DARP: Divide Areas Algorithm for Optimal Multi-Robot Coverage Path Planning

This paper deals with the path planning problem of a team of mobile robots, in order to cover an area of interest, with prior-defined obstacles. For the single robot case, also known as single robot coverage path planning (CPP), an 𝓞( n ) optimal methodology has already been proposed and evaluated i...

Full description

Saved in:
Bibliographic Details
Published inJournal of intelligent & robotic systems Vol. 86; no. 3-4; pp. 663 - 680
Main Authors Kapoutsis, Athanasios Ch, Chatzichristofis, Savvas A., Kosmatopoulos, Elias B.
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.06.2017
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0921-0296
1573-0409
DOI10.1007/s10846-016-0461-x

Cover

Abstract This paper deals with the path planning problem of a team of mobile robots, in order to cover an area of interest, with prior-defined obstacles. For the single robot case, also known as single robot coverage path planning (CPP), an 𝓞( n ) optimal methodology has already been proposed and evaluated in the literature, where n is the grid size. The majority of existing algorithms for the multi robot case (mCPP), utilize the aforementioned algorithm. Due to the complexity, however, of the mCPP, the best the existing mCPP algorithms can perform is at most 16 times the optimal solution, in terms of time needed for the robot team to accomplish the coverage task, while the time required for calculating the solution is polynomial. In the present paper, we propose a new algorithm which converges to the optimal solution, at least in cases where one exists. The proposed technique transforms the original integer programming problem (mCPP) into several single-robot problems (CPP), the solutions of which constitute the optimal mCPP solution, alleviating the original mCPP explosive combinatorial complexity. Although it is not possible to analytically derive bounds regarding the complexity of the proposed algorithm, extensive numerical analysis indicates that the complexity is bounded by polynomial curves for practical sized inputs. In the heart of the proposed approach lies the DARP algorithm, which divides the terrain into a number of equal areas each corresponding to a specific robot, so as to guarantee complete coverage , non-backtracking solution , minimum coverage path , while at the same time does not need any preparatory stage (video demonstration and standalone application are available on-line http://tinyurl.com/DARP-app ).
AbstractList This paper deals with the path planning problem of a team of mobile robots, in order to cover an area of interest, with prior-defined obstacles. For the single robot case, also known as single robot coverage path planning (CPP), an [eth]"z(n) optimal methodology has already been proposed and evaluated in the literature, where n is the grid size. The majority of existing algorithms for the multi robot case (mCPP), utilize the aforementioned algorithm. Due to the complexity, however, of the mCPP, the best the existing mCPP algorithms can perform is at most 16 times the optimal solution, in terms of time needed for the robot team to accomplish the coverage task, while the time required for calculating the solution is polynomial. In the present paper, we propose a new algorithm which converges to the optimal solution, at least in cases where one exists. The proposed technique transforms the original integer programming problem (mCPP) into several single-robot problems (CPP), the solutions of which constitute the optimal mCPP solution, alleviating the original mCPP explosive combinatorial complexity. Although it is not possible to analytically derive bounds regarding the complexity of the proposed algorithm, extensive numerical analysis indicates that the complexity is bounded by polynomial curves for practical sized inputs. In the heart of the proposed approach lies the DARP algorithm, which divides the terrain into a number of equal areas each corresponding to a specific robot, so as to guarantee complete coverage, non-backtracking solution, minimum coverage path, while at the same time does not need any preparatory stage (video demonstration and standalone application are available on-line http://tinyurl.com/DARP-app).
This paper deals with the path planning problem of a team of mobile robots, in order to cover an area of interest, with prior-defined obstacles. For the single robot case, also known as single robot coverage path planning (CPP), an 𝓞( n ) optimal methodology has already been proposed and evaluated in the literature, where n is the grid size. The majority of existing algorithms for the multi robot case (mCPP), utilize the aforementioned algorithm. Due to the complexity, however, of the mCPP, the best the existing mCPP algorithms can perform is at most 16 times the optimal solution, in terms of time needed for the robot team to accomplish the coverage task, while the time required for calculating the solution is polynomial. In the present paper, we propose a new algorithm which converges to the optimal solution, at least in cases where one exists. The proposed technique transforms the original integer programming problem (mCPP) into several single-robot problems (CPP), the solutions of which constitute the optimal mCPP solution, alleviating the original mCPP explosive combinatorial complexity. Although it is not possible to analytically derive bounds regarding the complexity of the proposed algorithm, extensive numerical analysis indicates that the complexity is bounded by polynomial curves for practical sized inputs. In the heart of the proposed approach lies the DARP algorithm, which divides the terrain into a number of equal areas each corresponding to a specific robot, so as to guarantee complete coverage , non-backtracking solution , minimum coverage path , while at the same time does not need any preparatory stage (video demonstration and standalone application are available on-line http://tinyurl.com/DARP-app ).
This paper deals with the path planning problem of a team of mobile robots, in order to cover an area of interest, with prior-defined obstacles. For the single robot case, also known as single robot coverage path planning (CPP), an ðoe"z(n) optimal methodology has already been proposed and evaluated in the literature, where n is the grid size. The majority of existing algorithms for the multi robot case (mCPP), utilize the aforementioned algorithm. Due to the complexity, however, of the mCPP, the best the existing mCPP algorithms can perform is at most 16 times the optimal solution, in terms of time needed for the robot team to accomplish the coverage task, while the time required for calculating the solution is polynomial. In the present paper, we propose a new algorithm which converges to the optimal solution, at least in cases where one exists. The proposed technique transforms the original integer programming problem (mCPP) into several single-robot problems (CPP), the solutions of which constitute the optimal mCPP solution, alleviating the original mCPP explosive combinatorial complexity. Although it is not possible to analytically derive bounds regarding the complexity of the proposed algorithm, extensive numerical analysis indicates that the complexity is bounded by polynomial curves for practical sized inputs. In the heart of the proposed approach lies the DARP algorithm, which divides the terrain into a number of equal areas each corresponding to a specific robot, so as to guarantee complete coverage, non-backtracking solution, minimum coverage path, while at the same time does not need any preparatory stage (video demonstration and standalone application are available on-line http://tinyurl.com/DARP-app).
Author Chatzichristofis, Savvas A.
Kapoutsis, Athanasios Ch
Kosmatopoulos, Elias B.
Author_xml – sequence: 1
  givenname: Athanasios Ch
  surname: Kapoutsis
  fullname: Kapoutsis, Athanasios Ch
  email: athakapo@iti.gr
  organization: Department of Electrical and Computer Engineering, Democritus University of Thrace, Information Technologies Institute, CERTH
– sequence: 2
  givenname: Savvas A.
  surname: Chatzichristofis
  fullname: Chatzichristofis, Savvas A.
  organization: Department of Electrical and Computer Engineering, Democritus University of Thrace, Information Technologies Institute, CERTH
– sequence: 3
  givenname: Elias B.
  surname: Kosmatopoulos
  fullname: Kosmatopoulos, Elias B.
  organization: Department of Electrical and Computer Engineering, Democritus University of Thrace, Information Technologies Institute, CERTH
BookMark eNp9kE1LAzEURYNUsFV_gLuAGzejL5mZfLgrrV-oWMR9yMxkxpTppCZp0X9vpC5E0EUID-5J7jsTNBrcYBA6IXBOAPhFICAKlgFJp2Ake99DY1LyPE0gR2gMkpIMqGQHaBLCEgCkKOUY3c-nz4tLPLdb2xg89UYHPO075218XeHWefy0jnale_y46aPNnl3lIp65rfG6M3ih4yte9HoY7NAdof1W98Ecf9-H6OX66mV2mz083dzNpg9ZXZRFzDQV0BJqDJOUt0A5FRykzDUrRCXTRGrWiIoBb9pGpP55Xoi8KnlZcjBNfojOds-uvXvbmBDVyoba9KmFcZugiISCUgKkTNHTX9Gl2_ghlVNEJCO0ZJylFNmlau9C8KZVa59W9h-KgPqyq3Z2VbKrvuyq98TwX0xto47WDdFr2_9L0h0Z0i9DZ_yPTn9Cn7BQjZw
CitedBy_id crossref_primary_10_3390_rs15010093
crossref_primary_10_1016_j_susoc_2023_07_002
crossref_primary_10_1007_s12555_024_0447_6
crossref_primary_10_1109_LRA_2020_3004780
crossref_primary_10_3389_fmars_2024_1483122
crossref_primary_10_20965_jaciii_2023_p1183
crossref_primary_10_1109_ACCESS_2021_3134760
crossref_primary_10_1142_S2737480721500023
crossref_primary_10_3390_electronics10222751
crossref_primary_10_3390_machines10050366
crossref_primary_10_1109_LRA_2022_3214446
crossref_primary_10_3390_drones6080219
crossref_primary_10_1177_17298806221091685
crossref_primary_10_1016_j_oceaneng_2024_116949
crossref_primary_10_1155_2018_3436429
crossref_primary_10_3390_s23208533
crossref_primary_10_1007_s10846_021_01555_3
crossref_primary_10_1016_j_phycom_2023_102073
crossref_primary_10_1109_LRA_2023_3293319
crossref_primary_10_1631_FITEE_1800551
crossref_primary_10_1007_s41315_024_00333_2
crossref_primary_10_1007_s42853_020_00053_y
crossref_primary_10_1016_j_oceaneng_2023_116168
crossref_primary_10_3390_jmse12081366
crossref_primary_10_1109_LRA_2024_3358581
crossref_primary_10_3390_machines10090773
crossref_primary_10_1007_s10846_021_01477_0
crossref_primary_10_1007_s00500_025_10537_8
crossref_primary_10_1016_j_ifacol_2023_10_1377
crossref_primary_10_1155_2022_6825902
crossref_primary_10_1007_s10846_022_01654_9
crossref_primary_10_1109_ACCESS_2021_3108177
crossref_primary_10_3390_s24247885
crossref_primary_10_1007_s10846_024_02073_8
crossref_primary_10_1109_ACCESS_2023_3337371
crossref_primary_10_3390_computation11120254
crossref_primary_10_3390_s17040808
crossref_primary_10_3390_drones7010009
crossref_primary_10_1007_s42452_019_0872_y
crossref_primary_10_1109_ACCESS_2023_3325483
crossref_primary_10_1109_TASE_2020_3016276
crossref_primary_10_3390_drones7060355
crossref_primary_10_3390_drones7060399
crossref_primary_10_3390_electronics12132959
crossref_primary_10_14801_jkiit_2023_21_6_55
crossref_primary_10_3390_s23073625
crossref_primary_10_1007_s10846_022_01707_z
crossref_primary_10_3390_electronics11193021
crossref_primary_10_1109_ACCESS_2023_3255007
crossref_primary_10_1142_S0218126624501330
crossref_primary_10_1177_0278364919882082
crossref_primary_10_1007_s42423_018_0007_3
crossref_primary_10_3390_app13148207
crossref_primary_10_3233_ICA_220690
crossref_primary_10_3390_s24237482
crossref_primary_10_1109_LRA_2024_3502067
crossref_primary_10_3233_JIFS_189140
crossref_primary_10_1049_csy2_12018
crossref_primary_10_1007_s10846_022_01761_7
crossref_primary_10_1109_TASE_2020_2971324
crossref_primary_10_1002_rob_22504
crossref_primary_10_3390_jmse11040804
crossref_primary_10_1109_LRA_2023_3306996
crossref_primary_10_1109_ACCESS_2025_3525800
crossref_primary_10_1109_JIOT_2023_3280035
crossref_primary_10_1109_ACCESS_2020_3027422
crossref_primary_10_1109_LRA_2025_3526564
crossref_primary_10_1142_S2301385024500109
crossref_primary_10_1007_s10514_022_10048_7
crossref_primary_10_1109_LRA_2024_3355730
crossref_primary_10_1007_s10514_021_10028_3
crossref_primary_10_7746_jkros_2024_19_4_407
crossref_primary_10_3390_s23073596
Cites_doi 10.1109/EST.2010.31
10.1007/s10514-015-9510-8
10.1109/ISIC.1999.796666
10.1145/116873.116880
10.1109/ROBOT.2006.1641951
10.1109/TRO.2011.2170753
10.1002/rob.20403
10.1109/TIT.1982.1056489
10.1023/A:1016639210559
10.1023/A:1016610507833
10.1137/120887795
10.1109/IROS.2006.282514
10.1109/ROBOT.2010.5509696
10.1109/IROS.1997.656612
10.1109/ROBOT.2002.1014727
10.1109/JPROC.2006.876939
10.1137/040617364
10.1109/MCE.2015.2392956
10.1007/s10514-013-9364-x
10.1109/ROBOT.2001.933270
10.1007/978-4-431-35873-2_22
10.1007/s10107-015-0892-3
10.1016/j.robot.2013.09.004
10.1109/ROBOT.2005.1570205
10.1137/1.9781611970265
10.1109/TAC.2010.2040495
10.1038/526320a
10.1109/MED.2013.6608870
10.1007/s12044-012-0076-5
10.1007/s10472-010-9193-y
10.1016/j.robot.2011.05.004
10.1177/0278364908100177
10.2307/1912531
10.1109/MRA.2014.2322295
ContentType Journal Article
Copyright Springer Science+Business Media Dordrecht 2017
Journal of Intelligent & Robotic Systems is a copyright of Springer, 2017.
Copyright_xml – notice: Springer Science+Business Media Dordrecht 2017
– notice: Journal of Intelligent & Robotic Systems is a copyright of Springer, 2017.
DBID AAYXX
CITATION
3V.
7SC
7SP
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
F28
DOI 10.1007/s10846-016-0461-x
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
PROQUEST
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (Proquest)
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database (Proquest)
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
ANTE: Abstracts in New Technology & Engineering
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database

Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-0409
EndPage 680
ExternalDocumentID 4322014615
10_1007_s10846_016_0461_x
GrantInformation_xml – fundername: Horizon 2020
  grantid: 645220
  funderid: http://dx.doi.org/10.13039/501100007601
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29K
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMOR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACACY
ACBXY
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACULB
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFGXO
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
C24
C6C
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P62
P9P
PF0
PQQKQ
PROAC
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8S
Z8T
Z8W
Z92
ZMTXR
_50
~A9
~EX
AAFWJ
AASML
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFHIU
AGQPQ
AHPBZ
AHWEU
AIXLP
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7SP
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
F28
ID FETCH-LOGICAL-c454t-a280f12ee6927f0272870993a648b97281c6d8b607dfd804033483b575570ed3
IEDL.DBID U2A
ISSN 0921-0296
IngestDate Thu Oct 02 10:53:11 EDT 2025
Sat Oct 18 23:06:19 EDT 2025
Wed Oct 01 02:39:03 EDT 2025
Thu Apr 24 23:11:40 EDT 2025
Fri Feb 21 02:35:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3-4
Keywords Minimum coverage paths
Terrain sub-division
Complete coverage
mCPP
Multi-robots
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c454t-a280f12ee6927f0272870993a648b97281c6d8b607dfd804033483b575570ed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1892125676
PQPubID 326251
PageCount 18
ParticipantIDs proquest_miscellaneous_1904221015
proquest_journals_1892125676
crossref_primary_10_1007_s10846_016_0461_x
crossref_citationtrail_10_1007_s10846_016_0461_x
springer_journals_10_1007_s10846_016_0461_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-06-01
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle with a special section on Unmanned Systems
PublicationTitle Journal of intelligent & robotic systems
PublicationTitleAbbrev J Intell Robot Syst
PublicationYear 2017
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References GoldbergKRobotics: countering singularity sensationalismNature2015526757332032110.1038/526320a
Tarjan, R.E.: Data Structures and Network Algorithms, vol. 14. SIAM (1983)
Butler, Z.J., Rizzi, A.A., Hollis, R.L.: Contact sensor-based coverage of rectilinear environments. In: Proceedings of the 1999 IEEE International Symposium on Intelligent Control/Intelligent Systems and Semiotics, 1999, pp 266–271. IEEE (1999)
Mixed integer linear programming (milp) solver, software. http://lpsolve.sourceforge.net/. Accessed: 2016-4-1
LloydSPLeast squares quantization in pcmIEEE Trans. Inf. Theory19822821291376518070504.9401510.1109/TIT.1982.1056489
XuYYinWA block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completionSIAM J. Imag. Sci.2013631758178931057871280.4904210.1137/120887795
irobot web site. http://www.irobot.com. Accessed: 2016-4-1
Ollis, M., Stentz, A.: Vision-based perception for an automated harvester. In: Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robots and Systems, 1997. IROS’97, vol. 3, pp 1838–1844. IEEE (1997)
PuigDGarcíaMAWuLA new global optimization strategy for coordinated multi-robot exploration: development and comparative evaluationRobot. Auton. Syst.201159963565310.1016/j.robot.2011.05.004
The area partitioning problem. In: Proceedings of the 12th Canadian Conference on Computational Geometry, Fredericton, New Brunswick, Canada (2000)
DuQEmelianenkoMJuLConvergence of the lloyd algorithm for computing centroidal voronoi tessellationsSIAM J. Numer. Anal.200644110211922173741115.6501710.1137/040617364
GabrielyYRimonESpanning-tree based coverage of continuous areas by a mobile robotAnn. Math. Artif. Intell.2001311-477981314.6831810.1023/A:1016610507833
Yao, Z.: Finding efficient robot path for the complete coverage of a known space. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 3369–3374. IEEE (2006)
SchwagerMRusDSlotineJ-JDecentralized, adaptive coverage control for networked robotsInt. J. Robot. Res.200928335737510.1177/0278364908100177
XuAViriyasutheeCRekleitisIEfficient complete coverage of a known arbitrary environment with applications to aerial operationsAuton. Robot.201436436538110.1007/s10514-013-9364-x
Zheng, X., Jain, S., Koenig, S., Kempe, D.: Multi-robot forest coverage. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005. (IROS 2005). 2005, pp 3852–3857. IEEE (2005)
Kapoutsis, A., Chatzichristofis, S.A., Doitsidis, L., de Sousa, J.B., Kosmatopoulos, E.B., et al.: Autonomous navigation of teams of unmanned aerial or underwater vehicles for exploration of unknown static & dynamic environments. In: 21st Mediterranean Conference on Control & Automation (MED), 2013, pp 1181–1188. IEEE (2013)
Agmon, N., Hazon, N., Kaminka, G., et al.: Constructing spanning trees for efficient multi-robot coverage. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006, pp 1698–1703. IEEE (2006)
BarrientosAColoradoJdel CerroJMartinezARossiCSanzDValenteJAerial remote sensing in agriculture: a practical approach to area coverage and path planning for fleets of mini aerial robotsJ. Field Rob.201128566768910.1002/rob.20403
ElmaliachYAgmonNKaminkaGAMulti-robot area patrol under frequency constraintsAnn. Math. Artif. Intell.2009573-429332026715741253.6831710.1007/s10472-010-9193-y
MoloneyDSuarezODA vision for the future [soapbox]IEEE Consumer Electronics Magazine201542404510.1109/MCE.2015.2392956
Acar, E., Zhang, Y., Choset, H., Schervish, M., Costa, A.G., Melamud, R., Lean, D.C., Graveline, A.: Path planning for robotic demining and development of a test platform. In: International Conference on Field and Service Robotics, vol. 1, pp 161–168 (2001)
Bernardine DiasMZlotRKalraNStentzAMarket-based multirobot coordination: a survey and analysisProc. IEEE20069471257127010.1109/JPROC.2006.876939
NandakumarRRamana RaoNFair partitions of polygons: an elementary introductionProc. Math. Sci.2012122345946729726651260.5201310.1007/s12044-012-0076-5
DurhamJWCarliRFrascaPBulloFDiscrete partitioning and coverage control for gossiping robotsIEEE Trans. Robot.201228236437810.1109/TRO.2011.2170753
AurenhammerFVoronoi diagrams—a survey of a fundamental geometric data structureACM Comput. Surv. (CSUR)199123334540510.1145/116873.116880
CortésJCoverage optimization and spatial load balancing by robotic sensor networksIEEE Trans. Autom. Control2010553749754265484410.1109/TAC.2010.2040495
GalceranECarrerasMA survey on coverage path planning for roboticsRobot. Auton. Syst.201361121258127610.1016/j.robot.2013.09.004
Hazon, N., Kaminka, G., et al.: Redundancy, efficiency and robustness in multi-robot coverage. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005. ICRA 2005, pp 735–741. IEEE (2005)
KapoutsisAChChatzichristofisSADoitsidisLde SousaJBPintoJBragaJKosmatopoulosEBReal-time adaptive multi-robot exploration with application to underwater map constructionAuton. Robot.2016406987101510.1007/s10514-015-9510-8
Apostolopoulos, D.S., Pedersen, L., Shamah, B.N., Shillcutt, K., Wagner, M.D., Whittaker, W.L.: Robotic antarctic meteorite search: outcomes. In: IEEE International Conference on Robotics and Automation, 2001. Proceedings 2001 ICRA, vol. 4, pp 4174–4179. IEEE (2001)
Breitenmoser, A., Schwager, M., Metzger, J.-C., Siegwart, R., Rus, D.: Voronoi coverage of non-convex environments with a group of networked robots. In: IEEE International Conference on Robotics and Automation (ICRA), 2010, pp 4982–4989. IEEE (2010)
Maza, I., Ollero, A.: Multiple uav cooperative searching operation using polygon area decomposition and efficient coverage algorithms. In: Distributed Autonomous Robotic Systems 6, pp 221–230. Springer (2007)
Rubinstein, A.: Perfect equilibrium in a bargaining model. Econometrica: Journal of the Econometric Society, 97–109 (1982)
Scaramuzza, D., Achtelik, M.C., Doitsidis, L., Fraundorfer, F., Kosmatopoulos, E.B., Martinelli, A., Achtelik, M.W., Chli, M., Chatzichristofis, S.A., Kneip, L., et al.: Vision-controlled micro flying robots: from system design to autonomous navigation and mapping in gps-denied environments. IEEE Robot. Autom. Mag., 1–10 (2014)
Waharte, S., Trigoni, N.: Supporting search and rescue operations with uavs. In: International Conference on Emerging Security Technologies (EST), 2010, pp 142–147. IEEE (2010)
Cortes, J., Martinez, S., Karatas, T., Bullo, F.: Coverage control for mobile sensing networks. In: IEEE International Conference on Robotics and Automation, 2002. Proceedings. ICRA’02, vol. 2, pp 1327–1332. IEEE (2002)
WrightSJCoordinate descent algorithmsMath. Program.2015151133433475481317.4903810.1007/s10107-015-0892-3
ChosetHCoverage for robotics–a survey of recent resultsAnn. Math. Artif. Intell.2001311–41131261314.6831710.1023/A:1016639210559
461_CR28
SP Lloyd (461_CR24) 1982; 28
H Choset (461_CR11) 2001; 31
461_CR25
M Bernardine Dias (461_CR14) 2006; 94
SJ Wright (461_CR35) 2015; 151
Y Xu (461_CR37) 2013; 6
461_CR9
A Barrientos (461_CR8) 2011; 28
R Nandakumar (461_CR27) 2012; 122
461_CR31
461_CR30
M Schwager (461_CR32) 2009; 28
461_CR1
461_CR33
461_CR2
461_CR10
461_CR3
F Aurenhammer (461_CR7) 1991; 23
461_CR4
461_CR5
461_CR6
461_CR39
ACh Kapoutsis (461_CR23) 2016; 40
461_CR38
K Goldberg (461_CR20) 2015; 526
JW Durham (461_CR16) 2012; 28
461_CR13
461_CR34
E Galceran (461_CR19) 2013; 61
J Cortés (461_CR12) 2010; 55
D Moloney (461_CR26) 2015; 4
Q Du (461_CR15) 2006; 44
A Xu (461_CR36) 2014; 36
Y Elmaliach (461_CR17) 2009; 57
Y Gabriely (461_CR18) 2001; 31
D Puig (461_CR29) 2011; 59
461_CR22
461_CR21
References_xml – reference: NandakumarRRamana RaoNFair partitions of polygons: an elementary introductionProc. Math. Sci.2012122345946729726651260.5201310.1007/s12044-012-0076-5
– reference: Tarjan, R.E.: Data Structures and Network Algorithms, vol. 14. SIAM (1983)
– reference: Maza, I., Ollero, A.: Multiple uav cooperative searching operation using polygon area decomposition and efficient coverage algorithms. In: Distributed Autonomous Robotic Systems 6, pp 221–230. Springer (2007)
– reference: MoloneyDSuarezODA vision for the future [soapbox]IEEE Consumer Electronics Magazine201542404510.1109/MCE.2015.2392956
– reference: GoldbergKRobotics: countering singularity sensationalismNature2015526757332032110.1038/526320a
– reference: Yao, Z.: Finding efficient robot path for the complete coverage of a known space. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 3369–3374. IEEE (2006)
– reference: XuYYinWA block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completionSIAM J. Imag. Sci.2013631758178931057871280.4904210.1137/120887795
– reference: Rubinstein, A.: Perfect equilibrium in a bargaining model. Econometrica: Journal of the Econometric Society, 97–109 (1982)
– reference: XuAViriyasutheeCRekleitisIEfficient complete coverage of a known arbitrary environment with applications to aerial operationsAuton. Robot.201436436538110.1007/s10514-013-9364-x
– reference: Bernardine DiasMZlotRKalraNStentzAMarket-based multirobot coordination: a survey and analysisProc. IEEE20069471257127010.1109/JPROC.2006.876939
– reference: GalceranECarrerasMA survey on coverage path planning for roboticsRobot. Auton. Syst.201361121258127610.1016/j.robot.2013.09.004
– reference: Zheng, X., Jain, S., Koenig, S., Kempe, D.: Multi-robot forest coverage. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005. (IROS 2005). 2005, pp 3852–3857. IEEE (2005)
– reference: Acar, E., Zhang, Y., Choset, H., Schervish, M., Costa, A.G., Melamud, R., Lean, D.C., Graveline, A.: Path planning for robotic demining and development of a test platform. In: International Conference on Field and Service Robotics, vol. 1, pp 161–168 (2001)
– reference: ElmaliachYAgmonNKaminkaGAMulti-robot area patrol under frequency constraintsAnn. Math. Artif. Intell.2009573-429332026715741253.6831710.1007/s10472-010-9193-y
– reference: WrightSJCoordinate descent algorithmsMath. Program.2015151133433475481317.4903810.1007/s10107-015-0892-3
– reference: Apostolopoulos, D.S., Pedersen, L., Shamah, B.N., Shillcutt, K., Wagner, M.D., Whittaker, W.L.: Robotic antarctic meteorite search: outcomes. In: IEEE International Conference on Robotics and Automation, 2001. Proceedings 2001 ICRA, vol. 4, pp 4174–4179. IEEE (2001)
– reference: Cortes, J., Martinez, S., Karatas, T., Bullo, F.: Coverage control for mobile sensing networks. In: IEEE International Conference on Robotics and Automation, 2002. Proceedings. ICRA’02, vol. 2, pp 1327–1332. IEEE (2002)
– reference: Hazon, N., Kaminka, G., et al.: Redundancy, efficiency and robustness in multi-robot coverage. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005. ICRA 2005, pp 735–741. IEEE (2005)
– reference: GabrielyYRimonESpanning-tree based coverage of continuous areas by a mobile robotAnn. Math. Artif. Intell.2001311-477981314.6831810.1023/A:1016610507833
– reference: Mixed integer linear programming (milp) solver, software. http://lpsolve.sourceforge.net/. Accessed: 2016-4-1
– reference: Butler, Z.J., Rizzi, A.A., Hollis, R.L.: Contact sensor-based coverage of rectilinear environments. In: Proceedings of the 1999 IEEE International Symposium on Intelligent Control/Intelligent Systems and Semiotics, 1999, pp 266–271. IEEE (1999)
– reference: irobot web site. http://www.irobot.com. Accessed: 2016-4-1
– reference: DuQEmelianenkoMJuLConvergence of the lloyd algorithm for computing centroidal voronoi tessellationsSIAM J. Numer. Anal.200644110211922173741115.6501710.1137/040617364
– reference: PuigDGarcíaMAWuLA new global optimization strategy for coordinated multi-robot exploration: development and comparative evaluationRobot. Auton. Syst.201159963565310.1016/j.robot.2011.05.004
– reference: Agmon, N., Hazon, N., Kaminka, G., et al.: Constructing spanning trees for efficient multi-robot coverage. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006, pp 1698–1703. IEEE (2006)
– reference: Kapoutsis, A., Chatzichristofis, S.A., Doitsidis, L., de Sousa, J.B., Kosmatopoulos, E.B., et al.: Autonomous navigation of teams of unmanned aerial or underwater vehicles for exploration of unknown static & dynamic environments. In: 21st Mediterranean Conference on Control & Automation (MED), 2013, pp 1181–1188. IEEE (2013)
– reference: Waharte, S., Trigoni, N.: Supporting search and rescue operations with uavs. In: International Conference on Emerging Security Technologies (EST), 2010, pp 142–147. IEEE (2010)
– reference: SchwagerMRusDSlotineJ-JDecentralized, adaptive coverage control for networked robotsInt. J. Robot. Res.200928335737510.1177/0278364908100177
– reference: Scaramuzza, D., Achtelik, M.C., Doitsidis, L., Fraundorfer, F., Kosmatopoulos, E.B., Martinelli, A., Achtelik, M.W., Chli, M., Chatzichristofis, S.A., Kneip, L., et al.: Vision-controlled micro flying robots: from system design to autonomous navigation and mapping in gps-denied environments. IEEE Robot. Autom. Mag., 1–10 (2014)
– reference: CortésJCoverage optimization and spatial load balancing by robotic sensor networksIEEE Trans. Autom. Control2010553749754265484410.1109/TAC.2010.2040495
– reference: AurenhammerFVoronoi diagrams—a survey of a fundamental geometric data structureACM Comput. Surv. (CSUR)199123334540510.1145/116873.116880
– reference: ChosetHCoverage for robotics–a survey of recent resultsAnn. Math. Artif. Intell.2001311–41131261314.6831710.1023/A:1016639210559
– reference: LloydSPLeast squares quantization in pcmIEEE Trans. Inf. Theory19822821291376518070504.9401510.1109/TIT.1982.1056489
– reference: Breitenmoser, A., Schwager, M., Metzger, J.-C., Siegwart, R., Rus, D.: Voronoi coverage of non-convex environments with a group of networked robots. In: IEEE International Conference on Robotics and Automation (ICRA), 2010, pp 4982–4989. IEEE (2010)
– reference: Ollis, M., Stentz, A.: Vision-based perception for an automated harvester. In: Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robots and Systems, 1997. IROS’97, vol. 3, pp 1838–1844. IEEE (1997)
– reference: BarrientosAColoradoJdel CerroJMartinezARossiCSanzDValenteJAerial remote sensing in agriculture: a practical approach to area coverage and path planning for fleets of mini aerial robotsJ. Field Rob.201128566768910.1002/rob.20403
– reference: KapoutsisAChChatzichristofisSADoitsidisLde SousaJBPintoJBragaJKosmatopoulosEBReal-time adaptive multi-robot exploration with application to underwater map constructionAuton. Robot.2016406987101510.1007/s10514-015-9510-8
– reference: DurhamJWCarliRFrascaPBulloFDiscrete partitioning and coverage control for gossiping robotsIEEE Trans. Robot.201228236437810.1109/TRO.2011.2170753
– reference: The area partitioning problem. In: Proceedings of the 12th Canadian Conference on Computational Geometry, Fredericton, New Brunswick, Canada (2000)
– ident: 461_CR34
  doi: 10.1109/EST.2010.31
– volume: 40
  start-page: 987
  issue: 6
  year: 2016
  ident: 461_CR23
  publication-title: Auton. Robot.
  doi: 10.1007/s10514-015-9510-8
– ident: 461_CR10
  doi: 10.1109/ISIC.1999.796666
– volume: 23
  start-page: 345
  issue: 3
  year: 1991
  ident: 461_CR7
  publication-title: ACM Comput. Surv. (CSUR)
  doi: 10.1145/116873.116880
– ident: 461_CR5
  doi: 10.1109/ROBOT.2006.1641951
– volume: 28
  start-page: 364
  issue: 2
  year: 2012
  ident: 461_CR16
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2011.2170753
– volume: 28
  start-page: 667
  issue: 5
  year: 2011
  ident: 461_CR8
  publication-title: J. Field Rob.
  doi: 10.1002/rob.20403
– volume: 28
  start-page: 129
  issue: 2
  year: 1982
  ident: 461_CR24
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1982.1056489
– ident: 461_CR39
– volume: 31
  start-page: 113
  issue: 1–4
  year: 2001
  ident: 461_CR11
  publication-title: Ann. Math. Artif. Intell.
  doi: 10.1023/A:1016639210559
– volume: 31
  start-page: 77
  issue: 1-4
  year: 2001
  ident: 461_CR18
  publication-title: Ann. Math. Artif. Intell.
  doi: 10.1023/A:1016610507833
– ident: 461_CR3
– volume: 6
  start-page: 1758
  issue: 3
  year: 2013
  ident: 461_CR37
  publication-title: SIAM J. Imag. Sci.
  doi: 10.1137/120887795
– ident: 461_CR38
  doi: 10.1109/IROS.2006.282514
– ident: 461_CR9
  doi: 10.1109/ROBOT.2010.5509696
– ident: 461_CR28
  doi: 10.1109/IROS.1997.656612
– ident: 461_CR1
– ident: 461_CR13
  doi: 10.1109/ROBOT.2002.1014727
– volume: 94
  start-page: 1257
  issue: 7
  year: 2006
  ident: 461_CR14
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2006.876939
– volume: 44
  start-page: 102
  issue: 1
  year: 2006
  ident: 461_CR15
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/040617364
– volume: 4
  start-page: 40
  issue: 2
  year: 2015
  ident: 461_CR26
  publication-title: IEEE Consumer Electronics Magazine
  doi: 10.1109/MCE.2015.2392956
– volume: 36
  start-page: 365
  issue: 4
  year: 2014
  ident: 461_CR36
  publication-title: Auton. Robot.
  doi: 10.1007/s10514-013-9364-x
– ident: 461_CR6
  doi: 10.1109/ROBOT.2001.933270
– ident: 461_CR25
  doi: 10.1007/978-4-431-35873-2_22
– volume: 151
  start-page: 3
  issue: 1
  year: 2015
  ident: 461_CR35
  publication-title: Math. Program.
  doi: 10.1007/s10107-015-0892-3
– volume: 61
  start-page: 1258
  issue: 12
  year: 2013
  ident: 461_CR19
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2013.09.004
– ident: 461_CR21
  doi: 10.1109/ROBOT.2005.1570205
– ident: 461_CR33
  doi: 10.1137/1.9781611970265
– volume: 55
  start-page: 749
  issue: 3
  year: 2010
  ident: 461_CR12
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2010.2040495
– volume: 526
  start-page: 320
  issue: 7573
  year: 2015
  ident: 461_CR20
  publication-title: Nature
  doi: 10.1038/526320a
– ident: 461_CR22
  doi: 10.1109/MED.2013.6608870
– volume: 122
  start-page: 459
  issue: 3
  year: 2012
  ident: 461_CR27
  publication-title: Proc. Math. Sci.
  doi: 10.1007/s12044-012-0076-5
– volume: 57
  start-page: 293
  issue: 3-4
  year: 2009
  ident: 461_CR17
  publication-title: Ann. Math. Artif. Intell.
  doi: 10.1007/s10472-010-9193-y
– volume: 59
  start-page: 635
  issue: 9
  year: 2011
  ident: 461_CR29
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2011.05.004
– ident: 461_CR4
– ident: 461_CR2
– volume: 28
  start-page: 357
  issue: 3
  year: 2009
  ident: 461_CR32
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364908100177
– ident: 461_CR30
  doi: 10.2307/1912531
– ident: 461_CR31
  doi: 10.1109/MRA.2014.2322295
SSID ssj0009859
Score 2.5156584
Snippet This paper deals with the path planning problem of a team of mobile robots, in order to cover an area of interest, with prior-defined obstacles. For the single...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 663
SubjectTerms Algorithms
Artificial Intelligence
Complexity
Control
Electrical Engineering
Engineering
Mathematical analysis
Mathematical models
Mechanical Engineering
Mechatronics
Optimization
Path planning
Polynomials
Robotics
Robots
SummonAdditionalLinks – databaseName: PROQUEST
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZS8QwEB50fdEHb3G9iOCTEmxim7aCyHohiuuyKPhWkjTVB916VPDnO9NtXBX0seSimcyRzMw3AFs21ZYcYNxiMw9tWnAjbM6lMloaJYWti01cddX5bXhxF92NQdfnwlBYpZeJtaDOS0tv5LsiSVHKRipWh88vnKpGkXfVl9DQTWmF_KCGGBuHCUnIWC2YODrt9vojGN4kGqLvSbxEy1R5P-cwmQ51MV6tFYU7Cv7xU1ONzM9fHtNaEZ3NwnRjQbLOkORzMOYG8zDjqzOwhlnnYeob1OACXJ50-r19dkLZVw4HO_3GOo_3-IfVwxNDy5Vdo_B4wonrlFzeL01ZsWMK8ESJw3poKDJf4GgRbs5Ob47PeVNIgdswCiuuZRIUQjqnUhkXeBEl7yYaJlqFiUnxS1iVJ0YFcV7kCbI1pefuGbTkojhw-d4StAblwC0DK6QUTpsitLkInUXzsLDO2DRAssZayDYEfs8y24CMU62Lx2wEj0zbnFFgGW1z9tGG7a8hz0OEjf86r3lCZA2zvWWjo9GGza9mZBPyfeiBK9-xT0pgZyh_ojbseAJ-m-KvBVf-X3AVJiXp-fpZZg1a1eu7W0crpTIbzdH7BAOI4bI
  priority: 102
  providerName: ProQuest
Title DARP: Divide Areas Algorithm for Optimal Multi-Robot Coverage Path Planning
URI https://link.springer.com/article/10.1007/s10846-016-0461-x
https://www.proquest.com/docview/1892125676
https://www.proquest.com/docview/1904221015
Volume 86
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-0409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-0409
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: AAJSJ
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB58XPTgoypGa1nBk7KQ3SabxFvsQ7FYS6mgp5DdbPSgidgK_nxn06StooKnEPYRmNmZ-TbzAjhRQayMA4wqHKaOClIqmUooFzLmUnCmimYTN31xdedc37v3ZR73uIp2r1yShaZeSHZDW4lXX2HCERlF4LjqmmpeeIjveDivtOu70wJ7HO_JPBCVK_OnLb4aoznC_OYULWxNdws2SpBIwilXt2FJZzXYrBowkFIea7C-UE1wB3rtcDg4J22TYKVxsY7HJHx-zPH6__RCEJySW9QPL7hxkXVLh7nMJ6RlYjhRqZABYkFS9TDahVG3M2pd0bJXAlWO60xozH07ZVxrEXAvxbumcWAi9oiF48sA35gSiS-F7SVp4qPkmgzcpkSw5nq2Tpp7sJLlmd4HknLOdCxTRyXM0QopnCotVWAj57yYcQvsimaRKuuIm3YWz9G8ArIhc2RixwyZow8LTmdLXqdFNP6aXK8YEZXyNI6Yj-xEdOYJC45nwygJxr0RZzp_xzmBqWeGKsa14Kxi4MIWv33w4F-zD2GNG8te_Iipw8rk7V0fIS6ZyAYs-93LBqyGlw-9Dj4vOv3BsFGczk9Y8tw-
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTxQxFH9BOCgHRdSw8lUSvWgap91OZ2pCzMJCFhbWzWZNuE3aTkcPsIPuEPCP83_zdXbKIoncOE46bZPX1_fR9_EDeGeVtj4ARi0OU2FVQQ2zOeXSaG4kZ7YGmzgdyN43cXwWny3An1AL49Mqg0ysBXVeWv9G_omlCqVsLBP55fIn9ahRProaIDR0A62Q79YtxprCjr77fY0u3HT3qIvn_Z7zw4Pxfo82KAPUilhUVPM0Khh3TiqeFOil-dAfam0tRWoUfjEr89TIKMmLPEWe97WrbYNmTpxELm_jsk9gSbSFQt9vae9gMBzNu_6m8azZH0efnSsZwqqz2j1U_ejJS59dyejNv4pxbu3eC9DWeu9wBZ43BivpzDjsJSy4ySq8CGAQpJENq7B8p7PhK-h3O6PhZ9L1xV4OJzs9JZ3z70jQ6scFQUOZfEVZdYEL1xXAdFSasiL7Pp8UBRwZol1KAp7Saxg_BkXfwOKknLg1IAXnzGlTCJsz4Sxao4V1xqoIuSjRjLcgCjTLbNPT3ENrnGfzbsyezJnPY_Nkzm5a8OF2yuWsocdDP2-Eg8iauz3N5pzYgp3bYbyVPtSiJ668wn-U762G4i5uwcdwgHeW-N-Gbx_ecBue9sanJ9nJ0aC_Ds-4NzHqF6ENWKx-XblNNJAqs9WwIYHskRn_L0YFG0E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4BlSp6aMtLbHkZiV5AFrFJnKRSVa1Ylse2sEIgcYtixykH2AAbBPy0_rvOJDELSHDjGDm2pfHneXheAGsmTg05wLjBYe6bOOdamIxLpVOplRSmajbx51DtnfoHZ8HZGPxzuTAUVul4YsWos8LQG_mmiGLksoEK1WbehEX0O91fV9ecOkiRp9W106gh0rMPd2i-DX_ud_Csv0vZ3TnZ3uNNhwFu_MAveSojLxfSWhXLMEcLjdx-KLFT5Uc6xi9hVBZp5YVZnkWId8pb3dKo4gShZ7MtXHYcPoRUxJ2S1Lu7o3q_UVCX-ZNorctYOYdqnbWHQh9teEVxlYLfPxeJIz33hWu2knjdr_C5UVVZu8bWFIzZwTR8cW0gWMMVpuHTk5qGM9DrtI_7P1iH0rwsTrbpkLUv_iL5yvNLhioyO0IudYkLV7m__LjQRcm2KZIUWRvro0bKXCelWTh5D3rOwcSgGNh5YLmUwqY6900mfGtQD82N1Sb2ED9hKmQLPEezxDTVzKmpxkUyqsNMZE4ogo3InNy3YP1xylVdyuOtnxfdQSTNrR4mIwy2YPVxGO8jOVnSgS1u8Z-YqqohowtasOEO8MkSr2347e0NV-Ajwj35vX_YW4BJSbpF9RS0CBPlza1dQs2o1MsVBhkk74z5_2TeGNs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DARP%3A+Divide+Areas+Algorithm+for+Optimal+Multi-Robot+Coverage+Path+Planning&rft.jtitle=Journal+of+intelligent+%26+robotic+systems&rft.au=Kapoutsis%2C+Athanasios+Ch&rft.au=Chatzichristofis%2C+Savvas+A.&rft.au=Kosmatopoulos%2C+Elias+B.&rft.date=2017-06-01&rft.pub=Springer+Netherlands&rft.issn=0921-0296&rft.eissn=1573-0409&rft.volume=86&rft.issue=3-4&rft.spage=663&rft.epage=680&rft_id=info:doi/10.1007%2Fs10846-016-0461-x&rft.externalDocID=10_1007_s10846_016_0461_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-0296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-0296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-0296&client=summon