Generalized low‐rank nonrigid motion‐corrected reconstruction for MR fingerprinting

Purpose Develop a novel low‐rank motion‐corrected (LRMC) reconstruction for nonrigid motion‐corrected MR fingerprinting (MRF). Methods Generalized motion‐corrected (MC) reconstructions have been developed for steady‐state imaging. Here we extend this framework to enable nonrigid MC for transient ima...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 87; no. 2; pp. 746 - 763
Main Authors Cruz, Gastao, Qi, Haikun, Jaubert, Olivier, Kuestner, Thomas, Schneider, Torben, Botnar, Rene Michael, Prieto, Claudia
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.02.2022
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.29027

Cover

Abstract Purpose Develop a novel low‐rank motion‐corrected (LRMC) reconstruction for nonrigid motion‐corrected MR fingerprinting (MRF). Methods Generalized motion‐corrected (MC) reconstructions have been developed for steady‐state imaging. Here we extend this framework to enable nonrigid MC for transient imaging applications with varying contrast, such as MRF. This is achieved by integrating low‐rank dictionary‐based compression into the generalized MC model to reconstruct MC singular images, reducing motion artifacts in the resulting parametric maps. The proposed LRMC reconstruction was applied for cardiac motion correction in 2D myocardial MRF (T1 and T2) with extended cardiac acquisition window (~450 ms) and for respiratory MC in free‐breathing 3D myocardial and 3D liver MRF. Experiments were performed in phantom and 22 healthy subjects. The proposed approach was compared with reference spin echo (phantom) and with 2D electrocardiogram‐triggered/breath‐hold MOLLI and T2 gradient‐and–spin echo conventional maps (in vivo 2D and 3D myocardial MRF). Results Phantom results were in general agreement with reference spin‐echo measurements, presenting relative errors of approximately 5.4% and 5.5% for T1 and short T2 (<100 ms), respectively. The proposed LRMC MRF reduced residual blurring artifacts with respect to no MC for cardiac or respiratory motion in all cases (2D and 3D myocardial, 3D abdominal). In 2D myocardial MRF, left‐ventricle T1 values were 1150 ± 41 ms for LRMC MRF and 1010 ± 56 ms for MOLLI; T2 values were 43.8 ± 2.3 ms for LRMC MRF and 49.5 ± 4.5 ms for T2 gradient and spin echo. Corresponding measurements for 3D myocardial MRF were 1085 ± 30 ms and 1062 ± 29 ms for T1, and 43.5 ± 1.9 ms and 51.7 ± 1.7 ms for T2. For 3D liver, LRMC MRF measured liver T1 at 565 ± 44 ms and liver T2 at 35.4 ± 2.4 ms. Conclusion The proposed LRMC reconstruction enabled generalized (nonrigid) MC for 2D and 3D MRF, both for cardiac and respiratory motion. The proposed approach reduced motion artifacts in the MRF maps with respect to no motion compensation and achieved good agreement with reference measurements.
AbstractList Develop a novel low-rank motion-corrected (LRMC) reconstruction for nonrigid motion-corrected MR fingerprinting (MRF). Generalized motion-corrected (MC) reconstructions have been developed for steady-state imaging. Here we extend this framework to enable nonrigid MC for transient imaging applications with varying contrast, such as MRF. This is achieved by integrating low-rank dictionary-based compression into the generalized MC model to reconstruct MC singular images, reducing motion artifacts in the resulting parametric maps. The proposed LRMC reconstruction was applied for cardiac motion correction in 2D myocardial MRF (T and T ) with extended cardiac acquisition window (~450 ms) and for respiratory MC in free-breathing 3D myocardial and 3D liver MRF. Experiments were performed in phantom and 22 healthy subjects. The proposed approach was compared with reference spin echo (phantom) and with 2D electrocardiogram-triggered/breath-hold MOLLI and T gradient-and-spin echo conventional maps (in vivo 2D and 3D myocardial MRF). Phantom results were in general agreement with reference spin-echo measurements, presenting relative errors of approximately 5.4% and 5.5% for T and short T (<100 ms), respectively. The proposed LRMC MRF reduced residual blurring artifacts with respect to no MC for cardiac or respiratory motion in all cases (2D and 3D myocardial, 3D abdominal). In 2D myocardial MRF, left-ventricle T values were 1150 ± 41 ms for LRMC MRF and 1010 ± 56 ms for MOLLI; T values were 43.8 ± 2.3 ms for LRMC MRF and 49.5 ± 4.5 ms for T gradient and spin echo. Corresponding measurements for 3D myocardial MRF were 1085 ± 30 ms and 1062 ± 29 ms for T , and 43.5 ± 1.9 ms and 51.7 ± 1.7 ms for T . For 3D liver, LRMC MRF measured liver T at 565 ± 44 ms and liver T at 35.4 ± 2.4 ms. The proposed LRMC reconstruction enabled generalized (nonrigid) MC for 2D and 3D MRF, both for cardiac and respiratory motion. The proposed approach reduced motion artifacts in the MRF maps with respect to no motion compensation and achieved good agreement with reference measurements.
PurposeDevelop a novel low‐rank motion‐corrected (LRMC) reconstruction for nonrigid motion‐corrected MR fingerprinting (MRF).MethodsGeneralized motion‐corrected (MC) reconstructions have been developed for steady‐state imaging. Here we extend this framework to enable nonrigid MC for transient imaging applications with varying contrast, such as MRF. This is achieved by integrating low‐rank dictionary‐based compression into the generalized MC model to reconstruct MC singular images, reducing motion artifacts in the resulting parametric maps. The proposed LRMC reconstruction was applied for cardiac motion correction in 2D myocardial MRF (T1 and T2) with extended cardiac acquisition window (~450 ms) and for respiratory MC in free‐breathing 3D myocardial and 3D liver MRF. Experiments were performed in phantom and 22 healthy subjects. The proposed approach was compared with reference spin echo (phantom) and with 2D electrocardiogram‐triggered/breath‐hold MOLLI and T2 gradient‐and–spin echo conventional maps (in vivo 2D and 3D myocardial MRF).ResultsPhantom results were in general agreement with reference spin‐echo measurements, presenting relative errors of approximately 5.4% and 5.5% for T1 and short T2 (<100 ms), respectively. The proposed LRMC MRF reduced residual blurring artifacts with respect to no MC for cardiac or respiratory motion in all cases (2D and 3D myocardial, 3D abdominal). In 2D myocardial MRF, left‐ventricle T1 values were 1150 ± 41 ms for LRMC MRF and 1010 ± 56 ms for MOLLI; T2 values were 43.8 ± 2.3 ms for LRMC MRF and 49.5 ± 4.5 ms for T2 gradient and spin echo. Corresponding measurements for 3D myocardial MRF were 1085 ± 30 ms and 1062 ± 29 ms for T1, and 43.5 ± 1.9 ms and 51.7 ± 1.7 ms for T2. For 3D liver, LRMC MRF measured liver T1 at 565 ± 44 ms and liver T2 at 35.4 ± 2.4 ms.ConclusionThe proposed LRMC reconstruction enabled generalized (nonrigid) MC for 2D and 3D MRF, both for cardiac and respiratory motion. The proposed approach reduced motion artifacts in the MRF maps with respect to no motion compensation and achieved good agreement with reference measurements.
Purpose Develop a novel low‐rank motion‐corrected (LRMC) reconstruction for nonrigid motion‐corrected MR fingerprinting (MRF). Methods Generalized motion‐corrected (MC) reconstructions have been developed for steady‐state imaging. Here we extend this framework to enable nonrigid MC for transient imaging applications with varying contrast, such as MRF. This is achieved by integrating low‐rank dictionary‐based compression into the generalized MC model to reconstruct MC singular images, reducing motion artifacts in the resulting parametric maps. The proposed LRMC reconstruction was applied for cardiac motion correction in 2D myocardial MRF (T1 and T2) with extended cardiac acquisition window (~450 ms) and for respiratory MC in free‐breathing 3D myocardial and 3D liver MRF. Experiments were performed in phantom and 22 healthy subjects. The proposed approach was compared with reference spin echo (phantom) and with 2D electrocardiogram‐triggered/breath‐hold MOLLI and T2 gradient‐and–spin echo conventional maps (in vivo 2D and 3D myocardial MRF). Results Phantom results were in general agreement with reference spin‐echo measurements, presenting relative errors of approximately 5.4% and 5.5% for T1 and short T2 (<100 ms), respectively. The proposed LRMC MRF reduced residual blurring artifacts with respect to no MC for cardiac or respiratory motion in all cases (2D and 3D myocardial, 3D abdominal). In 2D myocardial MRF, left‐ventricle T1 values were 1150 ± 41 ms for LRMC MRF and 1010 ± 56 ms for MOLLI; T2 values were 43.8 ± 2.3 ms for LRMC MRF and 49.5 ± 4.5 ms for T2 gradient and spin echo. Corresponding measurements for 3D myocardial MRF were 1085 ± 30 ms and 1062 ± 29 ms for T1, and 43.5 ± 1.9 ms and 51.7 ± 1.7 ms for T2. For 3D liver, LRMC MRF measured liver T1 at 565 ± 44 ms and liver T2 at 35.4 ± 2.4 ms. Conclusion The proposed LRMC reconstruction enabled generalized (nonrigid) MC for 2D and 3D MRF, both for cardiac and respiratory motion. The proposed approach reduced motion artifacts in the MRF maps with respect to no motion compensation and achieved good agreement with reference measurements.
