NLRP3 Inflammasome as a Therapeutic Target for Atherosclerosis: A Focus on Potassium Outflow
Atherosclerosis is a risk factor for various cardiovascular diseases, and is linked to high rates of morbidity and mortality across the globe. Although numerous complex processes are involved in the development and progression of atherosclerosis, the exact mechanisms behind its pathogenesis remain u...
Saved in:
Published in | Reviews in cardiovascular medicine Vol. 23; no. 8; p. 268 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
IMR Press
01.08.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1530-6550 2153-8174 2153-8174 1530-6550 |
DOI | 10.31083/j.rcm2308268 |
Cover
Abstract | Atherosclerosis is a risk factor for various cardiovascular diseases, and is linked to high rates of morbidity and mortality across the globe. Although numerous complex processes are involved in the development and progression of atherosclerosis, the exact mechanisms behind its pathogenesis remain unclear. Inflammation and endothelial cell damage exert a lasting effect on atherosclerosis, causing lipid and fibrous tissue accumulation in the intima of the artery to form plaques, and subsequently promoting atherosclerosis. Nod-like receptor protein 3 (NLRP3) inflammatory corpuscle is thought to be the link between lipid metabolism and inflammation. Long Potassium outflow is a vital activator of NLRP3, with a simultaneous effect as a start-up and adjustment. The majority of existing drugs for atherosclerosis targeting the NLRP3 signaling pathway target IL-1, whereas drugs targeting the critical link of potassium efflux are relatively new. This review discusses the NLRP3 inflammatory corpuscle as a critical regulator of the immunological inflammatory pathway in atherosclerosis. Moreover, current knowledge on NLRP3 inflammatory corpuscle start and activation pathways were integrated, emphasizing potassium-involved outflow-related proteins. We highlight potential treatment approaches for NLRP3 inflammatory corpuscle pathways, specifically targeting potassium outflow channels of targeted drugs. Collectively, these insights indicate that targeting the NLRP3 inflammatory corpuscle is a vital anti-inflammatory therapy for treating atherosclerosis. |
---|---|
AbstractList | Atherosclerosis is a risk factor for various cardiovascular diseases, and is linked to high rates of morbidity and mortality across the globe. Although numerous complex processes are involved in the development and progression of atherosclerosis, the exact mechanisms behind its pathogenesis remain unclear. Inflammation and endothelial cell damage exert a lasting effect on atherosclerosis, causing lipid and fibrous tissue accumulation in the intima of the artery to form plaques, and subsequently promoting atherosclerosis. Nod-like receptor protein 3 (
) inflammatory corpuscle is thought to be the link between lipid metabolism and inflammation. Long Potassium outflow is a vital activator of
, with a simultaneous effect as a start-up and adjustment. The majority of existing drugs for atherosclerosis targeting the
signaling pathway target IL-1, whereas drugs targeting the critical link of potassium efflux are relatively new. This review discusses the
inflammatory corpuscle as a critical regulator of the immunological inflammatory pathway in atherosclerosis. Moreover, current knowledge on
inflammatory corpuscle start and activation pathways were integrated, emphasizing potassium-involved outflow-related proteins. We highlight potential treatment approaches for
inflammatory corpuscle pathways, specifically targeting potassium outflow channels of targeted drugs. Collectively, these insights indicate that targeting the
inflammatory corpuscle is a vital anti-inflammatory therapy for treating atherosclerosis. Atherosclerosis is a risk factor for various cardiovascular diseases, and is linked to high rates of morbidity and mortality across the globe. Although numerous complex processes are involved in the development and progression of atherosclerosis, the exact mechanisms behind its pathogenesis remain unclear. Inflammation and endothelial cell damage exert a lasting effect on atherosclerosis, causing lipid and fibrous tissue accumulation in the intima of the artery to form plaques, and subsequently promoting atherosclerosis. Nod-like receptor protein 3 ( NLRP3 ) inflammatory corpuscle is thought to be the link between lipid metabolism and inflammation. Long Potassium outflow is a vital activator of NLRP3 , with a simultaneous effect as a start-up and adjustment. The majority of existing drugs for atherosclerosis targeting the NLRP3 signaling pathway target IL-1, whereas drugs targeting the critical link of potassium efflux are relatively new. This review discusses the NLRP3 inflammatory corpuscle as a critical regulator of the immunological inflammatory pathway in atherosclerosis. Moreover, current knowledge on NLRP3 inflammatory corpuscle start and activation pathways were integrated, emphasizing potassium-involved outflow-related proteins. We highlight potential treatment approaches for NLRP3 inflammatory corpuscle pathways, specifically targeting potassium outflow channels of targeted drugs. Collectively, these insights indicate that targeting the NLRP3 inflammatory corpuscle is a vital anti-inflammatory therapy for treating atherosclerosis. Atherosclerosis is a risk factor for various cardiovascular diseases, and is linked to high rates of morbidity and mortality across the globe. Although numerous complex processes are involved in the development and progression of atherosclerosis, the exact mechanisms behind its pathogenesis remain unclear. Inflammation and endothelial cell damage exert a lasting effect on atherosclerosis, causing lipid and fibrous tissue accumulation in the intima of the artery to form plaques, and subsequently promoting atherosclerosis. Nod-like receptor protein 3 (NLRP3) inflammatory corpuscle is thought to be the link between lipid metabolism and inflammation. Long Potassium outflow is a vital activator of NLRP3, with a simultaneous effect as a start-up and adjustment. The majority of existing drugs for atherosclerosis targeting the NLRP3 signaling pathway target IL-1, whereas drugs targeting the critical link of potassium efflux are relatively new. This review discusses the NLRP3 inflammatory corpuscle as a critical regulator of the immunological inflammatory pathway in atherosclerosis. Moreover, current knowledge on NLRP3 inflammatory corpuscle start and activation pathways were integrated, emphasizing potassium-involved outflow-related proteins. We highlight potential treatment approaches for NLRP3 inflammatory corpuscle pathways, specifically targeting potassium outflow channels of targeted drugs. Collectively, these insights indicate that targeting the NLRP3 inflammatory corpuscle is a vital anti-inflammatory therapy for treating atherosclerosis. Atherosclerosis is a risk factor for various cardiovascular diseases, and is linked to high rates of morbidity and mortality across the globe. Although numerous complex processes are involved in the development and progression of atherosclerosis, the exact mechanisms behind its pathogenesis remain unclear. Inflammation and endothelial cell damage exert a lasting effect on atherosclerosis, causing lipid and fibrous tissue accumulation in the intima of the artery to form plaques, and subsequently promoting atherosclerosis. Nod-like receptor protein 3 (NLRP3) inflammatory corpuscle is thought to be the link between lipid metabolism and inflammation. Long Potassium outflow is a vital activator of NLRP3, with a simultaneous effect as a start-up and adjustment. The majority of existing drugs for atherosclerosis targeting the NLRP3 signaling pathway target IL-1, whereas drugs targeting the critical link of potassium efflux are relatively new. This review discusses the NLRP3 inflammatory corpuscle as a critical regulator of the immunological inflammatory pathway in atherosclerosis. Moreover, current knowledge on NLRP3 inflammatory corpuscle start and activation pathways were integrated, emphasizing potassium-involved outflow-related proteins. We highlight potential treatment approaches for NLRP3 inflammatory corpuscle pathways, specifically targeting potassium outflow channels of targeted drugs. Collectively, these insights indicate that targeting the NLRP3 inflammatory corpuscle is a vital anti-inflammatory therapy for treating atherosclerosis.Atherosclerosis is a risk factor for various cardiovascular diseases, and is linked to high rates of morbidity and mortality across the globe. Although numerous complex processes are involved in the development and progression of atherosclerosis, the exact mechanisms behind its pathogenesis remain unclear. Inflammation and endothelial cell damage exert a lasting effect on atherosclerosis, causing lipid and fibrous tissue accumulation in the intima of the artery to form plaques, and subsequently promoting atherosclerosis. Nod-like receptor protein 3 (NLRP3) inflammatory corpuscle is thought to be the link between lipid metabolism and inflammation. Long Potassium outflow is a vital activator of NLRP3, with a simultaneous effect as a start-up and adjustment. The majority of existing drugs for atherosclerosis targeting the NLRP3 signaling pathway target IL-1, whereas drugs targeting the critical link of potassium efflux are relatively new. This review discusses the NLRP3 inflammatory corpuscle as a critical regulator of the immunological inflammatory pathway in atherosclerosis. Moreover, current knowledge on NLRP3 inflammatory corpuscle start and activation pathways were integrated, emphasizing potassium-involved outflow-related proteins. We highlight potential treatment approaches for NLRP3 inflammatory corpuscle pathways, specifically targeting potassium outflow channels of targeted drugs. Collectively, these insights indicate that targeting the NLRP3 inflammatory corpuscle is a vital anti-inflammatory therapy for treating atherosclerosis. |
Author | Liu, Xin-Chen Jin, Yi-Jing Sun, Zhi-Xuan An, Zhuo-Yu |
AuthorAffiliation | 1 Peking University Health Science Center, 100191 Beijing, China 4 Peking University Third Hospital, 100191 Beijing, China 3 Peking University Institute of Hematology, Peking University People's Hospital, 100044 Beijing, China 2 Department of Cardiology, Peking University First Hospital, 100034 Beijing, China |
AuthorAffiliation_xml | – name: 3 Peking University Institute of Hematology, Peking University People's Hospital, 100044 Beijing, China – name: 4 Peking University Third Hospital, 100191 Beijing, China – name: 1 Peking University Health Science Center, 100191 Beijing, China – name: 2 Department of Cardiology, Peking University First Hospital, 100034 Beijing, China |
Author_xml | – sequence: 1 givenname: Yi-Jing surname: Jin fullname: Jin, Yi-Jing – sequence: 2 givenname: Zhuo-Yu surname: An fullname: An, Zhuo-Yu – sequence: 3 givenname: Zhi-Xuan surname: Sun fullname: Sun, Zhi-Xuan – sequence: 4 givenname: Xin-Chen surname: Liu fullname: Liu, Xin-Chen |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39076616$$D View this record in MEDLINE/PubMed |
BookMark | eNptkktv1DAUhS1URKeFJVvkJZsUvxOzQaOKlpFGtELDDslynOtpRkk82A6If1-30wJFbGzr-tzv6D5O0NEUJkDoNSVnnJKGv9udRTcyThqmmmdowajkVUNrcYQW5UkqJSU5Ricp7QjhTDb8BTrmmtRKUbVA3z6vv1xzvJr8YMfRpjACtglbvLmBaPcw597hjY1byNiHiJe5xENyw93Zp_d4iS-CmxMOE74O2abUzyO-mrMfws-X6Lm3Q4JXD_cp-nrxcXP-qVpfXa7Ol-vKCSlypXTbCe-t1o0mTLLadwC048RqolumpXJcq45wyb3SAlptQciOgPZMudrzU7Q6cLtgd2Yf-9HGXybY3twHQtwaG0shAxjbCu5K2xiptRC1bjmBznvQjfCOiqawPhxY-7kdoXMw5WiHJ9CnP1N_Y7bhh6GUKaWlLIS3D4QYvs-Qshn75GAY7ARhTqaMShEluGJF-uZvs98uj_MpAn4QuNLuFMEb12eb-3Dn3Q-GEnO_BWZn_mxByar-yXoE_19_C6K5tFQ |
CitedBy_id | crossref_primary_10_1007_s12035_025_04779_8 crossref_primary_10_1007_s12013_023_01166_9 crossref_primary_10_31083_j_rcm2411317 crossref_primary_10_1016_j_ejphar_2024_176338 |
Cites_doi | 10.1073/pnas.1100255108 10.1016/j.tibs.2016.09.002 10.14336/AD.2020.0601 10.1111/j.1476-5381.2011.01254.x 10.1038/s41392-021-00650-z 10.1038/s41419-019-1413-8 10.1038/nrcardio.2015.5 10.3389/fimmu.2020.609441 10.1016/j.neuron.2017.12.002 10.1016/j.tox.2018.09.002 10.1111/bph.14787 10.1155/2020/4293206 10.1085/jgp.201511505 10.1161/ATVBAHA.113.300156 10.1093/cvr/cvab010 10.1002/art.33355 10.1038/s41467-020-19939-8 10.1007/978-3-319-57613-8_7 10.1161/CIRCRESAHA.115.306301 10.1016/j.hlc.2013.01.012 10.1038/s41401-021-00739-9 10.1084/jem.20180589 10.1111/imr.12286 10.3389/fimmu.2019.02538 10.1016/j.intimp.2019.105776 10.1097/MCA.0000000000000255 10.1177/2047487319869400 10.1016/j.tcm.2019.01.004 10.5483/BMBRep.2020.53.11.179 10.3389/fcimb.2019.00406 10.1084/jem.20160462 10.1093/eurheartj/ehaa659 10.1523/JNEUROSCI.2235-12.2013 10.1038/nature15514 10.1016/j.fct.2021.112154 10.1016/j.coph.2019.03.001 10.1002/jcp.25930 10.1007/s11906-014-0431-2 10.1002/ptr.6252 10.3389/fimmu.2020.565924 10.1016/j.biopha.2019.108868 10.3390/ijms22136702 10.1038/nm.3804 10.1038/s41401-021-00835-w 10.1016/S0889-8529(03)00073-2 10.1093/eurheartj/ehab115 10.3390/ijms22020872 10.1242/jcs.207365 10.1016/j.cell.2016.05.076 10.1080/14740338.2022.2036717 10.3390/ijms22168833 10.1038/nature08938 10.1016/j.celrep.2017.02.004 10.1038/s41419-017-0257-3 10.4049/jimmunol.1600790 10.1038/nature15541 10.1016/j.coi.2016.10.007 10.1371/journal.pone.0087552 10.1146/annurev-immunol-031210-101405 10.1038/nature07965 10.1016/j.cell.2016.03.046 10.1016/j.immuni.2016.01.012 10.1038/nature16959 10.1038/nm.2279 10.1186/s12974-017-0997-0 10.3390/ijms18102034 10.1016/j.molimm.2020.03.020 10.1038/s41586-019-1295-z 10.1161/JAHA.115.003031 10.1038/nri2873 10.1083/jcb.200903124 10.1038/s41586-020-2357-y 10.1016/j.immuni.2009.02.005 10.1074/jbc.M610351200 10.3389/fphar.2015.00262 10.1038/s41572-019-0106-z 10.1126/science.aaf3036 10.1161/CIRCRESAHA.118.313816 10.1038/s41577-019-0165-0 10.1186/s12974-020-01948-5 10.1084/jem.20190314 10.1016/j.ebiom.2020.102985 10.1016/j.expneurol.2020.113399 10.1016/j.tcm.2018.01.008 10.3389/fphar.2018.00058 10.3390/ijms18081706 10.1016/j.immuni.2016.08.010 10.1016/j.atherosclerosis.2011.02.026 10.1016/j.atherosclerosis.2012.11.016 10.1016/j.autrev.2010.07.016 10.1016/j.immuni.2013.05.016 10.1038/srep22586 10.1016/j.coi.2018.03.010 10.1016/j.atherosclerosis.2008.04.046 10.1126/scitranslmed.3001902 10.1097/HJH.0000000000002678 10.1056/NEJMoa1912388 10.1161/CIRCRESAHA.118.313591 10.1056/NEJMoa1707914 10.3390/ijms20133328 10.3389/fphar.2021.639558 10.18632/oncotarget.13375 10.1016/j.immuni.2015.10.009 10.1155/2017/3578702 10.1016/j.coi.2015.01.007 10.1038/s41591-019-0675-0 10.1016/j.toxlet.2018.03.022 10.1038/s41586-021-03392-8 10.1016/j.jstrokecerebrovasdis.2015.03.024 10.1016/j.atherosclerosis.2017.12.027 |
ContentType | Journal Article |
Copyright | Copyright: © 2022 The Author(s). Published by IMR Press. Copyright: © 2022 The Author(s). Published by IMR Press. 2022 |
Copyright_xml | – notice: Copyright: © 2022 The Author(s). Published by IMR Press. – notice: Copyright: © 2022 The Author(s). Published by IMR Press. 2022 |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.31083/j.rcm2308268 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2153-8174 1530-6550 |
ExternalDocumentID | oai_doaj_org_article_ab43c08320794479b30edffe984fc148 PMC11266955 39076616 10_31083_j_rcm2308268 |
Genre | Journal Article Review |
GroupedDBID | --- 123 53G AAFWJ AAWTL AAYXX AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS CITATION EBD EMOBN F5P GROUPED_DOAJ HLU O-U OK1 PGMZT RPM SV3 TUS NPM 7X8 5PM |
ID | FETCH-LOGICAL-c454t-69bd4ffa998902527fdee1d30a909b2956c396d0353f694eb9ae45d0e9f26c7f3 |
IEDL.DBID | DOA |
ISSN | 1530-6550 2153-8174 |
IngestDate | Wed Aug 27 01:28:27 EDT 2025 Thu Aug 21 18:34:07 EDT 2025 Fri Jul 11 00:07:44 EDT 2025 Thu Apr 03 06:58:53 EDT 2025 Tue Jul 01 00:57:28 EDT 2025 Thu Apr 24 22:56:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | atherosclerosis potassium efflux therapeutic target NLRP3 inflammasome |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Copyright: © 2022 The Author(s). Published by IMR Press. This is an open access article under the CC BY 4.0 license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c454t-69bd4ffa998902527fdee1d30a909b2956c396d0353f694eb9ae45d0e9f26c7f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 These authors contributed equally. |
OpenAccessLink | https://doaj.org/article/ab43c08320794479b30edffe984fc148 |
PMID | 39076616 |
PQID | 3086064362 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ab43c08320794479b30edffe984fc148 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11266955 proquest_miscellaneous_3086064362 pubmed_primary_39076616 crossref_citationtrail_10_31083_j_rcm2308268 crossref_primary_10_31083_j_rcm2308268 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | Reviews in cardiovascular medicine |
PublicationTitleAlternate | Rev Cardiovasc Med |
PublicationYear | 2022 |
Publisher | IMR Press |
Publisher_xml | – name: IMR Press |
References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref13 ref12 ref15 ref14 ref97 ref96 ref11 ref99 ref10 ref98 ref17 ref16 ref19 ref18 ref93 ref92 ref95 ref94 ref91 ref90 ref89 ref86 ref85 ref88 ref87 ref82 ref81 ref84 ref83 ref80 ref79 ref108 ref78 ref109 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref2 ref1 ref71 ref111 ref70 ref112 ref73 ref72 ref110 ref68 ref67 ref69 ref64 ref63 ref66 ref113 ref65 ref60 ref62 ref61 |
References_xml | – ident: ref84 doi: 10.1073/pnas.1100255108 – ident: ref44 doi: 10.1016/j.tibs.2016.09.002 – ident: ref1 – ident: ref80 doi: 10.14336/AD.2020.0601 – ident: ref95 doi: 10.1111/j.1476-5381.2011.01254.x – ident: ref85 doi: 10.1038/s41392-021-00650-z – ident: ref110 doi: 10.1038/s41419-019-1413-8 – ident: ref23 doi: 10.1038/nrcardio.2015.5 – ident: ref46 doi: 10.3389/fimmu.2020.609441 – ident: ref55 doi: 10.1016/j.neuron.2017.12.002 – ident: ref69 doi: 10.1016/j.tox.2018.09.002 – ident: ref102 doi: 10.1111/bph.14787 – ident: ref72 doi: 10.1155/2020/4293206 – ident: ref103 doi: 10.1085/jgp.201511505 – ident: ref15 doi: 10.1161/ATVBAHA.113.300156 – ident: ref70 doi: 10.1093/cvr/cvab010 – ident: ref77 doi: 10.1002/art.33355 – ident: ref32 doi: 10.1038/s41467-020-19939-8 – ident: ref8 doi: 10.1007/978-3-319-57613-8_7 – ident: ref3 doi: 10.1161/CIRCRESAHA.115.306301 – ident: ref66 doi: 10.1016/j.hlc.2013.01.012 – ident: ref6 – ident: ref109 doi: 10.1038/s41401-021-00739-9 – ident: ref35 doi: 10.1084/jem.20180589 – ident: ref33 doi: 10.1111/imr.12286 – ident: ref86 doi: 10.3389/fimmu.2019.02538 – ident: ref107 doi: 10.1016/j.intimp.2019.105776 – ident: ref67 doi: 10.1097/MCA.0000000000000255 – ident: ref2 doi: 10.1177/2047487319869400 – ident: ref20 doi: 10.1016/j.tcm.2019.01.004 – ident: ref54 doi: 10.5483/BMBRep.2020.53.11.179 – ident: ref31 doi: 10.3389/fcimb.2019.00406 – ident: ref106 doi: 10.1084/jem.20160462 – ident: ref99 doi: 10.1093/eurheartj/ehaa659 – ident: ref50 doi: 10.1523/JNEUROSCI.2235-12.2013 – ident: ref73 doi: 10.1038/nature15514 – ident: ref12 doi: 10.1016/j.fct.2021.112154 – ident: ref105 – ident: ref101 doi: 10.1016/j.coph.2019.03.001 – ident: ref74 doi: 10.1002/jcp.25930 – ident: ref10 doi: 10.1007/s11906-014-0431-2 – ident: ref91 doi: 10.1002/ptr.6252 – ident: ref43 doi: 10.3389/fimmu.2020.565924 – ident: ref104 doi: 10.1016/j.biopha.2019.108868 – ident: ref9 doi: 10.3390/ijms22136702 – ident: ref113 doi: 10.1038/nm.3804 – ident: ref94 doi: 10.1038/s41401-021-00835-w – ident: ref16 doi: 10.1016/S0889-8529(03)00073-2 – ident: ref100 doi: 10.1093/eurheartj/ehab115 – ident: ref27 doi: 10.3390/ijms22020872 – ident: ref25 doi: 10.1242/jcs.207365 – ident: ref41 doi: 10.1016/j.cell.2016.05.076 – ident: ref97 doi: 10.1080/14740338.2022.2036717 – ident: ref81 doi: 10.3390/ijms22168833 – ident: ref61 doi: 10.1038/nature08938 – ident: ref111 doi: 10.1016/j.celrep.2017.02.004 – ident: ref11 doi: 10.1038/s41419-017-0257-3 – ident: ref39 doi: 10.4049/jimmunol.1600790 – ident: ref36 doi: 10.1038/nature15541 – ident: ref42 doi: 10.1016/j.coi.2016.10.007 – ident: ref71 doi: 10.1371/journal.pone.0087552 – ident: ref60 doi: 10.1146/annurev-immunol-031210-101405 – ident: ref78 doi: 10.1038/nature07965 – ident: ref29 doi: 10.1016/j.cell.2016.03.046 – ident: ref38 doi: 10.1016/j.immuni.2016.01.012 – ident: ref57 doi: 10.1038/nature16959 – ident: ref83 doi: 10.1038/nm.2279 – ident: ref90 doi: 10.1186/s12974-017-0997-0 – ident: ref18 doi: 10.3390/ijms18102034 – ident: ref76 doi: 10.1016/j.molimm.2020.03.020 – ident: ref58 doi: 10.1038/s41586-019-1295-z – ident: ref64 doi: 10.1161/JAHA.115.003031 – ident: ref59 doi: 10.1038/nri2873 – ident: ref89 doi: 10.1083/jcb.200903124 – ident: ref53 doi: 10.1038/s41586-020-2357-y – ident: ref79 doi: 10.1016/j.immuni.2009.02.005 – ident: ref52 doi: 10.1074/jbc.M610351200 – ident: ref28 doi: 10.3389/fphar.2015.00262 – ident: ref13 doi: 10.1038/s41572-019-0106-z – ident: ref40 doi: 10.1126/science.aaf3036 – ident: ref24 doi: 10.1161/CIRCRESAHA.118.313816 – ident: ref47 doi: 10.1038/s41577-019-0165-0 – ident: ref112 doi: 10.1186/s12974-020-01948-5 – ident: ref26 doi: 10.1084/jem.20190314 – ident: ref63 doi: 10.1016/j.ebiom.2020.102985 – ident: ref108 doi: 10.1016/j.expneurol.2020.113399 – ident: ref21 doi: 10.1016/j.tcm.2018.01.008 – ident: ref93 doi: 10.3389/fphar.2018.00058 – ident: ref5 doi: 10.3390/ijms18081706 – ident: ref45 doi: 10.1016/j.immuni.2016.08.010 – ident: ref62 doi: 10.1016/j.atherosclerosis.2011.02.026 – ident: ref88 doi: 10.1016/j.atherosclerosis.2012.11.016 – ident: ref4 doi: 10.1016/j.autrev.2010.07.016 – ident: ref48 doi: 10.1016/j.immuni.2013.05.016 – ident: ref49 doi: 10.1038/srep22586 – ident: ref56 doi: 10.1016/j.coi.2018.03.010 – ident: ref14 doi: 10.1016/j.atherosclerosis.2008.04.046 – ident: ref82 doi: 10.1126/scitranslmed.3001902 – ident: ref17 doi: 10.1097/HJH.0000000000002678 – ident: ref98 doi: 10.1056/NEJMoa1912388 – ident: ref19 doi: 10.1161/CIRCRESAHA.118.313591 – ident: ref22 doi: 10.1056/NEJMoa1707914 – ident: ref30 doi: 10.3390/ijms20133328 – ident: ref92 doi: 10.3389/fphar.2021.639558 – ident: ref51 doi: 10.18632/oncotarget.13375 – ident: ref37 doi: 10.1016/j.immuni.2015.10.009 – ident: ref87 doi: 10.1155/2017/3578702 – ident: ref34 doi: 10.1016/j.coi.2015.01.007 – ident: ref75 doi: 10.1038/s41591-019-0675-0 – ident: ref68 doi: 10.1016/j.toxlet.2018.03.022 – ident: ref7 doi: 10.1038/s41586-021-03392-8 – ident: ref65 doi: 10.1016/j.jstrokecerebrovasdis.2015.03.024 – ident: ref96 doi: 10.1016/j.atherosclerosis.2017.12.027 |
SSID | ssj0032583 |
Score | 2.3076544 |
SecondaryResourceType | review_article |
Snippet | Atherosclerosis is a risk factor for various cardiovascular diseases, and is linked to high rates of morbidity and mortality across the globe. Although... Atherosclerosis is a risk factor for various cardiovascular diseases, and is linked to high rates of morbidity and mortality across the globe. Although... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 268 |
SubjectTerms | atherosclerosis nlrp3 inflammasome potassium efflux Review therapeutic target |
Title | NLRP3 Inflammasome as a Therapeutic Target for Atherosclerosis: A Focus on Potassium Outflow |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39076616 https://www.proquest.com/docview/3086064362 https://pubmed.ncbi.nlm.nih.gov/PMC11266955 https://doaj.org/article/ab43c08320794479b30edffe984fc148 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2153-8174 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0032583 issn: 1530-6550 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2153-8174 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0032583 issn: 1530-6550 databaseCode: RPM dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT9swFLcQh4kLYhuMMkCehHaiI_VXYm4FrWIIGJqKxAEp8qcoogkiifbv79lJSztt4sIlh8SKnfdh_1783s8IHQwMs9ZkEoIccDeW0UFfpWlIgRJcWVgwmQrVyJdX4uyGnd_y24WjvkJOWEsP3AruSGlGDeAEkoDlsFRqmjjrvZMZ8wawfJh9YRmbBVPtHEwJjwSc4M4QHAEIb9k1Acpk9Ojh27OZkkDTEvhVF1ajSNr_L6T5d8Lkwgo02kDrHXTEw3bI79GKKz6gd5fd5vhHdHd18eua4h-FBy1PVVVOHVYVVnj8UmOFxzHzGwNUxcOA_coK3gXXSXWMh3hUmqbCZYGvyxpQ9aSZ4p9N7R_L35voZvR9fHrW7w5P6BvGWd0XUlvmvYJwKuwkktRb5waWJkomUhMIiwyVwiaUUy8kc1oqx7hNnPREmNTTLbRalIXbRhhCEprpNLEpCNxogHycGPB9O6Aa4JzoocOZEHPTMYuHAy4ec4gwoswhxHiReQ99nTd_aik1_tfwJGhk3igwYccbYB95Zx_5a_bRQ19m-szBc8J2iCpc2VQ5dCICIBOkhz61-p13RWWSAnKBT8uWNL80luUnxeQ-snOHmiwhOd95i9F_Rmsk1FvEjMNdtFo_N24PUFCt96PB78ffU38AKmEDsA |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NLRP3+Inflammasome+as+a+Therapeutic+Target+for+Atherosclerosis%3A+A+Focus+on+Potassium+Outflow&rft.jtitle=Reviews+in+cardiovascular+medicine&rft.au=Jin%2C+Yi-Jing&rft.au=An%2C+Zhuo-Yu&rft.au=Sun%2C+Zhi-Xuan&rft.au=Liu%2C+Xin-Chen&rft.date=2022-08-01&rft.issn=2153-8174&rft.eissn=2153-8174&rft.volume=23&rft.issue=8&rft.spage=268&rft_id=info:doi/10.31083%2Fj.rcm2308268&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6550&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6550&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6550&client=summon |