Segmentation and leaf sequencing for intensity modulated arc therapy

A common method in generating intensity modulated radiation therapy (IMRT) plans consists of a three step process: an optimized fluence intensity map (IM) for each beam is generated via inverse planning, this IM is then segmented into discrete levels, and finally, the segmented map is translated int...

Full description

Saved in:
Bibliographic Details
Published inMedical physics (Lancaster) Vol. 34; no. 5; pp. 1779 - 1788
Main Authors Gladwish, Adam, Oliver, Mike, Craig, Jeff, Chen, Jeff, Bauman, Glenn, Fisher, Barbara, Wong, Eugene
Format Journal Article
LanguageEnglish
Published United States American Association of Physicists in Medicine 01.05.2007
Subjects
Online AccessGet full text
ISSN0094-2405
2473-4209
1522-8541
2473-4209
DOI10.1118/1.2724064

Cover

Abstract A common method in generating intensity modulated radiation therapy (IMRT) plans consists of a three step process: an optimized fluence intensity map (IM) for each beam is generated via inverse planning, this IM is then segmented into discrete levels, and finally, the segmented map is translated into a set of MLC apertures via a leaf sequencing algorithm. To date, limited work has been done on this approach as it pertains to intensity modulated arc therapy (IMAT), specifically in regards to the latter two steps. There are two determining factors that separate IMAT segmentation and leaf sequencing from their IMRT equivalents: (1) the intrinsic 3D nature of the intensity maps (standard 2D maps plus the angular component), and (2) that the dynamic multileaf collimator (MLC) constraints be met using a minimum number of arcs. In this work, we illustrate a technique to create an IMAT plan that replicates Tomotherapy deliveries by applying IMAT specific segmentation and leaf-sequencing algorithms to Tomotherapy output sinograms. We propose and compare two alternative segmentation techniques, a clustering method, and a bottom-up segmentation method (BUS). We also introduce a novel IMAT leaf-sequencing algorithm that explicitly takes leaf movement constraints into consideration. These algorithms were tested with 51 angular projections of the output leaf-open sinograms generated on the Hi-ART II treatment planning system (Tomotherapy Inc.). We present two geometric phantoms and 2 clinical scenarios as sample test cases. In each case 12 IMAT plans were created, ranging from 2 to 7 intensity levels. Half were generated using the BUS segmentation and half with the clustering method. We report on the number of arcs produced as well as differences between Tomotherapy output sinograms and segmented IMAT intensity maps. For each case one plan for each segmentation method is chosen for full Monte Carlo dose calculation (NumeriX LLC) and dose volume histograms (DVH) are calculated. In all cases, the BUS method outperformed the clustering, method. We recommend using the BUS algorithm and discuss potential improvements to the clustering algorithms.
AbstractList A common method in generating intensity modulated radiation therapy (IMRT) plans consists of a three step process: an optimized fluence intensity map (IM) for each beam is generated via inverse planning, this IM is then segmented into discrete levels, and finally, the segmented map is translated into a set of MLC apertures via a leaf sequencing algorithm. To date, limited work has been done on this approach as it pertains to intensity modulated arc therapy (IMAT), specifically in regards to the latter two steps. There are two determining factors that separate IMAT segmentation and leaf sequencing from their IMRT equivalents: (1) the intrinsic 3D nature of the intensity maps (standard 2D maps plus the angular component), and (2) that the dynamic multileaf collimator (MLC) constraints be met using a minimum number of arcs. In this work, we illustrate a technique to create an IMAT plan that replicates Tomotherapy deliveries by applying IMAT specific segmentation and leaf-sequencing algorithms to Tomotherapy output sinograms. We propose and compare two alternative segmentation techniques, a clustering method, and a bottom-up segmentation method (BUS). We also introduce a novel IMAT leaf-sequencing algorithm that explicitly takes leaf movement constraints into consideration. These algorithms were tested with 51 angular projections of the output leaf-open sinograms generated on the Hi-ART II treatment planning system (Tomotherapy Inc.). We present two geometric phantoms and 2 clinical scenarios as sample test cases. In each case 12 IMAT plans were created, ranging from 2 to 7 intensity levels. Half were generated using the BUS segmentation and half with the clustering method. We report on the number of arcs produced as well as differences between Tomotherapy output sinograms and segmented IMAT intensity maps. For each case one plan for each segmentation method is chosen for full Monte Carlo dose calculation (NumeriX LLC) and dose volume histograms (DVH) are calculated. In all cases, the BUS method outperformed the clustering, method. We recommend using the BUS algorithm and discuss potential improvements to the clustering algorithms.
A common method in generating intensity modulated radiation therapy (IMRT) plans consists of a three step process: an optimized fluence intensity map (IM) for each beam is generated via inverse planning, this IM is then segmented into discrete levels, and finally, the segmented map is translated into a set of MLC apertures via a leaf sequencing algorithm. To date, limited work has been done on this approach as it pertains to intensity modulated arc therapy (IMAT), specifically in regards to the latter two steps. There are two determining factors that separate IMAT segmentation and leaf sequencing from their IMRT equivalents: (1) the intrinsic 3D nature of the intensity maps (standard 2D maps plus the angular component), and (2) that the dynamic multileaf collimator (MLC) constraints be met using a minimum number of arcs. In this work, we illustrate a technique to create an IMAT plan that replicates Tomotherapy deliveries by applying IMAT specific segmentation and leaf-sequencing algorithms to Tomotherapy output sinograms. We propose and compare two alternative segmentation techniques, a clustering method, and a bottom-up segmentation method (BUS). We also introduce a novel IMAT leaf-sequencing algorithm that explicitly takes leaf movement constraints into consideration. These algorithms were tested with 51 angular projections of the output leaf-open sinograms generated on the Hi-ART II treatment planning system (Tomotherapy Inc.). We present two geometric phantoms and 2 clinical scenarios as sample test cases. In each case 12 IMAT plans were created, ranging from 2 to 7 intensity levels. Half were generated using the BUS segmentation and half with the clustering method. We report on the number of arcs produced as well as differences between Tomotherapy output sinograms and segmented IMAT intensity maps. For each case one plan for each segmentation method is chosen for full Monte Carlo dose calculation (NumeriX LLC) and dose volume histograms (DVH) are calculated. In all cases, the BUS method outperformed the clustering, method. We recommend using the BUS algorithm and discuss potential improvements to the clustering algorithms.A common method in generating intensity modulated radiation therapy (IMRT) plans consists of a three step process: an optimized fluence intensity map (IM) for each beam is generated via inverse planning, this IM is then segmented into discrete levels, and finally, the segmented map is translated into a set of MLC apertures via a leaf sequencing algorithm. To date, limited work has been done on this approach as it pertains to intensity modulated arc therapy (IMAT), specifically in regards to the latter two steps. There are two determining factors that separate IMAT segmentation and leaf sequencing from their IMRT equivalents: (1) the intrinsic 3D nature of the intensity maps (standard 2D maps plus the angular component), and (2) that the dynamic multileaf collimator (MLC) constraints be met using a minimum number of arcs. In this work, we illustrate a technique to create an IMAT plan that replicates Tomotherapy deliveries by applying IMAT specific segmentation and leaf-sequencing algorithms to Tomotherapy output sinograms. We propose and compare two alternative segmentation techniques, a clustering method, and a bottom-up segmentation method (BUS). We also introduce a novel IMAT leaf-sequencing algorithm that explicitly takes leaf movement constraints into consideration. These algorithms were tested with 51 angular projections of the output leaf-open sinograms generated on the Hi-ART II treatment planning system (Tomotherapy Inc.). We present two geometric phantoms and 2 clinical scenarios as sample test cases. In each case 12 IMAT plans were created, ranging from 2 to 7 intensity levels. Half were generated using the BUS segmentation and half with the clustering method. We report on the number of arcs produced as well as differences between Tomotherapy output sinograms and segmented IMAT intensity maps. For each case one plan for each segmentation method is chosen for full Monte Carlo dose calculation (NumeriX LLC) and dose volume histograms (DVH) are calculated. In all cases, the BUS method outperformed the clustering, method. We recommend using the BUS algorithm and discuss potential improvements to the clustering algorithms.
Author Oliver, Mike
Wong, Eugene
Bauman, Glenn
Fisher, Barbara
Gladwish, Adam
Chen, Jeff
Craig, Jeff
Author_xml – sequence: 1
  givenname: Adam
  surname: Gladwish
  fullname: Gladwish, Adam
  organization: Department of Physics, London Regional Cancer Program, London, Canada and Medical Biophysics, University of Western Ontario, London, Canada
– sequence: 2
  givenname: Mike
  surname: Oliver
  fullname: Oliver, Mike
  organization: Department of Physics, London Regional Cancer Program, London, Canada and Medical Biophysics, University of Western Ontario, London, Canada
– sequence: 3
  givenname: Jeff
  surname: Craig
  fullname: Craig, Jeff
  organization: Department of Physics, London Regional Cancer Program, London, Canada
– sequence: 4
  givenname: Jeff
  surname: Chen
  fullname: Chen, Jeff
  organization: Department of Physics, London Regional Cancer Program, London, Canada, and Departments of Oncology and Medical Biophysics, University of Western Ontario, London, Canada
– sequence: 5
  givenname: Glenn
  surname: Bauman
  fullname: Bauman, Glenn
  organization: Department of Oncology, University of Western Ontario, London, Canada
– sequence: 6
  givenname: Barbara
  surname: Fisher
  fullname: Fisher, Barbara
  organization: Department of Oncology, University of Western Ontario, London, Canada
– sequence: 7
  givenname: Eugene
  surname: Wong
  fullname: Wong, Eugene
  organization: Department of Physics, London Regional Cancer Program, London, Canada and Departments of Oncology and Medical Biophysics, University of Western Ontario, London, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17555259$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/20951308$$D View this record in Osti.gov
BookMark eNp9kVFr1jAUhoNM3LfphX9ACoIwoVuSNk17Obapg4mCeh1O05Mt0iY1SR399-tsRRG3q1zkOW_e8-SA7DnvkJCXjB4zxuoTdswlL2lVPiE7XsoiLzlt9siO0qbMlwuxTw5i_E4prQpBn5F9JoUQXDQ7cv4Frwd0CZL1LgPXZT2CySL-mNBp664z40NmXUIXbZqzwXdTDwm7DILO0g0GGOfn5KmBPuKL7Twk395dfD37kF99en95dnqV61KUZd6CrDUvGlnISoqqBskraAQYqEyLArnpWq6hrRtZYysapqFhHZdVZxrZaiwOyds1d3IjzLfQ92oMdoAwK0bVvQrF1KZigV-vsI_JqqhtQn2jvXOok1r8CFbQeqHerNQY_LJyTGqwUWPfg0M_RSVpRVnJqwV8tYFTO2D35-FN5QIcrYAOPsaA5tFuJ_-wS71fX5AC2P6_E_k6cWt7nB-OVh8_b_ymKv5OfrTOg_BPH_4KHztT3AHMG7rg
CODEN MPHYA6
CitedBy_id crossref_primary_10_1118_1_3117563
crossref_primary_10_1088_0031_9155_54_21_018
crossref_primary_10_1080_02841860802282778
crossref_primary_10_1120_jacmp_v10i4_3068
crossref_primary_10_1111_j_1754_9485_2011_02310_x
crossref_primary_10_1016_j_radonc_2008_03_003
crossref_primary_10_1088_0031_9155_56_8_015
crossref_primary_10_1118_1_2818738
crossref_primary_10_1118_1_2937650
crossref_primary_10_1287_ijoc_2022_1167
crossref_primary_10_1088_0031_9155_53_19_N01
crossref_primary_10_1088_0031_9155_56_5_R01
crossref_primary_10_1118_1_3240488
crossref_primary_10_1088_0031_9155_55_13_020
crossref_primary_10_1007_s11547_017_0735_9
crossref_primary_10_1016_j_ijrobp_2009_03_033
crossref_primary_10_1088_0031_9155_53_22_010
crossref_primary_10_1088_0031_9155_53_17_018
crossref_primary_10_1088_0031_9155_54_11_018
crossref_primary_10_1120_jacmp_v11i1_3114
Cites_doi 10.1038/ncponc0058
10.1016/S0958-3947(00)00062-5
10.1118/1.1776671
10.1088/0031‐9155/47/17/305
10.1016/j.ijrobp.2004.04.016
10.1016/S0360‐3016(02)02735‐9
10.1118/1.598755
10.1016/S0360-3016(03)00663-1
10.1016/j.ijrobp.2006.02.038
10.1088/0031‐9155/48/8/309
10.1118/1.1998467
10.1118/1.598315
10.1118/1.1538236
10.1016/S0360‐3016(01)02607‐4
10.1118/1.1568978
10.1016/j.radonc.2006.08.025
10.1118/1.596958
10.1088/0031‐9155/46/7/319
10.1088/0031‐9155/37/8/005
10.1016/0360-3016(94)90200-3
10.1088/0031‐9155/48/3/303
10.1016/S0360-3016(02)04284-0
10.1088/0031‐9155/49/16/014
10.1088/0031‐9155/40/9/004
ContentType Journal Article
Copyright American Association of Physicists in Medicine
2007 American Association of Physicists in Medicine
Copyright_xml – notice: American Association of Physicists in Medicine
– notice: 2007 American Association of Physicists in Medicine
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
OTOTI
ADTOC
UNPAY
DOI 10.1118/1.2724064
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
