds_25855
crossref_primary_10_1007_s00259_014_2740_8
crossref_primary_10_1016_j_pneurobio_2019_101644
crossref_primary_10_1186_s13024_017_0192_x
crossref_primary_10_3390_ijms19040998
crossref_primary_10_1002_acn3_171
crossref_primary_10_1002_acn3_176
crossref_primary_10_3390_ijms18061319
crossref_primary_10_1111_nan_12192
crossref_primary_10_1016_j_pharmthera_2018_11_006
crossref_primary_10_1016_j_npep_2022_102285
crossref_primary_10_1016_j_drudis_2022_103338
crossref_primary_10_1021_acschemneuro_4c00360
crossref_primary_10_1126_scitranslmed_abb2639
crossref_primary_10_1186_s13024_016_0126_z
crossref_primary_10_1371_journal_pbio_2002183
crossref_primary_10_1186_s40478_020_01003_7
crossref_primary_10_1101_cshperspect_a024612
crossref_primary_10_1155_2020_8878412
crossref_primary_10_1007_s00401_016_1644_z
crossref_primary_10_21926_obm_neurobiol_2403238
crossref_primary_10_2478_s13380_014_0222_x
crossref_primary_10_1016_j_neuron_2014_06_004
crossref_primary_10_1016_j_jconrel_2022_07_026
crossref_primary_10_1016_S1474_4422_21_00035_1
crossref_primary_10_1093_brain_awy117
crossref_primary_10_1038_s41582_023_00883_2
crossref_primary_10_7554_eLife_45457
crossref_primary_10_1093_brain_awx052
crossref_primary_10_1159_000358875
crossref_primary_10_1523_JNEUROSCI_2755_14_2014
crossref_primary_10_1080_13543784_2018_1460356
crossref_primary_10_1007_s11481_015_9637_6
crossref_primary_10_1093_braincomms_fcab096
crossref_primary_10_1016_j_neulet_2020_134919
crossref_primary_10_1016_S1474_4422_20_30489_0
crossref_primary_10_1002_adtp_202300181
crossref_primary_10_1016_j_expneurol_2018_02_004
crossref_primary_10_1371_journal_pone_0195211
crossref_primary_10_1002_trc2_12097
crossref_primary_10_1142_S0192415X22500677
crossref_primary_10_3233_JAD_160695
crossref_primary_10_1016_j_str_2018_08_012
crossref_primary_10_1073_pnas_2123487119
crossref_primary_10_20517_and_2023_20
crossref_primary_10_1590_1980_57642016dn11_030006
crossref_primary_10_1016_j_jalz_2016_03_018
crossref_primary_10_1016_j_neuron_2013_10_009
crossref_primary_10_3390_ijms24119439
crossref_primary_10_1038_s41541_022_00544_3
crossref_primary_10_1016_S1474_4422_13_70257_6
crossref_primary_10_1051_medsci_20153102006
crossref_primary_10_1002_cbic_202300727
crossref_primary_10_1016_j_nantod_2020_101027
crossref_primary_10_1021_bi501272x
crossref_primary_10_1126_scisignal_adi8743
crossref_primary_10_1111_jnc_14207
crossref_primary_10_1074_jbc_M114_627919
crossref_primary_10_1021_acs_analchem_6b01825
crossref_primary_10_18632_oncotarget_17371
crossref_primary_10_3233_JAD_170187
crossref_primary_10_1016_j_neuron_2014_04_047
crossref_primary_10_1098_rsob_220098
crossref_primary_10_1016_j_jbc_2022_102163
crossref_primary_10_1016_j_neuropharm_2020_108104
crossref_primary_10_1016_j_pharep_2018_09_006
crossref_primary_10_1016_j_pneurobio_2018_05_001
crossref_primary_10_1002_alz_14125
crossref_primary_10_1093_braincomms_fcaa039
crossref_primary_10_1074_jbc_RA120_015882
crossref_primary_10_1080_21678707_2017_1335596
crossref_primary_10_3390_pharmaceutics13071002
crossref_primary_10_1186_s13024_020_00404_5
crossref_primary_10_1016_j_ebiom_2019_03_033
crossref_primary_10_1073_pnas_1411649111
crossref_primary_10_1021_acs_analchem_3c04081
crossref_primary_10_1038_d41586_018_05723_8
crossref_primary_10_1186_s13024_015_0052_5
crossref_primary_10_1007_s00401_017_1705_y
crossref_primary_10_1016_j_expneurol_2023_114392
crossref_primary_10_3390_ijms231911610
crossref_primary_10_1002_acn3_308
crossref_primary_10_1159_000440842
crossref_primary_10_3390_ijms232315230
crossref_primary_10_1080_14728214_2019_1609450
crossref_primary_10_1016_j_neuron_2014_12_064
crossref_primary_10_1186_s13024_016_0143_y
crossref_primary_10_1002_mdc3_12142
crossref_primary_10_1074_jbc_RA120_014890
crossref_primary_10_1146_annurev_neuro_070815_014015
crossref_primary_10_1016_j_parkreldis_2015_09_033
crossref_primary_10_1016_j_bcp_2018_09_026
crossref_primary_10_1073_pnas_1710311114
crossref_primary_10_1007_s44194_024_00035_8
crossref_primary_10_3389_fcell_2021_707268
crossref_primary_10_3390_ijms21238948
crossref_primary_10_1016_j_jalz_2016_01_013
crossref_primary_10_2174_1874467215666220903095837
crossref_primary_10_1007_s00702_018_1851_y
crossref_primary_10_1016_j_expneurol_2021_113756
crossref_primary_10_1016_j_molmed_2020_03_012
crossref_primary_10_3389_fnins_2019_01274
crossref_primary_10_1016_j_vaccine_2017_03_020
crossref_primary_10_2174_1567205017666200304085513
crossref_primary_10_1186_s40478_017_0458_0
crossref_primary_10_1016_j_medp_2024_100060
crossref_primary_10_3233_JAD_179907
crossref_primary_10_1126_science_aav2546
crossref_primary_10_1074_jbc_M115_657924
crossref_primary_10_1523_JNEUROSCI_3192_13_2014
crossref_primary_10_1016_j_neuron_2018_02_015
crossref_primary_10_4103_1673_5374_259613
crossref_primary_10_1016_j_omtn_2019_07_008
crossref_primary_10_1016_j_jagp_2023_11_011
crossref_primary_10_1186_s40035_024_00432_x
crossref_primary_10_1186_s13041_017_0298_7
crossref_primary_10_1007_s10571_019_00741_0
crossref_primary_10_1016_j_parkreldis_2020_03_003
crossref_primary_10_1021_acsami_4c18679
crossref_primary_10_3389_fnagi_2016_00315
crossref_primary_10_1186_s12974_014_0152_0
crossref_primary_10_1007_s00401_015_1413_4
crossref_primary_10_1016_j_bcp_2014_01_002
crossref_primary_10_1038_s41467_018_06783_0
crossref_primary_10_1080_17460441_2018_1445084
crossref_primary_10_1016_S0140_6736_15_00461_4
crossref_primary_10_1002_mdc3_13326
crossref_primary_10_1016_j_mtbio_2024_101145
crossref_primary_10_2478_s13380_014_0225_7
crossref_primary_10_1016_j_jalz_2015_06_1884
crossref_primary_10_1016_j_neurobiolaging_2014_12_002
crossref_primary_10_1126_science_abn1366
crossref_primary_10_1016_j_nbd_2019_104707
crossref_primary_10_1186_s40478_021_01147_0
crossref_primary_10_1186_s40035_022_00293_2
crossref_primary_10_1038_nm_3809
crossref_primary_10_1016_j_bbamcr_2023_119477
crossref_primary_10_1016_j_neurol_2022_03_010
crossref_primary_10_1159_000487641
crossref_primary_10_1007_s40265_021_01546_6
crossref_primary_10_1002_alz_14250
crossref_primary_10_1016_j_ab_2015_12_002
crossref_primary_10_1186_1750_1326_9_34
crossref_primary_10_1016_j_ebiom_2018_08_041
crossref_primary_10_1016_j_neuron_2024_02_017
crossref_primary_10_1016_j_jconrel_2025_01_056
crossref_primary_10_3389_fimmu_2019_01139
crossref_primary_10_1002_cm_21822
crossref_primary_10_1016_j_celrep_2016_06_099
crossref_primary_10_1007_s12035_022_02824_4
crossref_primary_10_1080_21645515_2017_1393594
crossref_primary_10_7554_eLife_10891
crossref_primary_10_1016_j_nbd_2022_105632
crossref_primary_10_1038_s41582_021_00541_5
crossref_primary_10_1007_s10571_017_0574_1
crossref_primary_10_1038_s41586_019_1688_z
crossref_primary_10_3233_JAD_230603
crossref_primary_10_1002_glia_22988
crossref_primary_10_1039_C8RA03620A
crossref_primary_10_1515_revneuro_2015_0008
crossref_primary_10_1007_s00216_019_02350_8
crossref_primary_10_1016_j_trci_2018_09_005
crossref_primary_10_1186_s40478_019_0754_y
crossref_primary_10_1186_1750_1326_9_51
crossref_primary_10_1007_s00401_024_02701_5
crossref_primary_10_1007_s40120_024_00614_9
crossref_primary_10_2174_1871527322666230306085937
crossref_primary_10_1146_annurev_neuro_072116_031153
crossref_primary_10_1186_s40478_018_0543_z
crossref_primary_10_1007_s00401_015_1483_3
crossref_primary_10_1016_S1474_4422_21_00283_0
crossref_primary_10_1093_brain_awae254
crossref_primary_10_1080_14728222_2023_2206561
crossref_primary_10_1007_s00401_021_02301_7
crossref_primary_10_1007_s00401_015_1507_z
crossref_primary_10_1016_j_bbadis_2021_166234
crossref_primary_10_1016_j_ymthe_2022_01_009
crossref_primary_10_1084_jem_20172158
crossref_primary_10_1007_s00702_014_1315_y
crossref_primary_10_1016_j_neuron_2017_11_028
crossref_primary_10_1038_s41541_021_00424_2
crossref_primary_10_1038_nrn_2015_1
crossref_primary_10_1111_jnc_13640
crossref_primary_10_2217_imt_2016_0019
crossref_primary_10_1038_nrd4593
crossref_primary_10_1084_jem_20162125
crossref_primary_10_1007_s00401_018_1891_2
crossref_primary_10_14802_jmd_19057
crossref_primary_10_3389_fphys_2015_00277
crossref_primary_10_3233_JHD_230569
crossref_primary_10_1074_jbc_M115_652693
crossref_primary_10_1111_jnc_15713
crossref_primary_10_1038_s41598_019_51809_2
crossref_primary_10_1080_14760584_2018_1500905
crossref_primary_10_1093_brain_awad024
crossref_primary_10_3233_JAD_179937
crossref_primary_10_1007_s00115_015_0041_5
crossref_primary_10_1186_s40035_024_00407_y
crossref_primary_10_1016_j_neuropharm_2019_107842
crossref_primary_10_1038_s41467_020_16984_1
crossref_primary_10_1016_j_semcdb_2021_12_002
crossref_primary_10_1136_jnnp_2014_308004
crossref_primary_10_1111_jnc_13668
crossref_primary_10_1016_j_bmc_2019_115175
crossref_primary_10_1016_j_neurobiolaging_2014_11_022
crossref_primary_10_3390_biomedicines12112636
crossref_primary_10_1186_s40035_017_0100_x
crossref_primary_10_1001_jamaneurol_2018_2505
crossref_primary_10_1186_s40478_021_01127_4
crossref_primary_10_1007_s13311_020_00853_2
crossref_primary_10_1002_bies_201400094
crossref_primary_10_3389_fpsyt_2019_00075
crossref_primary_10_3390_ph16101498
crossref_primary_10_1016_j_cell_2019_09_001
crossref_primary_10_1155_2020_7829842
crossref_primary_10_1186_2051_5960_2_14
crossref_primary_10_1038_nrneurol_2015_225
crossref_primary_10_1038_s41541_019_0118_4
crossref_primary_10_1093_ijnp_pyv088
crossref_primary_10_1126_scitranslmed_adj5958
crossref_primary_10_1007_s13311_020_00888_5
crossref_primary_10_1186_s40478_017_0488_7
crossref_primary_10_1186_s40478_017_0442_8
crossref_primary_10_3389_fneur_2020_580732
crossref_primary_10_1016_j_bbrc_2017_04_125
crossref_primary_10_3389_fimmu_2019_02049
crossref_primary_10_1007_s11910_017_0779_1
crossref_primary_10_1007_s00018_024_05225_z
crossref_primary_10_1021_cn500143n
crossref_primary_10_3390_biom6020021
crossref_primary_10_1186_s40478_020_00948_z
crossref_primary_10_17116_jnevro201911909218
crossref_primary_10_1016_j_nbd_2020_105010
crossref_primary_10_1101_cshperspect_a024026
crossref_primary_10_1371_journal_pone_0125614
crossref_primary_10_2174_011574888X267673231120061600
crossref_primary_10_1016_j_trci_2016_06_004
crossref_primary_10_1038_s41593_019_0433_0
crossref_primary_10_1074_jbc_R114_549295
crossref_primary_10_1111_ner_13305
crossref_primary_10_1101_cshperspect_a024141
crossref_primary_10_4103_1673_5374_385853
crossref_primary_10_1016_j_jbc_2023_105545
crossref_primary_10_3390_antib4030170
crossref_primary_10_1186_s13195_018_0341_7
crossref_primary_10_1042_NS20220086
crossref_primary_10_1172_JCI138179
crossref_primary_10_1039_D3AN01328F
crossref_primary_10_1007_s11011_020_00591_6
crossref_primary_10_1371_journal_pone_0135774
crossref_primary_10_1007_s00401_019_02087_9
crossref_primary_10_3390_biom6010006
crossref_primary_10_1016_j_jneuroim_2015_08_008
crossref_primary_10_1053_j_semnuclmed_2020_12_008
crossref_primary_10_1038_srep38224
crossref_primary_10_1016_S1474_4422_17_30037_6
crossref_primary_10_3389_fnins_2018_00267
crossref_primary_10_1097_WCO_0000000000000355
crossref_primary_10_3390_antib12020041
crossref_primary_10_1093_brain_awu213
crossref_primary_10_18502_jovr_v14i4_5459
Cites_doi 10.1074/jbc.M808759200
10.1073/pnas.73.11.4070
10.1016/S0197-4580(97)00062-6
10.1038/nature08890
10.1016/j.neuron.2011.12.040
10.1021/mp300518e
10.3791/838
10.1016/0304-3940(95)11484-E
10.1523/JNEUROSCI.2361-07.2007
10.1523/JNEUROSCI.1292-12.2012
10.1101/cshperspect.a006247
10.1523/JNEUROSCI.22-15-06331.2002
10.1001/archneur.63.10.1459
10.1074/jbc.M110.209296
10.1016/j.nbd.2006.11.014
10.1074/jbc.M307996200
10.1016/j.nbd.2011.08.029
10.1016/j.neuron.2007.01.010
10.1074/jbc.M111.229633
10.2174/156720512800492503
10.1038/nn842
10.1523/JNEUROSCI.4922-11.2012
10.2174/156720509789207930
10.1073/pnas.1014074107
10.1146/annurev.immunol.19.1.275
10.1016/0304-3940(93)90590-H
10.1038/nrn2786
10.1073/pnas.151261398
10.1523/JNEUROSCI.23-09-03745.2003
10.1523/JNEUROSCI.3579-11.2011
10.1523/JNEUROSCI.4363-10.2010
10.1016/j.neuron.2009.03.024
10.1371/journal.pone.0031302
10.1523/JNEUROSCI.2642-12.2013
10.1371/journal.pone.0026860
10.1074/jbc.M112.346072
10.1016/j.neuron.2008.11.007
10.1074/jbc.M111.323279
10.1111/j.1471-4159.2011.07337.x
10.3233/JAD-2010-1273
10.1371/journal.pone.0048180
10.1002/jnr.10271
10.1074/jbc.M111.288746
10.1038/78682
10.1016/j.neuron.2012.03.004
10.1523/JNEUROSCI.1065-09.2009
10.1523/JNEUROSCI.19-17-07486.1999
10.1016/j.expneurol.2010.05.010
10.1091/mbc.3.10.1141
10.1002/jnr.490390607
10.1021/bi800783d
10.1038/ncb1901
10.1371/journal.pone.0019338
10.1096/fj.02-1169fje
10.1523/JNEUROSCI.2569-11.2011
10.1038/ni.2548
10.1212/WNL.42.3.631
10.1016/j.neuron.2011.11.033
ContentType Journal Article
Copyright 2013 Elsevier Inc.
Copyright © 2013 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Oct 16, 2013
Copyright_xml – notice: 2013 Elsevier Inc.
– notice: Copyright © 2013 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Oct 16, 2013
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
5PM
DOI 10.1016/j.neuron.2013.07.046
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Genetics Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
Nursing & Allied Health Premium

MEDLINE
Neurosciences Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4199
EndPage 414
ExternalDocumentID PMC3924573
3396557501
24075978
10_1016_j_neuron_2013_07_046
S0896627313006703
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS071835
– fundername: National Institute of Neurological Disorders and Stroke : NINDS
  grantid: R01 NS071835 || NS
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1RT
1~5
26-
2WC
3V.
4.4
457
4G.
53G
5RE
5VS
62-
6I.
7-5
7RV
7X7
8C1
8FE
8FH
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKRW
AAKUH
AALRI
AAQFI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADEZE
ADFRT
ADJPV
AEFWE
AENEX
AEXQZ
AFKRA
AFTJW
AGHFR
AGKMS
AHHHB
AHMBA
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AQUVI
ASPBG
AVWKF
AZFZN
BAWUL
BBNVY
BENPR
BHPHI
BKEYQ
BKNYI
BPHCQ
BVXVI
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HCIFZ
HVGLF
IAO
IHE
IHR
INH
IXB
J1W
JIG
K-O
KQ8
L7B
LK8
LX5
M0R
M0T
M2M
M2O
M3Z
M41
M7P
N9A
NCXOZ
O-L
O9-
OK1
P2P
P6G
PQQKQ
PROAC
RCE
RIG
ROL
RPZ
SCP
SDP
SES
SSZ
TR2
WOW
WQ6
ZA5
.55
.GJ
29N
3O-
AAFWJ
AAMRU
AAQXK
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FGOYB
G-2
HZ~
ITC
MVM
OZT
R2-
X7M
ZGI
ZKB
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
EFKBS
FR3
K9.
NAPCQ
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c454t-a87dee419bcff3b7a4924f8c08a8204978f3d6318e02ac43d39baaf665e10d873
IEDL.DBID IXB
ISSN 0896-6273
1097-4199
IngestDate Thu Aug 21 18:34:09 EDT 2025
Thu Sep 04 19:39:18 EDT 2025
Thu Sep 04 20:22:00 EDT 2025
Fri Jul 25 11:11:59 EDT 2025
Thu Apr 03 07:07:26 EDT 2025
Thu Apr 24 23:10:25 EDT 2025
Tue Jul 01 01:16:06 EDT 2025
Fri Feb 23 02:11:25 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2013 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c454t-a87dee419bcff3b7a4924f8c08a8204978f3d6318e02ac43d39baaf665e10d873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0896627313006703
PMID 24075978
PQID 1552020212
PQPubID 2031076
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3924573
proquest_miscellaneous_1516741617
proquest_miscellaneous_1443993813
proquest_journals_1552020212
pubmed_primary_24075978
crossref_citationtrail_10_1016_j_neuron_2013_07_046
crossref_primary_10_1016_j_neuron_2013_07_046
elsevier_sciencedirect_doi_10_1016_j_neuron_2013_07_046
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-10-16
PublicationDateYYYYMMDD 2013-10-16
PublicationDate_xml – month: 10
  year: 2013
  text: 2013-10-16
  day: 16
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cambridge
PublicationTitle Neuron (Cambridge, Mass.)
PublicationTitleAlternate Neuron
PublicationYear 2013
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Frost, Diamond (bib20) 2010; 11
Bancher, Braak, Fischer, Jellinger (bib5) 1993; 162
Bae, Lee, Rockenstein, Ho, Park, Yang, Desplats, Masliah, Lee (bib4) 2012; 32
Troquier, Caillierez, Burnouf, Fernandez-Gomez, Grosjean, Zommer, Sergeant, Schraen-Maschke, Blum, Buee (bib51) 2012; 9
Braak, Braak (bib12) 1997; 18
Ghoshal, Dearborn, Wozniak, Cairns (bib22) 2012; 45
Bi, Ittner, Ke, Götz, Ittner (bib8) 2011; 6
Jicha, Weaver, Lane, Vianna, Kress, Rockwood, Davies (bib28) 1999; 19
Yoshiyama, Higuchi, Zhang, Huang, Iwata, Saido, Maeda, Suhara, Trojanowski, Lee (bib56) 2007; 53
Bard, Cannon, Barbour, Burke, Games, Grajeda, Guido, Hu, Huang, Johnson-Wood (bib6) 2000; 6
Boimel, Grigoriadis, Lourbopoulos, Haber, Abramsky, Rosenmann (bib9) 2010; 224
Clavaguera, Bolmont, Crowther, Abramowski, Frank, Probst, Fraser, Stalder, Beibel, Staufenbiel (bib14) 2009; 11
Masliah, Rockenstein, Mante, Crews, Spencer, Adame, Patrick, Trejo, Ubhi, Rohn (bib37) 2011; 6
Kfoury, Holmes, Jiang, Holtzman, Diamond (bib29) 2012; 287
Raj, Kuceyeski, Weiner (bib42) 2012; 73
Mohamed, Mosier, Zou, Siklós, Alexianu, Engelhardt, Beers, Le, Appel (bib39) 2002; 69
Halfmann, Lindquist (bib25) 2008
Polydoro, Acker, Duff, Castillo, Davies (bib41) 2009; 29
Wilcock, DiCarlo, Henderson, Jackson, Clarke, Ugen, Gordon, Morgan (bib52) 2003; 23
Small, Duff (bib49) 2008; 60
Kim, Lee, Jung, Ahmed, Lee, Hall (bib30) 2010; 19
Sigurdsson (bib48) 2009; 6
Zhang, Carroll, Trojanowski, Yao, Iba, Potuzak, Hogan, Xie, Ballatore, Smith (bib57) 2012; 32
Liu, Drouet, Wu, Witter, Small, Clelland, Duff (bib33) 2012; 7
Chai, Wu, Murray, Kinley, Cella, Sims, Buckner, Hanmer, Davies, O’Neill (bib13) 2011; 286
de Calignon, Polydoro, Suárez-Calvet, William, Adamowicz, Kopeikina, Pitstick, Sahara, Ashe, Carlson (bib16) 2012; 73
Kryndushkin, Alexandrov, Ter-Avanesyan, Kushnirov (bib32) 2003; 278
Macauley, Pekny, Sands (bib34) 2011; 31
Guo, Lee (bib24) 2011; 286
de Calignon, Fox, Pitstick, Carlson, Bacskai, Spires-Jones, Hyman (bib15) 2010; 464
Otvos, Feiner, Lang, Szendrei, Goedert, Lee (bib40) 1994; 39
Drechsel, Hyman, Cobb, Kirschner (bib19) 1992; 3
Zhou, Gennatas, Kramer, Miller, Seeley (bib58) 2012; 73
Jeganathan, von Bergen, Mandelkow, Mandelkow (bib27) 2008; 47
DeMattos, Bales, Cummins, Dodart, Paul, Holtzman (bib17) 2001; 98
Dodart, Bales, Gannon, Greene, DeMattos, Mathis, DeLong, Wu, Wu, Holtzman, Paul (bib18) 2002; 5
Mandelkow, Mandelkow (bib36) 2012; 2
Boutajangout, Quartermain, Sigurdsson (bib10) 2010; 30
Asuni, Boutajangout, Quartermain, Sigurdsson (bib3) 2007; 27
McEwan, Tam, Watkinson, Bidgood, Mallery, James (bib38) 2013; 14
Santa-Maria, Varghese, Ksiezak-Reding, Dzhun, Wang, Pasinetti (bib45) 2012; 287
Boutajangout, Ingadottir, Davies, Sigurdsson (bib11) 2011; 118
Kotilinek, Bacskai, Westerman, Kawarabayashi, Younkin, Hyman, Younkin, Ashe (bib31) 2002; 22
Iba, Guo, McBride, Zhang, Trojanowski, Lee (bib26) 2013; 33
Rosenmann, Grigoriadis, Karussis, Boimel, Touloumi, Ovadia, Abramsky (bib44) 2006; 63
Mallery, McEwan, Bidgood, Towers, Johnson, James (bib35) 2010; 107
Goedert, Jakes, Vanmechelen (bib23) 1995; 189
Andoh, Kuraishi (bib1) 2004; 18
Wozniak, Xiao, Xu, Yamada, Ornitz (bib54) 2007; 26
Arriagada, Growdon, Hedley-Whyte, Hyman (bib2) 1992; 42
Yamada, Cirrito, Stewart, Jiang, Finn, Holmes, Binder, Mandelkow, Diamond, Lee, Holtzman (bib55) 2011; 31
Frost, Jacks, Diamond (bib21) 2009; 284
Strazielle, Ghersi-Egea (bib50) 2013; 10
Sato, Turkoz, Dearborn, Wozniak, Kopan, Hass (bib46) 2012; 7
Basak, Verghese, Yoon, Kim, Holtzman (bib7) 2012; 287
Ravetch, Bolland (bib43) 2001; 19
Seeley, Crawford, Zhou, Miller, Greicius (bib47) 2009; 62
Witman, Cleveland, Weingarten, Kirschner (bib53) 1976; 73
de Calignon (10.1016/j.neuron.2013.07.046_bib15) 2010; 464
Basak (10.1016/j.neuron.2013.07.046_bib7) 2012; 287
Mandelkow (10.1016/j.neuron.2013.07.046_bib36) 2012; 2
Mallery (10.1016/j.neuron.2013.07.046_bib35) 2010; 107
Polydoro (10.1016/j.neuron.2013.07.046_bib41) 2009; 29
Small (10.1016/j.neuron.2013.07.046_bib49) 2008; 60
Witman (10.1016/j.neuron.2013.07.046_bib53) 1976; 73
Yamada (10.1016/j.neuron.2013.07.046_bib55) 2011; 31
Bi (10.1016/j.neuron.2013.07.046_bib8) 2011; 6
Kfoury (10.1016/j.neuron.2013.07.046_bib29) 2012; 287
Chai (10.1016/j.neuron.2013.07.046_bib13) 2011; 286
Seeley (10.1016/j.neuron.2013.07.046_bib47) 2009; 62
Sigurdsson (10.1016/j.neuron.2013.07.046_bib48) 2009; 6
Bard (10.1016/j.neuron.2013.07.046_bib6) 2000; 6
Frost (10.1016/j.neuron.2013.07.046_bib21) 2009; 284
Liu (10.1016/j.neuron.2013.07.046_bib33) 2012; 7
Yoshiyama (10.1016/j.neuron.2013.07.046_bib56) 2007; 53
Asuni (10.1016/j.neuron.2013.07.046_bib3) 2007; 27
Masliah (10.1016/j.neuron.2013.07.046_bib37) 2011; 6
Drechsel (10.1016/j.neuron.2013.07.046_bib19) 1992; 3
Braak (10.1016/j.neuron.2013.07.046_bib12) 1997; 18
Raj (10.1016/j.neuron.2013.07.046_bib42) 2012; 73
Guo (10.1016/j.neuron.2013.07.046_bib24) 2011; 286
Kim (10.1016/j.neuron.2013.07.046_bib30) 2010; 19
Bae (10.1016/j.neuron.2013.07.046_bib4) 2012; 32
Jeganathan (10.1016/j.neuron.2013.07.046_bib27) 2008; 47
Kryndushkin (10.1016/j.neuron.2013.07.046_bib32) 2003; 278
Strazielle (10.1016/j.neuron.2013.07.046_bib50) 2013; 10
Dodart (10.1016/j.neuron.2013.07.046_bib18) 2002; 5
Boutajangout (10.1016/j.neuron.2013.07.046_bib11) 2011; 118
Mohamed (10.1016/j.neuron.2013.07.046_bib39) 2002; 69
Clavaguera (10.1016/j.neuron.2013.07.046_bib14) 2009; 11
Ghoshal (10.1016/j.neuron.2013.07.046_bib22) 2012; 45
Goedert (10.1016/j.neuron.2013.07.046_bib23) 1995; 189
Arriagada (10.1016/j.neuron.2013.07.046_bib2) 1992; 42
Troquier (10.1016/j.neuron.2013.07.046_bib51) 2012; 9
Zhang (10.1016/j.neuron.2013.07.046_bib57) 2012; 32
Otvos (10.1016/j.neuron.2013.07.046_bib40) 1994; 39
Macauley (10.1016/j.neuron.2013.07.046_bib34) 2011; 31
de Calignon (10.1016/j.neuron.2013.07.046_bib16) 2012; 73
Sato (10.1016/j.neuron.2013.07.046_bib46) 2012; 7
Andoh (10.1016/j.neuron.2013.07.046_bib1) 2004; 18
Jicha (10.1016/j.neuron.2013.07.046_bib28) 1999; 19
Halfmann (10.1016/j.neuron.2013.07.046_bib25) 2008
McEwan (10.1016/j.neuron.2013.07.046_bib38) 2013; 14
Boimel (10.1016/j.neuron.2013.07.046_bib9) 2010; 224
Rosenmann (10.1016/j.neuron.2013.07.046_bib44) 2006; 63
Frost (10.1016/j.neuron.2013.07.046_bib20) 2010; 11
Boutajangout (10.1016/j.neuron.2013.07.046_bib10) 2010; 30
Wozniak (10.1016/j.neuron.2013.07.046_bib54) 2007; 26
Zhou (10.1016/j.neuron.2013.07.046_bib58) 2012; 73
Santa-Maria (10.1016/j.neuron.2013.07.046_bib45) 2012; 287
Bancher (10.1016/j.neuron.2013.07.046_bib5) 1993; 162
DeMattos (10.1016/j.neuron.2013.07.046_bib17) 2001; 98
Wilcock (10.1016/j.neuron.2013.07.046_bib52) 2003; 23
Iba (10.1016/j.neuron.2013.07.046_bib26) 2013; 33
Kotilinek (10.1016/j.neuron.2013.07.046_bib31) 2002; 22
Ravetch (10.1016/j.neuron.2013.07.046_bib43) 2001; 19
14507919 - J Biol Chem. 2003 Dec 5;278(49):49636-43
7624036 - Neurosci Lett. 1995 Apr 21;189(3):167-9
20357768 - Nature. 2010 Apr 22;464(7292):1201-4
22461630 - J Biol Chem. 2012 Jun 1;287(23):19440-51
23110206 - PLoS One. 2012;7(10):e48180
23298398 - Mol Pharm. 2013 May 6;10(5):1473-91
19282288 - J Biol Chem. 2009 May 8;284(19):12845-52
21147995 - J Neurosci. 2010 Dec 8;30(49):16559-66
12151510 - J Neurosci. 2002 Aug 1;22(15):6331-5
20110609 - J Alzheimers Dis. 2010;19(2):647-64
19503072 - Nat Cell Biol. 2009 Jul;11(7):909-13
9330992 - Neurobiol Aging. 1997 Jul-Aug;18(4 Suppl):S85-8
21644996 - J Neurochem. 2011 Aug;118(4):658-67
1069293 - Proc Natl Acad Sci U S A. 1976 Nov;73(11):4070-4
22762014 - Cold Spring Harb Perspect Med. 2012 Jul;2(7):a006247
21917794 - J Neurosci. 2011 Sep 14;31(37):13110-7
23015436 - J Neurosci. 2012 Sep 26;32(39):13454-69
24232374 - Nat Rev Drug Discov. 2013 Dec;12(12):904
21559417 - PLoS One. 2011;6(4):e19338
22423084 - J Neurosci. 2012 Mar 14;32(11):3601-11
22445348 - Neuron. 2012 Mar 22;73(6):1216-27
11244038 - Annu Rev Immunol. 2001;19:275-90
17715348 - J Neurosci. 2007 Aug 22;27(34):9115-29
11438712 - Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8850-5
19710325 - J Neurosci. 2009 Aug 26;29(34):10741-9
17236779 - Neurobiol Dis. 2007 Apr;26(1):14-26
23325240 - J Neurosci. 2013 Jan 16;33(3):1024-37
22174735 - PLoS One. 2011;6(12):e26860
17030663 - Arch Neurol. 2006 Oct;63(10):1459-67
1549228 - Neurology. 1992 Mar;42(3 Pt 1):631-9
19038212 - Neuron. 2008 Nov 26;60(4):534-42
19376066 - Neuron. 2009 Apr 16;62(1):42-52
22496370 - J Biol Chem. 2012 Jun 8;287(24):20522-33
20546729 - Exp Neurol. 2010 Aug;224(2):472-85
14630707 - FASEB J. 2004 Jan;18(1):182-4
22312444 - PLoS One. 2012;7(2):e31302
1421571 - Mol Biol Cell. 1992 Oct;3(10):1141-54
22365544 - Neuron. 2012 Feb 23;73(4):685-97
22445347 - Neuron. 2012 Mar 22;73(6):1204-15
22272619 - Curr Alzheimer Res. 2012 May;9(4):397-405
11941374 - Nat Neurosci. 2002 May;5(5):452-7
12736345 - J Neurosci. 2003 May 1;23(9):3745-51
23455675 - Nat Immunol. 2013 Apr;14(4):327-36
24139027 - Neuron. 2013 Oct 16;80(2):254-6
21045130 - Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):19985-90
12111822 - J Neurosci Res. 2002 Jul 1;69(1):110-6
21841002 - J Biol Chem. 2011 Sep 30;286(39):34457-67
10932230 - Nat Med. 2000 Aug;6(8):916-9
10460255 - J Neurosci. 1999 Sep 1;19(17):7486-94
21933710 - Neurobiol Dis. 2012 Jan;45(1):395-408
20029438 - Nat Rev Neurosci. 2010 Mar;11(3):155-9
22031903 - J Neurosci. 2011 Oct 26;31(43):15575-85
7534834 - J Neurosci Res. 1994 Dec 15;39(6):669-73
19874269 - Curr Alzheimer Res. 2009 Oct;6(5):446-50
21372138 - J Biol Chem. 2011 Apr 29;286(17):15317-31
22383525 - J Biol Chem. 2012 Apr 20;287(17):13959-71
18783251 - Biochemistry. 2008 Oct 7;47(40):10526-39
8121624 - Neurosci Lett. 1993 Nov 12;162(1-2):179-82
17270732 - Neuron. 2007 Feb 1;53(3):337-51
19066511 - J Vis Exp. 2008;(17). pii: 838. doi: 10.3791/838
References_xml – volume: 31
  start-page: 13110
  year: 2011
  end-page: 13117
  ident: bib55
  article-title: In vivo microdialysis reveals age-dependent decrease of brain interstitial fluid tau levels in P301S human tau transgenic mice
  publication-title: J. Neurosci.
– volume: 14
  start-page: 327
  year: 2013
  end-page: 336
  ident: bib38
  article-title: Intracellular antibody-bound pathogens stimulate immune signaling via the Fc receptor TRIM21
  publication-title: Nat. Immunol.
– volume: 19
  start-page: 275
  year: 2001
  end-page: 290
  ident: bib43
  article-title: IgG Fc receptors
  publication-title: Annu. Rev. Immunol.
– volume: 73
  start-page: 1204
  year: 2012
  end-page: 1215
  ident: bib42
  article-title: A network diffusion model of disease progression in dementia
  publication-title: Neuron
– volume: 18
  start-page: 182
  year: 2004
  end-page: 184
  ident: bib1
  article-title: Direct action of immunoglobulin G on primary sensory neurons through Fc gamma receptor I
  publication-title: FASEB J.
– volume: 26
  start-page: 14
  year: 2007
  end-page: 26
  ident: bib54
  article-title: Impaired spatial learning and defective theta burst induced LTP in mice lacking fibroblast growth factor 14
  publication-title: Neurobiol. Dis.
– volume: 63
  start-page: 1459
  year: 2006
  end-page: 1467
  ident: bib44
  article-title: Tauopathy-like abnormalities and neurologic deficits in mice immunized with neuronal tau protein
  publication-title: Arch. Neurol.
– volume: 189
  start-page: 167
  year: 1995
  end-page: 169
  ident: bib23
  article-title: Monoclonal antibody AT8 recognises tau protein phosphorylated at both serine 202 and threonine 205
  publication-title: Neurosci. Lett.
– volume: 224
  start-page: 472
  year: 2010
  end-page: 485
  ident: bib9
  article-title: Efficacy and safety of immunization with phosphorylated tau against neurofibrillary tangles in mice
  publication-title: Exp. Neurol.
– volume: 73
  start-page: 4070
  year: 1976
  end-page: 4074
  ident: bib53
  article-title: Tubulin requires tau for growth onto microtubule initiating sites
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 286
  start-page: 34457
  year: 2011
  end-page: 34467
  ident: bib13
  article-title: Passive immunization with anti-Tau antibodies in two transgenic models: reduction of Tau pathology and delay of disease progression
  publication-title: J. Biol. Chem.
– volume: 18
  start-page: S85
  year: 1997
  end-page: S88
  ident: bib12
  article-title: Diagnostic criteria for neuropathologic assessment of Alzheimer’s disease
  publication-title: Neurobiol. Aging
– volume: 31
  start-page: 15575
  year: 2011
  end-page: 15585
  ident: bib34
  article-title: The role of attenuated astrocyte activation in infantile neuronal ceroid lipofuscinosis
  publication-title: J. Neurosci.
– volume: 27
  start-page: 9115
  year: 2007
  end-page: 9129
  ident: bib3
  article-title: Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements
  publication-title: J. Neurosci.
– volume: 287
  start-page: 20522
  year: 2012
  end-page: 20533
  ident: bib45
  article-title: Paired helical filaments from Alzheimer disease brain induce intracellular accumulation of Tau protein in aggresomes
  publication-title: J. Biol. Chem.
– volume: 7
  start-page: e31302
  year: 2012
  ident: bib33
  article-title: Trans-synaptic spread of tau pathology in vivo
  publication-title: PLoS ONE
– volume: 11
  start-page: 155
  year: 2010
  end-page: 159
  ident: bib20
  article-title: Prion-like mechanisms in neurodegenerative diseases
  publication-title: Nat. Rev. Neurosci.
– volume: 29
  start-page: 10741
  year: 2009
  end-page: 10749
  ident: bib41
  article-title: Age-dependent impairment of cognitive and synaptic function in the htau mouse model of tau pathology
  publication-title: J. Neurosci.
– volume: 287
  start-page: 13959
  year: 2012
  end-page: 13971
  ident: bib7
  article-title: Low-density lipoprotein receptor represents an apolipoprotein E-independent pathway of Aβ uptake and degradation by astrocytes
  publication-title: J. Biol. Chem.
– volume: 6
  start-page: e26860
  year: 2011
  ident: bib8
  article-title: Tau-targeted immunization impedes progression of neurofibrillary histopathology in aged P301L tau transgenic mice
  publication-title: PLoS ONE
– year: 2008
  ident: bib25
  article-title: Screening for amyloid aggregation by semi-denaturing detergent-agarose gel electrophoresis
  publication-title: J. Vis. Exp.
– volume: 162
  start-page: 179
  year: 1993
  end-page: 182
  ident: bib5
  article-title: Neuropathological staging of Alzheimer lesions and intellectual status in Alzheimer’s and Parkinson’s disease patients
  publication-title: Neurosci. Lett.
– volume: 287
  start-page: 19440
  year: 2012
  end-page: 19451
  ident: bib29
  article-title: Trans-cellular propagation of Tau aggregation by fibrillar species
  publication-title: J. Biol. Chem.
– volume: 23
  start-page: 3745
  year: 2003
  end-page: 3751
  ident: bib52
  article-title: Intracranially administered anti-Abeta antibodies reduce beta-amyloid deposition by mechanisms both independent of and associated with microglial activation
  publication-title: J. Neurosci.
– volume: 32
  start-page: 3601
  year: 2012
  end-page: 3611
  ident: bib57
  article-title: The microtubule-stabilizing agent, epothilone D, reduces axonal dysfunction, neurotoxicity, cognitive deficits, and Alzheimer-like pathology in an interventional study with aged tau transgenic mice
  publication-title: J. Neurosci.
– volume: 22
  start-page: 6331
  year: 2002
  end-page: 6335
  ident: bib31
  article-title: Reversible memory loss in a mouse transgenic model of Alzheimer’s disease
  publication-title: J. Neurosci.
– volume: 6
  start-page: 916
  year: 2000
  end-page: 919
  ident: bib6
  article-title: Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease
  publication-title: Nat. Med.
– volume: 69
  start-page: 110
  year: 2002
  end-page: 116
  ident: bib39
  article-title: Immunoglobulin Fc gamma receptor promotes immunoglobulin uptake, immunoglobulin-mediated calcium increase, and neurotransmitter release in motor neurons
  publication-title: J. Neurosci. Res.
– volume: 30
  start-page: 16559
  year: 2010
  end-page: 16566
  ident: bib10
  article-title: Immunotherapy targeting pathological tau prevents cognitive decline in a new tangle mouse model
  publication-title: J. Neurosci.
– volume: 5
  start-page: 452
  year: 2002
  end-page: 457
  ident: bib18
  article-title: Immunization reverses memory deficits without reducing brain Abeta burden in Alzheimer’s disease model
  publication-title: Nat. Neurosci.
– volume: 7
  start-page: e48180
  year: 2012
  ident: bib46
  article-title: Loss of RBPj in postnatal excitatory neurons does not cause neurodegeneration or memory impairments in aged mice
  publication-title: PLoS ONE
– volume: 19
  start-page: 7486
  year: 1999
  end-page: 7494
  ident: bib28
  article-title: cAMP-dependent protein kinase phosphorylations on tau in Alzheimer’s disease
  publication-title: J. Neurosci.
– volume: 6
  start-page: 446
  year: 2009
  end-page: 450
  ident: bib48
  article-title: Tau-focused immunotherapy for Alzheimer’s disease and related tauopathies
  publication-title: Curr. Alzheimer Res.
– volume: 278
  start-page: 49636
  year: 2003
  end-page: 49643
  ident: bib32
  article-title: Yeast [PSI+] prion aggregates are formed by small Sup35 polymers fragmented by Hsp104
  publication-title: J. Biol. Chem.
– volume: 60
  start-page: 534
  year: 2008
  end-page: 542
  ident: bib49
  article-title: Linking Abeta and tau in late-onset Alzheimer’s disease: a dual pathway hypothesis
  publication-title: Neuron
– volume: 45
  start-page: 395
  year: 2012
  end-page: 408
  ident: bib22
  article-title: Core features of frontotemporal dementia recapitulated in progranulin knockout mice
  publication-title: Neurobiol. Dis.
– volume: 73
  start-page: 685
  year: 2012
  end-page: 697
  ident: bib16
  article-title: Propagation of tau pathology in a model of early Alzheimer’s disease
  publication-title: Neuron
– volume: 10
  start-page: 1473
  year: 2013
  end-page: 1491
  ident: bib50
  article-title: Physiology of blood-brain interfaces in relation to brain disposition of small compounds and macromolecules
  publication-title: Mol. Pharm.
– volume: 98
  start-page: 8850
  year: 2001
  end-page: 8855
  ident: bib17
  article-title: Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer’s disease
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 62
  start-page: 42
  year: 2009
  end-page: 52
  ident: bib47
  article-title: Neurodegenerative diseases target large-scale human brain networks
  publication-title: Neuron
– volume: 39
  start-page: 669
  year: 1994
  end-page: 673
  ident: bib40
  article-title: Monoclonal antibody PHF-1 recognizes tau protein phosphorylated at serine residues 396 and 404
  publication-title: J. Neurosci. Res.
– volume: 42
  start-page: 631
  year: 1992
  end-page: 639
  ident: bib2
  article-title: Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease
  publication-title: Neurology
– volume: 3
  start-page: 1141
  year: 1992
  end-page: 1154
  ident: bib19
  article-title: Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau
  publication-title: Mol. Biol. Cell
– volume: 47
  start-page: 10526
  year: 2008
  end-page: 10539
  ident: bib27
  article-title: The natively unfolded character of tau and its aggregation to Alzheimer-like paired helical filaments
  publication-title: Biochemistry
– volume: 9
  start-page: 397
  year: 2012
  end-page: 405
  ident: bib51
  article-title: Targeting phospho-Ser422 by active Tau Immunotherapy in the THYTau22 mouse model: a suitable therapeutic approach
  publication-title: Curr. Alzheimer Res.
– volume: 32
  start-page: 13454
  year: 2012
  end-page: 13469
  ident: bib4
  article-title: Antibody-aided clearance of extracellular α-synuclein prevents cell-to-cell aggregate transmission
  publication-title: J. Neurosci.
– volume: 19
  start-page: 647
  year: 2010
  end-page: 664
  ident: bib30
  article-title: Interneuronal transfer of human tau between Lamprey central neurons in situ
  publication-title: J. Alzheimers Dis.
– volume: 464
  start-page: 1201
  year: 2010
  end-page: 1204
  ident: bib15
  article-title: Caspase activation precedes and leads to tangles
  publication-title: Nature
– volume: 73
  start-page: 1216
  year: 2012
  end-page: 1227
  ident: bib58
  article-title: Predicting regional neurodegeneration from the healthy brain functional connectome
  publication-title: Neuron
– volume: 118
  start-page: 658
  year: 2011
  end-page: 667
  ident: bib11
  article-title: Passive immunization targeting pathological phospho-tau protein in a mouse model reduces functional decline and clears tau aggregates from the brain
  publication-title: J. Neurochem.
– volume: 286
  start-page: 15317
  year: 2011
  end-page: 15331
  ident: bib24
  article-title: Seeding of normal Tau by pathological Tau conformers drives pathogenesis of Alzheimer-like tangles
  publication-title: J. Biol. Chem.
– volume: 107
  start-page: 19985
  year: 2010
  end-page: 19990
  ident: bib35
  article-title: Antibodies mediate intracellular immunity through tripartite motif-containing 21 (TRIM21)
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 11
  start-page: 909
  year: 2009
  end-page: 913
  ident: bib14
  article-title: Transmission and spreading of tauopathy in transgenic mouse brain
  publication-title: Nat. Cell Biol.
– volume: 6
  start-page: e19338
  year: 2011
  ident: bib37
  article-title: Passive immunization reduces behavioral and neuropathological deficits in an alpha-synuclein transgenic model of Lewy body disease
  publication-title: PLoS ONE
– volume: 284
  start-page: 12845
  year: 2009
  end-page: 12852
  ident: bib21
  article-title: Propagation of tau misfolding from the outside to the inside of a cell
  publication-title: J. Biol. Chem.
– volume: 53
  start-page: 337
  year: 2007
  end-page: 351
  ident: bib56
  article-title: Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model
  publication-title: Neuron
– volume: 2
  start-page: a006247
  year: 2012
  ident: bib36
  article-title: Biochemistry and cell biology of tau protein in neurofibrillary degeneration
  publication-title: Cold Spring Harb Perspect Med
– volume: 33
  start-page: 1024
  year: 2013
  end-page: 1037
  ident: bib26
  article-title: Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer’s-like tauopathy
  publication-title: J. Neurosci.
– volume: 284
  start-page: 12845
  year: 2009
  ident: 10.1016/j.neuron.2013.07.046_bib21
  article-title: Propagation of tau misfolding from the outside to the inside of a cell
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M808759200
– volume: 73
  start-page: 4070
  year: 1976
  ident: 10.1016/j.neuron.2013.07.046_bib53
  article-title: Tubulin requires tau for growth onto microtubule initiating sites
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.73.11.4070
– volume: 18
  start-page: S85
  issue: Suppl
  year: 1997
  ident: 10.1016/j.neuron.2013.07.046_bib12
  article-title: Diagnostic criteria for neuropathologic assessment of Alzheimer’s disease
  publication-title: Neurobiol. Aging
  doi: 10.1016/S0197-4580(97)00062-6
– volume: 464
  start-page: 1201
  year: 2010
  ident: 10.1016/j.neuron.2013.07.046_bib15
  article-title: Caspase activation precedes and leads to tangles
  publication-title: Nature
  doi: 10.1038/nature08890
– volume: 73
  start-page: 1204
  year: 2012
  ident: 10.1016/j.neuron.2013.07.046_bib42
  article-title: A network diffusion model of disease progression in dementia
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.12.040
– volume: 10
  start-page: 1473
  year: 2013
  ident: 10.1016/j.neuron.2013.07.046_bib50
  article-title: Physiology of blood-brain interfaces in relation to brain disposition of small compounds and macromolecules
  publication-title: Mol. Pharm.
  doi: 10.1021/mp300518e
– year: 2008
  ident: 10.1016/j.neuron.2013.07.046_bib25
  article-title: Screening for amyloid aggregation by semi-denaturing detergent-agarose gel electrophoresis
  publication-title: J. Vis. Exp.
  doi: 10.3791/838
– volume: 189
  start-page: 167
  year: 1995
  ident: 10.1016/j.neuron.2013.07.046_bib23
  article-title: Monoclonal antibody AT8 recognises tau protein phosphorylated at both serine 202 and threonine 205
  publication-title: Neurosci. Lett.
  doi: 10.1016/0304-3940(95)11484-E
– volume: 27
  start-page: 9115
  year: 2007
  ident: 10.1016/j.neuron.2013.07.046_bib3
  article-title: Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2361-07.2007
– volume: 32
  start-page: 13454
  year: 2012
  ident: 10.1016/j.neuron.2013.07.046_bib4
  article-title: Antibody-aided clearance of extracellular α-synuclein prevents cell-to-cell aggregate transmission
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1292-12.2012
– volume: 2
  start-page: a006247
  year: 2012
  ident: 10.1016/j.neuron.2013.07.046_bib36
  article-title: Biochemistry and cell biology of tau protein in neurofibrillary degeneration
  publication-title: Cold Spring Harb Perspect Med
  doi: 10.1101/cshperspect.a006247
– volume: 22
  start-page: 6331
  year: 2002
  ident: 10.1016/j.neuron.2013.07.046_bib31
  article-title: Reversible memory loss in a mouse transgenic model of Alzheimer’s disease
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.22-15-06331.2002
– volume: 63
  start-page: 1459
  year: 2006
  ident: 10.1016/j.neuron.2013.07.046_bib44
  article-title: Tauopathy-like abnormalities and neurologic deficits in mice immunized with neuronal tau protein
  publication-title: Arch. Neurol.
  doi: 10.1001/archneur.63.10.1459
– volume: 286
  start-page: 15317
  year: 2011
  ident: 10.1016/j.neuron.2013.07.046_bib24
  article-title: Seeding of normal Tau by pathological Tau conformers drives pathogenesis of Alzheimer-like tangles
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.209296
– volume: 26
  start-page: 14
  year: 2007
  ident: 10.1016/j.neuron.2013.07.046_bib54
  article-title: Impaired spatial learning and defective theta burst induced LTP in mice lacking fibroblast growth factor 14
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2006.11.014
– volume: 278
  start-page: 49636
  year: 2003
  ident: 10.1016/j.neuron.2013.07.046_bib32
  article-title: Yeast [PSI+] prion aggregates are formed by small Sup35 polymers fragmented by Hsp104
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M307996200
– volume: 45
  start-page: 395
  year: 2012
  ident: 10.1016/j.neuron.2013.07.046_bib22
  article-title: Core features of frontotemporal dementia recapitulated in progranulin knockout mice
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2011.08.029
– volume: 53
  start-page: 337
  year: 2007
  ident: 10.1016/j.neuron.2013.07.046_bib56
  article-title: Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.01.010
– volume: 286
  start-page: 34457
  year: 2011
  ident: 10.1016/j.neuron.2013.07.046_bib13
  article-title: Passive immunization with anti-Tau antibodies in two transgenic models: reduction of Tau pathology and delay of disease progression
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.229633
– volume: 9
  start-page: 397
  year: 2012
  ident: 10.1016/j.neuron.2013.07.046_bib51
  article-title: Targeting phospho-Ser422 by active Tau Immunotherapy in the THYTau22 mouse model: a suitable therapeutic approach
  publication-title: Curr. Alzheimer Res.
  doi: 10.2174/156720512800492503
– volume: 5
  start-page: 452
  year: 2002
  ident: 10.1016/j.neuron.2013.07.046_bib18
  article-title: Immunization reverses memory deficits without reducing brain Abeta burden in Alzheimer’s disease model
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn842
– volume: 32
  start-page: 3601
  year: 2012
  ident: 10.1016/j.neuron.2013.07.046_bib57
  article-title: The microtubule-stabilizing agent, epothilone D, reduces axonal dysfunction, neurotoxicity, cognitive deficits, and Alzheimer-like pathology in an interventional study with aged tau transgenic mice
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4922-11.2012
– volume: 6
  start-page: 446
  year: 2009
  ident: 10.1016/j.neuron.2013.07.046_bib48
  article-title: Tau-focused immunotherapy for Alzheimer’s disease and related tauopathies
  publication-title: Curr. Alzheimer Res.
  doi: 10.2174/156720509789207930
– volume: 107
  start-page: 19985
  year: 2010
  ident: 10.1016/j.neuron.2013.07.046_bib35
  article-title: Antibodies mediate intracellular immunity through tripartite motif-containing 21 (TRIM21)
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1014074107
– volume: 19
  start-page: 275
  year: 2001
  ident: 10.1016/j.neuron.2013.07.046_bib43
  article-title: IgG Fc receptors
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev.immunol.19.1.275
– volume: 162
  start-page: 179
  year: 1993
  ident: 10.1016/j.neuron.2013.07.046_bib5
  article-title: Neuropathological staging of Alzheimer lesions and intellectual status in Alzheimer’s and Parkinson’s disease patients
  publication-title: Neurosci. Lett.
  doi: 10.1016/0304-3940(93)90590-H
– volume: 11
  start-page: 155
  year: 2010
  ident: 10.1016/j.neuron.2013.07.046_bib20
  article-title: Prion-like mechanisms in neurodegenerative diseases
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2786
– volume: 98
  start-page: 8850
  year: 2001
  ident: 10.1016/j.neuron.2013.07.046_bib17
  article-title: Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer’s disease
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.151261398
– volume: 23
  start-page: 3745
  year: 2003
  ident: 10.1016/j.neuron.2013.07.046_bib52
  article-title: Intracranially administered anti-Abeta antibodies reduce beta-amyloid deposition by mechanisms both independent of and associated with microglial activation
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.23-09-03745.2003
– volume: 31
  start-page: 15575
  year: 2011
  ident: 10.1016/j.neuron.2013.07.046_bib34
  article-title: The role of attenuated astrocyte activation in infantile neuronal ceroid lipofuscinosis
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3579-11.2011
– volume: 30
  start-page: 16559
  year: 2010
  ident: 10.1016/j.neuron.2013.07.046_bib10
  article-title: Immunotherapy targeting pathological tau prevents cognitive decline in a new tangle mouse model
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4363-10.2010
– volume: 62
  start-page: 42
  year: 2009
  ident: 10.1016/j.neuron.2013.07.046_bib47
  article-title: Neurodegenerative diseases target large-scale human brain networks
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.03.024
– volume: 7
  start-page: e31302
  year: 2012
  ident: 10.1016/j.neuron.2013.07.046_bib33
  article-title: Trans-synaptic spread of tau pathology in vivo
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0031302
– volume: 33
  start-page: 1024
  year: 2013
  ident: 10.1016/j.neuron.2013.07.046_bib26
  article-title: Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer’s-like tauopathy
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2642-12.2013
– volume: 6
  start-page: e26860
  year: 2011
  ident: 10.1016/j.neuron.2013.07.046_bib8
  article-title: Tau-targeted immunization impedes progression of neurofibrillary histopathology in aged P301L tau transgenic mice
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0026860
– volume: 287
  start-page: 19440
  year: 2012
  ident: 10.1016/j.neuron.2013.07.046_bib29
  article-title: Trans-cellular propagation of Tau aggregation by fibrillar species
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.346072
– volume: 60
  start-page: 534
  year: 2008
  ident: 10.1016/j.neuron.2013.07.046_bib49
  article-title: Linking Abeta and tau in late-onset Alzheimer’s disease: a dual pathway hypothesis
  publication-title: Neuron
  doi: 10.1016/j.neuron.2008.11.007
– volume: 287
  start-page: 20522
  year: 2012
  ident: 10.1016/j.neuron.2013.07.046_bib45
  article-title: Paired helical filaments from Alzheimer disease brain induce intracellular accumulation of Tau protein in aggresomes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.323279
– volume: 118
  start-page: 658
  year: 2011
  ident: 10.1016/j.neuron.2013.07.046_bib11
  article-title: Passive immunization targeting pathological phospho-tau protein in a mouse model reduces functional decline and clears tau aggregates from the brain
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.2011.07337.x
– volume: 19
  start-page: 647
  year: 2010
  ident: 10.1016/j.neuron.2013.07.046_bib30
  article-title: Interneuronal transfer of human tau between Lamprey central neurons in situ
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-2010-1273
– volume: 7
  start-page: e48180
  year: 2012
  ident: 10.1016/j.neuron.2013.07.046_bib46
  article-title: Loss of RBPj in postnatal excitatory neurons does not cause neurodegeneration or memory impairments in aged mice
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0048180
– volume: 69
  start-page: 110
  year: 2002
  ident: 10.1016/j.neuron.2013.07.046_bib39
  article-title: Immunoglobulin Fc gamma receptor promotes immunoglobulin uptake, immunoglobulin-mediated calcium increase, and neurotransmitter release in motor neurons
  publication-title: J. Neurosci. Res.
  doi: 10.1002/jnr.10271
– volume: 287
  start-page: 13959
  year: 2012
  ident: 10.1016/j.neuron.2013.07.046_bib7
  article-title: Low-density lipoprotein receptor represents an apolipoprotein E-independent pathway of Aβ uptake and degradation by astrocytes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.288746
– volume: 6
  start-page: 916
  year: 2000
  ident: 10.1016/j.neuron.2013.07.046_bib6
  article-title: Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease
  publication-title: Nat. Med.
  doi: 10.1038/78682
– volume: 73
  start-page: 1216
  year: 2012
  ident: 10.1016/j.neuron.2013.07.046_bib58
  article-title: Predicting regional neurodegeneration from the healthy brain functional connectome
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.03.004
– volume: 29
  start-page: 10741
  year: 2009
  ident: 10.1016/j.neuron.2013.07.046_bib41
  article-title: Age-dependent impairment of cognitive and synaptic function in the htau mouse model of tau pathology
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1065-09.2009
– volume: 19
  start-page: 7486
  year: 1999
  ident: 10.1016/j.neuron.2013.07.046_bib28
  article-title: cAMP-dependent protein kinase phosphorylations on tau in Alzheimer’s disease
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.19-17-07486.1999
– volume: 224
  start-page: 472
  year: 2010
  ident: 10.1016/j.neuron.2013.07.046_bib9
  article-title: Efficacy and safety of immunization with phosphorylated tau against neurofibrillary tangles in mice
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2010.05.010
– volume: 3
  start-page: 1141
  year: 1992
  ident: 10.1016/j.neuron.2013.07.046_bib19
  article-title: Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.3.10.1141
– volume: 39
  start-page: 669
  year: 1994
  ident: 10.1016/j.neuron.2013.07.046_bib40
  article-title: Monoclonal antibody PHF-1 recognizes tau protein phosphorylated at serine residues 396 and 404
  publication-title: J. Neurosci. Res.
  doi: 10.1002/jnr.490390607
– volume: 47
  start-page: 10526
  year: 2008
  ident: 10.1016/j.neuron.2013.07.046_bib27
  article-title: The natively unfolded character of tau and its aggregation to Alzheimer-like paired helical filaments
  publication-title: Biochemistry
  doi: 10.1021/bi800783d
– volume: 11
  start-page: 909
  year: 2009
  ident: 10.1016/j.neuron.2013.07.046_bib14
  article-title: Transmission and spreading of tauopathy in transgenic mouse brain
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1901
– volume: 6
  start-page: e19338
  year: 2011
  ident: 10.1016/j.neuron.2013.07.046_bib37
  article-title: Passive immunization reduces behavioral and neuropathological deficits in an alpha-synuclein transgenic model of Lewy body disease
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0019338
– volume: 18
  start-page: 182
  year: 2004
  ident: 10.1016/j.neuron.2013.07.046_bib1
  article-title: Direct action of immunoglobulin G on primary sensory neurons through Fc gamma receptor I
  publication-title: FASEB J.
  doi: 10.1096/fj.02-1169fje
– volume: 31
  start-page: 13110
  year: 2011
  ident: 10.1016/j.neuron.2013.07.046_bib55
  article-title: In vivo microdialysis reveals age-dependent decrease of brain interstitial fluid tau levels in P301S human tau transgenic mice
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2569-11.2011
– volume: 14
  start-page: 327
  year: 2013
  ident: 10.1016/j.neuron.2013.07.046_bib38
  article-title: Intracellular antibody-bound pathogens stimulate immune signaling via the Fc receptor TRIM21
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2548
– volume: 42
  start-page: 631
  year: 1992
  ident: 10.1016/j.neuron.2013.07.046_bib2
  article-title: Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease
  publication-title: Neurology
  doi: 10.1212/WNL.42.3.631
– volume: 73
  start-page: 685
  year: 2012
  ident: 10.1016/j.neuron.2013.07.046_bib16
  article-title: Propagation of tau pathology in a model of early Alzheimer’s disease
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.11.033
– reference: 22365544 - Neuron. 2012 Feb 23;73(4):685-97
– reference: 22445347 - Neuron. 2012 Mar 22;73(6):1204-15
– reference: 19282288 - J Biol Chem. 2009 May 8;284(19):12845-52
– reference: 21644996 - J Neurochem. 2011 Aug;118(4):658-67
– reference: 10932230 - Nat Med. 2000 Aug;6(8):916-9
– reference: 20110609 - J Alzheimers Dis. 2010;19(2):647-64
– reference: 11244038 - Annu Rev Immunol. 2001;19:275-90
– reference: 22445348 - Neuron. 2012 Mar 22;73(6):1216-27
– reference: 9330992 - Neurobiol Aging. 1997 Jul-Aug;18(4 Suppl):S85-8
– reference: 22174735 - PLoS One. 2011;6(12):e26860
– reference: 22762014 - Cold Spring Harb Perspect Med. 2012 Jul;2(7):a006247
– reference: 11438712 - Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8850-5
– reference: 17030663 - Arch Neurol. 2006 Oct;63(10):1459-67
– reference: 21841002 - J Biol Chem. 2011 Sep 30;286(39):34457-67
– reference: 20546729 - Exp Neurol. 2010 Aug;224(2):472-85
– reference: 10460255 - J Neurosci. 1999 Sep 1;19(17):7486-94
– reference: 22272619 - Curr Alzheimer Res. 2012 May;9(4):397-405
– reference: 23110206 - PLoS One. 2012;7(10):e48180
– reference: 19710325 - J Neurosci. 2009 Aug 26;29(34):10741-9
– reference: 23455675 - Nat Immunol. 2013 Apr;14(4):327-36
– reference: 23298398 - Mol Pharm. 2013 May 6;10(5):1473-91
– reference: 7534834 - J Neurosci Res. 1994 Dec 15;39(6):669-73
– reference: 19503072 - Nat Cell Biol. 2009 Jul;11(7):909-13
– reference: 19376066 - Neuron. 2009 Apr 16;62(1):42-52
– reference: 24232374 - Nat Rev Drug Discov. 2013 Dec;12(12):904
– reference: 14630707 - FASEB J. 2004 Jan;18(1):182-4
– reference: 22496370 - J Biol Chem. 2012 Jun 8;287(24):20522-33
– reference: 21372138 - J Biol Chem. 2011 Apr 29;286(17):15317-31
– reference: 22031903 - J Neurosci. 2011 Oct 26;31(43):15575-85
– reference: 8121624 - Neurosci Lett. 1993 Nov 12;162(1-2):179-82
– reference: 22423084 - J Neurosci. 2012 Mar 14;32(11):3601-11
– reference: 22312444 - PLoS One. 2012;7(2):e31302
– reference: 22461630 - J Biol Chem. 2012 Jun 1;287(23):19440-51
– reference: 20357768 - Nature. 2010 Apr 22;464(7292):1201-4
– reference: 12736345 - J Neurosci. 2003 May 1;23(9):3745-51
– reference: 24139027 - Neuron. 2013 Oct 16;80(2):254-6
– reference: 1069293 - Proc Natl Acad Sci U S A. 1976 Nov;73(11):4070-4
– reference: 17236779 - Neurobiol Dis. 2007 Apr;26(1):14-26
– reference: 11941374 - Nat Neurosci. 2002 May;5(5):452-7
– reference: 21045130 - Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):19985-90
– reference: 1421571 - Mol Biol Cell. 1992 Oct;3(10):1141-54
– reference: 23015436 - J Neurosci. 2012 Sep 26;32(39):13454-69
– reference: 17270732 - Neuron. 2007 Feb 1;53(3):337-51
– reference: 7624036 - Neurosci Lett. 1995 Apr 21;189(3):167-9
– reference: 20029438 - Nat Rev Neurosci. 2010 Mar;11(3):155-9
– reference: 19874269 - Curr Alzheimer Res. 2009 Oct;6(5):446-50
– reference: 19066511 - J Vis Exp. 2008;(17). pii: 838. doi: 10.3791/838
– reference: 21933710 - Neurobiol Dis. 2012 Jan;45(1):395-408
– reference: 14507919 - J Biol Chem. 2003 Dec 5;278(49):49636-43
– reference: 21917794 - J Neurosci. 2011 Sep 14;31(37):13110-7
– reference: 17715348 - J Neurosci. 2007 Aug 22;27(34):9115-29
– reference: 22383525 - J Biol Chem. 2012 Apr 20;287(17):13959-71
– reference: 19038212 - Neuron. 2008 Nov 26;60(4):534-42
– reference: 18783251 - Biochemistry. 2008 Oct 7;47(40):10526-39
– reference: 12111822 - J Neurosci Res. 2002 Jul 1;69(1):110-6
– reference: 21559417 - PLoS One. 2011;6(4):e19338
– reference: 1549228 - Neurology. 1992 Mar;42(3 Pt 1):631-9
– reference: 23325240 - J Neurosci. 2013 Jan 16;33(3):1024-37
– reference: 21147995 - J Neurosci. 2010 Dec 8;30(49):16559-66
– reference: 12151510 - J Neurosci. 2002 Aug 1;22(15):6331-5
SSID ssj0014591
Score 2.6022618
Snippet Tau aggregation occurs in neurodegenerative diseases including Alzheimer’s disease and many other disorders collectively termed tauopathies. trans-cellular...
Tau aggregation occurs in neurodegenerative diseases including Alzheimer's disease and many other disorders collectively termed tauopathies. trans-cellular...
Tau aggregation occurs in neurodegenerative diseases including Alzheimer's disease and many other disorders collectively termed tauopathies.trans-cellular...
Tau aggregation occurs in neurodegenerative diseases including Alzheimers disease and many other disorders collectively termed tauopathies. trans-cellular...
Tau aggregation occurs in neurodegenerative diseases including Alzheimer's disease and many other disorders collectively termed tauopathies. Trans-cellular...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 402
SubjectTerms Animals
Antibodies, Monoclonal - administration & dosage
Antibodies, Monoclonal - immunology
Antibodies, Monoclonal - therapeutic use
Brain - drug effects
Brain - metabolism
Brain - pathology
Cells, Cultured
Cognition Disorders - complications
Cognition Disorders - drug therapy
Cognition Disorders - physiopathology
Disease
Gender
Humans
Immunization
Infusions, Intraventricular
Mice
Mice, Transgenic
Microglia - drug effects
Pathology
Rodents
Software
Statistical analysis
Studies
tau Proteins - antagonists & inhibitors
tau Proteins - immunology
tau Proteins - metabolism
tau Proteins - toxicity
Tauopathies - complications
Tauopathies - drug therapy
Tauopathies - pathology
Tauopathies - psychology
Title Anti-Tau Antibodies that Block Tau Aggregate Seeding In Vitro Markedly Decrease Pathology and Improve Cognition In Vivo
URI https://dx.doi.org/10.1016/j.neuron.2013.07.046
https://www.ncbi.nlm.nih.gov/pubmed/24075978
https://www.proquest.com/docview/1552020212
https://www.proquest.com/docview/1443993813
https://www.proquest.com/docview/1516741617
https://pubmed.ncbi.nlm.nih.gov/PMC3924573
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9UwFA9jIPgibvPP1SkRxLdwW5M27ePd1TEFRdgm9y0kbeI6Zzq23kG_jZ_FT-Y5SVu8Kg58a5sTaJvknN9JzvkdQl6W0siyzhJm8sIwUdSWmZpnzKVcQJ_EcY0Jzh8-5ken4v0qW22R5ZgLg2GVg-6POj1o6-HJfPib88ummR8nRYns5RwPZHIZGD8xqxST-FYH00mCyGLVPBBmKD2mz4UYr8AZiSyoKQ8UngiD_26e_oSfv0dR_mKWDu-TewOepIv4yjtky_pdsrfw4Et_6-krGiI8w9b5LrkTC0_2e6Rf-K5hJ3pN8cK0GEpIuzPd0QMwbl9paPkCrjhustHjaOHoO__j--emu2opZvjY-qKnbwLqvLb0k-6CHu2p9jWNWxWWLmNwUuuHvjftA3J6-PZkecSGIgysEpnomC5kba1IS1M5x43UAjw2V1RJoQE8YH06x-scNINNXutK8JqXRmuX55lNk7qQ_CHZ9q23jwlNrACDyUvnBPIM5kVSVkYi33xmJeCOGeHjv1fVwFCOhTIu1BiKdq7iiCkcMZVIBSM2I2zqdRkZOm6Rl-Owqo2ZpsCI3NJzf5wFaljp1wop7AByAwKYkRdTM6xRPHjR3rZrkBHo9QE24v-QyTAfBL3NGXkUJ9b0Oeh1g-NXwKtvTLlJADnCN1t8cxa4wgH-ikzyJ__90U_JXbxDc53m-2S7u1rbZ4DDOvM8LLSfXhM0Aw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELemIQQvCDb-FAYYCfFmNcVOnDx2hamFbUJah_pm2YnDAsOZthQp34bPwifjzk4iCohJvFX1WUri893v7LvfEfIyk0ZmRRwxk6SGibSwzBQ8ZuWEC5gTlVxjgfPRcTI_Fe9W8WqLzPpaGEyr7Gx_sOneWnf_jLuvOb6oqvFJlGbIXs7xQiaRyPh5A9BAhKq9WO0PVwkiDm3zQJqheF8_55O8PGkk0qBOuOfwRBz8d__0J_78PY3yF790cJfc6QAlnYZnvke2rNshu1MHwfTXlr6iPsXTn53vkJuh82S7S9qpayq21GuKP0yNuYS0OdMN3Qfv9oX6kU8Qi-MpGz0JLo4u3I_vH6vmsqZY4mOL85a-8bDzytIPuvGGtKXaFTScVVg6C9lJtevmfqvvk9ODt8vZnHVdGFguYtEwncrCWjHJTF6W3EgtIGQr0zxKNaAHbFBX8iIB02Cj1zoXvOCZ0bpMkthOoiKV_AHZdrWzjwiNrACPybOyFEg0mKRRlhuJhPOxlQA8RoT3317lHUU5dso4V30u2mcVVkzhiqlIKlixEWHDrItA0XGNvOyXVW2omgIvcs3MvV4LVLfVrxRy2AHmBggwIi-GYdikePOina3XICMw7ANwxP8hE2NBCIabI_IwKNbwOhh2Q-SXwqNvqNwggCThmyOuOvNk4YB_RSz54_9-6efk1nx5dKgOF8fvn5DbOIK-e5Lske3mcm2fAihrzDO_6X4C2jQ3Jg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anti-Tau+Antibodies+that+Block+Tau+Aggregate+Seeding+In+Vitro+Markedly+Decrease+Pathology+and+Improve+Cognition+In+Vivo&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Yanamandra%2C+Kiran&rft.au=Kfoury%2C+Najla&rft.au=Jiang%2C+Hong&rft.au=Mahan%2C+Thomas%C2%A0E&rft.date=2013-10-16&rft.pub=Elsevier+Limited&rft.issn=0896-6273&rft.eissn=1097-4199&rft.volume=80&rft.issue=2&rft.spage=402&rft_id=info:doi/10.1016%2Fj.neuron.2013.07.046&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3396557501
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-6273&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-6273&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-6273&client=summon