Altered amino acid concentrations in NAFLD: Impact of obesity and insulin resistance
Plasma concentrations of amino acids (AAs), in particular, branched chain AAs (BCAAs), are often found increased in nonalcoholic fatty liver disease (NAFLD); however, if this is due to increased muscular protein catabolism, obesity, and/or increased insulin resistance (IR) or impaired tissue metabol...
Saved in:
Published in | Hepatology (Baltimore, Md.) Vol. 67; no. 1; pp. 145 - 158 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wolters Kluwer Health, Inc
01.01.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0270-9139 1527-3350 1527-3350 |
DOI | 10.1002/hep.29465 |
Cover
Abstract | Plasma concentrations of amino acids (AAs), in particular, branched chain AAs (BCAAs), are often found increased in nonalcoholic fatty liver disease (NAFLD); however, if this is due to increased muscular protein catabolism, obesity, and/or increased insulin resistance (IR) or impaired tissue metabolism is unknown. Thus, we evaluated a) if subjects with NAFLD without obesity (NAFLD‐NO) compared to those with obesity (NAFLD‐Ob) display altered plasma AAs compared to controls (CTs); and b) if AA concentrations are associated with IR and liver histology. Glutamic acid, serine, and glycine concentrations are known to be altered in NAFLD. Because these AAs are involved in glutathione synthesis, we hypothesized they might be related to the severity of NAFLD. We therefore measured the AA profile of 44 subjects with NAFLD without diabetes and who had a liver biopsy (29 NAFLD‐NO and 15 NAFLD‐Ob) and 20 CTs without obesity, by gas chromatography–mass spectrometry, homeostasis model assessment of insulin resistance, hepatic IR (Hep‐IR; Hep‐IR = endogenous glucose production × insulin), and the new glutamate–serine–glycine (GSG) index (glutamate/[serine + glycine]) and tested for an association with liver histology. Most AAs were increased only in NAFLD‐Ob subjects. Only alanine, glutamate, isoleucine, and valine, but not leucine, were increased in NAFLD‐NO subjects compared to CTs. Glutamate, tyrosine, and the GSG‐index were correlated with Hep‐IR. The GSG‐index correlated with liver enzymes, in particular, gamma‐glutamyltransferase (R = 0.70), independent of body mass index. Ballooning and/or inflammation at liver biopsy were associated with increased plasma BCAAs and aromatic AAs and were mildly associated with the GSG‐index, while only the new GSG‐index was able to discriminate fibrosis F3‐4 from F0‐2 in this cohort. Conclusion: Increased plasma AA concentrations were observed mainly in subjects with obesity and NAFLD, likely as a consequence of increased IR and protein catabolism. The GSG‐index is a possible marker of severity of liver disease independent of body mass index. (Hepatology 2018;67:145‐158). |
---|---|
AbstractList | Plasma concentrations of amino acids (AAs), in particular, branched chain AAs (BCAAs), are often found increased in nonalcoholic fatty liver disease (NAFLD); however, if this is due to increased muscular protein catabolism, obesity, and/or increased insulin resistance (IR) or impaired tissue metabolism is unknown. Thus, we evaluated a) if subjects with NAFLD without obesity (NAFLD-NO) compared to those with obesity (NAFLD-Ob) display altered plasma AAs compared to controls (CTs); and b) if AA concentrations are associated with IR and liver histology. Glutamic acid, serine, and glycine concentrations are known to be altered in NAFLD. Because these AAs are involved in glutathione synthesis, we hypothesized they might be related to the severity of NAFLD. We therefore measured the AA profile of 44 subjects with NAFLD without diabetes and who had a liver biopsy (29 NAFLD-NO and 15 NAFLD-Ob) and 20 CTs without obesity, by gas chromatography-mass spectrometry, homeostasis model assessment of insulin resistance, hepatic IR (Hep-IR; Hep-IR = endogenous glucose production × insulin), and the new glutamate-serine-glycine (GSG) index (glutamate/[serine + glycine]) and tested for an association with liver histology. Most AAs were increased only in NAFLD-Ob subjects. Only alanine, glutamate, isoleucine, and valine, but not leucine, were increased in NAFLD-NO subjects compared to CTs. Glutamate, tyrosine, and the GSG-index were correlated with Hep-IR. The GSG-index correlated with liver enzymes, in particular, gamma-glutamyltransferase (R = 0.70), independent of body mass index. Ballooning and/or inflammation at liver biopsy were associated with increased plasma BCAAs and aromatic AAs and were mildly associated with the GSG-index, while only the new GSG-index was able to discriminate fibrosis F3-4 from F0-2 in this cohort.Plasma concentrations of amino acids (AAs), in particular, branched chain AAs (BCAAs), are often found increased in nonalcoholic fatty liver disease (NAFLD); however, if this is due to increased muscular protein catabolism, obesity, and/or increased insulin resistance (IR) or impaired tissue metabolism is unknown. Thus, we evaluated a) if subjects with NAFLD without obesity (NAFLD-NO) compared to those with obesity (NAFLD-Ob) display altered plasma AAs compared to controls (CTs); and b) if AA concentrations are associated with IR and liver histology. Glutamic acid, serine, and glycine concentrations are known to be altered in NAFLD. Because these AAs are involved in glutathione synthesis, we hypothesized they might be related to the severity of NAFLD. We therefore measured the AA profile of 44 subjects with NAFLD without diabetes and who had a liver biopsy (29 NAFLD-NO and 15 NAFLD-Ob) and 20 CTs without obesity, by gas chromatography-mass spectrometry, homeostasis model assessment of insulin resistance, hepatic IR (Hep-IR; Hep-IR = endogenous glucose production × insulin), and the new glutamate-serine-glycine (GSG) index (glutamate/[serine + glycine]) and tested for an association with liver histology. Most AAs were increased only in NAFLD-Ob subjects. Only alanine, glutamate, isoleucine, and valine, but not leucine, were increased in NAFLD-NO subjects compared to CTs. Glutamate, tyrosine, and the GSG-index were correlated with Hep-IR. The GSG-index correlated with liver enzymes, in particular, gamma-glutamyltransferase (R = 0.70), independent of body mass index. Ballooning and/or inflammation at liver biopsy were associated with increased plasma BCAAs and aromatic AAs and were mildly associated with the GSG-index, while only the new GSG-index was able to discriminate fibrosis F3-4 from F0-2 in this cohort.Increased plasma AA concentrations were observed mainly in subjects with obesity and NAFLD, likely as a consequence of increased IR and protein catabolism. The GSG-index is a possible marker of severity of liver disease independent of body mass index. (Hepatology 2018;67:145-158).CONCLUSIONIncreased plasma AA concentrations were observed mainly in subjects with obesity and NAFLD, likely as a consequence of increased IR and protein catabolism. The GSG-index is a possible marker of severity of liver disease independent of body mass index. (Hepatology 2018;67:145-158). Plasma concentrations of amino acids (AAs), in particular, branched chain AAs (BCAAs), are often found increased in nonalcoholic fatty liver disease (NAFLD); however, if this is due to increased muscular protein catabolism, obesity, and/or increased insulin resistance (IR) or impaired tissue metabolism is unknown. Thus, we evaluated a) if subjects with NAFLD without obesity (NAFLD-NO) compared to those with obesity (NAFLD-Ob) display altered plasma AAs compared to controls (CTs); and b) if AA concentrations are associated with IR and liver histology. Glutamic acid, serine, and glycine concentrations are known to be altered in NAFLD. Because these AAs are involved in glutathione synthesis, we hypothesized they might be related to the severity of NAFLD. We therefore measured the AA profile of 44 subjects with NAFLD without diabetes and who had a liver biopsy (29 NAFLD-NO and 15 NAFLD-Ob) and 20 CTs without obesity, by gas chromatography-mass spectrometry, homeostasis model assessment of insulin resistance, hepatic IR (Hep-IR; Hep-IR = endogenous glucose production × insulin), and the new glutamate-serine-glycine (GSG) index (glutamate/[serine + glycine]) and tested for an association with liver histology. Most AAs were increased only in NAFLD-Ob subjects. Only alanine, glutamate, isoleucine, and valine, but not leucine, were increased in NAFLD-NO subjects compared to CTs. Glutamate, tyrosine, and the GSG-index were correlated with Hep-IR. The GSG-index correlated with liver enzymes, in particular, gamma-glutamyltransferase (R = 0.70), independent of body mass index. Ballooning and/or inflammation at liver biopsy were associated with increased plasma BCAAs and aromatic AAs and were mildly associated with the GSG-index, while only the new GSG-index was able to discriminate fibrosis F3-4 from F0-2 in this cohort. Increased plasma AA concentrations were observed mainly in subjects with obesity and NAFLD, likely as a consequence of increased IR and protein catabolism. The GSG-index is a possible marker of severity of liver disease independent of body mass index. (Hepatology 2018;67:145-158). Plasma concentrations of amino acids (AAs), in particular, branched chain AAs (BCAAs), are often found increased in nonalcoholic fatty liver disease (NAFLD); however, if this is due to increased muscular protein catabolism, obesity, and/or increased insulin resistance (IR) or impaired tissue metabolism is unknown. Thus, we evaluated a) if subjects with NAFLD without obesity (NAFLD‐NO) compared to those with obesity (NAFLD‐Ob) display altered plasma AAs compared to controls (CTs); and b) if AA concentrations are associated with IR and liver histology. Glutamic acid, serine, and glycine concentrations are known to be altered in NAFLD. Because these AAs are involved in glutathione synthesis, we hypothesized they might be related to the severity of NAFLD. We therefore measured the AA profile of 44 subjects with NAFLD without diabetes and who had a liver biopsy (29 NAFLD‐NO and 15 NAFLD‐Ob) and 20 CTs without obesity, by gas chromatography–mass spectrometry, homeostasis model assessment of insulin resistance, hepatic IR (Hep‐IR; Hep‐IR = endogenous glucose production × insulin), and the new glutamate–serine–glycine (GSG) index (glutamate/[serine + glycine]) and tested for an association with liver histology. Most AAs were increased only in NAFLD‐Ob subjects. Only alanine, glutamate, isoleucine, and valine, but not leucine, were increased in NAFLD‐NO subjects compared to CTs. Glutamate, tyrosine, and the GSG‐index were correlated with Hep‐IR. The GSG‐index correlated with liver enzymes, in particular, gamma‐glutamyltransferase (R = 0.70), independent of body mass index. Ballooning and/or inflammation at liver biopsy were associated with increased plasma BCAAs and aromatic AAs and were mildly associated with the GSG‐index, while only the new GSG‐index was able to discriminate fibrosis F3‐4 from F0‐2 in this cohort. Conclusion: Increased plasma AA concentrations were observed mainly in subjects with obesity and NAFLD, likely as a consequence of increased IR and protein catabolism. The GSG‐index is a possible marker of severity of liver disease independent of body mass index. (Hepatology 2018;67:145‐158). Plasma concentrations of amino acids (AAs), in particular, branched chain AAs (BCAAs), are often found increased in nonalcoholic fatty liver disease (NAFLD); however, if this is due to increased muscular protein catabolism, obesity, and/or increased insulin resistance (IR) or impaired tissue metabolism is unknown. Thus, we evaluated a) if subjects with NAFLD without obesity (NAFLD‐NO) compared to those with obesity (NAFLD‐Ob) display altered plasma AAs compared to controls (CTs); and b) if AA concentrations are associated with IR and liver histology. Glutamic acid, serine, and glycine concentrations are known to be altered in NAFLD. Because these AAs are involved in glutathione synthesis, we hypothesized they might be related to the severity of NAFLD. We therefore measured the AA profile of 44 subjects with NAFLD without diabetes and who had a liver biopsy (29 NAFLD‐NO and 15 NAFLD‐Ob) and 20 CTs without obesity, by gas chromatography–mass spectrometry, homeostasis model assessment of insulin resistance, hepatic IR (Hep‐IR; Hep‐IR = endogenous glucose production × insulin), and the new glutamate–serine–glycine (GSG) index (glutamate/[serine + glycine]) and tested for an association with liver histology. Most AAs were increased only in NAFLD‐Ob subjects. Only alanine, glutamate, isoleucine, and valine, but not leucine, were increased in NAFLD‐NO subjects compared to CTs. Glutamate, tyrosine, and the GSG‐index were correlated with Hep‐IR. The GSG‐index correlated with liver enzymes, in particular, gamma‐glutamyltransferase ( R = 0.70), independent of body mass index. Ballooning and/or inflammation at liver biopsy were associated with increased plasma BCAAs and aromatic AAs and were mildly associated with the GSG‐index, while only the new GSG‐index was able to discriminate fibrosis F3‐4 from F0‐2 in this cohort. Conclusion : Increased plasma AA concentrations were observed mainly in subjects with obesity and NAFLD, likely as a consequence of increased IR and protein catabolism. The GSG‐index is a possible marker of severity of liver disease independent of body mass index. (H epatology 2018;67:145‐158). |
Author | Abate, Maria Lorena Gambino, Roberto Cassader, Maurizio Gastaldelli, Amalia Carli, Fabrizia Marietti, Milena Bugianesi, Elisabetta Gaggini, Melania Della Latta, Veronica Rosso, Chiara Ciociaro, Demetrio Buzzigoli, Emma |
Author_xml | – sequence: 1 givenname: Melania surname: Gaggini fullname: Gaggini, Melania organization: National Research Council – sequence: 2 givenname: Fabrizia surname: Carli fullname: Carli, Fabrizia organization: National Research Council – sequence: 3 givenname: Chiara surname: Rosso fullname: Rosso, Chiara organization: University of Turin – sequence: 4 givenname: Emma surname: Buzzigoli fullname: Buzzigoli, Emma organization: National Research Council – sequence: 5 givenname: Milena surname: Marietti fullname: Marietti, Milena organization: University of Turin – sequence: 6 givenname: Veronica surname: Della Latta fullname: Della Latta, Veronica organization: National Research Council – sequence: 7 givenname: Demetrio surname: Ciociaro fullname: Ciociaro, Demetrio organization: National Research Council – sequence: 8 givenname: Maria Lorena surname: Abate fullname: Abate, Maria Lorena organization: University of Turin – sequence: 9 givenname: Roberto surname: Gambino fullname: Gambino, Roberto organization: University of Turin – sequence: 10 givenname: Maurizio surname: Cassader fullname: Cassader, Maurizio organization: University of Turin – sequence: 11 givenname: Elisabetta surname: Bugianesi fullname: Bugianesi, Elisabetta email: elisabetta.bugianesi@unito.it organization: University of Turin – sequence: 12 givenname: Amalia orcidid: 0000-0003-2594-1651 surname: Gastaldelli fullname: Gastaldelli, Amalia email: amalia@ifc.cnr.it organization: National Research Council |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28802074$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kEtv1DAURi1URKeFBX8AWWIDSGmvHxkn7EalpZVGwKKsI8e5Fq4cO9iJqvn3uJ2BRQWsLF2f7z7OCTkKMSAhrxmcMQB-_gOnM97Kdf2MrFjNVSVEDUdkBVxB1TLRHpOTnO8AoJW8eUGOedMAByVX5HbjZ0w4UD26EKk2bqAmBoNhTnp2MWTqAv2yudp--khvxkmbmUZLY4_ZzTuqw1D-8-ILlEopz7pkX5LnVvuMrw7vKfl-dXl7cV1tv36-udhsKyNrWVeDsq21QqIVQgKyBhRveilk39bWSs6NQoto-l6uuYAWgHGrGsXWDWorQJySD_u-S5j07l57303JjTrtOgbdg5quqOke1RT43R6eUvy5YJ670WWD3uuAcckda3lTM1kDK-jbJ-hdXFIopxRKNXItJXug3hyopR9x-DP6t9wCnO8Bk2LOCW1n3Pwotbh1_q87vn-S-N89h-73zuPu32B3ffltn_gFxxumQw |
CitedBy_id | crossref_primary_10_1002_bmc_5952 crossref_primary_10_1016_j_jnutbio_2019_03_005 crossref_primary_10_1016_j_jhep_2024_03_035 crossref_primary_10_1016_j_jnutbio_2020_108365 crossref_primary_10_1016_j_ejphar_2024_176774 crossref_primary_10_3390_ijms24043563 crossref_primary_10_3389_fphar_2020_584090 crossref_primary_10_1111_1753_0407_13429 crossref_primary_10_3389_fphar_2024_1374158 crossref_primary_10_3390_ijms25073746 crossref_primary_10_1016_j_phrs_2020_104657 crossref_primary_10_1038_s41366_024_01695_0 crossref_primary_10_1126_scitranslmed_aaz2841 crossref_primary_10_1016_j_jcmgh_2019_12_006 crossref_primary_10_3390_metabo13030444 crossref_primary_10_1038_s41598_020_69675_8 crossref_primary_10_3390_nu10091195 crossref_primary_10_1016_j_cmet_2023_12_001 crossref_primary_10_1038_s41598_019_54983_5 crossref_primary_10_1136_bmjdrc_2019_001126 crossref_primary_10_3390_nu16234165 crossref_primary_10_1016_j_metabol_2018_01_018 crossref_primary_10_1097_MCO_0000000000000706 crossref_primary_10_1016_j_hnm_2025_200305 crossref_primary_10_1016_j_jhepr_2024_101143 crossref_primary_10_1016_j_jtemb_2024_127397 crossref_primary_10_3390_cells9071638 crossref_primary_10_1152_ajpgi_00147_2024 crossref_primary_10_1002_hep4_1509 crossref_primary_10_1007_s00432_024_05848_6 crossref_primary_10_1021_acs_jafc_2c08637 crossref_primary_10_1210_clinem_dgaa175 crossref_primary_10_1007_s00726_022_03141_9 crossref_primary_10_1016_j_foodchem_2020_126648 crossref_primary_10_3390_nu15071590 crossref_primary_10_3390_biomedicines10071669 crossref_primary_10_1111_jam_14992 crossref_primary_10_1016_j_jnutbio_2019_03_006 crossref_primary_10_3390_metabo14040218 crossref_primary_10_1016_j_envpol_2021_117795 crossref_primary_10_1186_s12876_022_02457_w crossref_primary_10_1016_j_phymed_2023_155315 crossref_primary_10_3390_jcm10051081 crossref_primary_10_3390_nu14183678 crossref_primary_10_1186_s12967_022_03734_8 crossref_primary_10_1016_j_ecoenv_2023_114597 crossref_primary_10_3390_nu12051450 crossref_primary_10_1016_j_ijbiomac_2019_08_097 crossref_primary_10_15252_emmm_201809302 crossref_primary_10_1039_D3RA03992G crossref_primary_10_3389_fphar_2022_1055793 crossref_primary_10_1002_hep4_1417 crossref_primary_10_3389_fmed_2023_1124275 crossref_primary_10_3390_diagnostics12020407 crossref_primary_10_3390_nu12113225 crossref_primary_10_1016_j_csbj_2024_01_007 crossref_primary_10_1111_liv_15575 crossref_primary_10_3390_nu13103307 crossref_primary_10_1007_s11428_018_0351_x crossref_primary_10_1016_j_cmet_2023_08_002 crossref_primary_10_1007_s10528_024_10847_w crossref_primary_10_1016_j_lfs_2024_122471 crossref_primary_10_3390_metabo11060374 crossref_primary_10_1371_journal_pmed_1003149 crossref_primary_10_3390_ijms23095203 crossref_primary_10_3350_cmh_2021_0127 crossref_primary_10_1016_j_jhep_2024_10_015 crossref_primary_10_1016_j_coph_2020_10_016 crossref_primary_10_1002_pmic_202000196 crossref_primary_10_3350_cmh_2022_0336 crossref_primary_10_1038_s41586_022_05637_6 crossref_primary_10_1038_s41598_024_84165_x crossref_primary_10_1016_j_celrep_2021_109420 crossref_primary_10_1016_j_jep_2023_117647 crossref_primary_10_3390_medicina59101785 crossref_primary_10_1111_ijpo_12739 crossref_primary_10_1016_j_apsb_2024_08_034 crossref_primary_10_1021_acs_jproteome_2c00119 crossref_primary_10_1016_j_envint_2023_108405 crossref_primary_10_1002_fsn3_1581 crossref_primary_10_1136_bmjopen_2023_081293 crossref_primary_10_1016_j_tox_2023_153640 crossref_primary_10_3390_metabo11110737 crossref_primary_10_1113_JP287407 crossref_primary_10_1186_s12967_019_2091_0 crossref_primary_10_1021_acs_jafc_3c04832 crossref_primary_10_3389_fmicb_2021_713234 crossref_primary_10_1002_mnfr_202200891 crossref_primary_10_1016_j_ymben_2023_12_006 crossref_primary_10_1093_ajcn_nqab392 crossref_primary_10_3390_ijms22042163 crossref_primary_10_1016_j_jnutbio_2024_109581 crossref_primary_10_1016_j_scib_2024_09_019 crossref_primary_10_3390_ijms21155214 crossref_primary_10_1111_obr_13856 crossref_primary_10_1016_j_cmet_2023_12_013 crossref_primary_10_3390_ijms20246333 crossref_primary_10_3389_fendo_2022_958218 crossref_primary_10_3390_nu11122985 crossref_primary_10_1007_s00535_021_01833_9 crossref_primary_10_1038_s41598_020_79234_w crossref_primary_10_3389_fcimb_2022_776996 crossref_primary_10_1111_liv_14743 crossref_primary_10_1080_13543784_2018_1494153 crossref_primary_10_1002_hep_29705 crossref_primary_10_1021_acs_analchem_4c02369 crossref_primary_10_1177_17562848221098243 crossref_primary_10_1186_s12933_025_02645_4 crossref_primary_10_1289_EHP13435 crossref_primary_10_3390_metabo13030401 crossref_primary_10_12688_f1000research_12028_1 crossref_primary_10_1016_j_clnesp_2022_07_004 crossref_primary_10_1038_s42003_024_05861_y crossref_primary_10_1002_hep4_1562 crossref_primary_10_1016_j_gene_2022_147039 crossref_primary_10_1002_hep_31483 crossref_primary_10_3389_fphar_2024_1335814 crossref_primary_10_1038_s41392_020_00349_7 crossref_primary_10_1016_j_numecd_2023_09_016 crossref_primary_10_7717_peerj_11346 crossref_primary_10_1021_acsptsci_4c00612 crossref_primary_10_29254_2077_4214_2021_1_159_264_272 crossref_primary_10_1007_s00535_024_02092_0 crossref_primary_10_1111_jgh_15746 crossref_primary_10_1186_s12967_020_02637_w crossref_primary_10_1210_clinem_dgaa377 crossref_primary_10_1038_s41598_021_92918_1 crossref_primary_10_1111_jfbc_14029 crossref_primary_10_3390_cells10092502 crossref_primary_10_1007_s11695_020_04974_7 crossref_primary_10_1152_ajpendo_00187_2024 crossref_primary_10_1016_j_clinre_2024_102431 crossref_primary_10_3390_ijms24098059 crossref_primary_10_3389_fnut_2021_794841 crossref_primary_10_1007_s00726_024_03433_2 crossref_primary_10_1002_mnfr_202000375 crossref_primary_10_1093_gastro_goaa066 crossref_primary_10_1016_j_ebiom_2021_103548 crossref_primary_10_3390_livers4030032 crossref_primary_10_1016_j_nut_2020_110867 crossref_primary_10_1002_hep_31808 crossref_primary_10_1039_C9FO02728A crossref_primary_10_1016_j_metabol_2020_154299 crossref_primary_10_1161_JAHA_122_028410 crossref_primary_10_1097_HC9_0000000000000375 crossref_primary_10_1126_scitranslmed_abk0855 crossref_primary_10_1186_s12916_023_03185_y crossref_primary_10_1172_jci_insight_134638 crossref_primary_10_3389_fendo_2022_1061682 crossref_primary_10_1007_s11306_022_01927_2 crossref_primary_10_1016_j_ajcnut_2024_04_008 crossref_primary_10_1080_07853890_2022_2132418 crossref_primary_10_3390_ijms25094916 crossref_primary_10_3390_ijms241411236 crossref_primary_10_1038_s41598_021_88989_9 crossref_primary_10_1007_s10695_022_01160_7 crossref_primary_10_1021_acs_jafc_2c02077 crossref_primary_10_3389_fimmu_2021_766170 crossref_primary_10_3389_fgene_2022_942153 crossref_primary_10_1016_j_ajpath_2023_12_006 crossref_primary_10_1186_s12986_024_00784_1 crossref_primary_10_1016_j_mtcomm_2024_111329 crossref_primary_10_1016_j_jacbts_2021_07_010 crossref_primary_10_1016_j_ese_2022_100162 crossref_primary_10_1080_10408347_2020_1842172 crossref_primary_10_1172_jci_insight_159204 crossref_primary_10_1016_j_gtc_2018_07_016 crossref_primary_10_1016_j_intimp_2024_111833 crossref_primary_10_1038_s42255_024_01134_4 crossref_primary_10_1042_CS20180421 crossref_primary_10_3390_children7120270 crossref_primary_10_34133_research_0363 crossref_primary_10_1016_j_isci_2023_107127 crossref_primary_10_1016_j_jpba_2022_114663 crossref_primary_10_1016_j_aca_2022_339979 crossref_primary_10_3390_biomedicines9101440 crossref_primary_10_1016_j_jep_2024_118065 crossref_primary_10_1016_j_cca_2024_120038 crossref_primary_10_1186_s10020_024_00992_8 crossref_primary_10_3390_biomedicines10061444 crossref_primary_10_1080_19490976_2021_1965463 crossref_primary_10_3390_metabo13040536 crossref_primary_10_1016_j_pharma_2022_09_005 crossref_primary_10_1186_s12263_024_00752_7 crossref_primary_10_1016_j_xcrm_2024_101853 crossref_primary_10_1210_jc_2018_02698 crossref_primary_10_3389_fendo_2023_1274011 crossref_primary_10_3390_nu11061356 crossref_primary_10_3390_ijms26010090 crossref_primary_10_3389_fimmu_2023_1148722 crossref_primary_10_3390_nu15102335 crossref_primary_10_1002_mnfr_201900811 crossref_primary_10_1016_j_foodres_2022_111732 crossref_primary_10_31146_1682_8658_ecg_192_8_167_174 crossref_primary_10_3390_ijms23074022 crossref_primary_10_1007_s11306_020_01756_1 crossref_primary_10_1016_j_clnesp_2020_11_015 crossref_primary_10_1016_j_rbmo_2021_11_012 crossref_primary_10_1097_MOL_0000000000000739 crossref_primary_10_1016_j_addr_2021_113869 crossref_primary_10_1038_s41574_021_00538_6 crossref_primary_10_1155_2019_6289831 crossref_primary_10_2139_ssrn_3299431 crossref_primary_10_1038_s41467_021_27272_x crossref_primary_10_1007_s11306_024_02152_9 crossref_primary_10_1016_j_jhepr_2024_101303 crossref_primary_10_1017_S0029665119000570 crossref_primary_10_3389_fcvm_2023_1116861 crossref_primary_10_3389_fendo_2021_786952 crossref_primary_10_3748_wjg_v24_i15_1601 crossref_primary_10_3389_fnut_2022_849767 crossref_primary_10_3389_fendo_2022_883659 crossref_primary_10_1016_j_gtc_2019_09_003 crossref_primary_10_1002_jssc_202100051 crossref_primary_10_1093_hmg_ddaa162 crossref_primary_10_3389_fimmu_2020_551758 crossref_primary_10_1002_dmrr_3763 crossref_primary_10_1038_s41575_023_00888_8 crossref_primary_10_1016_j_jep_2025_119330 crossref_primary_10_1038_s42255_023_00792_0 crossref_primary_10_1039_D1FO02255E crossref_primary_10_1039_C9FO02207D crossref_primary_10_1016_j_envint_2019_105220 crossref_primary_10_3390_nu16121843 crossref_primary_10_1016_j_jhep_2023_02_010 crossref_primary_10_1515_jpem_2019_0595 crossref_primary_10_1016_j_cmet_2020_01_012 crossref_primary_10_1136_egastro_2024_100115 crossref_primary_10_1038_s41467_023_40536_y crossref_primary_10_1111_liv_15864 crossref_primary_10_1016_j_phrs_2021_105517 crossref_primary_10_3390_nu11030705 crossref_primary_10_3748_wjg_v26_i38_5812 crossref_primary_10_1016_j_molmet_2020_101080 crossref_primary_10_1007_s00726_024_03429_y crossref_primary_10_1016_j_heliyon_2024_e27075 crossref_primary_10_1002_mnfr_202300749 crossref_primary_10_1016_j_pharmthera_2024_108724 crossref_primary_10_3389_fphar_2021_808867 crossref_primary_10_1002_edm2_112 crossref_primary_10_1016_j_nutres_2024_06_009 crossref_primary_10_1038_s41575_021_00502_9 crossref_primary_10_1016_j_fbio_2024_104469 crossref_primary_10_1097_MOL_0000000000000543 crossref_primary_10_3390_livers5010012 crossref_primary_10_1186_s12944_024_02317_4 crossref_primary_10_1016_j_molmet_2022_101611 crossref_primary_10_3390_life14101292 crossref_primary_10_3389_fphys_2021_731762 crossref_primary_10_3390_ijms24087463 crossref_primary_10_3390_biomedicines9121893 crossref_primary_10_37349_eemd_2025_101425 crossref_primary_10_1210_jc_2018_00999 crossref_primary_10_1155_2024_5568337 crossref_primary_10_3389_fcimb_2022_870785 crossref_primary_10_3390_ijerph18084049 crossref_primary_10_3389_fendo_2023_1107162 crossref_primary_10_1080_17474124_2023_2165489 crossref_primary_10_1002_hep4_1284 crossref_primary_10_1016_j_dld_2024_05_015 crossref_primary_10_1155_2022_3474723 crossref_primary_10_1210_clinem_dgaa898 crossref_primary_10_1186_s13098_023_01175_x crossref_primary_10_3390_ijms232113001 crossref_primary_10_1016_j_isci_2020_101628 crossref_primary_10_3389_fphar_2023_1242955 crossref_primary_10_1016_j_resuscitation_2024_110425 crossref_primary_10_2174_1871527319666201209111006 crossref_primary_10_1155_2019_5920485 crossref_primary_10_1186_s40104_022_00765_5 crossref_primary_10_1016_j_arabjc_2023_105578 crossref_primary_10_1021_acs_jproteome_3c00009 crossref_primary_10_3390_metabo12070589 crossref_primary_10_3390_nu15173747 crossref_primary_10_1016_j_phrs_2022_106248 crossref_primary_10_1172_jci_insight_154093 crossref_primary_10_1021_acs_jproteome_8b00379 crossref_primary_10_3390_metabo12111081 crossref_primary_10_1016_j_sciaf_2024_e02177 crossref_primary_10_1016_j_cmet_2023_03_013 crossref_primary_10_1007_s00394_020_02370_6 crossref_primary_10_26599_FSHW_2022_9250016 crossref_primary_10_1111_eci_13695 crossref_primary_10_4239_wjd_v15_i6_1291 crossref_primary_10_1186_s12967_022_03717_9 crossref_primary_10_3389_fendo_2022_884549 crossref_primary_10_1002_mnfr_202101030 crossref_primary_10_1016_j_isci_2022_104828 crossref_primary_10_3390_metabo11110766 crossref_primary_10_1016_j_metabol_2024_155910 crossref_primary_10_1186_s12967_023_04244_x crossref_primary_10_3390_metabo12090881 crossref_primary_10_3390_nu14194092 crossref_primary_10_1111_liv_15532 crossref_primary_10_3390_ijms251910764 crossref_primary_10_1038_s41467_022_31476_0 crossref_primary_10_1039_C9RA10143H crossref_primary_10_3389_fendo_2022_864703 crossref_primary_10_5812_hepatmon_92244 crossref_primary_10_1016_j_jcmgh_2020_03_001 crossref_primary_10_1038_s41598_023_50582_7 crossref_primary_10_1002_bmc_5763 crossref_primary_10_3390_metabo13080959 crossref_primary_10_3389_fendo_2023_1230457 crossref_primary_10_1016_j_metabol_2022_155200 crossref_primary_10_1016_j_jpba_2019_112812 crossref_primary_10_3390_nu14071454 crossref_primary_10_2147_DMSO_S294894 crossref_primary_10_3390_ijms21228838 crossref_primary_10_1016_j_biopha_2023_115640 crossref_primary_10_1186_s12916_024_03779_0 crossref_primary_10_1016_j_gastha_2024_09_006 crossref_primary_10_3390_nu16091263 crossref_primary_10_3389_fendo_2020_00617 crossref_primary_10_1002_path_6242 crossref_primary_10_1007_s00535_018_1435_5 crossref_primary_10_3390_nu16081235 crossref_primary_10_1074_jbc_RA120_016079 crossref_primary_10_1007_s40726_023_00269_4 crossref_primary_10_1152_ajpgi_00017_2023 crossref_primary_10_2174_1875318302111010017 crossref_primary_10_3389_fendo_2020_572490 crossref_primary_10_3390_nu16121875 crossref_primary_10_1097_MD_0000000000037185 |
Cites_doi | 10.1007/s00726-014-1894-9 10.1007/s00125-005-1682-x 10.1016/S0031-6997(24)01370-X 10.1002/hep.28376 10.1016/j.jhep.2015.11.004 10.1093/ajcn/53.1.172 10.1002/hep.23116 10.3748/wjg.v18.i29.3775 10.1016/j.cmet.2015.04.004 10.2337/dc11-1838 10.1016/j.numecd.2009.07.007 10.1111/apt.13889 10.1210/jc.2015-1966 10.1016/S0950-351X(05)80243-5 10.1053/j.gastro.2007.04.068 10.3945/an.111.000737 10.2337/db12-0495 10.1371/journal.pone.0010883 10.2337/dc12-1760 10.1152/ajpendo.00161.2015 10.1038/ncomms9994 10.1016/j.cmet.2009.02.002 10.1038/ncomms4083 10.1038/nrgastro.2013.41 10.1172/JCI108295 10.2337/diabetes.55.03.06.db05-1117 10.2337/db08-1074 10.2337/db12-0707 10.1136/gut.23.5.362 10.1038/msb.2012.43 10.1002/hep.28287 10.1016/j.metabol.2010.03.006 10.2337/db09-0580 10.1038/nrendo.2014.171 10.15252/msb.20167422 10.1210/jc.2014-2357 10.3390/nu5051544 10.1016/S2213-8587(14)70032-4 10.1002/hep.20701 10.1007/s00726-011-1088-7 10.1016/S1590-8658(03)00416-X 10.1161/CIRCULATIONAHA.111.067827 10.1016/j.cgh.2009.05.033 10.1093/clinchem/35.7.1399 |
ContentType | Journal Article |
Copyright | 2017 by the American Association for the Study of Liver Diseases. 2018 by the American Association for the Study of Liver Diseases. |
Copyright_xml | – notice: 2017 by the American Association for the Study of Liver Diseases. – notice: 2018 by the American Association for the Study of Liver Diseases. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 7TM 7TO 7U9 H94 K9. 7X8 ADTOC UNPAY |
DOI | 10.1002/hep.29465 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AIDS and Cancer Research Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1527-3350 |
EndPage | 158 |
ExternalDocumentID | 10.1002/hep.29465 28802074 10_1002_hep_29465 HEP29465 |
Genre | article Journal Article Comparative Study |
GrantInformation_xml | – fundername: PRIN funderid: 2009ARYX4T – fundername: Horizon 2020 funderid: 634413 – fundername: Il Ministero dell'istruzione, dell'università e della ricerca (Flag Project InterOmics and Progetto Premiale) – fundername: European Union programs FP7/2007‐2013 funderid: HEALTH‐F2‐2009‐241762 |
GroupedDBID | --- --K .3N .55 .GA .GJ .Y3 05W 0R~ 10A 186 1B1 1CY 1L6 1OB 1OC 1ZS 1~5 24P 31~ 33P 3O- 3SF 3WU 4.4 4G. 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 7-5 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAEDT AAESR AAEVG AAHHS AALRI AANHP AAONW AAQFI AAQQT AAQXK AASGY AAXRX AAXUO AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABMAC ABOCM ABPVW ABWVN ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACLDA ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMUD ADNMO ADOZA ADXAS ADZMN ADZOD AECAP AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFFNX AFGKR AFPWT AFUWQ AFZJQ AHMBA AIACR AIURR AIWBW AJAOE AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EBS EJD F00 F01 F04 F5P FD8 FDB FEDTE FGOYB FUBAC G-S G.N GNP GODZA H.X HBH HF~ HHY HHZ HVGLF HZ~ IHE IX1 J0M J5H JPC KBYEO KQQ LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M41 M65 MJL MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N4W N9A NF~ NNB NQ- O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K R2- RGB RIG RIWAO RJQFR ROL RPZ RWI RX1 RYL SEW SSZ SUPJJ TEORI UB1 V2E V9Y W2D W8V W99 WBKPD WH7 WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI X7M XG1 XV2 ZGI ZXP ZZTAW ~IA ~WT AAMMB AAYXX ABJNI ACZKN ADSXY AEFGJ AFNMH AGQPQ AGXDD AHQVU AIDQK AIDYY AIQQE CITATION MEWTI WXSBR CGR CUY CVF ECM EIF NPM 7T5 7TM 7TO 7U9 H94 K9. 7X8 ADTOC UNPAY |
ID | FETCH-LOGICAL-c4545-d7f9ff34ef3340e180728b434b95ff422c7efeecbb4623090012f787168eaf303 |
IEDL.DBID | DR2 |
ISSN | 0270-9139 1527-3350 |
IngestDate | Wed Oct 01 16:02:58 EDT 2025 Fri Sep 05 12:23:42 EDT 2025 Wed Aug 13 04:24:35 EDT 2025 Tue Apr 29 04:32:15 EDT 2025 Wed Oct 01 06:02:39 EDT 2025 Thu Apr 24 23:07:43 EDT 2025 Wed Jan 22 16:44:03 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2017 by the American Association for the Study of Liver Diseases. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4545-d7f9ff34ef3340e180728b434b95ff422c7efeecbb4623090012f787168eaf303 |
Notes | Potential conflict of interest: Dr. Gastaldelli consults for Roche, Lilly, Gilead, Menarini, and Inventiva. She received a grant from Amylin, Bristol‐Myers Squibb, and AstraZeneca. These authors contributed equally to this work. Supported by the European Union programs FP7/2007‐2013 under grant agreement HEALTH‐F2‐2009‐241762 for the project Fatty Liver inhibition of Progression (to E.B and A.G) and Horizon 2020 under grant agreement 634413 for the project Elucidating Pathways of Steatohepatitis (E.B. and A.G.). E.B. received funds from PRIN 2009ARYX4T. A.G. received funds from Il Ministero dell'istruzione, dell'università e della ricerca (Flag Project InterOmics and Progetto Premiale). ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
ORCID | 0000-0003-2594-1651 |
OpenAccessLink | https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.29465 |
PMID | 28802074 |
PQID | 1978464411 |
PQPubID | 996352 |
PageCount | 14 |
ParticipantIDs | unpaywall_primary_10_1002_hep_29465 proquest_miscellaneous_1928514501 proquest_journals_1978464411 pubmed_primary_28802074 crossref_citationtrail_10_1002_hep_29465 crossref_primary_10_1002_hep_29465 wiley_primary_10_1002_hep_29465_HEP29465 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2018 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: January 2018 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Hepatology (Baltimore, Md.) |
PublicationTitleAlternate | Hepatology |
PublicationYear | 2018 |
Publisher | Wolters Kluwer Health, Inc |
Publisher_xml | – name: Wolters Kluwer Health, Inc |
References | 1993; 7 2015; 58 2012; 2012 2011; 2 2006; 55 2013; 62 2011; 60 2015; 100 1991; 53 2017; 45 2003; 35 2005; 41 2015; 309 2012; 18 2012; 125 2005; 48 2012; 35 2013; 5 2015; 7 1982; 23 2009; 58 2016; 7 2010; 20 2015; 47 2014; 5 2013; 36 1976; 57 2014; 2 2013; 10 2009; 50 2007; 133 2017; 13 2015; 21 2016; 64 2009; 9 2016; 63 2009; 7 1998; 50 1989; 35 2010; 5 2012; 43 2014; 10 2012; 8 (hep29465-bib-0027-20241017) 2007; 133 (hep29465-bib-0009-20241017) 2012; 43 (hep29465-bib-0003-20241017) 2013; 62 (hep29465-bib-0034-20241017) 2015; 7 (hep29465-bib-0046-20241017) 2009; 50 (hep29465-bib-0022-20241017) 2012; 8 (hep29465-bib-0030-20241017) 2014; 2 (hep29465-bib-0045-20241017) 2010; 5 (hep29465-bib-0040-20241017) 2016; 63 (hep29465-bib-0015-20241017) 2015; 309 (hep29465-bib-0014-20241017) 2013; 5 (hep29465-bib-0024-20241017) 2005; 41 (hep29465-bib-0037-20241017) 2011; 2 (hep29465-bib-0011-20241017) 1993; 7 (hep29465-bib-0031-20241017) 2015; 100 (hep29465-bib-0016-20241017) 1976; 57 (hep29465-bib-0025-20241017) 2005; 48 (hep29465-bib-0008-20241017) 2009; 9 (hep29465-bib-0020-20241017) 2017; 13 (hep29465-bib-0036-20241017) 1991; 53 (hep29465-bib-0039-20241017) 2017; 45 (hep29465-bib-0038-20241017) 2015; 100 (hep29465-bib-0043-20241017) 2015; 21 (hep29465-bib-0041-20241017) 1998; 50 (hep29465-bib-0010-20241017) 2014; 10 (hep29465-bib-0028-20241017) 2010; 20 (hep29465-bib-0026-20241017) 2016; 63 (hep29465-bib-0001-20241017) 2016; 64 (hep29465-bib-0004-20241017) 2013; 36 (hep29465-bib-0047-20241017) 2015; 58 (hep29465-bib-0035-20241017) 2012; 35 (hep29465-bib-0033-20241017) 1989; 35 (hep29465-bib-0013-20241017) 1982; 23 (hep29465-bib-0029-20241017) 2013; 10 (hep29465-bib-0002-20241017) 2009; 58 (hep29465-bib-0006-20241017) 2011; 60 (hep29465-bib-0018-20241017) 2012; 18 (hep29465-bib-0044-20241017) 2006; 55 (hep29465-bib-0017-20241017) 2012; 125 (hep29465-bib-0007-20241017) 2009; 7 (hep29465-bib-0021-20241017) 2013; 62 (hep29465-bib-0005-20241017) 2009; 58 (hep29465-bib-0032-20241017) 2015; 47 (hep29465-bib-0019-20241017) 2016; 7 (hep29465-bib-0042-20241017) 2012; 2012 (hep29465-bib-0023-20241017) 2014; 5 (hep29465-bib-0012-20241017) 2003; 35 |
References_xml | – volume: 35 start-page: 722 year: 2003 end-page: 727 article-title: Impaired insulin‐mediated amino acid plasma disappearance in non‐alcoholic fatty liver disease: a feature of insulin resistance publication-title: Dig Liver Dis – volume: 57 start-page: 444 year: 1976 end-page: 449 article-title: Effects of brief starvation on muscle amino acid metabolism in nonobese man publication-title: J Clin Invest – volume: 50 start-page: 1087 year: 2009 end-page: 1093 article-title: Importance of changes in adipose tissue insulin resistance to histological response during thiazolidinedione treatment of patients with nonalcoholic steatohepatitis publication-title: Hepatology – volume: 58 start-page: 2429 year: 2009 end-page: 2443 article-title: Metabolomics applied to diabetes research: moving from information to knowledge publication-title: Diabetes – volume: 47 start-page: 603 year: 2015 end-page: 615 article-title: Branched chain amino acid metabolism profiles in progressive human nonalcoholic fatty liver disease publication-title: Amino Acids – volume: 7 start-page: 1007 year: 1993 end-page: 1032 article-title: Insulin action and substrate competition publication-title: Baillieres Clin Endocrinol Metab – volume: 41 start-page: 1313 year: 2005 end-page: 1321 article-title: Design and validation of a histological scoring system for nonalcoholic fatty liver disease publication-title: Hepatology – volume: 2 start-page: 445 year: 2011 end-page: 456 article-title: Emerging perspectives on essential amino acid metabolism in obesity and the insulin‐resistant state publication-title: Adv Nutr – volume: 62 start-page: 1730 year: 2013 end-page: 1737 article-title: Early metabolic markers of the development of dysglycemia and type 2 diabetes and their physiological significance publication-title: Diabetes – volume: 21 start-page: 739 year: 2015 end-page: 746 article-title: Adaptation of hepatic mitochondrial function in humans with non‐alcoholic fatty liver is lost in steatohepatitis publication-title: Cell Metab – volume: 58 year: 2015 article-title: Improvement in hepatic metabolism is associated with reduced conversion to diabetes in IGT subjects treated with pioglitazone (ACT NOW study) [Abstract] publication-title: Diabetologia – volume: 58 start-page: 203 year: 2009 end-page: 208 article-title: Hepatic stearoyl‐CoA desaturase (SCD)‐1 activity and diacylglycerol but not ceramide concentrations are increased in the nonalcoholic human fatty liver publication-title: Diabetes – volume: 100 start-page: 2231 year: 2015 end-page: 2238 article-title: High prevalence of nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus and normal plasma aminotransferase levels publication-title: J Clin Endocrinol Metab – volume: 53 start-page: 172 year: 1991 end-page: 176 article-title: Protein metabolism in obesity: effects of body fat distribution and hyperinsulinemia on leucine turnover publication-title: Am J Clin Nutr – volume: 35 start-page: 1749 year: 2012 end-page: 1756 article-title: Circulating metabolite predictors of glycemia in middle‐aged men and women publication-title: Diabetes Care – volume: 20 start-page: 79 year: 2010 end-page: 86 article-title: Measuring and estimating insulin resistance in clinical and research settings publication-title: Nutr Metab Cardiovasc Dis – volume: 63 start-page: 107 year: 2016 end-page: 116 article-title: Peripheral insulin resistance predicts liver damage in nondiabetic subjects with nonalcoholic fatty liver disease publication-title: Hepatology – volume: 35 start-page: 1399 year: 1989 end-page: 1403 article-title: Determination of branched‐chain amino acids and tyrosine in serum of patients with various hepatic diseases, and its clinical usefulness publication-title: Clin Chem – volume: 64 start-page: 1388 year: 2016 end-page: 1402 article-title: EASL‐EASD‐EASO Clinical Practice Guidelines for the management of non‐alcoholic fatty liver disease publication-title: J Hepatol – volume: 9 start-page: 311 year: 2009 end-page: 326 article-title: A branched‐chain amino acid‐related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance publication-title: Cell Metab – volume: 100 start-page: E463 year: 2015 end-page: E468 article-title: Metabolomic profile associated with insulin resistance and conversion to diabetes in the Insulin Resistance Atherosclerosis Study publication-title: J Clin Endocrinol Metab – volume: 5 start-page: 3083 year: 2014 article-title: Genome‐scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non‐alcoholic fatty liver disease publication-title: Nat Commun – volume: 133 start-page: 496 year: 2007 end-page: 506 article-title: Relationship between hepatic/visceral fat and hepatic insulin resistance in nondiabetic and type 2 diabetic subjects publication-title: Gastroenterology – volume: 50 start-page: 335 year: 1998 end-page: 356 article-title: Endogenous glutathione conjugates: occurrence and biological functions publication-title: Pharmacol Rev – volume: 8 start-page: 615 year: 2012 article-title: Novel biomarkers for pre‐diabetes identified by metabolomics publication-title: Mol Syst Biol – volume: 10 start-page: 330 year: 2013 end-page: 344 article-title: Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis publication-title: Nat Rev Gastroenterol Hepatol – volume: 45 start-page: 510 year: 2017 end-page: 518 article-title: Sarcopenia is associated with severe liver fibrosis in patients with non‐alcoholic fatty liver disease publication-title: Aliment Pharmacol Ther – volume: 36 start-page: 2331 year: 2013 end-page: 2338 article-title: Circulating lysophosphatidylcholines are markers of a metabolically benign nonalcoholic fatty liver publication-title: Diabetes Care – volume: 23 start-page: 362 year: 1982 end-page: 370 article-title: Plasma amino‐acid patterns in liver disease publication-title: Gut – volume: 125 start-page: 2222 year: 2012 end-page: 2231 article-title: Metabolite profiling identifies pathways associated with metabolic risk in humans publication-title: Circulation – volume: 13 start-page: 916 year: 2017 article-title: Personal model‐assisted identification of NAD+ and glutathione metabolism as intervention target in NAFLD publication-title: Mol Syst Biol – volume: 43 start-page: 171 year: 2012 end-page: 181 article-title: Insulin resistance and the metabolism of branched‐chain amino acids in humans publication-title: Amino Acids – volume: 63 start-page: 776 year: 2016 end-page: 786 article-title: Sarcopenia is associated with significant liver fibrosis independently of obesity and insulin resistance in nonalcoholic fatty liver disease: Nationwide surveys (KNHANES 2008‐2011) publication-title: Hepatology – volume: 2012 start-page: 736837 year: 2012 article-title: Glutathione homeostasis and functions: potential targets for medical interventions publication-title: J Amino Acids – volume: 309 start-page: E311 year: 2015 end-page: E319 article-title: Cross‐talk between branched‐chain amino acids and hepatic mitochondria is compromised in nonalcoholic fatty liver disease publication-title: Am J Physiol Endocrinol Metab – volume: 2 start-page: 901 year: 2014 end-page: 910 article-title: Non‐alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome publication-title: Lancet Diabetes Endocrinol – volume: 7 start-page: 1104 year: 2009 end-page: 1112 article-title: Comparison of noninvasive markers of fibrosis in patients with nonalcoholic fatty liver disease publication-title: Clin Gastroenterol Hepatol – volume: 62 start-page: 639 year: 2013 end-page: 648 article-title: Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach publication-title: Diabetes – volume: 7 start-page: 29 year: 2015 end-page: 35 article-title: Tyrosine levels are associated with insulin resistance in patients with nonalcoholic fatty liver disease publication-title: Hepat Med – volume: 5 start-page: 1544 year: 2013 end-page: 1560 article-title: Non‐alcoholic fatty liver disease (NAFLD) and its connection with insulin resistance, dyslipidemia, atherosclerosis and coronary heart disease publication-title: Nutrients – volume: 7 start-page: 8994 year: 2016 article-title: Genome‐scale study reveals reduced metabolic adaptability in patients with non‐alcoholic fatty liver disease publication-title: Nat Commun – volume: 60 start-page: 404 year: 2011 end-page: 413 article-title: Plasma metabolomic profile in nonalcoholic fatty liver disease publication-title: Metabolism – volume: 10 start-page: 723 year: 2014 end-page: 736 article-title: Branched‐chain amino acids in metabolic signalling and insulin resistance publication-title: Nat Rev Endocrinol – volume: 48 start-page: 634 year: 2005 end-page: 642 article-title: Insulin resistance in non‐diabetic patients with non‐alcoholic fatty liver disease: sites and mechanisms publication-title: Diabetologia – volume: 55 start-page: 675 year: 2006 end-page: 681 article-title: The greater contribution of gluconeogenesis to glucose production in obesity is related to increased whole‐body protein catabolism publication-title: Diabetes – volume: 5 start-page: e10883 year: 2010 article-title: alpha‐hydroxybutyrate is an early biomarker of insulin resistance and glucose intolerance in a nondiabetic population publication-title: PLoS One – volume: 18 start-page: 3775 year: 2012 end-page: 3781 article-title: Alanine and aspartate aminotransferase and glutamine‐cycling pathway: their roles in pathogenesis of metabolic syndrome publication-title: World J Gastroenterol – volume: 7 start-page: 29 year: 2015 ident: hep29465-bib-0034-20241017 article-title: Tyrosine levels are associated with insulin resistance in patients with nonalcoholic fatty liver disease publication-title: Hepat Med – volume: 47 start-page: 603 year: 2015 ident: hep29465-bib-0032-20241017 article-title: Branched chain amino acid metabolism profiles in progressive human nonalcoholic fatty liver disease publication-title: Amino Acids doi: 10.1007/s00726-014-1894-9 – volume: 48 start-page: 634 year: 2005 ident: hep29465-bib-0025-20241017 article-title: Insulin resistance in non‐diabetic patients with non‐alcoholic fatty liver disease: sites and mechanisms publication-title: Diabetologia doi: 10.1007/s00125-005-1682-x – volume: 50 start-page: 335 year: 1998 ident: hep29465-bib-0041-20241017 article-title: Endogenous glutathione conjugates: occurrence and biological functions publication-title: Pharmacol Rev doi: 10.1016/S0031-6997(24)01370-X – volume: 63 start-page: 776 year: 2016 ident: hep29465-bib-0040-20241017 article-title: Sarcopenia is associated with significant liver fibrosis independently of obesity and insulin resistance in nonalcoholic fatty liver disease: Nationwide surveys (KNHANES 2008‐2011) publication-title: Hepatology doi: 10.1002/hep.28376 – volume: 64 start-page: 1388 year: 2016 ident: hep29465-bib-0001-20241017 article-title: EASL‐EASD‐EASO Clinical Practice Guidelines for the management of non‐alcoholic fatty liver disease publication-title: J Hepatol doi: 10.1016/j.jhep.2015.11.004 – volume: 53 start-page: 172 year: 1991 ident: hep29465-bib-0036-20241017 article-title: Protein metabolism in obesity: effects of body fat distribution and hyperinsulinemia on leucine turnover publication-title: Am J Clin Nutr doi: 10.1093/ajcn/53.1.172 – volume: 50 start-page: 1087 year: 2009 ident: hep29465-bib-0046-20241017 article-title: Importance of changes in adipose tissue insulin resistance to histological response during thiazolidinedione treatment of patients with nonalcoholic steatohepatitis publication-title: Hepatology doi: 10.1002/hep.23116 – volume: 18 start-page: 3775 year: 2012 ident: hep29465-bib-0018-20241017 article-title: Alanine and aspartate aminotransferase and glutamine‐cycling pathway: their roles in pathogenesis of metabolic syndrome publication-title: World J Gastroenterol doi: 10.3748/wjg.v18.i29.3775 – volume: 21 start-page: 739 year: 2015 ident: hep29465-bib-0043-20241017 article-title: Adaptation of hepatic mitochondrial function in humans with non‐alcoholic fatty liver is lost in steatohepatitis publication-title: Cell Metab doi: 10.1016/j.cmet.2015.04.004 – volume: 35 start-page: 1749 year: 2012 ident: hep29465-bib-0035-20241017 article-title: Circulating metabolite predictors of glycemia in middle‐aged men and women publication-title: Diabetes Care doi: 10.2337/dc11-1838 – volume: 2012 start-page: 736837 year: 2012 ident: hep29465-bib-0042-20241017 article-title: Glutathione homeostasis and functions: potential targets for medical interventions publication-title: J Amino Acids – volume: 20 start-page: 79 year: 2010 ident: hep29465-bib-0028-20241017 article-title: Measuring and estimating insulin resistance in clinical and research settings publication-title: Nutr Metab Cardiovasc Dis doi: 10.1016/j.numecd.2009.07.007 – volume: 45 start-page: 510 year: 2017 ident: hep29465-bib-0039-20241017 article-title: Sarcopenia is associated with severe liver fibrosis in patients with non‐alcoholic fatty liver disease publication-title: Aliment Pharmacol Ther doi: 10.1111/apt.13889 – volume: 100 start-page: 2231 year: 2015 ident: hep29465-bib-0031-20241017 article-title: High prevalence of nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus and normal plasma aminotransferase levels publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2015-1966 – volume: 7 start-page: 1007 year: 1993 ident: hep29465-bib-0011-20241017 article-title: Insulin action and substrate competition publication-title: Baillieres Clin Endocrinol Metab doi: 10.1016/S0950-351X(05)80243-5 – volume: 133 start-page: 496 year: 2007 ident: hep29465-bib-0027-20241017 article-title: Relationship between hepatic/visceral fat and hepatic insulin resistance in nondiabetic and type 2 diabetic subjects publication-title: Gastroenterology doi: 10.1053/j.gastro.2007.04.068 – volume: 2 start-page: 445 year: 2011 ident: hep29465-bib-0037-20241017 article-title: Emerging perspectives on essential amino acid metabolism in obesity and the insulin‐resistant state publication-title: Adv Nutr doi: 10.3945/an.111.000737 – volume: 62 start-page: 639 year: 2013 ident: hep29465-bib-0021-20241017 article-title: Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach publication-title: Diabetes doi: 10.2337/db12-0495 – volume: 5 start-page: e10883 year: 2010 ident: hep29465-bib-0045-20241017 article-title: alpha‐hydroxybutyrate is an early biomarker of insulin resistance and glucose intolerance in a nondiabetic population publication-title: PLoS One doi: 10.1371/journal.pone.0010883 – volume: 36 start-page: 2331 year: 2013 ident: hep29465-bib-0004-20241017 article-title: Circulating lysophosphatidylcholines are markers of a metabolically benign nonalcoholic fatty liver publication-title: Diabetes Care doi: 10.2337/dc12-1760 – volume: 309 start-page: E311 year: 2015 ident: hep29465-bib-0015-20241017 article-title: Cross‐talk between branched‐chain amino acids and hepatic mitochondria is compromised in nonalcoholic fatty liver disease publication-title: Am J Physiol Endocrinol Metab doi: 10.1152/ajpendo.00161.2015 – volume: 7 start-page: 8994 year: 2016 ident: hep29465-bib-0019-20241017 article-title: Genome‐scale study reveals reduced metabolic adaptability in patients with non‐alcoholic fatty liver disease publication-title: Nat Commun doi: 10.1038/ncomms9994 – volume: 9 start-page: 311 year: 2009 ident: hep29465-bib-0008-20241017 article-title: A branched‐chain amino acid‐related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance publication-title: Cell Metab doi: 10.1016/j.cmet.2009.02.002 – volume: 5 start-page: 3083 year: 2014 ident: hep29465-bib-0023-20241017 article-title: Genome‐scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non‐alcoholic fatty liver disease publication-title: Nat Commun doi: 10.1038/ncomms4083 – volume: 10 start-page: 330 year: 2013 ident: hep29465-bib-0029-20241017 article-title: Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis publication-title: Nat Rev Gastroenterol Hepatol doi: 10.1038/nrgastro.2013.41 – volume: 57 start-page: 444 year: 1976 ident: hep29465-bib-0016-20241017 article-title: Effects of brief starvation on muscle amino acid metabolism in nonobese man publication-title: J Clin Invest doi: 10.1172/JCI108295 – volume: 55 start-page: 675 year: 2006 ident: hep29465-bib-0044-20241017 article-title: The greater contribution of gluconeogenesis to glucose production in obesity is related to increased whole‐body protein catabolism publication-title: Diabetes doi: 10.2337/diabetes.55.03.06.db05-1117 – volume: 58 year: 2015 ident: hep29465-bib-0047-20241017 article-title: Improvement in hepatic metabolism is associated with reduced conversion to diabetes in IGT subjects treated with pioglitazone (ACT NOW study) [Abstract] publication-title: Diabetologia – volume: 58 start-page: 203 year: 2009 ident: hep29465-bib-0005-20241017 article-title: Hepatic stearoyl‐CoA desaturase (SCD)‐1 activity and diacylglycerol but not ceramide concentrations are increased in the nonalcoholic human fatty liver publication-title: Diabetes doi: 10.2337/db08-1074 – volume: 62 start-page: 1730 year: 2013 ident: hep29465-bib-0003-20241017 article-title: Early metabolic markers of the development of dysglycemia and type 2 diabetes and their physiological significance publication-title: Diabetes doi: 10.2337/db12-0707 – volume: 23 start-page: 362 year: 1982 ident: hep29465-bib-0013-20241017 article-title: Plasma amino‐acid patterns in liver disease publication-title: Gut doi: 10.1136/gut.23.5.362 – volume: 8 start-page: 615 year: 2012 ident: hep29465-bib-0022-20241017 article-title: Novel biomarkers for pre‐diabetes identified by metabolomics publication-title: Mol Syst Biol doi: 10.1038/msb.2012.43 – volume: 63 start-page: 107 year: 2016 ident: hep29465-bib-0026-20241017 article-title: Peripheral insulin resistance predicts liver damage in nondiabetic subjects with nonalcoholic fatty liver disease publication-title: Hepatology doi: 10.1002/hep.28287 – volume: 60 start-page: 404 year: 2011 ident: hep29465-bib-0006-20241017 article-title: Plasma metabolomic profile in nonalcoholic fatty liver disease publication-title: Metabolism doi: 10.1016/j.metabol.2010.03.006 – volume: 58 start-page: 2429 year: 2009 ident: hep29465-bib-0002-20241017 article-title: Metabolomics applied to diabetes research: moving from information to knowledge publication-title: Diabetes doi: 10.2337/db09-0580 – volume: 10 start-page: 723 year: 2014 ident: hep29465-bib-0010-20241017 article-title: Branched‐chain amino acids in metabolic signalling and insulin resistance publication-title: Nat Rev Endocrinol doi: 10.1038/nrendo.2014.171 – volume: 13 start-page: 916 year: 2017 ident: hep29465-bib-0020-20241017 article-title: Personal model‐assisted identification of NAD+ and glutathione metabolism as intervention target in NAFLD publication-title: Mol Syst Biol doi: 10.15252/msb.20167422 – volume: 100 start-page: E463 year: 2015 ident: hep29465-bib-0038-20241017 article-title: Metabolomic profile associated with insulin resistance and conversion to diabetes in the Insulin Resistance Atherosclerosis Study publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2014-2357 – volume: 5 start-page: 1544 year: 2013 ident: hep29465-bib-0014-20241017 article-title: Non‐alcoholic fatty liver disease (NAFLD) and its connection with insulin resistance, dyslipidemia, atherosclerosis and coronary heart disease publication-title: Nutrients doi: 10.3390/nu5051544 – volume: 2 start-page: 901 year: 2014 ident: hep29465-bib-0030-20241017 article-title: Non‐alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome publication-title: Lancet Diabetes Endocrinol doi: 10.1016/S2213-8587(14)70032-4 – volume: 41 start-page: 1313 year: 2005 ident: hep29465-bib-0024-20241017 article-title: Design and validation of a histological scoring system for nonalcoholic fatty liver disease publication-title: Hepatology doi: 10.1002/hep.20701 – volume: 43 start-page: 171 year: 2012 ident: hep29465-bib-0009-20241017 article-title: Insulin resistance and the metabolism of branched‐chain amino acids in humans publication-title: Amino Acids doi: 10.1007/s00726-011-1088-7 – volume: 35 start-page: 722 year: 2003 ident: hep29465-bib-0012-20241017 article-title: Impaired insulin‐mediated amino acid plasma disappearance in non‐alcoholic fatty liver disease: a feature of insulin resistance publication-title: Dig Liver Dis doi: 10.1016/S1590-8658(03)00416-X – volume: 125 start-page: 2222 year: 2012 ident: hep29465-bib-0017-20241017 article-title: Metabolite profiling identifies pathways associated with metabolic risk in humans publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.111.067827 – volume: 7 start-page: 1104 year: 2009 ident: hep29465-bib-0007-20241017 article-title: Comparison of noninvasive markers of fibrosis in patients with nonalcoholic fatty liver disease publication-title: Clin Gastroenterol Hepatol doi: 10.1016/j.cgh.2009.05.033 – volume: 35 start-page: 1399 year: 1989 ident: hep29465-bib-0033-20241017 article-title: Determination of branched‐chain amino acids and tyrosine in serum of patients with various hepatic diseases, and its clinical usefulness publication-title: Clin Chem doi: 10.1093/clinchem/35.7.1399 |
SSID | ssj0009428 |
Score | 2.664455 |
Snippet | Plasma concentrations of amino acids (AAs), in particular, branched chain AAs (BCAAs), are often found increased in nonalcoholic fatty liver disease (NAFLD);... |
SourceID | unpaywall proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 145 |
SubjectTerms | Adult Age Factors Alanine Amino acids Amino Acids - blood Biomarkers - blood Biopsy Body mass index Case-Control Studies Diabetes mellitus Disease Progression Fatty liver Female Fibrosis Gas chromatography Glutamic acid Glutamic Acid - blood Glutathione Glycine Hepatology Histology Homeostasis Humans Insulin Insulin Resistance Isoleucine Isoleucine - blood Leucine Liver diseases Male Mass spectroscopy Middle Aged Non-alcoholic Fatty Liver Disease - blood Non-alcoholic Fatty Liver Disease - physiopathology Obesity Obesity - blood Obesity - physiopathology Plasma Prognosis Reference Values Retrospective Studies Risk Assessment Serine Severity of Illness Index Sex Factors Tyrosine Tyrosine - blood Valine γ-Glutamyltransferase |
Title | Altered amino acid concentrations in NAFLD: Impact of obesity and insulin resistance |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhep.29465 https://www.ncbi.nlm.nih.gov/pubmed/28802074 https://www.proquest.com/docview/1978464411 https://www.proquest.com/docview/1928514501 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.29465 |
UnpaywallVersion | publishedVersion |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1527-3350 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0009428 issn: 1527-3350 databaseCode: DIK dateStart: 19960101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1527-3350 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1527-3350 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009428 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VPRQ4lHe7UJB5HHrJNrGdTQynFXS1IFoh1Eo9IEV-ihWLs2J3VbW_nrHzqMpLiFukjBXH47G_8Xi-AXhJNUMYylySqZInnCqTSCFFouzIuIKVhYxlOo-OR9NT_v4sP9uA110uTMMP0R-4BcuI63UwcKmWB1ekoV_sYkgFH4UE84zlMUT76Yo6SvBYVxW9rjREl0XHKpTSg77l9b3oF4B5C26s_UJenMv5_Dp2jZvP5DZ87rrd3Dn5Olyv1FBf_sTo-J__dQe2W1BKxs0sugsb1t-DraM27H4fTsYhpm4Nkd9mviZSzwzRId_Rt6S7SzLz5Hg8-fD2FXkX8y5J7UjdFB0g0hvS3nkn6N0HxIptH8Dp5PDkzTRpyzEkmiPOSkzhhHOMW8cYT21WpgUtFWdcidw5TqkurLNWK8URU6UiIClXBIestNLhVvkQNn3t7S4QlrNchvVFWXTNC6oyx40QKtOp4YVxA9jvFFPplqs8lMyYVw3LMq1wlKo4SgN43osuGoKO3wntddqtWhtdVhk60DzAwWwAz_rXaF0hZCK9rddBhiIk5XmKMjvNrOi_QnHpo4jABvCinyZ_68J-1PqfJarp4cf48OjfRR_DTURwZXMmtAebq-9r-wRR0ko9jebwA1KBCuU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTWLwwPimMMADHvaSLrGdJkZ7qbZVHWsrhDppL1PkT1FRnIq1QvDXYzsf0zZAiLdIOSuOfWf_zuf7HcA7LImDocREichpRLFQEWecRUL3lMlInvFQpnM86Q1P6Yez9GwN9ptcmIofoj1w85YR1mtv4P5Aeu-SNfSzXnQxo730Fmz4-Jw3y8NPl-RRjIbKqs7vin18mTW8QjHea5te3Y1uQMy7sLmyC_7jO5_Pr6LXsP0MtuC86Xh16-RLd7UUXfnzGqfj__7ZfbhX41LUrxTpAaxp-xBuj-vI-yOY9n1YXSvEv85sibicKSR9yqOteXcv0MyiSX8wOnyPjkPqJSoNKqu6A4hbhepr78g5-B60uraP4XRwND0YRnVFhkhSB7UilRlmDKHaEEJjneRxhnNBCRUsNYZiLDNttJZCUAerYubBlMm8T5Zrbtxu-QTWbWn1M0AkJSn3S4zQzjvPsEgMVYyJRMaKZsp0YLeZmULWdOW-asa8qIiWceFGqQij1IE3reii4uj4ndB2M71FbaYXReJ8aOoRYdKBnfa1MzAfNeFWlysvgx0qpWnsZJ5WatF-BbvVDzsQ1oG3rZ78rQu7Ydr_LFEMjz6Gh-f_LvoaNofT8agYHU9OXsAdB-jy6ohoG9aX31b6pQNNS_Eq2MYv-5MPAQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIpX2wLt0oYB5HHrJNnGcTQynFe1qC-2qQq3UA1Lkp7rq4qzorhD8esbOoyovIW6RPJYd22N_4_F8A_CaqhRhaGqjRBYsYlTqSHDBI2kG2uZpkYuQpvNoMhifsvdn2dkKvG1jYWp-iO7CzWtG2K-9gs-13b0iDT038z7lbJDdgJtsgNaVR0Qfr7ijOAuJVbEg9u5l3tIKxXS3q3r9MPoFYW7AraWbi29fxWx2HbyG02d0Bz61_a4fnVz0lwvZV99_onT8zx-7C7cbVEqG9TK6ByvG3Ye1o8bv_gBOht6pbjQRn6euIkJNNVE-4NE1rLuXZOrIZDg63HtDDkLgJaksqeqsA0Q4TZpH7wTNew9Zse5DOB3tn7wbR00-hkgxBFqRzi23NmXGpimLTVLEOS0kS5nkmbWMUpUba4ySkiGoirmHUjb3FllhhMWzchNWXeXMFpA0SzPhNxhp0DbPqUws05zLRMWa5dr2YKedmFI1ZOU-Z8asrGmWaYmjVIZR6sHLTnReM3T8Tmi7nd2yUdLLMkELmnk8mPTgRVeM6uV9JsKZaullKGJSlsUo86heFV0rFPc-ihCsB6-6ZfK3LuyEWf-zRDnePw4fj_9d9DmsHe-NysODyYcnsI5orqjvh7ZhdfFlaZ4iYlrIZ0EzfgDBdQ2w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Altered+amino+acid+concentrations+in+NAFLD%3A+Impact+of+obesity+and+insulin+resistance&rft.jtitle=Hepatology+%28Baltimore%2C+Md.%29&rft.au=Gaggini%2C+Melania&rft.au=Carli%2C+Fabrizia&rft.au=Rosso%2C+Chiara&rft.au=Buzzigoli%2C+Emma&rft.date=2018-01-01&rft.issn=0270-9139&rft.eissn=1527-3350&rft.volume=67&rft.issue=1&rft.spage=145&rft.epage=158&rft_id=info:doi/10.1002%2Fhep.29465&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_hep_29465 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-9139&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-9139&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-9139&client=summon |