OSTI.GOV
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
CrossRef
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 2473-4209
EndPage 1788
ExternalDocumentID 10.1118/1.2724064
20951308
17555259
10_1118_1_2724064
MP4064
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
29M
2WC
33P
36B
3O-
4.4
476
53G
5GY
5RE
5VS
AAHHS
AANLZ
AAQQT
AASGY
AAXRX
AAZKR
ABCUV
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACSMX
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AHBTC
AIACR
AIAGR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
G8K
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAHQN
AAIPD
AAMNL
AAYCA
ABDPE
AFWVQ
AITYG
ALVPJ
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
LH4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAJUZ
AAPBV
ABCVL
ABPTK
ADDAD
AEUQT
OTOTI
ADTOC
UNPAY
ID FETCH-LOGICAL-c4544-ba78c23973767568a726a95afa6fbe5e2fdb2cab8978eb591ca91d276df97bce3
IEDL.DBID UNPAY
ISSN 0094-2405
2473-4209
1522-8541
IngestDate Tue Aug 19 17:47:24 EDT 2025
Fri May 19 00:35:18 EDT 2023
Wed Oct 01 15:03:44 EDT 2025
Mon Jul 21 05:37:32 EDT 2025
Wed Oct 01 03:41:45 EDT 2025
Thu Apr 24 23:02:21 EDT 2025
Wed Jan 22 16:26:13 EST 2025
Fri Jun 21 00:29:05 EDT 2024
Sun Jul 14 10:05:19 EDT 2019
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords segmentation
arc therapy
Tomotherapy
IMRT
IMAT
leaf sequencing
Language English
License 0094-2405/2007/34(5)/1779/10/$23.00
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4544-ba78c23973767568a726a95afa6fbe5e2fdb2cab8978eb591ca91d276df97bce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1118/1.2724064
PMID 17555259
PQID 70601426
PQPubID 23479
PageCount 10
ParticipantIDs pubmed_primary_17555259
scitation_primary_10_1118_1_2724064
proquest_miscellaneous_70601426
osti_scitechconnect_20951308
crossref_citationtrail_10_1118_1_2724064
crossref_primary_10_1118_1_2724064
wiley_primary_10_1118_1_2724064_MP4064
unpaywall_primary_10_1118_1_2724064
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2007
PublicationDateYYYYMMDD 2007-05-01
PublicationDate_xml – month: 05
  year: 2007
  text: May 2007
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 2007
Publisher American Association of Physicists in Medicine
Publisher_xml – name: American Association of Physicists in Medicine
References Pezner (c7) 2006; 81
Earl, Shepard, Naqvi, Li, Yu (c9) 2003; 48
Bar, Alber, Nusslin (c13) 2001; 46
Sheng, Molloy, Read (c8) 2006; 65
Kamath, Sahni, Li, Palta, Ranka (c22) 2003; 48
Crooks, McAven, Robinson, Xing (c21) 2002; 47
Duthoy (c12) 2004; 60
Que (c23) 1999; 26
Mackie (c4) 1993; 20
Bortfeld, Kahler, Waldron, Boyer (c15) 1994; 28
Webb (c17) 1992; 37
De, Claus, De, Van, De (c25) 2001; 51
Salter (c3) 2001; 26
Zelefsky (c2) 2006; 176
Wong, Chen, Greenland (c10) 2002; 53
Yu (c5) 1995; 40
Xia, Verhey (c16) 1998; 25
Kron (c6) 2004; 49
Deasy, Blanco, Clark (c19) 2003; 30
Duthoy (c11) 2003; 57
Francescon, Cora, Chiovati (c20) 2003; 30
Craig, Wong, Mulligan, Gladwish, Gaede, Chen (c18) 2005; 32
Jones, Cominos, Dale (c24) 2003; 55
Eisbruch (c1) 2005; 2
Gladwish, Kron, McNiven, Bauman, Van (c14) 2004; 31
2006; 81
1995; 40
2002; 47
2004; 31
2004; 60
2002; 53
2004; 49
2006; 65
1993; 20
1999; 26
2003; 57
2006; 176
2003; 48
2005; 32
2001; 26
1992; 37
2005; 2
1994; 28
2001; 46
2003; 30
2001; 51
1998; 25
2003; 55
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
Zelefsky M. J. (e_1_2_8_3_1) 2006; 176
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_12_1
References_xml – volume: 30
  start-page: 144
  issn: 0094-2405
  year: 2003
  ident: c20
  article-title: Dose verification of an IMRT treatment planning system with the BEAM EGS4-based Monte Carlo code
  publication-title: Med. Phys.
– volume: 30
  start-page: 979
  issn: 0094-2405
  year: 2003
  ident: c19
  article-title: CERR: A computational environment for radiotherapy research
  publication-title: Med. Phys.
– volume: 48
  start-page: 1075
  issn: 0031-9155
  year: 2003
  ident: c9
  article-title: Inverse planning for intensity-modulated arc therapy using direct aperture optimization
  publication-title: Phys. Med. Biol.
– volume: 81
  start-page: 81
  issn: 0167-8140
  year: 2006
  ident: c7
  article-title: Dosimetric comparison of helical tomotherapy treatment and step-and-shoot intensity-modulated radiotherapy of retroperitoneal sarcoma
  publication-title: Radiother. Oncol.
– volume: 26
  start-page: 2390
  issn: 0094-2405
  year: 1999
  ident: c23
  article-title: Comparison of algorithms for multileaf collimator field segmentation
  publication-title: Med. Phys.
– volume: 60
  start-page: 794
  issn: 0360-3016
  year: 2004
  ident: c12
  article-title: Clinical implementation of intensity-modulated arc therapy (IMAT) for rectal cancer
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 53
  start-page: 222
  issn: 0360-3016
  year: 2002
  ident: c10
  article-title: Intensity-modulated arc therapy simplified
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 40
  start-page: 1435
  issn: 0031-9155
  year: 1995
  ident: c5
  article-title: Intensity-modulated arc therapy with dynamic multileaf collimation: An alternative to tomotherapy
  publication-title: Phys. Med. Biol.
– volume: 49
  start-page: 3675
  issn: 0031-9155
  year: 2004
  ident: c6
  article-title: Planning evaluation of radiotherapy for complex lung cancer cases using helical tomotherapy
  publication-title: Phys. Med. Biol.
– volume: 65
  start-page: 917
  issn: 0360-3016
  year: 2006
  ident: c8
  article-title: Intensity-modulated radiation therapy (IMRT) dosimetry of the head and neck: A comparison of treatment plans using linear accelerator-based IMRT and helical tomotherapy
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 32
  start-page: 2113
  issn: 0094-2405
  year: 2005
  ident: c18
  article-title: TU-FF-A1-02: Commissioning Fast Monte Carlo Dose Calculation for Lung Treatment Planning
  publication-title: Med. Phys.
– volume: 57
  start-page: 1019
  issn: 0360-3016
  year: 2003
  ident: c11
  article-title: Whole abdominopelvic radiotherapy (WAPRT) using intensity-modulated arc therapy (IMAT): First clinical experience
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 20
  start-page: 1709
  issn: 0094-2405
  year: 1993
  ident: c4
  article-title: Tomotherapy: A new concept for the delivery of dynamic conformal radiotherapy
  publication-title: Med. Phys.
– volume: 26
  start-page: 37
  issn: 0739-0211
  year: 2001
  ident: c3
  article-title: NOMOS Peacock IMRT utilizing the Beak post collimation device
  publication-title: Med. Dosim.
– volume: 2
  start-page: 34
  year: 2005
  ident: c1
  article-title: Intensity-modulated radiation therapy in the treatment of head and neck cancer
  publication-title: Nat. Clin. Pract. Oncol.
– volume: 28
  start-page: 723
  issn: 0360-3016
  year: 1994
  ident: c15
  article-title: X-ray field compensation with multileaf collimators
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 46
  start-page: 1997
  issn: 0031-9155
  year: 2001
  ident: c13
  article-title: A variable fluence step clustering and segmentation algorithm for step and shoot IMRT
  publication-title: Phys. Med. Biol.
– volume: 25
  start-page: 1424
  issn: 0094-2405
  year: 1998
  ident: c16
  article-title: Multileaf collimator leaf sequencing algorithm for intensity modulated beams with multiple static segments
  publication-title: Med. Phys.
– volume: 47
  start-page: 3105
  issn: 0031-9155
  year: 2002
  ident: c21
  article-title: Minimizing delivery time and monitor units in static IMRT by leaf-sequencing
  publication-title: Phys. Med. Biol.
– volume: 37
  start-page: 1689
  issn: 0031-9155
  year: 1992
  ident: c17
  article-title: Optimization by simulated annealing of three-dimensional, conformal treatment planning for radiation fields defined by a multileaf collimator: II. Inclusion of two-dimensional modulation of the x-ray intensity
  publication-title: Phys. Med. Biol.
– volume: 51
  start-page: 1371
  issn: 0360-3016
  year: 2001
  ident: c25
  article-title: Leaf position optimization for step-and-shoot IMRT
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 31
  start-page: 2443
  issn: 0094-2405
  year: 2004
  ident: c14
  article-title: Asymmetric fan beams (AFB) for improvement of the craniocaudal dose distribution in helical tomotherapy delivery
  publication-title: Med. Phys.
– volume: 48
  start-page: 307
  issn: 0031-9155
  year: 2003
  ident: c22
  article-title: Leaf sequencing algorithms for segmented multileaf collimation
  publication-title: Phys. Med. Biol.
– volume: 55
  start-page: 736
  issn: 0360-3016
  year: 2003
  ident: c24
  article-title: Application of biological effective dose (BED) to estimate the duration of symptomatic relief and repopulation dose equivalent in palliative radiotherapy and chemotherapy
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 176
  start-page: 1415
  issn: 1063-7826
  year: 2006
  ident: c2
  article-title: Long-term outcome of high dose intensity modulated radiation therapy for patients with clinically localized prostate cancer
  publication-title: Semiconductors
– volume: 28
  start-page: 723
  year: 1994
  end-page: 730
  article-title: X‐ray field compensation with multileaf collimators
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 55
  start-page: 736
  year: 2003
  end-page: 742
  article-title: Application of biological effective dose (BED) to estimate the duration of symptomatic relief and repopulation dose equivalent in palliative radiotherapy and chemotherapy
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 46
  start-page: 1997
  year: 2001
  end-page: 2007
  article-title: A variable fluence step clustering and segmentation algorithm for step and shoot IMRT
  publication-title: Phys. Med. Biol.
– volume: 176
  start-page: 1415
  year: 2006
  end-page: 1419
  article-title: Long‐term outcome of high dose intensity modulated radiation therapy for patients with clinically localized prostate cancer
  publication-title: Semiconductors
– volume: 26
  start-page: 37
  year: 2001
  end-page: 45
  article-title: NOMOS Peacock IMRT utilizing the Beak post collimation device
  publication-title: Med. Dosim.
– volume: 37
  start-page: 1689
  year: 1992
  end-page: 1704
  article-title: Optimization by simulated annealing of three‐dimensional, conformal treatment planning for radiation fields defined by a multileaf collimator: II. Inclusion of two‐dimensional modulation of the x‐ray intensity
  publication-title: Phys. Med. Biol.
– volume: 26
  start-page: 2390
  year: 1999
  end-page: 2396
  article-title: Comparison of algorithms for multileaf collimator field segmentation
  publication-title: Med. Phys.
– volume: 30
  start-page: 144
  year: 2003
  end-page: 157
  article-title: Dose verification of an IMRT treatment planning system with the BEAM EGS4‐based Monte Carlo code
  publication-title: Med. Phys.
– volume: 48
  start-page: 1075
  year: 2003
  end-page: 1089
  article-title: Inverse planning for intensity‐modulated arc therapy using direct aperture optimization
  publication-title: Phys. Med. Biol.
– volume: 81
  start-page: 81
  year: 2006
  end-page: 87
  article-title: Dosimetric comparison of helical tomotherapy treatment and step‐and‐shoot intensity‐modulated radiotherapy of retroperitoneal sarcoma
  publication-title: Radiother. Oncol.
– volume: 47
  start-page: 3105
  year: 2002
  end-page: 3116
  article-title: Minimizing delivery time and monitor units in static IMRT by leaf‐sequencing
  publication-title: Phys. Med. Biol.
– volume: 49
  start-page: 3675
  year: 2004
  end-page: 3690
  article-title: Planning evaluation of radiotherapy for complex lung cancer cases using helical tomotherapy
  publication-title: Phys. Med. Biol.
– volume: 30
  start-page: 979
  year: 2003
  end-page: 985
  article-title: CERR: A computational environment for radiotherapy research
  publication-title: Med. Phys.
– volume: 65
  start-page: 917
  year: 2006
  end-page: 923
  article-title: Intensity‐modulated radiation therapy (IMRT) dosimetry of the head and neck: A comparison of treatment plans using linear accelerator‐based IMRT and helical tomotherapy
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 20
  start-page: 1709
  year: 1993
  end-page: 1719
  article-title: Tomotherapy: A new concept for the delivery of dynamic conformal radiotherapy
  publication-title: Med. Phys.
– volume: 53
  start-page: 222
  year: 2002
  end-page: 235
  article-title: Intensity‐modulated arc therapy simplified
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 51
  start-page: 1371
  year: 2001
  end-page: 1388
  article-title: Leaf position optimization for step‐and‐shoot IMRT
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 31
  start-page: 2443
  year: 2004
  end-page: 2448
  article-title: Asymmetric fan beams (AFB) for improvement of the craniocaudal dose distribution in helical tomotherapy delivery
  publication-title: Med. Phys.
– volume: 25
  start-page: 1424
  year: 1998
  end-page: 1434
  article-title: Multileaf collimator leaf sequencing algorithm for intensity modulated beams with multiple static segments
  publication-title: Med. Phys.
– volume: 32
  start-page: 2113
  issue: 6
  year: 2005
  article-title: TU‐FF‐A1‐02: Commissioning Fast Monte Carlo Dose Calculation for Lung Treatment Planning
  publication-title: Med. Phys.