Develop a novel low-rank motion-corrected (LRMC) reconstruction for nonrigid motion-corrected MR fingerprinting (MRF).PURPOSEDevelop a novel low-rank motion-corrected (LRMC) reconstruction for nonrigid motion-corrected MR fingerprinting (MRF).Generalized motion-corrected (MC) reconstructions have been developed for steady-state imaging. Here we extend this framework to enable nonrigid MC for transient imaging applications with varying contrast, such as MRF. This is achieved by integrating low-rank dictionary-based compression into the generalized MC model to reconstruct MC singular images, reducing motion artifacts in the resulting parametric maps. The proposed LRMC reconstruction was applied for cardiac motion correction in 2D myocardial MRF (T1 and T2 ) with extended cardiac acquisition window (~450 ms) and for respiratory MC in free-breathing 3D myocardial and 3D liver MRF. Experiments were performed in phantom and 22 healthy subjects. The proposed approach was compared with reference spin echo (phantom) and with 2D electrocardiogram-triggered/breath-hold MOLLI and T2 gradient-and-spin echo conventional maps (in vivo 2D and 3D myocardial MRF).METHODSGeneralized motion-corrected (MC) reconstructions have been developed for steady-state imaging. Here we extend this framework to enable nonrigid MC for transient imaging applications with varying contrast, such as MRF. This is achieved by integrating low-rank dictionary-based compression into the generalized MC model to reconstruct MC singular images, reducing motion artifacts in the resulting parametric maps. The proposed LRMC reconstruction was applied for cardiac motion correction in 2D myocardial MRF (T1 and T2 ) with extended cardiac acquisition window (~450 ms) and for respiratory MC in free-breathing 3D myocardial and 3D liver MRF. Experiments were performed in phantom and 22 healthy subjects. The proposed approach was compared with reference spin echo (phantom) and with 2D electrocardiogram-triggered/breath-hold MOLLI and T2 gradient-and-spin echo conventional maps (in vivo 2D and 3D myocardial MRF).Phantom results were in general agreement with reference spin-echo measurements, presenting relative errors of approximately 5.4% and 5.5% for T1 and short T2 (<100 ms), respectively. The proposed LRMC MRF reduced residual blurring artifacts with respect to no MC for cardiac or respiratory motion in all cases (2D and 3D myocardial, 3D abdominal). In 2D myocardial MRF, left-ventricle T1 values were 1150 ± 41 ms for LRMC MRF and 1010 ± 56 ms for MOLLI; T2 values were 43.8 ± 2.3 ms for LRMC MRF and 49.5 ± 4.5 ms for T2 gradient and spin echo. Corresponding measurements for 3D myocardial MRF were 1085 ± 30 ms and 1062 ± 29 ms for T1 , and 43.5 ± 1.9 ms and 51.7 ± 1.7 ms for T2 . For 3D liver, LRMC MRF measured liver T1 at 565 ± 44 ms and liver T2 at 35.4 ± 2.4 ms.RESULTSPhantom results were in general agreement with reference spin-echo measurements, presenting relative errors of approximately 5.4% and 5.5% for T1 and short T2 (<100 ms), respectively. The proposed LRMC MRF reduced residual blurring artifacts with respect to no MC for cardiac or respiratory motion in all cases (2D and 3D myocardial, 3D abdominal). In 2D myocardial MRF, left-ventricle T1 values were 1150 ± 41 ms for LRMC MRF and 1010 ± 56 ms for MOLLI; T2 values were 43.8 ± 2.3 ms for LRMC MRF and 49.5 ± 4.5 ms for T2 gradient and spin echo. Corresponding measurements for 3D myocardial MRF were 1085 ± 30 ms and 1062 ± 29 ms for T1 , and 43.5 ± 1.9 ms and 51.7 ± 1.7 ms for T2 . For 3D liver, LRMC MRF measured liver T1 at 565 ± 44 ms and liver T2 at 35.4 ± 2.4 ms.The proposed LRMC reconstruction enabled generalized (nonrigid) MC for 2D and 3D MRF, both for cardiac and respiratory motion. The proposed approach reduced motion artifacts in the MRF maps with respect to no motion compensation and achieved good agreement with reference measurements.CONCLUSIONThe proposed LRMC reconstruction enabled generalized (nonrigid) MC for 2D and 3D MRF, both for cardiac and respiratory motion. The proposed approach reduced motion artifacts in the MRF maps with respect to no motion compensation and achieved good agreement with reference measurements.
Author Kuestner, Thomas
Cruz, Gastao
Jaubert, Olivier
Prieto, Claudia
Schneider, Torben
Botnar, Rene Michael
Qi, Haikun
Author_xml – sequence: 1
  givenname: Gastao
  orcidid: 0000-0002-7397-9104
  surname: Cruz
  fullname: Cruz, Gastao
  email: gastao.cruz@kcl.ac.uk
  organization: King’s College London
– sequence: 2
  givenname: Haikun
  surname: Qi
  fullname: Qi, Haikun
  organization: King’s College London
– sequence: 3
  givenname: Olivier
  orcidid: 0000-0002-7854-4150
  surname: Jaubert
  fullname: Jaubert, Olivier
  organization: King’s College London
– sequence: 4
  givenname: Thomas
  orcidid: 0000-0002-0353-4898
  surname: Kuestner
  fullname: Kuestner, Thomas
  organization: King’s College London
– sequence: 5
  givenname: Torben
  surname: Schneider
  fullname: Schneider, Torben
  organization: Philips Healthcare
– sequence: 6
  givenname: Rene Michael
  surname: Botnar
  fullname: Botnar, Rene Michael
  organization: Pontificia Universidad Católica de Chile
– sequence: 7
  givenname: Claudia
  surname: Prieto
  fullname: Prieto, Claudia
  organization: Pontificia Universidad Católica de Chile
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34601737$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1KJDEUhYM4jK0zC19ACtzoovTmpyqdpYg_A90MiDLLkEpSEq1KNKlCdOUj-Iw-iWm73TTO6obkOyf33rONNn3wFqFdDEcYgBz3sT8iAgjfQBNcEVKSSrBNNAHOoKRYsC20ndIdAAjB2U-0RVkNmFM-Qf8urLdRde7FmqILT--vb1H5-yL_EN2tM0UfBhd8vtYhRquHjOUSfBriqBdPRRtiMb8qWudvbXyIzg_59Av9aFWX7O9V3UE352fXp5fl7O_Fn9OTWalZxXhpaMNqhhXWrKWibSiDaR5JGcM40zAVoBgFTZUCbAzO7ddAFWHGNg0X1NAddLD0fYjhcbRpkL1L2nad8jaMSZKKCxBkWpOM7q-hd2GMPncnSQ0ZYVDVmdpbUWPTWyPzQL2Kz_JrZRk4XgI6hpSibaV2g1psYojKdRKDXIQicyjyM5SsOFxTfJl-x67cn1xnn_8PyvnVfKn4ALzTnRY
CitedBy_id crossref_primary_10_1002_mrm_29171
crossref_primary_10_1002_mp_17001
crossref_primary_10_1016_j_ijrobp_2023_04_015
crossref_primary_10_3389_fcvm_2022_1009131
crossref_primary_10_1016_j_jocmr_2024_100997
crossref_primary_10_1002_jmri_29679
crossref_primary_10_1002_mrm_29295
crossref_primary_10_1002_mrm_29979
crossref_primary_10_1148_radiol_220736
crossref_primary_10_3390_bioengineering11030236
crossref_primary_10_1002_mrm_29714
crossref_primary_10_1002_jmri_28462
crossref_primary_10_1148_ryct_230177
crossref_primary_10_1148_rycan_230036
crossref_primary_10_3389_fcvm_2022_953823
crossref_primary_10_1007_s10334_024_01196_1
crossref_primary_10_3389_fcvm_2022_928546
crossref_primary_10_1002_mrm_30236
crossref_primary_10_1002_jmri_29206
crossref_primary_10_1002_mrm_29449
crossref_primary_10_1002_mrm_29626
crossref_primary_10_1016_j_ejmp_2022_102514
crossref_primary_10_1002_mrm_29721
crossref_primary_10_3389_fcvm_2023_1160183
crossref_primary_10_1097_RLI_0000000000000962
Cites_doi 10.1002/mrm.20110
10.1186/s12968-016-0280-z
10.1148/radiol.2016152037
10.1002/mrm.26639
10.1002/jmri.24858
10.1109/TMI.2018.2873704
10.1002/mrm.24924
10.1002/mrm.25665
10.1002/mrm.28311
10.1109/42.650886
10.1109/42.796284
10.1109/TMI.2014.2337321
10.1038/nature11971
10.1002/nbm.4323
10.1002/mrm.20656
10.1016/j.media.2012.09.005
10.1038/s42005-019-0174-0
10.1016/j.mri.2018.09.002
10.1561/2200000016
10.1038/s41551-018-0217-y
10.1186/1532-429X-11-56
10.1002/mrm.27935
10.1002/mrm.27227
10.1002/mrm.25708
10.1002/jmri.25575
10.1002/mrm.28039
10.1002/mrm.27998
10.1002/nbm.4370
10.1016/j.mri.2019.08.008
10.1002/mrm.28096
10.1002/mrm.26273
10.1186/1532-429X-15-92
10.1002/mrm.26274
10.1002/mrm.27694
10.1186/s12968-017-0389-8
10.1371/journal.pone.0085658
10.1016/j.mri.2018.06.018
10.1002/mrm.24189
10.1002/mrm.27466
10.1016/j.cmpb.2009.09.002
10.1148/radiol.2018180051
10.1002/mrm.24751
10.1103/PhysRev.98.1099
10.1002/mrm.27811
10.2463/mrms.tn.2018-0027
10.1002/mrm.27448
10.1002/jmri.24619
10.1186/s12968-015-0127-z
10.1002/mrm.24878
10.1002/mrm.26216
10.1002/mrm.20605
10.1016/j.mri.2020.02.005
10.1002/mrm.26701
ContentType Journal Article
Copyright 2021 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine
2021 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine
– notice: 2021 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
DOI 10.1002/mrm.29027
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
Biochemistry Abstracts 1

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 763
ExternalDocumentID 34601737
10_1002_mrm_29027
MRM29027
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Institute for Health Research (NIHR)
– fundername: Department of Health
– fundername: King’s College Hospital NHS Foundation Trust
– fundername: NIHR
– fundername: NHS
– fundername: EPSRC
  funderid: EP/P001009/1; EP/P032311/1
– fundername: Guy’s & St Thomas’ NHS Foundation Trust
– fundername: King’s College London
– fundername: Biomedical Research Centre
– fundername: Wellcome EPSRC Centre for Medical Engineering
  funderid: NS/ A000049/1
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-c4547-d3b4641a1c4f39fb3408100add474c0890a430c3aa01dd1997603a24debb793d3
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Thu Jul 10 22:56:16 EDT 2025
Fri Jul 25 12:09:45 EDT 2025
Wed Feb 19 02:27:31 EST 2025
Thu Apr 24 23:05:10 EDT 2025
Wed Oct 01 05:05:37 EDT 2025
Wed Jan 22 16:28:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords MR fingerprinting
2D cardiac
low rank
3D cardiac
3D liver
nonrigid motion correction
Language English
License Attribution
2021 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4547-d3b4641a1c4f39fb3408100add474c0890a430c3aa01dd1997603a24debb793d3
Notes Funding information
Engineering and Physical Sciences Research Council (EPSRC) (EP/P001009/1 and EP/P032311/1), Wellcome EPSRC Center for Medical Engineering (NS/A000049/1), and the Department of Health through the National Institute for Health Research comprehensive Biomedical Research Center award to Guy’s & St Thomas’ National Health Service (NHS) Foundation Trust in partnership with King’s College London and King’s College Hospital NHS Foundation Trust
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7854-4150
0000-0002-0353-4898
0000-0002-7397-9104
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.29027
PMID 34601737
PQID 2602864056
PQPubID 1016391
PageCount 18
ParticipantIDs proquest_miscellaneous_2579092862
proquest_journals_2602864056
pubmed_primary_34601737
crossref_citationtrail_10_1002_mrm_29027
crossref_primary_10_1002_mrm_29027
wiley_primary_10_1002_mrm_29027_MRM29027
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2022
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 17
2020; 84
2019; 2
2020; 83
2018; 288
2017; 46
2018; 81
2018; 80
2016; 75
2019; 38
2019; 18
2020; 33
2016; 18
2013; 8
2009; 11
2004; 52
2013; 15
2019; 82
2019; 81
2018; 2
2009; 98
2013; 17
2019; 63
1999; 18
2017; 77
2015; 42
2015; 41
2019
2005; 54
1997; 16
2017; 19
2020; 68
2013; 495
2016; 279
2010; 3
2012; 68
2018; 54
2014; 72
2014; 71
2018; 53
2014; 33
2018; 79
1988
1955; 98
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 11
  start-page: 1
  year: 2009
  end-page: 13
  article-title: T2 quantification for improved detection of myocardial edema
  publication-title: J Cardiovasc Magn Reson
– volume: 3
  start-page: 1
  year: 2010
  end-page: 122
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Found Trends Mach Learn
– volume: 33
  start-page: 2311
  year: 2014
  end-page: 2322
  article-title: SVD compression for magnetic resonance fingerprinting in the time domain
  publication-title: IEEE Trans Med Imaging
– volume: 54
  start-page: 507
  year: 2005
  end-page: 512
  article-title: T1, T2 relaxation and magnetization transfer in tissue at 3T
  publication-title: Magn Reson Med
– volume: 80
  start-page: 2485
  year: 2018
  end-page: 2500
  article-title: Magnetic resonance in medicine image reconstruction algorithm for motion insensitive MR fingerprinting (MRF): MORF
  publication-title: Magn Reson Med
– volume: 72
  start-page: 347
  year: 2014
  end-page: 361
  article-title: Nonrigid autofocus motion correction for coronary MR angiography with a 3D cones trajectory
  publication-title: Magn Reson Med
– volume: 17
  start-page: 1
  year: 2015
  end-page: 9
  article-title: Gradient Spin Echo (GraSE) imaging for fast myocardial T2 mapping
  publication-title: J Cardiovasc Magn Reson
– volume: 77
  start-page: 1446
  year: 2017
  end-page: 1458
  article-title: MR fingerprinting for rapid quantification of myocardial T1, T2, and proton spin density
  publication-title: Magn Reson Med
– volume: 2
  start-page: 1
  year: 2019
  end-page: 73
  article-title: Hybrid‐state free precession in nuclear magnetic resonance
  publication-title: Commun Phys
– volume: 33
  year: 2020
  article-title: Cardiac cine magnetic resonance fingerprinting for combined ejection fraction, T1 and T2 quantification
  publication-title: NMR Biomed
– volume: 288
  start-page: 748
  year: 2018
  end-page: 754
  article-title: Quantification of liver fibrosis at T1 and T2 mapping with extracellular volume fraction MRI: preclinical results
  publication-title: Radiology
– volume: 52
  start-page: 141
  year: 2004
  end-page: 146
  article-title: Modified look‐locker inversion recovery (MOLLI) for high‐resolution T1 mapping of the heart
  publication-title: Magn Reson Med
– volume: 68
  start-page: 1785
  year: 2012
  end-page: 1797
  article-title: Nonrigid motion correction in 3D using autofocusing withlocalized linear translations
  publication-title: Magn Reson Med
– volume: 54
  start-page: 241
  year: 2018
  end-page: 248
  article-title: Exploring the sensitivity of magnetic resonance fingerprinting to motion
  publication-title: Magn Reson Imaging
– volume: 68
  start-page: 173
  year: 2020
  end-page: 182
  article-title: Free‐running cardiac magnetic resonance fingerprinting: joint T1/T2 map and cine imaging
  publication-title: Magn Reson Imaging
– volume: 38
  start-page: 844
  year: 2019
  end-page: 861
  article-title: Optimal experiment design for magnetic resonance fingerprinting: Cramér‐Rao bound meets spin dynamics
  publication-title: IEEE Trans Med Imaging
– volume: 495
  start-page: 187
  year: 2013
  end-page: 192
  article-title: Magnetic resonance fingerprinting
  publication-title: Nature
– volume: 83
  start-page: 1208
  year: 2020
  end-page: 1221
  article-title: Iterative motion‐compensation reconstruction ultra‐short TE (iMoCo UTE) for high‐resolution free‐breathing pulmonary MRI
  publication-title: Magn Reson Med
– volume: 279
  start-page: 278
  year: 2016
  end-page: 286
  article-title: MR fingerprinting for rapid quantitative abdominal imaging
  publication-title: Radiology
– volume: 18
  start-page: 712
  year: 1999
  end-page: 721
  article-title: Nonrigid registration using free‐form deformations: application to breast MR images
  publication-title: IEEE Trans Med Imaging
– volume: 17
  start-page: 19
  year: 2013
  end-page: 42
  article-title: Respiratory motion models: a review
  publication-title: Med Image Anal
– volume: 71
  start-page: 990
  year: 2014
  end-page: 1001
  article-title: ESPIRiT—an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA
  publication-title: Magn Reson Med
– volume: 84
  start-page: 2625
  year: 2020
  end-page: 2635
  article-title: Multi‐parametric liver tissue characterization using MR fingerprinting: simultaneous T1, T2, T2*, and fat fraction mapping
  publication-title: Magn Reson Med
– volume: 41
  start-page: 266
  year: 2015
  end-page: 295
  article-title: Extended phase graphs: dephasing, RF pulses, and echoes—pure and simple
  publication-title: J Magn Reson Imaging
– volume: 79
  start-page: 933
  year: 2018
  end-page: 942
  article-title: Improved magnetic resonance fingerprinting reconstruction with low‐rank and subspace modeling
  publication-title: Magn Reson Med
– volume: 75
  start-page: 775
  year: 2016
  end-page: 788
  article-title: XD‐GRASP: golden‐angle radial MRI with reconstruction of extra motion‐state dimensions using compressed sensing
  publication-title: Magn Reson Med
– year: 2019
– volume: 19
  start-page: 1
  year: 2017
  end-page: 24
  article-title: Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2 and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging
  publication-title: J Cardiovasc Magn Reson
– start-page: 1042
  year: 1988
– volume: 83
  start-page: 1673
  year: 2020
  end-page: 1687
  article-title: 3D whole‐heart free‐breathing qBOOST‐T2 mapping
  publication-title: Magn Reson Med
– volume: 77
  start-page: 1884
  year: 2017
  end-page: 1893
  article-title: Nonrigid motion correction with 3D image‐based navigators for coronary MR angiography
  publication-title: Magn Reson Med
– volume: 15
  start-page: 1
  year: 2013
  end-page: 12
  article-title: Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement
  publication-title: J Cardiovasc Magn Reson
– volume: 63
  start-page: 159
  year: 2019
  end-page: 169
  article-title: Free‐running simultaneous myocardial T1/T2 mapping and cine imaging with 3D whole‐heart coverage and isotropic spatial resolution
  publication-title: Magn Reson Imaging
– volume: 81
  start-page: 3705
  year: 2019
  end-page: 3719
  article-title: High‐dimensionality undersampled patch‐based reconstruction (HD‐PROST) for accelerated multi‐contrast MRI
  publication-title: Magn Reson Med
– volume: 84
  start-page: 128
  year: 2020
  end-page: 141
  article-title: Magnetization transfer in magnetic resonance fingerprinting
  publication-title: Magn Reson Imaging
– volume: 2
  start-page: 215
  year: 2018
  end-page: 226
  article-title: Magnetic resonance multitasking for motion‐resolved quantitative cardiovascular imaging
  publication-title: Nat Biomed Eng
– volume: 8
  start-page: 1
  year: 2013
  end-page: 8
  article-title: Assessment of clinical signs of liver cirrhosis using T1 mapping on Gd‐EOB‐DTPA‐enhanced 3T MRI
  publication-title: PLoS One
– volume: 16
  start-page: 903
  year: 1997
  end-page: 910
  article-title: Automatic correction of motion artifacts in magnetic resonance images using an entropy focus criterion
  publication-title: IEEE Trans Med Imaging
– volume: 53
  start-page: 40
  year: 2018
  end-page: 51
  article-title: Investigating and reducing the effects of confounding factors for robust T1 and T2 mapping with cardiac MR fingerprinting
  publication-title: Magn Reson Imaging
– volume: 81
  start-page: 1031
  year: 2019
  end-page: 1043
  article-title: A three‐dimensional free‐breathing sequence for simultaneous myocardial T1 and T2 mapping
  publication-title: Magn Reson Med
– volume: 82
  start-page: 1331
  year: 2019
  end-page: 1342
  article-title: Free‐running 3D whole heart myocardial T1 mapping with isotropic spatial resolution
  publication-title: Magn Reson Med
– volume: 77
  start-page: 1894
  year: 2017
  end-page: 1908
  article-title: Highly efficient nonrigid motion‐corrected 3D whole‐heart coronary vessel wall imaging
  publication-title: Magn Reson Med
– volume: 79
  start-page: 83
  year: 2018
  end-page: 96
  article-title: Low rank alternating direction method of multipliers reconstruction for MR fingerprinting
  publication-title: Magn Reson Med
– volume: 98
  start-page: 278
  year: 2009
  end-page: 284
  article-title: Fast free‐form deformation using graphics processing units
  publication-title: Comput Methods Programs Biomed
– volume: 42
  start-page: 964
  year: 2015
  end-page: 971
  article-title: Comparison of image‐based and reconstruction‐based respiratory motion correction for golden radial phase encoding coronary MR angiography
  publication-title: J Magn Reson Imaging
– volume: 33
  start-page: 1
  year: 2020
  end-page: 16
  article-title: 3D free‐breathing cardiac magnetic resonance fingerprinting
  publication-title: NMR Biomed
– volume: 46
  start-page: 218
  year: 2017
  end-page: 227
  article-title: 3D myocardial T1 mapping using saturation recovery
  publication-title: J Magn Reson Imaging
– volume: 71
  start-page: 2082
  year: 2014
  end-page: 2095
  article-title: Saturation recovery single‐shot acquisition (SASHA) for myocardial T1 mapping
  publication-title: Magn Reson Med
– volume: 18
  start-page: 4
  year: 2016
  end-page: 6
  article-title: A T1 and ECV phantom for global T1 mapping quality assurance: the T1 mapping and ECV standardisation in CMR (T1MES) program
  publication-title: J Cardiovasc Magn Reson
– volume: 83
  start-page: 438
  year: 2020
  end-page: 451
  article-title: Fast myocardial T1 mapping using cardiac motion correction
  publication-title: Magn Reson Med
– volume: 75
  start-page: 1484
  year: 2016
  end-page: 1498
  article-title: Accelerated motion corrected three‐dimensional abdominal MRI using total variation regularized SENSE reconstruction
  publication-title: Magn Reson Med
– volume: 98
  start-page: 1099
  year: 1955
  end-page: 1105
  article-title: Matrix treatment of nuclear induction
  publication-title: Phys Rev
– volume: 81
  start-page: 947
  year: 2018
  end-page: 961
  article-title: Rigid motion‐corrected magnetic resonance fingerprinting
  publication-title: Magn Reson Med
– volume: 54
  start-page: 1273
  year: 2005
  end-page: 1280
  article-title: Matrix description of general motion correction applied to multishot images
  publication-title: Magn Reson Med
– volume: 18
  start-page: 96
  year: 2019
  end-page: 104
  article-title: Diffusion‐weighting caused by spoiler gradients in the fast imaging with steady‐state precession sequence may lead to inaccurate T2 measurements in MR fingerprinting
  publication-title: Magn Reson Med Sci
– ident: e_1_2_7_6_1
  doi: 10.1002/mrm.20110
– ident: e_1_2_7_42_1
  doi: 10.1186/s12968-016-0280-z
– ident: e_1_2_7_18_1
  doi: 10.1148/radiol.2016152037
– ident: e_1_2_7_32_1
  doi: 10.1002/mrm.26639
– ident: e_1_2_7_27_1
  doi: 10.1002/jmri.24858
– ident: e_1_2_7_52_1
  doi: 10.1109/TMI.2018.2873704
– ident: e_1_2_7_36_1
  doi: 10.1002/mrm.24924
– ident: e_1_2_7_56_1
  doi: 10.1002/mrm.25665
– ident: e_1_2_7_19_1
  doi: 10.1002/mrm.28311
– ident: e_1_2_7_34_1
  doi: 10.1109/42.650886
– ident: e_1_2_7_17_1
– ident: e_1_2_7_41_1
  doi: 10.1109/42.796284
– ident: e_1_2_7_30_1
  doi: 10.1109/TMI.2014.2337321
– ident: e_1_2_7_15_1
  doi: 10.1038/nature11971
– ident: e_1_2_7_25_1
  doi: 10.1002/nbm.4323
– ident: e_1_2_7_29_1
  doi: 10.1002/mrm.20656
– ident: e_1_2_7_51_1
  doi: 10.1016/j.media.2012.09.005
– ident: e_1_2_7_53_1
  doi: 10.1038/s42005-019-0174-0
– ident: e_1_2_7_22_1
  doi: 10.1016/j.mri.2018.09.002
– ident: e_1_2_7_43_1
  doi: 10.1561/2200000016
– ident: e_1_2_7_57_1
  doi: 10.1038/s41551-018-0217-y
– ident: e_1_2_7_8_1
  doi: 10.1186/1532-429X-11-56
– ident: e_1_2_7_24_1
  doi: 10.1002/mrm.27935
– ident: e_1_2_7_54_1
– ident: e_1_2_7_21_1
  doi: 10.1002/mrm.27227
– ident: e_1_2_7_26_1
  doi: 10.1002/mrm.25708
– ident: e_1_2_7_10_1
  doi: 10.1002/jmri.25575
– ident: e_1_2_7_14_1
  doi: 10.1002/mrm.28039
– ident: e_1_2_7_28_1
  doi: 10.1002/mrm.27998
– ident: e_1_2_7_37_1
– ident: e_1_2_7_23_1
  doi: 10.1002/nbm.4370
– ident: e_1_2_7_13_1
  doi: 10.1016/j.mri.2019.08.008
– ident: e_1_2_7_49_1
  doi: 10.1002/mrm.28096
– ident: e_1_2_7_58_1
  doi: 10.1002/mrm.26273
– ident: e_1_2_7_2_1
  doi: 10.1186/1532-429X-15-92
– ident: e_1_2_7_55_1
  doi: 10.1002/mrm.26274
– ident: e_1_2_7_39_1
  doi: 10.1002/mrm.27694
– ident: e_1_2_7_3_1
  doi: 10.1186/s12968-017-0389-8
– ident: e_1_2_7_4_1
  doi: 10.1371/journal.pone.0085658
– ident: e_1_2_7_47_1
  doi: 10.1016/j.mri.2018.06.018
– ident: e_1_2_7_35_1
  doi: 10.1002/mrm.24189
– ident: e_1_2_7_11_1
  doi: 10.1002/mrm.27466
– ident: e_1_2_7_40_1
  doi: 10.1016/j.cmpb.2009.09.002
– ident: e_1_2_7_5_1
  doi: 10.1148/radiol.2018180051
– ident: e_1_2_7_44_1
  doi: 10.1002/mrm.24751
– ident: e_1_2_7_46_1
  doi: 10.1103/PhysRev.98.1099
– ident: e_1_2_7_12_1
  doi: 10.1002/mrm.27811
– ident: e_1_2_7_50_1
  doi: 10.2463/mrms.tn.2018-0027
– ident: e_1_2_7_33_1
  doi: 10.1002/mrm.27694
– ident: e_1_2_7_20_1
  doi: 10.1002/mrm.27448
– ident: e_1_2_7_45_1
  doi: 10.1002/jmri.24619
– ident: e_1_2_7_9_1
  doi: 10.1186/s12968-015-0127-z
– ident: e_1_2_7_7_1
  doi: 10.1002/mrm.24878
– ident: e_1_2_7_16_1
  doi: 10.1002/mrm.26216
– ident: e_1_2_7_48_1
  doi: 10.1002/mrm.20605
– ident: e_1_2_7_38_1
  doi: 10.1016/j.mri.2020.02.005
– ident: e_1_2_7_31_1
  doi: 10.1002/mrm.26701
SSID ssj0009974
Score 2.5197666
Snippet Purpose Develop a novel low‐rank motion‐corrected (LRMC) reconstruction for nonrigid motion‐corrected MR fingerprinting (MRF). Methods Generalized...
Develop a novel low-rank motion-corrected (LRMC) reconstruction for nonrigid motion-corrected MR fingerprinting (MRF). Generalized motion-corrected (MC)...
PurposeDevelop a novel low‐rank motion‐corrected (LRMC) reconstruction for nonrigid motion‐corrected MR fingerprinting (MRF).MethodsGeneralized...
Develop a novel low-rank motion-corrected (LRMC) reconstruction for nonrigid motion-corrected MR fingerprinting (MRF).PURPOSEDevelop a novel low-rank...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 746
SubjectTerms 2D cardiac
3D cardiac
3D liver
Blurring
Breath Holding
Compression
DNA fingerprinting
EKG
Electrocardiography
Fingerprinting
Heart
Heart - diagnostic imaging
Humans
Image compression
Image Processing, Computer-Assisted
Image reconstruction
Liver
low rank
Magnetic Resonance Imaging
Motion
Motion compensation
MR fingerprinting
nonrigid motion correction
Phantoms, Imaging
Ventricle
Title Generalized low‐rank nonrigid motion‐corrected reconstruction for MR fingerprinting
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.29027
https://www.ncbi.nlm.nih.gov/pubmed/34601737
https://www.proquest.com/docview/2602864056
https://www.proquest.com/docview/2579092862
Volume 87
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0740-3194
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS90wFD-oMPFlc35sd1PJxAdfek2T07RhTzImMqjIZTIfhJImKYzpvWNXGfi0P2F_4_6SnaQfonMw9lJKe9qkPR85Jzn5HYA9zHyemrxJUNeWDlInGmWe2EKYJrMq9bHyXHmijs_ww3l2vgBv-70wLT7EMOEWNCPa66Dgpp4f3IGGXn27GgtNURXZ31RmcYl2cgcdpXWLwJxjsDMae1QhLg6GJ--PRX84mPf91TjgHD2Di76rbZ7Jl_HNdT22tw9QHP_zW1bhaeeIssNWcp7Dgp-uwXLZLbWvwZOYG2rn6_Cpg6b-fOsdu5x9__XjZ6j0zqazaaiq5VhbCYgu21Dqw5IPy2KcPWDTMvKMWTlhTZxDDFOJIdl6A86O3n98d5x09RgSG2C_EidrVJia1GIjdVNLJH-Cc7KQmKPlheYGJbfSGJ46FzJYFJdGoPN1TWbAyU1Yoq75l8AyEgG0JkNnEY0xhdK5x8wpXTSorB7Bfs-ZynZg5aFmxmXVwiyLin5ZFX_ZCHYH0q8tQsdjRFs9e6tOSecVhXKiUOSxqhG8GW6TeoU1EzP1sxuiyXLNNZGJEbxoxWJoRSJFs7mkl-9H5v69-aqclPHk1b-TvoYVEbZaxAzxLVgilvltcoCu6x1YFHi6E-X9N8KGA3s
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB7yoGkvJd30sXm0aukhFyeyNJYt6KWUhG0bLyUkJDcjSzIU9lGalkJP-Qn5jfklGcleh9AUcjHGHltiRiPNjEbfALzHzOepyZsEdW3pInWiUeaJLYRpMqtSHyvPlWM1OsUv59n5EnxYnIVp8SH6gFvQjDhfBwUPAen9W9TQ6c_pntDkVi3DKirBw5gW-O0Wcle3GMw5hplG4wJXiIv9_tO7q9E_JuZdizUuOYfr8LSzFdnHVrjPYMnPBrBWdrvhA3gU0zftxQacdejR3_96xybzP9eXV6EYOyPfPhS-cqwt1kOPbajGYcnMZNEV7uFjGRmvrDxmTQzzhWhfyId-DqeHByefRklXMiGxAZkrcbJGhalJLTZSN7VEWvI5p0kMc7S80Nyg5FYaw1PnQpKJ4tIIdL6uSVOdfAEr1DX_ClhGUkJrMnQW0RhTKJ17zJzSRYPK6iHsLlhX2Q5PPJS1mFQtErKoiMtV5PIQ3vWkP1oQjfuIthf8rzo9uqjI2xKFIqNSDeFt_5o0IGxrmJmf_yaaLNdcE5kYwstWbn0rEsnhzCX9fDcK8v_NV-VxGW82H076Bh6PTsqj6ujz-OsWPBHhZERM6N6GFRKf3yF75Vf9Og7LGwU55e0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fT9UwFD9BDMQXVBS5iliJD7zs0q1n3RqfjHoD6gi5kcCDydK1XUKAewl_YsKTH8HP6CfxtPtDQEiIL9uyna1de3r6a3v6OwDvMHVZrLM6QlUZOggVKRRZZPJE16mRsQuR54ptubmLX_bT_Rl43-2Fafgh-gk33zKCvfYN_MTWG1ekocenx8NE0ajqATxESWePiMZX3FFKNRTMGXpDo7CjFeLJRv_q9c7oH4R5HbCGHmf0GH50eW0cTQ6HF-fV0FzeoHH8z595AgstEmUfGtV5CjNusgjzRbvWvghzwTnUnD2DvZab-uDSWXY0_fnn128f6p1NphMfVsuyJhQQ3TY-1ochEMvCQLsnp2UEjVkxZnWYRPRzid7b-jnsjj5__7gZtQEZIuN5vyIrKpQY69hgLVRdCSRAwTmZSMzQ8FxxjYIboTWPrfUuLJILnaB1VUV2wIolmKWsuWVgKekAGp2iNYha61yqzGFqpcprlEYNYL2rmdK0bOU-aMZR2fAsJyUVWRmKbABrvehJQ9Fxm9BKV71l20rPShrLJbkkyCoH8LZ_TO3LL5roiZtekEyaKa5ILBnAi0Yt-lQE6V2cCfr4eqjcu5Mvi3ERLl7eX_QNzO98GpXftra_voJHid92EbzFV2CWas-9JjB0Xq0Gpf8LvHUFbw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+low-rank+nonrigid+motion-corrected+reconstruction+for+MR+fingerprinting&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Cruz%2C+Gastao&rft.au=Qi%2C+Haikun&rft.au=Jaubert%2C+Olivier&rft.au=Kuestner%2C+Thomas&rft.date=2022-02-01&rft.eissn=1522-2594&rft.volume=87&rft.issue=2&rft.spage=746&rft_id=info:doi/10.1002%2Fmrm.29027&rft_id=info%3Apmid%2F34601737&rft.externalDocID=34601737
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon