DARP: Divide Areas Algorithm for Optimal Multi-Robot Coverage Path Planning
This paper deals with the path planning problem of a team of mobile robots, in order to cover an area of interest, with prior-defined obstacles. For the single robot case, also known as single robot coverage path planning (CPP), an 𝓞( n ) optimal methodology has already been proposed and evaluated i...
Saved in:
| Published in | Journal of intelligent & robotic systems Vol. 86; no. 3-4; pp. 663 - 680 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Dordrecht
Springer Netherlands
01.06.2017
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0921-0296 1573-0409 |
| DOI | 10.1007/s10846-016-0461-x |
Cover
| Abstract | This paper deals with the path planning problem of a team of mobile robots, in order to cover an area of interest, with prior-defined obstacles. For the single robot case, also known as single robot coverage path planning (CPP), an 𝓞(
n
) optimal methodology has already been proposed and evaluated in the literature, where
n
is the grid size. The majority of existing algorithms for the multi robot case (mCPP), utilize the aforementioned algorithm. Due to the complexity, however, of the mCPP, the best the existing mCPP algorithms can perform is at most 16 times the optimal solution, in terms of time needed for the robot team to accomplish the coverage task, while the time required for calculating the solution is polynomial. In the present paper, we propose a new algorithm which converges to the optimal solution, at least in cases where one exists. The proposed technique transforms the original integer programming problem (mCPP) into several single-robot problems (CPP), the solutions of which constitute the optimal mCPP solution, alleviating the original mCPP explosive combinatorial complexity. Although it is not possible to analytically derive bounds regarding the complexity of the proposed algorithm, extensive numerical analysis indicates that the complexity is bounded by polynomial curves for practical sized inputs. In the heart of the proposed approach lies the DARP algorithm, which divides the terrain into a number of equal areas each corresponding to a specific robot, so as to guarantee
complete coverage
,
non-backtracking solution
,
minimum coverage path
, while at the same time
does not need any preparatory stage
(video demonstration and standalone application are available on-line
http://tinyurl.com/DARP-app
). |
|---|---|
| AbstractList | This paper deals with the path planning problem of a team of mobile robots, in order to cover an area of interest, with prior-defined obstacles. For the single robot case, also known as single robot coverage path planning (CPP), an [eth]"z(n) optimal methodology has already been proposed and evaluated in the literature, where n is the grid size. The majority of existing algorithms for the multi robot case (mCPP), utilize the aforementioned algorithm. Due to the complexity, however, of the mCPP, the best the existing mCPP algorithms can perform is at most 16 times the optimal solution, in terms of time needed for the robot team to accomplish the coverage task, while the time required for calculating the solution is polynomial. In the present paper, we propose a new algorithm which converges to the optimal solution, at least in cases where one exists. The proposed technique transforms the original integer programming problem (mCPP) into several single-robot problems (CPP), the solutions of which constitute the optimal mCPP solution, alleviating the original mCPP explosive combinatorial complexity. Although it is not possible to analytically derive bounds regarding the complexity of the proposed algorithm, extensive numerical analysis indicates that the complexity is bounded by polynomial curves for practical sized inputs. In the heart of the proposed approach lies the DARP algorithm, which divides the terrain into a number of equal areas each corresponding to a specific robot, so as to guarantee complete coverage, non-backtracking solution, minimum coverage path, while at the same time does not need any preparatory stage (video demonstration and standalone application are available on-line http://tinyurl.com/DARP-app). This paper deals with the path planning problem of a team of mobile robots, in order to cover an area of interest, with prior-defined obstacles. For the single robot case, also known as single robot coverage path planning (CPP), an 𝓞( n ) optimal methodology has already been proposed and evaluated in the literature, where n is the grid size. The majority of existing algorithms for the multi robot case (mCPP), utilize the aforementioned algorithm. Due to the complexity, however, of the mCPP, the best the existing mCPP algorithms can perform is at most 16 times the optimal solution, in terms of time needed for the robot team to accomplish the coverage task, while the time required for calculating the solution is polynomial. In the present paper, we propose a new algorithm which converges to the optimal solution, at least in cases where one exists. The proposed technique transforms the original integer programming problem (mCPP) into several single-robot problems (CPP), the solutions of which constitute the optimal mCPP solution, alleviating the original mCPP explosive combinatorial complexity. Although it is not possible to analytically derive bounds regarding the complexity of the proposed algorithm, extensive numerical analysis indicates that the complexity is bounded by polynomial curves for practical sized inputs. In the heart of the proposed approach lies the DARP algorithm, which divides the terrain into a number of equal areas each corresponding to a specific robot, so as to guarantee complete coverage , non-backtracking solution , minimum coverage path , while at the same time does not need any preparatory stage (video demonstration and standalone application are available on-line http://tinyurl.com/DARP-app ). This paper deals with the path planning problem of a team of mobile robots, in order to cover an area of interest, with prior-defined obstacles. For the single robot case, also known as single robot coverage path planning (CPP), an ðoe"z(n) optimal methodology has already been proposed and evaluated in the literature, where n is the grid size. The majority of existing algorithms for the multi robot case (mCPP), utilize the aforementioned algorithm. Due to the complexity, however, of the mCPP, the best the existing mCPP algorithms can perform is at most 16 times the optimal solution, in terms of time needed for the robot team to accomplish the coverage task, while the time required for calculating the solution is polynomial. In the present paper, we propose a new algorithm which converges to the optimal solution, at least in cases where one exists. The proposed technique transforms the original integer programming problem (mCPP) into several single-robot problems (CPP), the solutions of which constitute the optimal mCPP solution, alleviating the original mCPP explosive combinatorial complexity. Although it is not possible to analytically derive bounds regarding the complexity of the proposed algorithm, extensive numerical analysis indicates that the complexity is bounded by polynomial curves for practical sized inputs. In the heart of the proposed approach lies the DARP algorithm, which divides the terrain into a number of equal areas each corresponding to a specific robot, so as to guarantee complete coverage, non-backtracking solution, minimum coverage path, while at the same time does not need any preparatory stage (video demonstration and standalone application are available on-line http://tinyurl.com/DARP-app). |
| Author | Chatzichristofis, Savvas A. Kapoutsis, Athanasios Ch Kosmatopoulos, Elias B. |
| Author_xml | – sequence: 1 givenname: Athanasios Ch surname: Kapoutsis fullname: Kapoutsis, Athanasios Ch email: athakapo@iti.gr organization: Department of Electrical and Computer Engineering, Democritus University of Thrace, Information Technologies Institute, CERTH – sequence: 2 givenname: Savvas A. surname: Chatzichristofis fullname: Chatzichristofis, Savvas A. organization: Department of Electrical and Computer Engineering, Democritus University of Thrace, Information Technologies Institute, CERTH – sequence: 3 givenname: Elias B. surname: Kosmatopoulos fullname: Kosmatopoulos, Elias B. organization: Department of Electrical and Computer Engineering, Democritus University of Thrace, Information Technologies Institute, CERTH |
| BookMark | eNp9kE1LAzEURYNUsFV_gLuAGzejL5mZfLgrrV-oWMR9yMxkxpTppCZp0X9vpC5E0EUID-5J7jsTNBrcYBA6IXBOAPhFICAKlgFJp2Ake99DY1LyPE0gR2gMkpIMqGQHaBLCEgCkKOUY3c-nz4tLPLdb2xg89UYHPO075218XeHWefy0jnale_y46aPNnl3lIp65rfG6M3ih4yte9HoY7NAdof1W98Ecf9-H6OX66mV2mz083dzNpg9ZXZRFzDQV0BJqDJOUt0A5FRykzDUrRCXTRGrWiIoBb9pGpP55Xoi8KnlZcjBNfojOds-uvXvbmBDVyoba9KmFcZugiISCUgKkTNHTX9Gl2_ghlVNEJCO0ZJylFNmlau9C8KZVa59W9h-KgPqyq3Z2VbKrvuyq98TwX0xto47WDdFr2_9L0h0Z0i9DZ_yPTn9Cn7BQjZw |
| CitedBy_id | crossref_primary_10_3390_rs15010093 crossref_primary_10_1016_j_susoc_2023_07_002 crossref_primary_10_1007_s12555_024_0447_6 crossref_primary_10_1109_LRA_2020_3004780 crossref_primary_10_3389_fmars_2024_1483122 crossref_primary_10_20965_jaciii_2023_p1183 crossref_primary_10_1109_ACCESS_2021_3134760 crossref_primary_10_1142_S2737480721500023 crossref_primary_10_3390_electronics10222751 crossref_primary_10_3390_machines10050366 crossref_primary_10_1109_LRA_2022_3214446 crossref_primary_10_3390_drones6080219 crossref_primary_10_1177_17298806221091685 crossref_primary_10_1016_j_oceaneng_2024_116949 crossref_primary_10_1155_2018_3436429 crossref_primary_10_3390_s23208533 crossref_primary_10_1007_s10846_021_01555_3 crossref_primary_10_1016_j_phycom_2023_102073 crossref_primary_10_1109_LRA_2023_3293319 crossref_primary_10_1631_FITEE_1800551 crossref_primary_10_1007_s41315_024_00333_2 crossref_primary_10_1007_s42853_020_00053_y crossref_primary_10_1016_j_oceaneng_2023_116168 crossref_primary_10_3390_jmse12081366 crossref_primary_10_1109_LRA_2024_3358581 crossref_primary_10_3390_machines10090773 crossref_primary_10_1007_s10846_021_01477_0 crossref_primary_10_1007_s00500_025_10537_8 crossref_primary_10_1016_j_ifacol_2023_10_1377 crossref_primary_10_1155_2022_6825902 crossref_primary_10_1007_s10846_022_01654_9 crossref_primary_10_1109_ACCESS_2021_3108177 crossref_primary_10_3390_s24247885 crossref_primary_10_1007_s10846_024_02073_8 crossref_primary_10_1109_ACCESS_2023_3337371 crossref_primary_10_3390_computation11120254 crossref_primary_10_3390_s17040808 crossref_primary_10_3390_drones7010009 crossref_primary_10_1007_s42452_019_0872_y crossref_primary_10_1109_ACCESS_2023_3325483 crossref_primary_10_1109_TASE_2020_3016276 crossref_primary_10_3390_drones7060355 crossref_primary_10_3390_drones7060399 crossref_primary_10_3390_electronics12132959 crossref_primary_10_14801_jkiit_2023_21_6_55 crossref_primary_10_3390_s23073625 crossref_primary_10_1007_s10846_022_01707_z crossref_primary_10_3390_electronics11193021 crossref_primary_10_1109_ACCESS_2023_3255007 crossref_primary_10_1142_S0218126624501330 crossref_primary_10_1177_0278364919882082 crossref_primary_10_1007_s42423_018_0007_3 crossref_primary_10_3390_app13148207 crossref_primary_10_3233_ICA_220690 crossref_primary_10_3390_s24237482 crossref_primary_10_1109_LRA_2024_3502067 crossref_primary_10_3233_JIFS_189140 crossref_primary_10_1049_csy2_12018 crossref_primary_10_1007_s10846_022_01761_7 crossref_primary_10_1109_TASE_2020_2971324 crossref_primary_10_1002_rob_22504 crossref_primary_10_3390_jmse11040804 crossref_primary_10_1109_LRA_2023_3306996 crossref_primary_10_1109_ACCESS_2025_3525800 crossref_primary_10_1109_JIOT_2023_3280035 crossref_primary_10_1109_ACCESS_2020_3027422 crossref_primary_10_1109_LRA_2025_3526564 crossref_primary_10_1142_S2301385024500109 crossref_primary_10_1007_s10514_022_10048_7 crossref_primary_10_1109_LRA_2024_3355730 crossref_primary_10_1007_s10514_021_10028_3 crossref_primary_10_7746_jkros_2024_19_4_407 crossref_primary_10_3390_s23073596 |
| Cites_doi | 10.1109/EST.2010.31 10.1007/s10514-015-9510-8 10.1109/ISIC.1999.796666 10.1145/116873.116880 10.1109/ROBOT.2006.1641951 10.1109/TRO.2011.2170753 10.1002/rob.20403 10.1109/TIT.1982.1056489 10.1023/A:1016639210559 10.1023/A:1016610507833 10.1137/120887795 10.1109/IROS.2006.282514 10.1109/ROBOT.2010.5509696 10.1109/IROS.1997.656612 10.1109/ROBOT.2002.1014727 10.1109/JPROC.2006.876939 10.1137/040617364 10.1109/MCE.2015.2392956 10.1007/s10514-013-9364-x 10.1109/ROBOT.2001.933270 10.1007/978-4-431-35873-2_22 10.1007/s10107-015-0892-3 10.1016/j.robot.2013.09.004 10.1109/ROBOT.2005.1570205 10.1137/1.9781611970265 10.1109/TAC.2010.2040495 10.1038/526320a 10.1109/MED.2013.6608870 10.1007/s12044-012-0076-5 10.1007/s10472-010-9193-y 10.1016/j.robot.2011.05.004 10.1177/0278364908100177 10.2307/1912531 10.1109/MRA.2014.2322295 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media Dordrecht 2017 Journal of Intelligent & Robotic Systems is a copyright of Springer, 2017. |
| Copyright_xml | – notice: Springer Science+Business Media Dordrecht 2017 – notice: Journal of Intelligent & Robotic Systems is a copyright of Springer, 2017. |
| DBID | AAYXX CITATION 3V. 7SC 7SP 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U F28 |
| DOI | 10.1007/s10846-016-0461-x |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials PROQUEST Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (Proquest) ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database (Proquest) Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Technology Research Database Computer Science Database |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1573-0409 |
| EndPage | 680 |
| ExternalDocumentID | 4322014615 10_1007_s10846_016_0461_x |
| GrantInformation_xml | – fundername: Horizon 2020 grantid: 645220 funderid: http://dx.doi.org/10.13039/501100007601 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29K 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJKR AAJSJ AAKKN AANZL AARHV AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABEEZ ABFTD ABFTV ABHLI ABHQN ABIVO ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMOR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACACY ACBXY ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACULB ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFGXO AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ C24 C6C CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW L6V LAK LLZTM M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P62 P9P PF0 PQQKQ PROAC PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8S Z8T Z8W Z92 ZMTXR _50 ~A9 ~EX AAFWJ AASML AAYXX ABDBE ABFSG ACSTC ADHKG AEZWR AFHIU AGQPQ AHPBZ AHWEU AIXLP AYFIA CITATION ICD PHGZM PHGZT PQGLB PUEGO 7SC 7SP 7TB 7XB 8AL 8FD 8FK FR3 JQ2 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U F28 |
| ID | FETCH-LOGICAL-c454t-a280f12ee6927f0272870993a648b97281c6d8b607dfd804033483b575570ed3 |
| IEDL.DBID | U2A |
| ISSN | 0921-0296 |
| IngestDate | Thu Oct 02 10:53:11 EDT 2025 Sat Oct 18 23:06:19 EDT 2025 Wed Oct 01 02:39:03 EDT 2025 Thu Apr 24 23:11:40 EDT 2025 Fri Feb 21 02:35:17 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3-4 |
| Keywords | Minimum coverage paths Terrain sub-division Complete coverage mCPP Multi-robots |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c454t-a280f12ee6927f0272870993a648b97281c6d8b607dfd804033483b575570ed3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 1892125676 |
| PQPubID | 326251 |
| PageCount | 18 |
| ParticipantIDs | proquest_miscellaneous_1904221015 proquest_journals_1892125676 crossref_primary_10_1007_s10846_016_0461_x crossref_citationtrail_10_1007_s10846_016_0461_x springer_journals_10_1007_s10846_016_0461_x |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-06-01 |
| PublicationDateYYYYMMDD | 2017-06-01 |
| PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | with a special section on Unmanned Systems |
| PublicationTitle | Journal of intelligent & robotic systems |
| PublicationTitleAbbrev | J Intell Robot Syst |
| PublicationYear | 2017 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | GoldbergKRobotics: countering singularity sensationalismNature2015526757332032110.1038/526320a Tarjan, R.E.: Data Structures and Network Algorithms, vol. 14. SIAM (1983) Butler, Z.J., Rizzi, A.A., Hollis, R.L.: Contact sensor-based coverage of rectilinear environments. In: Proceedings of the 1999 IEEE International Symposium on Intelligent Control/Intelligent Systems and Semiotics, 1999, pp 266–271. IEEE (1999) Mixed integer linear programming (milp) solver, software. http://lpsolve.sourceforge.net/. Accessed: 2016-4-1 LloydSPLeast squares quantization in pcmIEEE Trans. Inf. Theory19822821291376518070504.9401510.1109/TIT.1982.1056489 XuYYinWA block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completionSIAM J. Imag. Sci.2013631758178931057871280.4904210.1137/120887795 irobot web site. http://www.irobot.com. Accessed: 2016-4-1 Ollis, M., Stentz, A.: Vision-based perception for an automated harvester. In: Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robots and Systems, 1997. IROS’97, vol. 3, pp 1838–1844. IEEE (1997) PuigDGarcíaMAWuLA new global optimization strategy for coordinated multi-robot exploration: development and comparative evaluationRobot. Auton. Syst.201159963565310.1016/j.robot.2011.05.004 The area partitioning problem. In: Proceedings of the 12th Canadian Conference on Computational Geometry, Fredericton, New Brunswick, Canada (2000) DuQEmelianenkoMJuLConvergence of the lloyd algorithm for computing centroidal voronoi tessellationsSIAM J. Numer. Anal.200644110211922173741115.6501710.1137/040617364 GabrielyYRimonESpanning-tree based coverage of continuous areas by a mobile robotAnn. Math. Artif. Intell.2001311-477981314.6831810.1023/A:1016610507833 Yao, Z.: Finding efficient robot path for the complete coverage of a known space. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 3369–3374. IEEE (2006) SchwagerMRusDSlotineJ-JDecentralized, adaptive coverage control for networked robotsInt. J. Robot. Res.200928335737510.1177/0278364908100177 XuAViriyasutheeCRekleitisIEfficient complete coverage of a known arbitrary environment with applications to aerial operationsAuton. Robot.201436436538110.1007/s10514-013-9364-x Zheng, X., Jain, S., Koenig, S., Kempe, D.: Multi-robot forest coverage. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005. (IROS 2005). 2005, pp 3852–3857. IEEE (2005) Kapoutsis, A., Chatzichristofis, S.A., Doitsidis, L., de Sousa, J.B., Kosmatopoulos, E.B., et al.: Autonomous navigation of teams of unmanned aerial or underwater vehicles for exploration of unknown static & dynamic environments. In: 21st Mediterranean Conference on Control & Automation (MED), 2013, pp 1181–1188. IEEE (2013) Agmon, N., Hazon, N., Kaminka, G., et al.: Constructing spanning trees for efficient multi-robot coverage. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006, pp 1698–1703. IEEE (2006) BarrientosAColoradoJdel CerroJMartinezARossiCSanzDValenteJAerial remote sensing in agriculture: a practical approach to area coverage and path planning for fleets of mini aerial robotsJ. Field Rob.201128566768910.1002/rob.20403 ElmaliachYAgmonNKaminkaGAMulti-robot area patrol under frequency constraintsAnn. Math. Artif. Intell.2009573-429332026715741253.6831710.1007/s10472-010-9193-y MoloneyDSuarezODA vision for the future [soapbox]IEEE Consumer Electronics Magazine201542404510.1109/MCE.2015.2392956 Acar, E., Zhang, Y., Choset, H., Schervish, M., Costa, A.G., Melamud, R., Lean, D.C., Graveline, A.: Path planning for robotic demining and development of a test platform. In: International Conference on Field and Service Robotics, vol. 1, pp 161–168 (2001) Bernardine DiasMZlotRKalraNStentzAMarket-based multirobot coordination: a survey and analysisProc. IEEE20069471257127010.1109/JPROC.2006.876939 NandakumarRRamana RaoNFair partitions of polygons: an elementary introductionProc. Math. Sci.2012122345946729726651260.5201310.1007/s12044-012-0076-5 DurhamJWCarliRFrascaPBulloFDiscrete partitioning and coverage control for gossiping robotsIEEE Trans. Robot.201228236437810.1109/TRO.2011.2170753 AurenhammerFVoronoi diagrams—a survey of a fundamental geometric data structureACM Comput. Surv. (CSUR)199123334540510.1145/116873.116880 CortésJCoverage optimization and spatial load balancing by robotic sensor networksIEEE Trans. Autom. Control2010553749754265484410.1109/TAC.2010.2040495 GalceranECarrerasMA survey on coverage path planning for roboticsRobot. Auton. Syst.201361121258127610.1016/j.robot.2013.09.004 Hazon, N., Kaminka, G., et al.: Redundancy, efficiency and robustness in multi-robot coverage. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005. ICRA 2005, pp 735–741. IEEE (2005) KapoutsisAChChatzichristofisSADoitsidisLde SousaJBPintoJBragaJKosmatopoulosEBReal-time adaptive multi-robot exploration with application to underwater map constructionAuton. Robot.2016406987101510.1007/s10514-015-9510-8 Apostolopoulos, D.S., Pedersen, L., Shamah, B.N., Shillcutt, K., Wagner, M.D., Whittaker, W.L.: Robotic antarctic meteorite search: outcomes. In: IEEE International Conference on Robotics and Automation, 2001. Proceedings 2001 ICRA, vol. 4, pp 4174–4179. IEEE (2001) Breitenmoser, A., Schwager, M., Metzger, J.-C., Siegwart, R., Rus, D.: Voronoi coverage of non-convex environments with a group of networked robots. In: IEEE International Conference on Robotics and Automation (ICRA), 2010, pp 4982–4989. IEEE (2010) Maza, I., Ollero, A.: Multiple uav cooperative searching operation using polygon area decomposition and efficient coverage algorithms. In: Distributed Autonomous Robotic Systems 6, pp 221–230. Springer (2007) Rubinstein, A.: Perfect equilibrium in a bargaining model. Econometrica: Journal of the Econometric Society, 97–109 (1982) Scaramuzza, D., Achtelik, M.C., Doitsidis, L., Fraundorfer, F., Kosmatopoulos, E.B., Martinelli, A., Achtelik, M.W., Chli, M., Chatzichristofis, S.A., Kneip, L., et al.: Vision-controlled micro flying robots: from system design to autonomous navigation and mapping in gps-denied environments. IEEE Robot. Autom. Mag., 1–10 (2014) Waharte, S., Trigoni, N.: Supporting search and rescue operations with uavs. In: International Conference on Emerging Security Technologies (EST), 2010, pp 142–147. IEEE (2010) Cortes, J., Martinez, S., Karatas, T., Bullo, F.: Coverage control for mobile sensing networks. In: IEEE International Conference on Robotics and Automation, 2002. Proceedings. ICRA’02, vol. 2, pp 1327–1332. IEEE (2002) WrightSJCoordinate descent algorithmsMath. Program.2015151133433475481317.4903810.1007/s10107-015-0892-3 ChosetHCoverage for robotics–a survey of recent resultsAnn. Math. Artif. Intell.2001311–41131261314.6831710.1023/A:1016639210559 461_CR28 SP Lloyd (461_CR24) 1982; 28 H Choset (461_CR11) 2001; 31 461_CR25 M Bernardine Dias (461_CR14) 2006; 94 SJ Wright (461_CR35) 2015; 151 Y Xu (461_CR37) 2013; 6 461_CR9 A Barrientos (461_CR8) 2011; 28 R Nandakumar (461_CR27) 2012; 122 461_CR31 461_CR30 M Schwager (461_CR32) 2009; 28 461_CR1 461_CR33 461_CR2 461_CR10 461_CR3 F Aurenhammer (461_CR7) 1991; 23 461_CR4 461_CR5 461_CR6 461_CR39 ACh Kapoutsis (461_CR23) 2016; 40 461_CR38 K Goldberg (461_CR20) 2015; 526 JW Durham (461_CR16) 2012; 28 461_CR13 461_CR34 E Galceran (461_CR19) 2013; 61 J Cortés (461_CR12) 2010; 55 D Moloney (461_CR26) 2015; 4 Q Du (461_CR15) 2006; 44 A Xu (461_CR36) 2014; 36 Y Elmaliach (461_CR17) 2009; 57 Y Gabriely (461_CR18) 2001; 31 D Puig (461_CR29) 2011; 59 461_CR22 461_CR21 |
| References_xml | – reference: NandakumarRRamana RaoNFair partitions of polygons: an elementary introductionProc. Math. Sci.2012122345946729726651260.5201310.1007/s12044-012-0076-5 – reference: Tarjan, R.E.: Data Structures and Network Algorithms, vol. 14. SIAM (1983) – reference: Maza, I., Ollero, A.: Multiple uav cooperative searching operation using polygon area decomposition and efficient coverage algorithms. In: Distributed Autonomous Robotic Systems 6, pp 221–230. Springer (2007) – reference: MoloneyDSuarezODA vision for the future [soapbox]IEEE Consumer Electronics Magazine201542404510.1109/MCE.2015.2392956 – reference: GoldbergKRobotics: countering singularity sensationalismNature2015526757332032110.1038/526320a – reference: Yao, Z.: Finding efficient robot path for the complete coverage of a known space. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 3369–3374. IEEE (2006) – reference: XuYYinWA block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completionSIAM J. Imag. Sci.2013631758178931057871280.4904210.1137/120887795 – reference: Rubinstein, A.: Perfect equilibrium in a bargaining model. Econometrica: Journal of the Econometric Society, 97–109 (1982) – reference: XuAViriyasutheeCRekleitisIEfficient complete coverage of a known arbitrary environment with applications to aerial operationsAuton. Robot.201436436538110.1007/s10514-013-9364-x – reference: Bernardine DiasMZlotRKalraNStentzAMarket-based multirobot coordination: a survey and analysisProc. IEEE20069471257127010.1109/JPROC.2006.876939 – reference: GalceranECarrerasMA survey on coverage path planning for roboticsRobot. Auton. Syst.201361121258127610.1016/j.robot.2013.09.004 – reference: Zheng, X., Jain, S., Koenig, S., Kempe, D.: Multi-robot forest coverage. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005. (IROS 2005). 2005, pp 3852–3857. IEEE (2005) – reference: Acar, E., Zhang, Y., Choset, H., Schervish, M., Costa, A.G., Melamud, R., Lean, D.C., Graveline, A.: Path planning for robotic demining and development of a test platform. In: International Conference on Field and Service Robotics, vol. 1, pp 161–168 (2001) – reference: ElmaliachYAgmonNKaminkaGAMulti-robot area patrol under frequency constraintsAnn. Math. Artif. Intell.2009573-429332026715741253.6831710.1007/s10472-010-9193-y – reference: WrightSJCoordinate descent algorithmsMath. Program.2015151133433475481317.4903810.1007/s10107-015-0892-3 – reference: Apostolopoulos, D.S., Pedersen, L., Shamah, B.N., Shillcutt, K., Wagner, M.D., Whittaker, W.L.: Robotic antarctic meteorite search: outcomes. In: IEEE International Conference on Robotics and Automation, 2001. Proceedings 2001 ICRA, vol. 4, pp 4174–4179. IEEE (2001) – reference: Cortes, J., Martinez, S., Karatas, T., Bullo, F.: Coverage control for mobile sensing networks. In: IEEE International Conference on Robotics and Automation, 2002. Proceedings. ICRA’02, vol. 2, pp 1327–1332. IEEE (2002) – reference: Hazon, N., Kaminka, G., et al.: Redundancy, efficiency and robustness in multi-robot coverage. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005. ICRA 2005, pp 735–741. IEEE (2005) – reference: GabrielyYRimonESpanning-tree based coverage of continuous areas by a mobile robotAnn. Math. Artif. Intell.2001311-477981314.6831810.1023/A:1016610507833 – reference: Mixed integer linear programming (milp) solver, software. http://lpsolve.sourceforge.net/. Accessed: 2016-4-1 – reference: Butler, Z.J., Rizzi, A.A., Hollis, R.L.: Contact sensor-based coverage of rectilinear environments. In: Proceedings of the 1999 IEEE International Symposium on Intelligent Control/Intelligent Systems and Semiotics, 1999, pp 266–271. IEEE (1999) – reference: irobot web site. http://www.irobot.com. Accessed: 2016-4-1 – reference: DuQEmelianenkoMJuLConvergence of the lloyd algorithm for computing centroidal voronoi tessellationsSIAM J. Numer. Anal.200644110211922173741115.6501710.1137/040617364 – reference: PuigDGarcíaMAWuLA new global optimization strategy for coordinated multi-robot exploration: development and comparative evaluationRobot. Auton. Syst.201159963565310.1016/j.robot.2011.05.004 – reference: Agmon, N., Hazon, N., Kaminka, G., et al.: Constructing spanning trees for efficient multi-robot coverage. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006, pp 1698–1703. IEEE (2006) – reference: Kapoutsis, A., Chatzichristofis, S.A., Doitsidis, L., de Sousa, J.B., Kosmatopoulos, E.B., et al.: Autonomous navigation of teams of unmanned aerial or underwater vehicles for exploration of unknown static & dynamic environments. In: 21st Mediterranean Conference on Control & Automation (MED), 2013, pp 1181–1188. IEEE (2013) – reference: Waharte, S., Trigoni, N.: Supporting search and rescue operations with uavs. In: International Conference on Emerging Security Technologies (EST), 2010, pp 142–147. IEEE (2010) – reference: SchwagerMRusDSlotineJ-JDecentralized, adaptive coverage control for networked robotsInt. J. Robot. Res.200928335737510.1177/0278364908100177 – reference: Scaramuzza, D., Achtelik, M.C., Doitsidis, L., Fraundorfer, F., Kosmatopoulos, E.B., Martinelli, A., Achtelik, M.W., Chli, M., Chatzichristofis, S.A., Kneip, L., et al.: Vision-controlled micro flying robots: from system design to autonomous navigation and mapping in gps-denied environments. IEEE Robot. Autom. Mag., 1–10 (2014) – reference: CortésJCoverage optimization and spatial load balancing by robotic sensor networksIEEE Trans. Autom. Control2010553749754265484410.1109/TAC.2010.2040495 – reference: AurenhammerFVoronoi diagrams—a survey of a fundamental geometric data structureACM Comput. Surv. (CSUR)199123334540510.1145/116873.116880 – reference: ChosetHCoverage for robotics–a survey of recent resultsAnn. Math. Artif. Intell.2001311–41131261314.6831710.1023/A:1016639210559 – reference: LloydSPLeast squares quantization in pcmIEEE Trans. Inf. Theory19822821291376518070504.9401510.1109/TIT.1982.1056489 – reference: Breitenmoser, A., Schwager, M., Metzger, J.-C., Siegwart, R., Rus, D.: Voronoi coverage of non-convex environments with a group of networked robots. In: IEEE International Conference on Robotics and Automation (ICRA), 2010, pp 4982–4989. IEEE (2010) – reference: Ollis, M., Stentz, A.: Vision-based perception for an automated harvester. In: Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robots and Systems, 1997. IROS’97, vol. 3, pp 1838–1844. IEEE (1997) – reference: BarrientosAColoradoJdel CerroJMartinezARossiCSanzDValenteJAerial remote sensing in agriculture: a practical approach to area coverage and path planning for fleets of mini aerial robotsJ. Field Rob.201128566768910.1002/rob.20403 – reference: KapoutsisAChChatzichristofisSADoitsidisLde SousaJBPintoJBragaJKosmatopoulosEBReal-time adaptive multi-robot exploration with application to underwater map constructionAuton. Robot.2016406987101510.1007/s10514-015-9510-8 – reference: DurhamJWCarliRFrascaPBulloFDiscrete partitioning and coverage control for gossiping robotsIEEE Trans. Robot.201228236437810.1109/TRO.2011.2170753 – reference: The area partitioning problem. In: Proceedings of the 12th Canadian Conference on Computational Geometry, Fredericton, New Brunswick, Canada (2000) – ident: 461_CR34 doi: 10.1109/EST.2010.31 – volume: 40 start-page: 987 issue: 6 year: 2016 ident: 461_CR23 publication-title: Auton. Robot. doi: 10.1007/s10514-015-9510-8 – ident: 461_CR10 doi: 10.1109/ISIC.1999.796666 – volume: 23 start-page: 345 issue: 3 year: 1991 ident: 461_CR7 publication-title: ACM Comput. Surv. (CSUR) doi: 10.1145/116873.116880 – ident: 461_CR5 doi: 10.1109/ROBOT.2006.1641951 – volume: 28 start-page: 364 issue: 2 year: 2012 ident: 461_CR16 publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2011.2170753 – volume: 28 start-page: 667 issue: 5 year: 2011 ident: 461_CR8 publication-title: J. Field Rob. doi: 10.1002/rob.20403 – volume: 28 start-page: 129 issue: 2 year: 1982 ident: 461_CR24 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1982.1056489 – ident: 461_CR39 – volume: 31 start-page: 113 issue: 1–4 year: 2001 ident: 461_CR11 publication-title: Ann. Math. Artif. Intell. doi: 10.1023/A:1016639210559 – volume: 31 start-page: 77 issue: 1-4 year: 2001 ident: 461_CR18 publication-title: Ann. Math. Artif. Intell. doi: 10.1023/A:1016610507833 – ident: 461_CR3 – volume: 6 start-page: 1758 issue: 3 year: 2013 ident: 461_CR37 publication-title: SIAM J. Imag. Sci. doi: 10.1137/120887795 – ident: 461_CR38 doi: 10.1109/IROS.2006.282514 – ident: 461_CR9 doi: 10.1109/ROBOT.2010.5509696 – ident: 461_CR28 doi: 10.1109/IROS.1997.656612 – ident: 461_CR1 – ident: 461_CR13 doi: 10.1109/ROBOT.2002.1014727 – volume: 94 start-page: 1257 issue: 7 year: 2006 ident: 461_CR14 publication-title: Proc. IEEE doi: 10.1109/JPROC.2006.876939 – volume: 44 start-page: 102 issue: 1 year: 2006 ident: 461_CR15 publication-title: SIAM J. Numer. Anal. doi: 10.1137/040617364 – volume: 4 start-page: 40 issue: 2 year: 2015 ident: 461_CR26 publication-title: IEEE Consumer Electronics Magazine doi: 10.1109/MCE.2015.2392956 – volume: 36 start-page: 365 issue: 4 year: 2014 ident: 461_CR36 publication-title: Auton. Robot. doi: 10.1007/s10514-013-9364-x – ident: 461_CR6 doi: 10.1109/ROBOT.2001.933270 – ident: 461_CR25 doi: 10.1007/978-4-431-35873-2_22 – volume: 151 start-page: 3 issue: 1 year: 2015 ident: 461_CR35 publication-title: Math. Program. doi: 10.1007/s10107-015-0892-3 – volume: 61 start-page: 1258 issue: 12 year: 2013 ident: 461_CR19 publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2013.09.004 – ident: 461_CR21 doi: 10.1109/ROBOT.2005.1570205 – ident: 461_CR33 doi: 10.1137/1.9781611970265 – volume: 55 start-page: 749 issue: 3 year: 2010 ident: 461_CR12 publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2010.2040495 – volume: 526 start-page: 320 issue: 7573 year: 2015 ident: 461_CR20 publication-title: Nature doi: 10.1038/526320a – ident: 461_CR22 doi: 10.1109/MED.2013.6608870 – volume: 122 start-page: 459 issue: 3 year: 2012 ident: 461_CR27 publication-title: Proc. Math. Sci. doi: 10.1007/s12044-012-0076-5 – volume: 57 start-page: 293 issue: 3-4 year: 2009 ident: 461_CR17 publication-title: Ann. Math. Artif. Intell. doi: 10.1007/s10472-010-9193-y – volume: 59 start-page: 635 issue: 9 year: 2011 ident: 461_CR29 publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2011.05.004 – ident: 461_CR4 – ident: 461_CR2 – volume: 28 start-page: 357 issue: 3 year: 2009 ident: 461_CR32 publication-title: Int. J. Robot. Res. doi: 10.1177/0278364908100177 – ident: 461_CR30 doi: 10.2307/1912531 – ident: 461_CR31 doi: 10.1109/MRA.2014.2322295 |
| SSID | ssj0009859 |
| Score | 2.5156584 |
| Snippet | This paper deals with the path planning problem of a team of mobile robots, in order to cover an area of interest, with prior-defined obstacles. For the single... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 663 |
| SubjectTerms | Algorithms Artificial Intelligence Complexity Control Electrical Engineering Engineering Mathematical analysis Mathematical models Mechanical Engineering Mechatronics Optimization Path planning Polynomials Robotics Robots |
| SummonAdditionalLinks | – databaseName: PROQUEST dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZS8QwEB50fdEHb3G9iOCTEmxim7aCyHohiuuyKPhWkjTVB916VPDnO9NtXBX0seSimcyRzMw3AFs21ZYcYNxiMw9tWnAjbM6lMloaJYWti01cddX5bXhxF92NQdfnwlBYpZeJtaDOS0tv5LsiSVHKRipWh88vnKpGkXfVl9DQTWmF_KCGGBuHCUnIWC2YODrt9vojGN4kGqLvSbxEy1R5P-cwmQ51MV6tFYU7Cv7xU1ONzM9fHtNaEZ3NwnRjQbLOkORzMOYG8zDjqzOwhlnnYeob1OACXJ50-r19dkLZVw4HO_3GOo_3-IfVwxNDy5Vdo_B4wonrlFzeL01ZsWMK8ESJw3poKDJf4GgRbs5Ob47PeVNIgdswCiuuZRIUQjqnUhkXeBEl7yYaJlqFiUnxS1iVJ0YFcV7kCbI1pefuGbTkojhw-d4StAblwC0DK6QUTpsitLkInUXzsLDO2DRAssZayDYEfs8y24CMU62Lx2wEj0zbnFFgGW1z9tGG7a8hz0OEjf86r3lCZA2zvWWjo9GGza9mZBPyfeiBK9-xT0pgZyh_ojbseAJ-m-KvBVf-X3AVJiXp-fpZZg1a1eu7W0crpTIbzdH7BAOI4bI priority: 102 providerName: ProQuest |
| Title | DARP: Divide Areas Algorithm for Optimal Multi-Robot Coverage Path Planning |
| URI | https://link.springer.com/article/10.1007/s10846-016-0461-x https://www.proquest.com/docview/1892125676 https://www.proquest.com/docview/1904221015 |
| Volume | 86 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-0409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-0409 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-0409 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1573-0409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: AAJSJ dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-0409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-0409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB58XPTgoypGa1nBk7KQ3SabxFvsQ7FYS6mgp5DdbPSgidgK_nxn06StooKnEPYRmNmZ-TbzAjhRQayMA4wqHKaOClIqmUooFzLmUnCmimYTN31xdedc37v3ZR73uIp2r1yShaZeSHZDW4lXX2HCERlF4LjqmmpeeIjveDivtOu70wJ7HO_JPBCVK_OnLb4aoznC_OYULWxNdws2SpBIwilXt2FJZzXYrBowkFIea7C-UE1wB3rtcDg4J22TYKVxsY7HJHx-zPH6__RCEJySW9QPL7hxkXVLh7nMJ6RlYjhRqZABYkFS9TDahVG3M2pd0bJXAlWO60xozH07ZVxrEXAvxbumcWAi9oiF48sA35gSiS-F7SVp4qPkmgzcpkSw5nq2Tpp7sJLlmd4HknLOdCxTRyXM0QopnCotVWAj57yYcQvsimaRKuuIm3YWz9G8ArIhc2RixwyZow8LTmdLXqdFNP6aXK8YEZXyNI6Yj-xEdOYJC45nwygJxr0RZzp_xzmBqWeGKsa14Kxi4MIWv33w4F-zD2GNG8te_Iipw8rk7V0fIS6ZyAYs-93LBqyGlw-9Dj4vOv3BsFGczk9Y8tw- |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTxQxFH9BOCgHRdSw8lUSvWgap91OZ2pCzMJCFhbWzWZNuE3aTkcPsIPuEPCP83_zdXbKIoncOE46bZPX1_fR9_EDeGeVtj4ARi0OU2FVQQ2zOeXSaG4kZ7YGmzgdyN43cXwWny3An1AL49Mqg0ysBXVeWv9G_omlCqVsLBP55fIn9ahRProaIDR0A62Q79YtxprCjr77fY0u3HT3qIvn_Z7zw4Pxfo82KAPUilhUVPM0Khh3TiqeFOil-dAfam0tRWoUfjEr89TIKMmLPEWe97WrbYNmTpxELm_jsk9gSbSFQt9vae9gMBzNu_6m8azZH0efnSsZwqqz2j1U_ejJS59dyejNv4pxbu3eC9DWeu9wBZ43BivpzDjsJSy4ySq8CGAQpJENq7B8p7PhK-h3O6PhZ9L1xV4OJzs9JZ3z70jQ6scFQUOZfEVZdYEL1xXAdFSasiL7Pp8UBRwZol1KAp7Saxg_BkXfwOKknLg1IAXnzGlTCJsz4Sxao4V1xqoIuSjRjLcgCjTLbNPT3ENrnGfzbsyezJnPY_Nkzm5a8OF2yuWsocdDP2-Eg8iauz3N5pzYgp3bYbyVPtSiJ668wn-U762G4i5uwcdwgHeW-N-Gbx_ecBue9sanJ9nJ0aC_Ds-4NzHqF6ENWKx-XblNNJAqs9WwIYHskRn_L0YFG0E |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4BlSp6aMtLbHkZiV5AFrFJnKRSVa1Ylse2sEIgcYtixykH2AAbBPy0_rvOJDELSHDjGDm2pfHneXheAGsmTg05wLjBYe6bOOdamIxLpVOplRSmajbx51DtnfoHZ8HZGPxzuTAUVul4YsWos8LQG_mmiGLksoEK1WbehEX0O91fV9ecOkiRp9W106gh0rMPd2i-DX_ud_Csv0vZ3TnZ3uNNhwFu_MAveSojLxfSWhXLMEcLjdx-KLFT5Uc6xi9hVBZp5YVZnkWId8pb3dKo4gShZ7MtXHYcPoRUxJ2S1Lu7o3q_UVCX-ZNorctYOYdqnbWHQh9teEVxlYLfPxeJIz33hWu2knjdr_C5UVVZu8bWFIzZwTR8cW0gWMMVpuHTk5qGM9DrtI_7P1iH0rwsTrbpkLUv_iL5yvNLhioyO0IudYkLV7m__LjQRcm2KZIUWRvro0bKXCelWTh5D3rOwcSgGNh5YLmUwqY6900mfGtQD82N1Sb2ED9hKmQLPEezxDTVzKmpxkUyqsNMZE4ogo3InNy3YP1xylVdyuOtnxfdQSTNrR4mIwy2YPVxGO8jOVnSgS1u8Z-YqqohowtasOEO8MkSr2347e0NV-Ajwj35vX_YW4BJSbpF9RS0CBPlza1dQs2o1MsVBhkk74z5_2TeGNs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DARP%3A+Divide+Areas+Algorithm+for+Optimal+Multi-Robot+Coverage+Path+Planning&rft.jtitle=Journal+of+intelligent+%26+robotic+systems&rft.au=Kapoutsis%2C+Athanasios+Ch&rft.au=Chatzichristofis%2C+Savvas+A.&rft.au=Kosmatopoulos%2C+Elias+B.&rft.date=2017-06-01&rft.pub=Springer+Netherlands&rft.issn=0921-0296&rft.eissn=1573-0409&rft.volume=86&rft.issue=3-4&rft.spage=663&rft.epage=680&rft_id=info:doi/10.1007%2Fs10846-016-0461-x&rft.externalDocID=10_1007_s10846_016_0461_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-0296&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-0296&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-0296&client=summon |