– volume: 40
  start-page: 1435
  year: 1995
  end-page: 1449
  article-title: Intensity‐modulated arc therapy with dynamic multileaf collimation: An alternative to tomotherapy
  publication-title: Phys. Med. Biol.
– volume: 57
  start-page: 1019
  year: 2003
  end-page: 1032
  article-title: Whole abdominopelvic radiotherapy (WAPRT) using intensity‐modulated arc therapy (IMAT): First clinical experience
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 60
  start-page: 794
  year: 2004
  end-page: 806
  article-title: Clinical implementation of intensity‐modulated arc therapy (IMAT) for rectal cancer
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 2
  start-page: 34
  year: 2005
  end-page: 39
  article-title: Intensity‐modulated radiation therapy in the treatment of head and neck cancer
  publication-title: Nat. Clin. Pract. Oncol.
– volume: 48
  start-page: 307
  year: 2003
  end-page: 324
  article-title: Leaf sequencing algorithms for segmented multileaf collimation
  publication-title: Phys. Med. Biol.
– ident: e_1_2_8_2_1
  doi: 10.1038/ncponc0058
– ident: e_1_2_8_4_1
  doi: 10.1016/S0958-3947(00)00062-5
– ident: e_1_2_8_15_1
  doi: 10.1118/1.1776671
– ident: e_1_2_8_22_1
  doi: 10.1088/0031‐9155/47/17/305
– ident: e_1_2_8_13_1
  doi: 10.1016/j.ijrobp.2004.04.016
– ident: e_1_2_8_11_1
  doi: 10.1016/S0360‐3016(02)02735‐9
– ident: e_1_2_8_24_1
  doi: 10.1118/1.598755
– ident: e_1_2_8_12_1
  doi: 10.1016/S0360-3016(03)00663-1
– ident: e_1_2_8_9_1
  doi: 10.1016/j.ijrobp.2006.02.038
– ident: e_1_2_8_10_1
  doi: 10.1088/0031‐9155/48/8/309
– ident: e_1_2_8_19_1
  doi: 10.1118/1.1998467
– ident: e_1_2_8_17_1
  doi: 10.1118/1.598315
– ident: e_1_2_8_21_1
  doi: 10.1118/1.1538236
– ident: e_1_2_8_26_1
  doi: 10.1016/S0360‐3016(01)02607‐4
– ident: e_1_2_8_20_1
  doi: 10.1118/1.1568978
– volume: 176
  start-page: 1415
  year: 2006
  ident: e_1_2_8_3_1
  article-title: Long‐term outcome of high dose intensity modulated radiation therapy for patients with clinically localized prostate cancer
  publication-title: Semiconductors
– ident: e_1_2_8_8_1
  doi: 10.1016/j.radonc.2006.08.025
– ident: e_1_2_8_5_1
  doi: 10.1118/1.596958
– ident: e_1_2_8_14_1
  doi: 10.1088/0031‐9155/46/7/319
– ident: e_1_2_8_18_1
  doi: 10.1088/0031‐9155/37/8/005
– ident: e_1_2_8_16_1
  doi: 10.1016/0360-3016(94)90200-3
– ident: e_1_2_8_23_1
  doi: 10.1088/0031‐9155/48/3/303
– ident: e_1_2_8_25_1
  doi: 10.1016/S0360-3016(02)04284-0
– ident: e_1_2_8_7_1
  doi: 10.1088/0031‐9155/49/16/014
– ident: e_1_2_8_6_1
  doi: 10.1088/0031‐9155/40/9/004
SSID ssj0006350
Score 1.9724796
Snippet A common method in generating intensity modulated radiation therapy (IMRT) plans consists of a three step process: an optimized fluence intensity map (IM) for...
SourceID unpaywall
osti
proquest
pubmed
crossref
wiley
scitation
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1779
SubjectTerms ALGORITHMS
Annealing
APERTURES
arc therapy
Cancer
Cluster analysis
Collimation
COLLIMATORS
Computed tomography
computerised tomography
COMPUTERIZED TOMOGRAPHY
Computer‐aided diagnosis
DOSIMETRY
Dosimetry/exposure assessment
Humans
Image analysis
IMAGE PROCESSING
image segmentation
IMAT
IMRT
Intensity modulated radiation therapy
intensity modulation
Ionization chambers
leaf sequencing
Linear accelerators
Male
medical image processing
MONTE CARLO METHOD
Monte Carlo methods
Multileaf collimators
Neoplasms - radiotherapy
PHANTOMS
Phantoms, Imaging
PLANNING
Prostate - diagnostic imaging
RADIATION DOSES
radiation therapy
RADIOLOGY AND NUCLEAR MEDICINE
RADIOTHERAPY
Radiotherapy Planning, Computer-Assisted - methods
Rectum - diagnostic imaging
segmentation
Sequence analysis
Tomography, X-Ray Computed
Tomotherapy
Treatment strategy
Urinary Bladder - diagnostic imaging
Title Segmentation and leaf sequencing for intensity modulated arc therapy
URI http://dx.doi.org/10.1118/1.2724064
https://onlinelibrary.wiley.com/doi/abs/10.1118%2F1.2724064
https://www.ncbi.nlm.nih.gov/pubmed/17555259
https://www.proquest.com/docview/70601426
https://www.osti.gov/biblio/20951308
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1118/1.2724064
UnpaywallVersion publishedVersion
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2473-4209
  dateEnd: 20241101
  omitProxy: false
  ssIdentifier: ssj0006350
  issn: 0094-2405
  databaseCode: ADMLS
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9BK74e-BhfgTEiQIiXjMW1Y-exYkwTotOkUWk8Zf4ERJdUWwoqfz3n2O1UVCYknpKHk2PHd77f2effAbzCZd8qWqgMnYHLqCIyUznjmcRel1Jzrm3H9nlQ7I_ph2N2HOuc-rswgR9iueHmLaNbr72BT40L63w0dfEWAzzuXRK9Cv2CIRjvQX98cDj8HLgnqT87YB1jKoZcgnV1LAnlg4ySnTLyDK20s-Kdeg1a2TrkeQtuoH8KR-X4Pquncv5TTiarALfzUHt34GQxtpCY8n171qpt_esP2sf_GPxduB3RazoM6nYPrth6A66P4vn8BlzrEkr1-X3YPbJfTuO9pjqVtUknVro0Zm6jv0wRLaffQgJ9O09PG-MLiVmTouWl4VbY_AGM995_erefxYoNmaaM0kxJLjRBiNNxxBRCclLIkkknC6css8QZRbRUAmNXq1iZa1nmhvDCuJIrbQcPoVc3tX0MaSGMVsYR4pyjCGOEQSimyEALKXLpSAJvFjNVLebCV9WYVCGsEVVexf-TwIul6DRweKwT2vTTXfmJtfqr9mlGuq2Ih6CDHZHA84UaVGiA_lRF1raZnVeefihHnJPAo6AdF9_gjDEMLxN4uVSXyzqwRupHc3YhUaEOoNRS3S5r63WnPX-XqEaH_vHkn5p7CjfDlrbP89yEXns2s88Qi7VqC_rD3dHHo61od78BCOUruQ
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BVlA48CgFAgUsQBWXlMZrx86xAqoKqVUlWKmcgp-A2CarNgtafj3j2LvVoqVC4pQcRo4dz3i-scffALzEZd9pVuocnYHPmaYq1wUXucJeV8oIYVzP9nlUHozY-xN-kuqchrswkR9iseEWLKNfr4OBT6yP63wydfkaAzwRXBK7CmslRzA-gLXR0fHep8g9ycLZAe8ZUzHkkryvY0mZGOaM7laJZ2ipnSXvNGjRylYhz5uwjv4pHpXj-7SZqNlPNR4vA9zeQ-3fhs_zscXElO87007vmF9_0D7-x-DvwK2EXsleVLe7cMU1G3D9MJ3Pb8C1PqHUnN-Dtx_cl9N0r6khqrFk7JQnKXMb_SVBtEy-xQT6bkZOWxsKiTlL0PJIvBU224TR_ruPbw7yVLEhN4wzlmslpKEIcXqOmFIqQUtVceVV6bXjjnqrqVFaYuzqNK8Ko6rCUlFaXwlt3PA-DJq2cQ-BlNIabT2l3nuGMEZahGKaDo1UslCeZvBqPlP1fC5CVY1xHcMaWRd1-j8ZPF-ITiKHxyqhrTDddZhYZ76akGZkupoGCDrclRk8m6tBjQYYTlVU49rpeR3ohwrEORk8iNpx8Q3BOcfwMoMXC3W5rAMrpH60ZxcSNeoASi3U7bK2tnvt-btEfXgcHo_-qbnHcCNuaYc8zy0YdGdT9wSxWKefJnv7DbNKKiU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Segmentation+and+leaf+sequencing+for+intensity+modulated+arc+therapy&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Gladwish%2C+Adam&rft.au=Oliver%2C+Mike&rft.au=Craig%2C+Jeff&rft.au=Chen%2C+Jeff&rft.date=2007-05-01&rft.issn=0094-2405&rft.eissn=2473-4209&rft.volume=34&rft.issue=5&rft.spage=1779&rft.epage=1788&rft_id=info:doi/10.1118%2F1.2724064
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon