Biomolecular condensates in neurodegeneration and cancer
The intracellular environment is partitioned into functionally distinct compartments containing specific sets of molecules and reactions. Biomolecular condensates, also referred to as membrane‐less organelles, are diverse and abundant cellular compartments that lack membranous enclosures. Molecules...
Saved in:
Published in | Traffic (Copenhagen, Denmark) Vol. 20; no. 12; pp. 890 - 911 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Former Munksgaard
John Wiley & Sons A/S
01.12.2019
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1398-9219 1600-0854 1600-0854 |
DOI | 10.1111/tra.12704 |
Cover
Abstract | The intracellular environment is partitioned into functionally distinct compartments containing specific sets of molecules and reactions. Biomolecular condensates, also referred to as membrane‐less organelles, are diverse and abundant cellular compartments that lack membranous enclosures. Molecules assemble into condensates by phase separation; multivalent weak interactions drive molecules to separate from their surroundings and concentrate in discrete locations. Biomolecular condensates exist in all eukaryotes and in some prokaryotes, and participate in various essential house‐keeping, stress‐response and cell type‐specific processes. An increasing number of recent studies link abnormal condensate formation, composition and material properties to a number of disease states. In this review, we discuss current knowledge and models describing the regulation of condensates and how they become dysregulated in neurodegeneration and cancer. Further research on the regulation of biomolecular phase separation will help us to better understand their role in cell physiology and disease.
Cellular space is divided into discrete compartments containing distinct sets of molecules. This review focuses on a group of evolutionarily conserved compartments called biomolecular condensates. Condensates lack membrane enclosures and instead concentrate molecules via phase separation; molecules demix from their surroundings through multivalent weak interactions to form separate phases. We highlight current knowledge and models describing the regulation of condensates implicated in neurodegeneration and cancer. Further studies in their regulation will provide important insight into these diseases. |
---|---|
AbstractList | The intracellular environment is partitioned into functionally distinct compartments containing specific sets of molecules and reactions. Biomolecular condensates, also referred to as membrane-less organelles, are diverse and abundant cellular compartments that lack membranous enclosures. Molecules assemble into condensates by phase separation; multivalent weak interactions drive molecules to separate from their surroundings and concentrate in discrete locations. Biomolecular condensates exist in all eukaryotes and in some prokaryotes, and participate in various essential house-keeping, stress-response and cell type-specific processes. An increasing number of recent studies link abnormal condensate formation, composition and material properties to a number of disease states. In this review, we discuss current knowledge and models describing the regulation of condensates and how they become dysregulated in neurodegeneration and cancer. Further research on the regulation of biomolecular phase separation will help us to better understand their role in cell physiology and disease.The intracellular environment is partitioned into functionally distinct compartments containing specific sets of molecules and reactions. Biomolecular condensates, also referred to as membrane-less organelles, are diverse and abundant cellular compartments that lack membranous enclosures. Molecules assemble into condensates by phase separation; multivalent weak interactions drive molecules to separate from their surroundings and concentrate in discrete locations. Biomolecular condensates exist in all eukaryotes and in some prokaryotes, and participate in various essential house-keeping, stress-response and cell type-specific processes. An increasing number of recent studies link abnormal condensate formation, composition and material properties to a number of disease states. In this review, we discuss current knowledge and models describing the regulation of condensates and how they become dysregulated in neurodegeneration and cancer. Further research on the regulation of biomolecular phase separation will help us to better understand their role in cell physiology and disease. The intracellular environment is partitioned into functionally distinct compartments containing specific sets of molecules and reactions. Biomolecular condensates, also referred to as membrane-less organelles, are diverse and abundant cellular compartments that lack membranous enclosures. Molecules assemble into condensates by phase separation; multivalent weak interactions drive molecules to separate from their surroundings and concentrate in discrete locations. Biomolecular condensates exist in all eukaryotes and in some prokaryotes, and participate in various essential house-keeping, stress-response and cell type-specific processes. An increasing number of recent studies link abnormal condensate formation, composition and material properties to a number of disease states. In this review, we discuss current knowledge and models describing the regulation of condensates and how they become dysregulated in neurodegeneration and cancer. Further research on the regulation of biomolecular phase separation will help us to better understand their role in cell physiology and disease. The intracellular environment is partitioned into functionally distinct compartments containing specific sets of molecules and reactions. Biomolecular condensates, also referred to as membrane‐less organelles, are diverse and abundant cellular compartments that lack membranous enclosures. Molecules assemble into condensates by phase separation; multivalent weak interactions drive molecules to separate from their surroundings and concentrate in discrete locations. Biomolecular condensates exist in all eukaryotes and in some prokaryotes, and participate in various essential house‐keeping, stress‐response and cell type‐specific processes. An increasing number of recent studies link abnormal condensate formation, composition and material properties to a number of disease states. In this review, we discuss current knowledge and models describing the regulation of condensates and how they become dysregulated in neurodegeneration and cancer. Further research on the regulation of biomolecular phase separation will help us to better understand their role in cell physiology and disease. Cellular space is divided into discrete compartments containing distinct sets of molecules. This review focuses on a group of evolutionarily conserved compartments called biomolecular condensates. Condensates lack membrane enclosures and instead concentrate molecules via phase separation; molecules demix from their surroundings through multivalent weak interactions to form separate phases. We highlight current knowledge and models describing the regulation of condensates implicated in neurodegeneration and cancer. Further studies in their regulation will provide important insight into these diseases. |
Author | Tereshchenko, Maria Ihn, Sean J. Spannl, Stephanie Lee, Hyun O. Mastromarco, Giovanni J. |
Author_xml | – sequence: 1 givenname: Stephanie surname: Spannl fullname: Spannl, Stephanie organization: University of Toronto – sequence: 2 givenname: Maria surname: Tereshchenko fullname: Tereshchenko, Maria organization: University of Toronto – sequence: 3 givenname: Giovanni J. surname: Mastromarco fullname: Mastromarco, Giovanni J. organization: University of Toronto – sequence: 4 givenname: Sean J. surname: Ihn fullname: Ihn, Sean J. organization: University of Toronto – sequence: 5 givenname: Hyun O. orcidid: 0000-0003-0102-4795 surname: Lee fullname: Lee, Hyun O. email: hyunokate.lee@utoronto.ca organization: University of Toronto |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31606941$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kMtOwzAQRS1URB-w4AdQJDawSDt2HCdZloqXVAkJlbXlOFOUKrWLnQj17zF9bCqYzYylc-947pD0jDVIyDWFMQ01aZ0aU5YBPyMDKgBiyFPeC3NS5HHBaNEnQ-9XAMBSzi9IPwmUKDgdkPyhtmvboO4a5SJtTYXGqxZ9VJvIYOdshZ9o0Km2tiZSpoq0MhrdJTlfqsbj1aGPyMfT42L2Es_fnl9n03msedgVJzliyQUtVFYqDVm1VEyATivNVFomJQhgFZQ5qDJjCZaiUoXiLGeQaQQqkhG52_tunP3q0LdyXXuNTaMM2s5LlkDKs5xlRUBvT9CV7ZwJvwsUFULkPINA3RyorlxjJTeuXiu3lcdMAjDZA9pZ7x0upa7b3fkh57qRFORv6jK85C71oLg_URxN_2IP7t91g9v_Qbl4n-4VP_hhj3g |
CitedBy_id | crossref_primary_10_1002_ange_202211905 crossref_primary_10_1038_s41573_022_00505_4 crossref_primary_10_1016_j_csbj_2021_06_042 crossref_primary_10_1091_mbc_E24_01_0030 crossref_primary_10_1002_adbi_202400572 crossref_primary_10_1002_advs_202207742 crossref_primary_10_1039_D3CP05765H crossref_primary_10_1016_j_jmb_2025_168951 crossref_primary_10_1093_procel_pwad013 crossref_primary_10_1039_D2SM00387B crossref_primary_10_1111_jnc_15331 crossref_primary_10_1111_febs_15765 crossref_primary_10_1007_s00018_023_04992_5 crossref_primary_10_1016_j_devcel_2022_06_010 crossref_primary_10_7554_eLife_60264 crossref_primary_10_1016_j_celrep_2023_113393 crossref_primary_10_1021_jacs_4c02906 crossref_primary_10_1038_s41580_022_00558_8 crossref_primary_10_1021_jacs_2c07149 crossref_primary_10_1016_j_ymgme_2022_09_011 crossref_primary_10_1016_j_brainres_2021_147589 crossref_primary_10_1038_s41467_022_32874_0 crossref_primary_10_1016_j_jmb_2023_167971 crossref_primary_10_1016_j_techfore_2023_122588 crossref_primary_10_1038_s44319_024_00285_5 crossref_primary_10_1109_TCBB_2022_3149310 crossref_primary_10_1152_physiol_00027_2024 crossref_primary_10_3390_biomedicines12122808 crossref_primary_10_3389_fncel_2021_664151 crossref_primary_10_1039_D3CS01065A crossref_primary_10_1002_2211_5463_13176 crossref_primary_10_1016_j_jbc_2023_104800 crossref_primary_10_1016_j_trechm_2022_11_003 crossref_primary_10_1042_ETLS20190176 crossref_primary_10_3390_membranes12010017 crossref_primary_10_1093_plcell_koad127 crossref_primary_10_3390_ijms25136825 crossref_primary_10_1016_j_acthis_2024_152207 crossref_primary_10_1042_BST20220494 crossref_primary_10_3390_appliedchem3030024 crossref_primary_10_1002_bmb_21766 crossref_primary_10_1038_s41598_022_08130_2 crossref_primary_10_3389_fnmol_2022_953365 crossref_primary_10_7554_eLife_71982 crossref_primary_10_1016_j_canlet_2024_217160 crossref_primary_10_1186_s13619_022_00145_4 crossref_primary_10_1371_journal_pcbi_1012737 crossref_primary_10_3892_ijmm_2024_5357 crossref_primary_10_1021_jacs_4c11612 crossref_primary_10_1016_j_molcel_2020_08_007 crossref_primary_10_3389_fcell_2021_621779 crossref_primary_10_1016_j_tcb_2023_09_002 crossref_primary_10_1002_anie_202211905 crossref_primary_10_1039_D1SM00543J crossref_primary_10_3389_fpls_2021_732947 crossref_primary_10_3724_abbs_2023139 crossref_primary_10_1016_j_nbd_2023_106011 crossref_primary_10_1038_s42003_023_04963_3 crossref_primary_10_1016_j_biopha_2024_117448 crossref_primary_10_1016_j_freeradbiomed_2023_01_011 crossref_primary_10_3390_genes12060856 crossref_primary_10_1002_advs_202202855 crossref_primary_10_1007_s11427_020_1702_x crossref_primary_10_1146_annurev_biophys_062920_063704 crossref_primary_10_1016_j_bbamcr_2022_119251 crossref_primary_10_1016_j_pharmthera_2024_108604 crossref_primary_10_1007_s11427_024_2661_3 crossref_primary_10_1016_j_matt_2022_07_001 |
Cites_doi | 10.1016/j.cell.2017.05.028 10.1126/science.aad2156 10.1016/j.cell.2013.05.037 10.1093/carcin/bgu022 10.1016/j.cell.2016.01.034 10.1038/ng1503 10.1016/j.brainres.2018.04.036 10.15252/embj.201798049 10.1101/cshperspect.a000687 10.1074/jbc.274.48.34337 10.1038/s41467-017-02299-1 10.1073/pnas.1504822112 10.1016/j.jmb.2018.08.003 10.1083/jcb.200502088 10.1080/15476286.2016.1265198 10.1016/j.cell.2007.06.024 10.1126/science.aau6313 10.1083/jcb.151.6.1257 10.1016/j.pharmthera.2019.02.014 10.1016/j.neuron.2006.08.021 10.1016/j.cell.2016.05.026 10.1038/s41467-017-00480-0 10.1016/j.cell.2018.05.045 10.1038/nature07433 10.1126/science.aat5671 10.1126/science.aar7366 10.1073/pnas.1800038115 10.1016/j.conb.2018.12.001 10.15252/embj.2018101379 10.1016/j.celrep.2017.11.093 10.1016/j.molcel.2015.08.018 10.1523/JNEUROSCI.0172-14.2014 10.1016/j.jmb.2018.07.011 10.1128/MCB.01102-15 10.7554/eLife.39578 10.1101/cshperspect.a000638 10.1126/science.aau5721 10.1038/s41467-018-06111-6 10.1016/j.neuron.2015.10.030 10.1097/NEN.0b013e3181bc3bec 10.7554/eLife.34532 10.1038/nrm.2017.7 10.1155/2012/428010 10.15252/embr.201845946 10.1016/j.molcel.2017.12.020 10.1074/jbc.M109.042879 10.1093/hmg/ddt622 10.1093/nar/gkt835 10.1038/nature14973 10.1098/rstb.2013.0459 10.3390/ijms19051360 10.1016/j.molcel.2014.01.009 10.1016/j.cell.2015.09.015 10.7554/eLife.04132 10.1007/s11910-018-0914-7 10.1101/cshperspect.a002774 10.1016/j.bpj.2011.08.025 10.1073/pnas.1620293114 10.1016/j.devcel.2011.06.013 10.1126/science.aar7432 10.1016/j.neuroscience.2017.03.024 10.1016/j.cell.2018.03.004 10.1038/nchem.2519 10.1016/j.cell.2013.02.042 10.1016/j.tibs.2015.11.001 10.3389/fgene.2019.00173 10.1016/j.molcel.2018.11.012 10.1007/s00412-005-0011-y 10.1016/j.cels.2018.05.002 10.1016/j.mad.2017.08.004 10.1016/j.cell.2016.04.047 10.1016/j.celrep.2017.08.042 10.1074/jbc.RA119.009494 10.4161/19491034.2014.970104 10.1016/j.celrep.2017.06.082 10.1101/cshperspect.a000695 10.1016/j.cell.2018.03.056 10.1038/nature05292 10.1093/emboj/19.3.453 10.1101/cshperspect.a000679 10.7554/eLife.25375 10.1126/science.10.237.33 10.1016/j.jmb.2018.08.007 10.1016/j.cell.2015.12.038 10.1016/0168-9525(96)10019-6 10.1016/j.dnarep.2018.11.008 10.1083/jcb.201404124 10.1016/j.molcel.2018.08.003 10.1038/ncb997 10.1101/cshperspect.a000661 10.15252/embj.201696394 10.1126/science.aar4199 10.1038/s41467-019-08354-3 10.1128/MCB.00897-08 10.1016/j.cell.2018.03.025 10.1016/j.mrfmmm.2014.11.010 10.1126/science.aaa3923 10.1016/j.cell.2016.06.010 10.1146/annurev-biophys-042910-155238 10.1016/S0006-291X(02)00492-8 10.1016/j.devcel.2019.01.025 10.1016/j.neuron.2019.05.048 10.1038/cddis.2016.115 10.1016/j.cell.2018.10.007 10.7554/eLife.31486 10.1101/cshperspect.a023598 10.1016/j.molcel.2018.07.002 10.1083/jcb.201609081 10.1371/journal.pbio.1001545 10.1038/s41589-018-0180-7 10.1074/jbc.REV118.001188 10.1111/tra.12674 10.1038/s41594-019-0190-5 10.7150/jca.17689 10.7554/eLife.09347 10.1146/annurev-virology-031413-085505 10.1002/bies.201600144 10.1016/j.ejcb.2005.09.003 10.15252/embj.201695957 10.1038/35007077 10.7554/eLife.13617 10.1016/j.semcdb.2018.07.001 10.1126/science.aaf6846 10.1016/j.cell.2016.08.006 10.1016/j.cub.2015.01.012 10.1016/j.gde.2011.11.004 10.7554/eLife.04123 10.1038/nature04662 10.1016/j.molcel.2015.09.017 10.1242/jcs.051383 10.1126/science.1172046 10.1016/j.cell.2015.07.047 10.1186/s13578-018-0204-8 10.1016/j.ccr.2014.02.007 10.1007/978-3-319-38882-3_10 10.1101/cshperspect.a000653 10.1073/pnas.1815275116 10.1016/j.bbapap.2017.10.001 10.1016/j.molcel.2015.01.013 10.1016/j.pneurobio.2011.04.013 10.1007/s00294-017-0739-y 10.3390/biology2030976 10.1093/nar/gkx759 10.1016/j.cell.2018.03.002 10.1016/j.cell.2013.07.038 10.1126/science.aad9964 10.1038/nsmb1259 10.1038/s41422-019-0141-z 10.1038/s41593-017-0047-3 10.1016/j.cell.2005.08.033 10.1038/s41568-018-0076-6 10.1126/science.1239053 10.1074/jbc.AC117.001037 10.1016/j.cell.2012.07.019 10.1074/jbc.REV119.007944 10.1523/JNEUROSCI.16-24-07812.1996 10.1101/cshperspect.a012286 10.7554/eLife.39723 10.1083/jcb.146.5.905 10.1016/j.molcel.2018.02.004 10.1111/febs.12287 10.1042/CBI20110147 10.1038/nature04769 10.1146/annurev-cellbio-100913-013325 10.1126/science.aar2555 10.1016/j.devcel.2016.09.002 10.1021/acs.biochem.8b00058 10.1074/jbc.TM118.001190 10.1073/pnas.1509317112 10.1038/s41594-018-0112-y 10.1016/j.neuron.2017.07.025 10.1016/j.bbadis.2016.12.022 10.5607/en.2015.24.4.325 10.1016/j.cell.2016.07.008 10.1016/j.cell.2017.08.008 10.1128/MCB.23.7.2556-2563.2003 10.1016/j.molcel.2015.07.026 10.1111/tra.12644 10.1038/nrc1097 10.1016/j.cell.2016.06.051 10.1126/science.aao5654 10.1242/jcs.114.16.2891 10.1073/pnas.1207247109 10.1091/mbc.e05-08-0768 10.1126/science.aax4240 10.7554/eLife.09207 10.4161/15476286.2014.972208 10.1073/pnas.1614462114 10.1038/ncb2830 10.1016/j.cell.2018.06.006 10.1016/j.molcel.2009.01.026 10.1016/j.tibs.2017.11.005 10.7554/eLife.04251 10.1016/j.cell.2016.11.035 10.7554/eLife.13571 10.1083/jcb.201011083 10.1016/j.cell.2017.12.032 10.1038/srep25996 10.1038/emboj.2012.261 10.15252/embj.201593169 10.1155/2011/837474 10.1016/j.cell.2017.07.036 10.1016/j.celrep.2018.07.040 10.1172/JCI72723 10.3389/fonc.2013.00125 10.1091/mbc.E04-08-0742 10.1016/j.celrep.2019.04.031 10.1186/s12964-015-0125-7 10.1016/j.bbamcr.2010.03.020 10.1016/j.neuron.2013.12.018 10.1038/s41467-019-09549-4 10.1016/j.cell.2018.10.048 10.1016/j.molcel.2018.05.019 10.1371/journal.pone.0068356 10.1016/j.molcel.2018.02.016 10.1016/j.cell.2012.04.017 10.3389/fncel.2015.00423 10.1038/72842 10.1016/j.molcel.2011.04.015 10.1073/pnas.1017150108 10.1016/j.bbamcr.2009.12.004 10.1155/2017/1809592 10.1016/j.tibs.2016.09.009 10.1038/nature18610 10.7554/eLife.18413 10.1016/j.devcel.2018.07.009 10.1038/s41582-019-0157-5 10.1016/j.str.2016.07.007 10.1016/j.cell.2017.02.007 10.1038/s41582-018-0047-2 10.1128/mBio.02290-17 10.1074/jbc.M115.659466 10.1002/wrna.1514 10.1016/j.cell.2018.10.042 10.1038/nature22822 10.1073/pnas.0704977104 10.1111/tra.12672 10.1126/science.aar3958 10.1038/s41586-019-1374-1 10.1007/s12192-019-00999-9 10.1155/2018/8413496 10.1083/jcb.201411047 10.1101/gad.324905.119 10.1021/acs.biochem.7b01162 10.1242/jcs.063586 10.4199/C00023ED1V01Y201012DEB005 10.1016/j.tibs.2017.12.001 10.1242/dmm.027730 10.1091/mbc.e13-09-0558 10.1016/j.mrfmmm.2017.05.002 10.3390/genes8100279 10.1074/jbc.TM118.001189 10.1038/nature10879 10.1083/jcb.201504117 10.1016/j.tcb.2016.05.004 10.1016/j.molcel.2019.07.030 10.1038/nn.3514 10.1038/s41374-019-0260-7 10.1074/jbc.AC119.009198 10.1016/j.neuron.2017.03.027 10.1038/nature22386 10.1016/j.molcel.2018.08.027 10.1016/j.cell.2018.12.035 10.1101/cshperspect.a000422 10.1016/j.cell.2018.03.003 10.1038/s41467-018-05009-7 10.1101/cshperspect.a000646 10.1016/j.cell.2016.11.054 10.1074/jbc.M113.497974 10.1007/978-3-642-31659-3_6 10.1016/j.stem.2015.09.001 10.1016/j.cell.2011.02.013 10.1093/nar/gkz634 10.1083/jcb.201701084 10.1038/nrm2184 10.1016/j.cell.2013.10.033 10.1016/j.neuron.2017.03.023 10.1016/j.ncrna.2018.11.003 10.1073/pnas.1814385116 10.1111/tra.12669 10.1146/annurev-biophys-052118-115534 10.1016/j.neuron.2016.03.011 10.1016/j.molcel.2017.12.022 10.1038/srep20877 10.1038/ncomms9088 10.1016/j.cub.2015.11.065 10.1098/rstb.2017.0193 10.1016/j.molcel.2016.07.021 10.1101/cshperspect.a005678 10.1038/ncb3191 10.1016/j.molcel.2017.09.003 10.1074/jbc.M600204200 10.1038/nature22989 10.1016/j.accpm.2018.05.012 10.7554/eLife.21455 10.1038/nprot.2008.54 10.1016/j.molcel.2015.09.006 10.1534/genetics.112.145540 10.7554/eLife.21475 10.1083/jcb.201508028 10.1073/pnas.1500536112 10.1016/j.sbi.2016.08.001 10.1038/s41422-018-0017-7 10.1073/pnas.1508778112 10.1093/nar/gkp717 10.1172/JCI31222 10.1074/jbc.M116.739573 10.7554/eLife.42695 10.7554/eLife.02409 10.1091/mbc.e12-03-0206 10.1038/ncb2157 |
ContentType | Journal Article |
Copyright | 2019 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd 2019 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2019 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd – notice: 2019 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. |
DBID | AAYXX CITATION NPM 7QP 7TK 8FD FR3 P64 RC3 7X8 |
DOI | 10.1111/tra.12704 |
DatabaseName | CrossRef PubMed Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Genetics Abstracts Engineering Research Database Technology Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Genetics Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1600-0854 |
EndPage | 911 |
ExternalDocumentID | 31606941 10_1111_tra_12704 TRA12704 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Canada First Research Excellence Fund – fundername: University of Toronto Graduate Fellowship – fundername: Canada Research Chairs Program – fundername: Natural Sciences and Engineering Research Council of Canada – fundername: Connaught Fund – fundername: Frederick Banting and Charles Best Canada Graduate Scholarship |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 123 1OC 24P 29Q 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAKAS AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABPVW ABQWH ABXGK ACAHQ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACPRK ACSCC ACUHS ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZCM ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EAD EAP EBC EBD EBO EBS EJD EMB EMK EMOBN ESX F00 F01 F04 F5P FIJ FUBAC G-S G.N GODZA H.X HF~ HGLYW HZI HZ~ IHE IPNFZ IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OBS OIG OK1 OVD P2P P2W P2X P2Z P4B P4D Q.N Q11 QB0 R.K ROL RX1 SUPJJ SV3 TEORI TH9 TR2 TUS UB1 W8V W99 WBKPD WIH WIJ WIK WIN WNSPC WOHZO WQJ WRC WXI WXSBR WYISQ XG1 Y6R YFH ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7QP 7TK 8FD FR3 P64 RC3 7X8 |
ID | FETCH-LOGICAL-c4544-38eeb4619a7bac07dfa260c5dc2a5b3b0602d0b80ab723eb6da9a428207ce0163 |
IEDL.DBID | DR2 |
ISSN | 1398-9219 1600-0854 |
IngestDate | Fri Jul 11 16:32:01 EDT 2025 Fri Jul 25 12:13:02 EDT 2025 Mon Jul 21 06:06:41 EDT 2025 Thu Apr 24 22:56:15 EDT 2025 Tue Jul 01 00:52:47 EDT 2025 Wed Jan 22 16:37:02 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | phase separation disease neurodegeneration cancer phase transition biomolecular condensates membrane-less organelles |
Language | English |
License | 2019 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4544-38eeb4619a7bac07dfa260c5dc2a5b3b0602d0b80ab723eb6da9a428207ce0163 |
Notes | Funding information Natural Sciences and Engineering Research Council of Canada; Canada First Research Excellence Fund; Connaught Fund; Frederick Banting and Charles Best Canada Graduate Scholarship; University of Toronto Graduate Fellowship ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-0102-4795 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/tra.12704 |
PMID | 31606941 |
PQID | 2316668470 |
PQPubID | 1106337 |
PageCount | 22 |
ParticipantIDs | proquest_miscellaneous_2305478279 proquest_journals_2316668470 pubmed_primary_31606941 crossref_citationtrail_10_1111_tra_12704 crossref_primary_10_1111_tra_12704 wiley_primary_10_1111_tra_12704_TRA12704 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2019 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: December 2019 |
PublicationDecade | 2010 |
PublicationPlace | Former Munksgaard |
PublicationPlace_xml | – name: Former Munksgaard – name: England – name: Malden |
PublicationTitle | Traffic (Copenhagen, Denmark) |
PublicationTitleAlternate | Traffic |
PublicationYear | 2019 |
Publisher | John Wiley & Sons A/S Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons A/S – name: Wiley Subscription Services, Inc |
References | 2019; 10 2019; 15 2016; 39 2016; 38 2016; 36 2016; 35 2000; 19 2019; 20 2019; 24 2000; 404 2019; 26 2008; 28 2019; 27 2016; 41 2006; 440 2019; 29 2010; 2 2017; 168 2012; 23 2017; 169 2012; 22 2006; 441 2006; 443 2009; 68 2019; 33 2017; 68 2019; 38 2013; 341 2011; 3 2016; 14 2012; 31 2007; 14 2016; 5 2016; 6 2016; 7 2018; 359 2015; 112 2018; 115 2019; 48 2019; 47 2016; 212 2016; 215 2019; 294 2016; 26 2016; 8 2016; 24 2011; 144 2012; 41 2019; 176 2017; 42 2017; 1863 2019; 57 2017; 45 2017; 350 2008; 3 2017; 114 2017; 356 2014; 1 2013; 15 2014; 5 2015; 290 2014; 3 2013; 16 2013; 11 2017; 36 2007; 130 2018; 70 2003; 3 2016; 352 2003; 5 2010; 1803 2018; 72 2018; 71 2019; 199 2009; 324 2014; 53 2015; 162 2015; 163 2017; 20 2015; 6 2015; 4 2019; 73 2019; 75 2017; 2017 2010 2017; 21 2006; 17 2010; 123 1899; 10 2000; 151 1999; 146 2015; 9 2018; 64 2018; 69 2017; 216 2018; 430 2018; 2018 2014; 81 2011; 108 2007; 117 2017; 14 2005; 169 2017; 10 1999; 274 2019 2016 2017; 18 2008; 456 2011; 101 2001; 114 2018; 57 2007; 104 2019; 90 2012; 483 2013; 3 2013; 2 2019; 99 2014; 25 2013; 8 2018; 43 2011; 193 2014; 23 2018; 46 2018; 7 2018; 175 2018; 174 2018; 6 2018; 9 2014; 369 2018; 8 2018; 3 2018; 170 2018; 173 2018; 172 2018; 293 2015; 776 2015; 88 2007; 8 2009; 122 2014; 17 2006; 281 2018; 1866 2014; 11 2018; 37 2014; 124 2015; 57 2019; 8 2015; 59 2018; 28 2006; 51 2005; 114 2016; 167 2016; 166 2016; 165 2019; 103 2015; 525 2018; 21 1996; 16 2016; 164 2012; 109 1996; 12 2018; 25 2014; 42 2018; 24 2018; 19 2018; 18 2015; 60 2005; 123 2015; 199 2011; 94 2014; 35 2014; 30 2005; 16 2016; 291 2014; 34 2017; 546 2019; 571 2018; 14 2017; 547 2003; 23 2018; 361 2017; 6 2017; 8 2012; 2012 2018; 360 2013; 288 2018; 809 2011; 13 2015; 348 2013; 280 2017; 9 2019; 365 2019; 363 2018; 373 2014; 206 2016; 90 2015; 210 2019; 116 2013; 155 2013; 158 2011; 21 2013; 152 2009; 284 2013; 154 2013; 153 2005; 37 2018; 1693 2015; 17 2002; 294 2000; 24 2017; 171 2015; 208 2011; 35 2012; 149 2012; 150 2017; 95 2015; 24 2017; 94 2009; 33 2011; 2011 2015; 25 2006; 85 2011; 42 2016; 63 2016; 535 2012; 4 2009; 37 e_1_2_6_114_1 e_1_2_6_137_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_30_1 e_1_2_6_91_1 e_1_2_6_152_1 e_1_2_6_175_1 e_1_2_6_198_1 e_1_2_6_306_1 e_1_2_6_212_1 e_1_2_6_258_1 e_1_2_6_250_1 e_1_2_6_296_1 e_1_2_6_273_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_99_1 e_1_2_6_235_1 e_1_2_6_125_1 e_1_2_6_64_1 e_1_2_6_87_1 e_1_2_6_148_1 e_1_2_6_310_1 Wheeler RJ (e_1_2_6_247_1) 2019 e_1_2_6_41_1 e_1_2_6_163_1 e_1_2_6_140_1 e_1_2_6_318_1 e_1_2_6_102_1 e_1_2_6_186_1 e_1_2_6_200_1 e_1_2_6_223_1 e_1_2_6_246_1 e_1_2_6_269_1 e_1_2_6_5_1 e_1_2_6_261_1 e_1_2_6_49_1 e_1_2_6_26_1 e_1_2_6_136_1 e_1_2_6_54_1 e_1_2_6_159_1 e_1_2_6_31_1 e_1_2_6_92_1 e_1_2_6_305_1 e_1_2_6_174_1 e_1_2_6_151_1 e_1_2_6_113_1 e_1_2_6_197_1 e_1_2_6_211_1 e_1_2_6_234_1 e_1_2_6_257_1 e_1_2_6_272_1 e_1_2_6_295_1 e_1_2_6_219_1 e_1_2_6_39_1 e_1_2_6_77_1 e_1_2_6_16_1 Zhang H (e_1_2_6_208_1) 2019 e_1_2_6_42_1 e_1_2_6_147_1 e_1_2_6_65_1 Oshidari R (e_1_2_6_188_1) 2019 e_1_2_6_80_1 e_1_2_6_109_1 e_1_2_6_317_1 e_1_2_6_162_1 e_1_2_6_101_1 e_1_2_6_124_1 e_1_2_6_185_1 e_1_2_6_222_1 e_1_2_6_268_1 e_1_2_6_6_1 e_1_2_6_260_1 e_1_2_6_207_1 e_1_2_6_283_1 e_1_2_6_88_1 e_1_2_6_27_1 e_1_2_6_245_1 e_1_2_6_51_1 e_1_2_6_97_1 e_1_2_6_158_1 e_1_2_6_150_1 e_1_2_6_173_1 e_1_2_6_135_1 e_1_2_6_196_1 e_1_2_6_304_1 e_1_2_6_233_1 e_1_2_6_279_1 Leeuwen W (e_1_2_6_293_1) 2019; 20 e_1_2_6_210_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_271_1 e_1_2_6_218_1 e_1_2_6_294_1 e_1_2_6_256_1 e_1_2_6_62_1 e_1_2_6_85_1 e_1_2_6_169_1 Spector DL (e_1_2_6_284_1) 2001; 114 e_1_2_6_108_1 e_1_2_6_270_1 e_1_2_6_316_1 e_1_2_6_161_1 e_1_2_6_100_1 e_1_2_6_146_1 e_1_2_6_184_1 e_1_2_6_123_1 e_1_2_6_221_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_206_1 e_1_2_6_229_1 e_1_2_6_282_1 e_1_2_6_244_1 e_1_2_6_267_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_98_1 e_1_2_6_75_1 e_1_2_6_119_1 e_1_2_6_281_1 e_1_2_6_90_1 e_1_2_6_172_1 e_1_2_6_111_1 e_1_2_6_157_1 e_1_2_6_195_1 e_1_2_6_303_1 e_1_2_6_134_1 e_1_2_6_232_1 e_1_2_6_160_1 e_1_2_6_14_1 Wolozin B (e_1_2_6_112_1) 2014; 17 e_1_2_6_217_1 e_1_2_6_255_1 e_1_2_6_278_1 e_1_2_6_37_1 Gibson BA (e_1_2_6_74_1) 2019 e_1_2_6_63_1 e_1_2_6_86_1 e_1_2_6_107_1 e_1_2_6_292_1 e_1_2_6_40_1 e_1_2_6_122_1 e_1_2_6_145_1 e_1_2_6_168_1 e_1_2_6_183_1 e_1_2_6_315_1 e_1_2_6_220_1 e_1_2_6_171_1 e_1_2_6_4_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_228_1 e_1_2_6_205_1 e_1_2_6_243_1 e_1_2_6_289_1 e_1_2_6_266_1 e_1_2_6_95_1 e_1_2_6_118_1 e_1_2_6_280_1 e_1_2_6_72_1 e_1_2_6_110_1 e_1_2_6_133_1 e_1_2_6_156_1 e_1_2_6_179_1 e_1_2_6_194_1 e_1_2_6_302_1 e_1_2_6_19_1 e_1_2_6_182_1 e_1_2_6_231_1 e_1_2_6_239_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_216_1 e_1_2_6_254_1 e_1_2_6_57_1 e_1_2_6_277_1 e_1_2_6_106_1 e_1_2_6_291_1 e_1_2_6_129_1 e_1_2_6_60_1 e_1_2_6_83_1 e_1_2_6_121_1 e_1_2_6_167_1 e_1_2_6_144_1 e_1_2_6_314_1 e_1_2_6_9_1 e_1_2_6_193_1 e_1_2_6_170_1 e_1_2_6_22_1 e_1_2_6_204_1 e_1_2_6_227_1 e_1_2_6_242_1 e_1_2_6_265_1 e_1_2_6_288_1 e_1_2_6_45_1 e_1_2_6_68_1 Oltsch F (e_1_2_6_59_1) 2019 e_1_2_6_73_1 e_1_2_6_96_1 e_1_2_6_117_1 e_1_2_6_50_1 e_1_2_6_301_1 e_1_2_6_132_1 e_1_2_6_178_1 e_1_2_6_155_1 e_1_2_6_181_1 e_1_2_6_230_1 e_1_2_6_309_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_238_1 e_1_2_6_253_1 e_1_2_6_276_1 e_1_2_6_299_1 e_1_2_6_215_1 e_1_2_6_58_1 e_1_2_6_84_1 e_1_2_6_105_1 e_1_2_6_128_1 e_1_2_6_61_1 e_1_2_6_290_1 e_1_2_6_120_1 e_1_2_6_189_1 e_1_2_6_313_1 e_1_2_6_143_1 e_1_2_6_166_1 e_1_2_6_192_1 e_1_2_6_249_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_241_1 Freeman SC (e_1_2_6_263_1) 2019 e_1_2_6_226_1 e_1_2_6_264_1 e_1_2_6_46_1 e_1_2_6_69_1 e_1_2_6_203_1 e_1_2_6_287_1 e_1_2_6_116_1 e_1_2_6_139_1 e_1_2_6_300_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_93_1 e_1_2_6_131_1 e_1_2_6_308_1 e_1_2_6_154_1 e_1_2_6_177_1 e_1_2_6_180_1 e_1_2_6_252_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_237_1 e_1_2_6_275_1 e_1_2_6_214_1 e_1_2_6_298_1 e_1_2_6_104_1 e_1_2_6_43_1 e_1_2_6_127_1 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_142_1 e_1_2_6_312_1 e_1_2_6_165_1 e_1_2_6_191_1 e_1_2_6_248_1 e_1_2_6_7_1 e_1_2_6_240_1 e_1_2_6_66_1 e_1_2_6_89_1 e_1_2_6_28_1 e_1_2_6_202_1 e_1_2_6_225_1 e_1_2_6_286_1 e_1_2_6_115_1 e_1_2_6_138_1 e_1_2_6_10_1 e_1_2_6_94_1 e_1_2_6_71_1 e_1_2_6_153_1 e_1_2_6_199_1 e_1_2_6_307_1 e_1_2_6_130_1 e_1_2_6_176_1 e_1_2_6_259_1 e_1_2_6_251_1 e_1_2_6_274_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_56_1 e_1_2_6_236_1 e_1_2_6_297_1 e_1_2_6_79_1 e_1_2_6_213_1 e_1_2_6_103_1 e_1_2_6_126_1 e_1_2_6_149_1 e_1_2_6_311_1 e_1_2_6_21_1 e_1_2_6_82_1 e_1_2_6_141_1 e_1_2_6_164_1 e_1_2_6_187_1 e_1_2_6_319_1 e_1_2_6_190_1 e_1_2_6_8_1 e_1_2_6_201_1 e_1_2_6_209_1 e_1_2_6_285_1 e_1_2_6_262_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_224_1 |
References_xml | – start-page: 523662 year: 2019 article-title: Organization and regulation of chromatin by liquid‐liquid phase separation publication-title: bioRxiv – volume: 90 start-page: 94 year: 2019 end-page: 103 article-title: Phase separated microenvironments inside the cell nucleus are linked to disease and regulate epigenetic state, transcription and RNA processing publication-title: Semin Cell Dev Biol – volume: 215 start-page: 313 issue: 3 year: 2016 end-page: 323 article-title: Mechanistic insights into mammalian stress granule dynamics publication-title: J Cell Biol – volume: 361 start-page: 412 issue: 6400 year: 2018 end-page: 415 article-title: Mediator and RNA polymerase II clusters associate in transcription‐dependent condensates publication-title: Science – volume: 20 start-page: 895 issue: 4 year: 2017 end-page: 908 article-title: Glycolytic enzymes coalesce in G bodies under hypoxic stress publication-title: Cell Rep – volume: 294 start-page: 7113 issue: 18 year: 2019 end-page: 7114 article-title: Phase separation of RNA‐binding proteins in physiology and disease: an introduction to the JBC Reviews thematic series publication-title: J Biol Chem – volume: 288 start-page: 24731 issue: 34 year: 2013 end-page: 24741 article-title: The RNA‐binding protein fused in sarcoma (FUS) functions downstream of poly(ADP‐ribose) polymerase (PARP) in response to DNA damage publication-title: J Biol Chem – volume: 175 start-page: 1492 issue: 6 year: 2018 end-page: 1506.e19 article-title: A membraneless organelle associated with the endoplasmic reticulum enables 3'UTR‐mediated protein‐protein interactions publication-title: Cell – volume: 8 start-page: 569 issue: 6 year: 2016 end-page: 575 article-title: Membraneless organelles can melt nucleic acid duplexes and act as biomolecular filters publication-title: Nat Chem – volume: 571 start-page: 424 issue: 7765 year: 2019 end-page: 428 article-title: m(6)A enhances the phase separation potential of mRNA publication-title: Nature – volume: 2012 start-page: 428010 year: 2012 article-title: Mechanism of oxidative stress in neurodegeneration publication-title: Oxid Med Cell Longev – volume: 24 start-page: 325 issue: 4 year: 2015 end-page: 340 article-title: The role of oxidative stress in neurodegenerative diseases publication-title: Exp Neurobiol – volume: 356 start-page: 753 issue: 6339 year: 2017 end-page: 756 article-title: ATP as a biological hydrotrope publication-title: Science – volume: 5 year: 2016 article-title: Nucleophosmin integrates within the nucleolus via multi‐modal interactions with proteins displaying R‐rich linear motifs and rRNA publication-title: Elife – volume: 166 start-page: 637 issue: 3 year: 2016 end-page: 650 article-title: Amyloid‐like self‐assembly of a cellular compartment publication-title: Cell – volume: 42 start-page: 307 issue: 1 year: 2014 end-page: 314 article-title: PARP‐1 dependent recruitment of the amyotrophic lateral sclerosis‐associated protein FUS/TLS to sites of oxidative DNA damage publication-title: Nucleic Acids Res – volume: 776 start-page: 84 year: 2015 end-page: 97 article-title: DNA damage in neurodegenerative diseases publication-title: Mutat Res – start-page: 219 year: 2016 end-page: 237 article-title: DNA repair foci formation and function at DNA double‐strand breaks publication-title: Funct Nucleus – volume: 108 start-page: 4334 issue: 11 year: 2011 end-page: 4339 article-title: Active liquid‐like behavior of nucleoli determines their size and shape in oocytes publication-title: Proc Natl Acad Sci U S A – volume: 57 start-page: 2499 issue: 17 year: 2018 end-page: 2508 article-title: Theories for sequence‐dependent phase behaviors of biomolecular condensates publication-title: Biochemistry – volume: 60 start-page: 208 issue: 2 year: 2015 end-page: 219 article-title: Formation and maturation of phase‐separated liquid droplets by RNA‐binding proteins publication-title: Mol Cell – volume: 42 start-page: 141 issue: 2 year: 2017 end-page: 154 article-title: A new view into the regulation of purine metabolism: the purinosome publication-title: Trends Biochem Sci – volume: 809 start-page: 99 year: 2018 end-page: 107 article-title: The functional roles of PML nuclear bodies in genome maintenance publication-title: Mutat Res – volume: 2011 start-page: 837474 year: 2011 article-title: Dr. Jekyll and Mr. Hyde: the two faces of the FUS/EWS/TAF15 protein family publication-title: Sarcoma – volume: 430 start-page: 4730 issue: 23 year: 2018 end-page: 4740 article-title: Aggregation, phase separation and spatial morphologies of the assemblies of FG nucleoporins publication-title: J Mol Biol – volume: 37 start-page: 6600 issue: 19 year: 2009 end-page: 6612 article-title: A role for transportin in deposition of TTP to cytoplasmic RNA granules and mRNA decay publication-title: Nucleic Acids Res – volume: 169 start-page: 1066 issue: 6 year: 2017 end-page: 1077.e10 article-title: The centrosome is a selective condensate that nucleates microtubules by concentrating tubulin publication-title: Cell – volume: 14 start-page: 1 year: 2016 article-title: Phase separation in biology; functional organization of a higher order publication-title: Cell Commun Signal – volume: 20 start-page: 623 issue: 9 year: 2019 end-page: 638 article-title: Cellular stress leads to the formation of membraneless stress assemblies in eukaryotic cells publication-title: Traffic – volume: 22 start-page: 101 issue: 2 year: 2012 end-page: 109 article-title: A view of nuclear Polycomb bodies publication-title: Curr Opin Genet Dev – volume: 20 start-page: 373 issue: 6 year: 2019 end-page: 379 article-title: Membraneless organelles: P granules in publication-title: Traffic – volume: 60 start-page: 231 issue: 2 year: 2015 end-page: 241 article-title: Residue‐by‐residue view of in vitro FUS granules that bind the C‐terminal domain of RNA polymerase II publication-title: Mol Cell – volume: 3 start-page: 04123 year: 2014 article-title: Phase transitions of multivalent proteins can promote clustering of membrane receptors publication-title: Elife – volume: 361 start-page: eaar3958 issue: 6400 year: 2018 article-title: Coactivator condensation at super‐enhancers links phase separation and gene control publication-title: Science – volume: 24 start-page: 1537 issue: 9 year: 2016 end-page: 1549 article-title: ALS mutations disrupt phase separation mediated by alpha‐helical structure in the TDP‐43 low‐complexity C‐terminal domain publication-title: Structure – volume: 11 issue: 4 year: 2013 article-title: RanBP2/Nup358 potentiates the translation of a subset of mRNAs encoding secretory proteins publication-title: PLoS Biol – volume: 173 start-page: 706 issue: 3 year: 2018 end-page: 719.e13 article-title: Phase separation of FUS is suppressed by its nuclear import receptor and arginine methylation publication-title: Cell – volume: 17 start-page: 955 issue: 8 year: 2015 end-page: 963 article-title: Integration of actin dynamics and cell adhesion by a three‐dimensional, mechanosensitive molecular clutch publication-title: Nat Cell Biol – year: 2019 – volume: 3 start-page: a005678 issue: 12 year: 2011 article-title: The postsynaptic organization of synapses publication-title: Cold Spring Harb Perspect Biol – volume: 45 start-page: 10350 issue: 18 year: 2017 end-page: 10368 article-title: Nuclear speckles: molecular organization, biological function and role in disease publication-title: Nucleic Acids Res – volume: 36 start-page: 1669 issue: 12 year: 2017 end-page: 1687 article-title: An aberrant phase transition of stress granules triggered by misfolded protein and prevented by chaperone function publication-title: EMBO J – volume: 19 start-page: 453 issue: 3 year: 2000 end-page: 462 article-title: Male sterility and enhanced radiation sensitivity in TLS(−/−) mice publication-title: EMBO J – volume: 8 start-page: 5 year: 2018 article-title: PML: regulation and multifaceted function beyond tumor suppression publication-title: Cell Biosci – volume: 9 start-page: 2567 issue: 1 year: 2018 article-title: Nuclear microtubule filaments mediate non‐linear directional motion of chromatin and promote DNA repair publication-title: Nat Commun – volume: 51 start-page: 685 issue: 6 year: 2006 end-page: 690 article-title: Neuronal RNA granules: movers and makers publication-title: Neuron – volume: 16 start-page: 1383 issue: 10 year: 2013 end-page: 1391 article-title: Interaction of FUS and HDAC1 regulates DNA damage response and repair in neurons publication-title: Nat Neurosci – volume: 154 start-page: 727 issue: 4 year: 2013 end-page: 736 article-title: Altered ribostasis: RNA‐protein granules in degenerative disorders publication-title: Cell – volume: 456 start-page: 524 issue: 7221 year: 2008 end-page: 528 article-title: 53BP1 promotes non‐homologous end joining of telomeres by increasing chromatin mobility publication-title: Nature – volume: 28 start-page: 7126 issue: 23 year: 2008 end-page: 7138 article-title: PML activates transcription by protecting HIPK2 and p300 from SCFFbx3‐mediated degradation publication-title: Mol Cell Biol – volume: 369 start-page: 20130459 issue: 1650 year: 2014 article-title: Pericentriolar material structure and dynamics publication-title: Philos Trans R Soc Lond B Biol Sci – volume: 94 start-page: 166 issue: 2 year: 2011 end-page: 200 article-title: DNA repair deficiency in neurodegeneration publication-title: Prog Neurobiol – volume: 430 start-page: 4666 year: 2018 end-page: 4684 article-title: Who's in and who's out‐compositional control of biomolecular condensates publication-title: J Mol Biol – volume: 8 start-page: 275 issue: 1 year: 2017 article-title: Liquid‐liquid phase separation of the microtubule‐binding repeats of the Alzheimer‐related protein Tau publication-title: Nat Commun – volume: 7 year: 2018 article-title: Pi‐pi contacts are an overlooked protein feature relevant to phase separation publication-title: Elife – volume: 170 start-page: 13 year: 2018 end-page: 21 article-title: Is DNA damage indispensable for stress‐induced senescence? publication-title: Mech Ageing Dev – volume: 10 start-page: 559 issue: 5 year: 2017 end-page: 579 article-title: Loss of Ranbp2 in motoneurons causes disruption of nucleocytoplasmic and chemokine signaling, proteostasis of hnRNPH3 and Mmp28, and development of amyotrophic lateral sclerosis‐like syndromes publication-title: Dis Model Mech – volume: 443 start-page: 787 issue: 7113 year: 2006 end-page: 795 article-title: Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases publication-title: Nature – volume: 23 start-page: 2298 issue: 9 year: 2014 end-page: 2312 article-title: Compromised paraspeckle formation as a pathogenic factor in FUSopathies publication-title: Hum Mol Genet – volume: 1 start-page: 147 issue: 1 year: 2014 end-page: 170 article-title: Cytoplasmic RNA granules and viral infection publication-title: Annu Rev Virol – volume: 42 start-page: 489 issue: 4 year: 2011 end-page: 499 article-title: Poly(ADP‐ribose) regulates stress responses and microRNA activity in the cytoplasm publication-title: Mol Cell – volume: 168 start-page: 159 issue: 1‐2 year: 2017 end-page: 171.e14 article-title: Spatiotemporal control of intracellular phase transitions using light‐activated optoDroplets publication-title: Cell – volume: 18 start-page: 767 issue: 12 year: 2018 end-page: 777 article-title: A model for RAS mutation patterns in cancers: finding the sweet spot publication-title: Nat Rev Cancer – start-page: 768119 year: 2019 article-title: DNA repair by Rad52 liquid droplets publication-title: bioRxiv – volume: 171 start-page: 148 issue: 1 year: 2017 end-page: 162.e19 article-title: The eukaryotic CO2‐concentrating organelle is liquid‐like and exhibits dynamic reorganization publication-title: Cell – volume: 3 start-page: a002774 issue: 12 year: 2011 article-title: RNA granules in germ cells publication-title: Cold Spring Harb Perspect Biol – volume: 5 start-page: 499 issue: 6 year: 2014 end-page: 507 article-title: PML nuclear bodies: assembly and oxidative stress‐sensitive sumoylation publication-title: Nucleus – volume: 293 start-page: 6090 issue: 16 year: 2018 end-page: 6098 article-title: TAR DNA‐binding protein 43 (TDP‐43) liquid‐liquid phase separation is mediated by just a few aromatic residues publication-title: J Biol Chem – volume: 88 start-page: 678 issue: 4 year: 2015 end-page: 690 article-title: ALS/FTD mutation‐induced phase transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs RNP granule function publication-title: Neuron – start-page: 524231 year: 2019 article-title: Phase separation provides a mechanism to reduce noise in cells publication-title: bioRxiv – volume: 216 start-page: 2305 issue: 8 year: 2017 end-page: 2313 article-title: The glycolytic enzyme phosphofructokinase‐1 assembles into filaments publication-title: J Cell Biol – volume: 153 start-page: 1461 issue: 7 year: 2013 end-page: 1474 article-title: Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function publication-title: Cell – volume: 430 start-page: 4702 issue: 23 year: 2018 end-page: 4710 article-title: The P granules of : a genetic model for the study of RNA‐protein condensates publication-title: J Mol Biol – volume: 38 start-page: 15 issue: 1 year: 2019 end-page: 23 article-title: A multicentre observational study on management of general anaesthesia in elderly patients at high‐risk of postoperative adverse outcomes publication-title: Anaesth Crit Care Pain Med – volume: 1866 start-page: 214 issue: 2 year: 2018 end-page: 223 article-title: The physical forces mediating self‐association and phase‐separation in the C‐terminal domain of TDP‐43 publication-title: Biochim Biophys Acta Proteins Proteom – start-page: 633040 year: 2019 article-title: Liquid condensation drives telomere clustering during ALT publication-title: bioRxiv – volume: 9 start-page: 423 year: 2015 article-title: Alterations in stress granule dynamics driven by TDP‐43 and FUS: a link to pathological inclusions in ALS? publication-title: Front Cell Neurosci – volume: 35 start-page: 1691 issue: 8 year: 2014 end-page: 1697 article-title: Speckle‐type POZ protein, SPOP, is involved in the DNA damage response publication-title: Carcinogenesis – volume: 166 start-page: 651 issue: 3 year: 2016 end-page: 663 article-title: Compositional control of phase‐separated cellular bodies publication-title: Cell – start-page: 721001 year: 2019 article-title: Small molecules for modulating protein driven liquid‐liquid phase separation in treating neurodegenerative disease publication-title: bioRxiv – volume: 20 start-page: 2304 issue: 10 year: 2017 end-page: 2312 article-title: Local nucleation of microtubule bundles through tubulin concentration into a condensed tau phase publication-title: Cell Rep – volume: 14 start-page: 726 issue: 6 year: 2017 end-page: 738 article-title: Coordinating cell cycle‐regulated histone gene expression through assembly and function of the histone locus body publication-title: RNA Biol – volume: 175 start-page: 1842 issue: 7 year: 2018 end-page: 1855.e16 article-title: Transcription factors activate genes through the phase‐separation capacity of their activation domains publication-title: Cell – volume: 15 start-page: 1253 issue: 10 year: 2013 end-page: 1259 article-title: A nuclear F‐actin scaffold stabilizes ribonucleoprotein droplets against gravity in large cells publication-title: Nat Cell Biol – volume: 27 start-page: 1809 issue: 6 year: 2019 end-page: 1821.e5 article-title: PARP‐1 activation directs FUS to DNA damage sites to form PARG‐reversible compartments enriched in damaged DNA publication-title: Cell Rep – volume: 30 start-page: 39 year: 2014 end-page: 58 article-title: Liquid‐liquid phase separation in biology publication-title: Annu Rev Cell Dev Biol – volume: 39 start-page: 155 issue: 2 year: 2016 end-page: 168 article-title: Adaptation to stressors by systemic protein amyloidogenesis publication-title: Dev Cell – volume: 16 start-page: 202 issue: 1 year: 2005 end-page: 211 article-title: Cajal bodies, nucleoli, and speckles in the Xenopus oocyte nucleus have a low‐density, sponge‐like structure publication-title: Mol Biol Cell – volume: 101 start-page: 1710 issue: 7 year: 2011 end-page: 1719 article-title: Single molecule study of the intrinsically disordered FG‐repeat nucleoporin 153 publication-title: Biophys J – volume: 173 start-page: 720 issue: 3 year: 2018 end-page: 734.e15 article-title: FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation‐pi interactions publication-title: Cell – volume: 172 start-page: 590 issue: 3 year: 2018 end-page: 604.e13 article-title: Context‐dependent and disease‐specific diversity in protein interactions within stress granules publication-title: Cell – volume: 8 year: 2019 article-title: A composition‐dependent molecular clutch between T cell signaling condensates and actin publication-title: Elife – volume: 94 start-page: 93 issue: 1 year: 2017 end-page: 107.e6 article-title: Mutant huntingtin disrupts the nuclear pore complex publication-title: Neuron – volume: 1863 start-page: 884 issue: 4 year: 2017 end-page: 895 article-title: Cytoplasmic stress granules: dynamic modulators of cell signaling and disease publication-title: Biochim Biophys Acta Mol Basis Dis – volume: 284 start-page: 36569 issue: 52 year: 2009 end-page: 36580 article-title: Role of microtubules in stress granule assembly: microtubule dynamical instability favors the formation of micrometric stress granules in cells publication-title: J Biol Chem – volume: 5 year: 2016 article-title: A pH‐driven transition of the cytoplasm from a fluid‐ to a solid‐like state promotes entry into dormancy publication-title: Elife – volume: 25 start-page: 641 issue: 5 year: 2015 end-page: 646 article-title: Inverse size scaling of the nucleolus by a concentration‐dependent phase transition publication-title: Curr Biol – volume: 33 start-page: 814 issue: 13‐14 year: 2019 end-page: 827 article-title: Clustered telomeres in phase‐separated nuclear condensates engage mitotic DNA synthesis through BLM and RAD52 publication-title: Genes Dev – volume: 174 start-page: 202 issue: 1 year: 2018 end-page: 217.e9 article-title: Surface properties determining passage rates of proteins through nuclear pores publication-title: Cell – volume: 130 start-page: 512 issue: 3 year: 2007 end-page: 523 article-title: A saturated FG‐repeat hydrogel can reproduce the permeability properties of nuclear pore complexes publication-title: Cell – volume: 348 start-page: 808 issue: 6236 year: 2015 end-page: 812 article-title: Centrosomes. Regulated assembly of a supramolecular centrosome scaffold in vitro publication-title: Science – volume: 294 start-page: 11054 issue: 29 year: 2019 end-page: 11059 article-title: Liquid‐liquid phase separation of tau protein: the crucial role of electrostatic interactions publication-title: J Biol Chem – volume: 124 start-page: 981 issue: 3 year: 2014 end-page: 999 article-title: ALS‐associated mutation FUS‐R521C causes DNA damage and RNA splicing defects publication-title: J Clin Invest – volume: 112 start-page: 7189 issue: 23 year: 2015 end-page: 7194 article-title: The disordered P granule protein LAF‐1 drives phase separation into droplets with tunable viscosity and dynamics publication-title: Proc Natl Acad Sci U S A – volume: 164 start-page: 487 issue: 3 year: 2016 end-page: 498 article-title: ATPase‐modulated stress granules contain a diverse proteome and substructure publication-title: Cell – volume: 69 start-page: 1046 issue: 6 year: 2018 end-page: 1061.e45 article-title: Protein dynamics in complex DNA lesions publication-title: Mol Cell – volume: 104 start-page: 11655 issue: 28 year: 2007 end-page: 11659 article-title: U bodies are cytoplasmic structures that contain uridine‐rich small nuclear ribonucleoproteins and associate with P bodies publication-title: Proc Natl Acad Sci U S A – volume: 18 start-page: 107 issue: 12 year: 2018 article-title: Relation between stress granules and cytoplasmic protein aggregates linked to neurodegenerative diseases publication-title: Curr Neurol Neurosci Rep – volume: 41 start-page: 46 issue: 1 year: 2016 end-page: 61 article-title: Transport selectivity of nuclear pores, phase separation, and membraneless organelles publication-title: Trends Biochem Sci – volume: 525 start-page: 56 issue: 7567 year: 2015 end-page: 61 article-title: The C9orf72 repeat expansion disrupts nucleocytoplasmic transport publication-title: Nature – volume: 60 start-page: 220 issue: 2 year: 2015 end-page: 230 article-title: RNA controls PolyQ protein phase transitions publication-title: Mol Cell – volume: 17 start-page: 1126 issue: 3 year: 2006 end-page: 1140 article-title: Dynamic nature of cleavage bodies and their spatial relationship to DDX1 bodies, Cajal bodies, and gems publication-title: Mol Biol Cell – volume: 90 start-page: 278 issue: 2 year: 2016 end-page: 291 article-title: Glycolytic enzymes localize to synapses under energy stress to support synaptic function publication-title: Neuron – volume: 9 start-page: 335 issue: 1 year: 2018 article-title: Impaired DNA damage response signaling by FUS‐NLS mutations leads to neurodegeneration and FUS aggregate formation publication-title: Nat Commun – volume: 9 start-page: 3683 issue: 1 year: 2018 article-title: Mutant FUS causes DNA ligation defects to inhibit oxidative damage repair in amyotrophic lateral sclerosis publication-title: Nat Commun – volume: 15 start-page: 51 issue: 1 year: 2019 end-page: 61 article-title: Acetylation of intrinsically disordered regions regulates phase separation publication-title: Nat Chem Biol – volume: 8 year: 2019 article-title: Chronic optogenetic induction of stress granules is cytotoxic and reveals the evolution of ALS‐FTD pathology publication-title: Elife – volume: 361 start-page: eaar2555 issue: 6400 year: 2018 article-title: Imaging dynamic and selective low‐complexity domain interactions that control gene transcription publication-title: Science – volume: 10 issue: 2 year: 2019 article-title: Membraneless nuclear organelles and the search for phases within phases publication-title: Wiley Interdiscip Rev RNA – volume: 68 start-page: 144 issue: 1 year: 2017 end-page: 157.e5 article-title: P‐body purification reveals the condensation of repressed mRNA regulons publication-title: Mol Cell – volume: 26 start-page: 277 issue: 3 year: 2016 end-page: 285 article-title: Nucleation by rRNA dictates the precision of nucleolus assembly publication-title: Curr Biol – volume: 72 start-page: 19 issue: 1 year: 2018 end-page: 36.e18 article-title: Cancer mutations of the tumor suppressor SPOP disrupt the formation of active, phase‐separated compartments publication-title: Mol Cell – volume: 360 start-page: 918 issue: 6391 year: 2018 end-page: 921 article-title: RNA buffers the phase separation behavior of prion‐like RNA binding proteins publication-title: Science – volume: 5 year: 2016 article-title: In vivo vizualisation of mono‐ADP‐ribosylation by dPARP16 upon amino‐acid starvation publication-title: Elife – volume: 11 start-page: 1019 issue: 8 year: 2014 end-page: 1030 article-title: mRNP granules. Assembly, function, and connections with disease publication-title: RNA Biol – volume: 175 start-page: 1467 issue: 6 year: 2018 end-page: 1480.e13 article-title: Mapping local and global liquid phase behavior in living cells using photo‐oligomerizable seeds publication-title: Cell – volume: 547 start-page: 236 issue: 7662 year: 2017 end-page: 240 article-title: Liquid droplet formation by HP1alpha suggests a role for phase separation in heterochromatin publication-title: Nature – volume: 167 start-page: 1803 issue: 7 year: 2016 end-page: 1813.e12 article-title: Mutant KRAS enhances tumor cell fitness by upregulating stress granules publication-title: Cell – volume: 212 start-page: 845 issue: 7 year: 2016 end-page: 860 article-title: G3BP‐Caprin1‐USP10 complexes mediate stress granule condensation and associate with 40S subunits publication-title: J Cell Biol – volume: 13 start-page: 167 issue: 2 year: 2011 end-page: 173 article-title: Nucleation of nuclear bodies by RNA publication-title: Nat Cell Biol – volume: 114 start-page: E1111 issue: 7 year: 2017 end-page: E1117 article-title: Toxic PRn poly‐dipeptides encoded by the C9orf72 repeat expansion block nuclear import and export publication-title: Proc Natl Acad Sci U S A – volume: 352 start-page: 595 issue: 6285 year: 2016 end-page: 599 article-title: Phase separation of signaling molecules promotes T cell receptor signal transduction publication-title: Science – volume: 109 start-page: 12017 issue: 30 year: 2012 end-page: 12021 article-title: Structural and energetic basis of ALS‐causing mutations in the atypical proline‐tyrosine nuclear localization signal of the Fused in Sarcoma protein (FUS) publication-title: Proc Natl Acad Sci U S A – volume: 210 start-page: 529 issue: 4 year: 2015 end-page: 539 article-title: Prion‐like domains in RNA binding proteins are essential for building subnuclear paraspeckles publication-title: J Cell Biol – volume: 112 start-page: E1307 issue: 11 year: 2015 end-page: E1316 article-title: Oncogenic fusion protein EWS‐FLI1 is a network hub that regulates alternative splicing publication-title: Proc Natl Acad Sci U S A – volume: 3 start-page: 02409 year: 2014 article-title: Filament formation by metabolic enzymes is a specific adaptation to an advanced state of cellular starvation publication-title: Elife – volume: 162 start-page: 1066 issue: 5 year: 2015 end-page: 1077 article-title: A liquid‐to‐solid phase transition of the ALS protein FUS accelerated by disease mutation publication-title: Cell – volume: 23 start-page: 2556 issue: 7 year: 2003 end-page: 2563 article-title: p53 binding protein 53BP1 is required for DNA damage responses and tumor suppression in mice publication-title: Mol Cell Biol – volume: 199 start-page: 315 issue: 2 year: 2015 end-page: 358 article-title: Actin and endocytosis in budding yeast publication-title: Genetics – volume: 57 start-page: 1 year: 2019 end-page: 8 article-title: Phase separation as a mechanism for assembling dynamic postsynaptic density signalling complexes publication-title: Curr Opin Neurobiol – volume: 280 start-page: 4348 issue: 18 year: 2013 end-page: 4370 article-title: Stress granules in neurodegeneration – lessons learnt from TAR DNA binding protein of 43 kDa and fused in sarcoma publication-title: FEBS J – volume: 14 start-page: 544 issue: 9 year: 2018 end-page: 558 article-title: C9orf72‐mediated ALS and FTD: multiple pathways to disease publication-title: Nat Rev Neurol – volume: 165 start-page: 1067 issue: 5 year: 2016 end-page: 1079 article-title: Mechanisms and consequences of macromolecular phase separation publication-title: Cell – volume: 2018 start-page: 8413496 year: 2018 article-title: Synaptic paths to neurodegeneration: the emerging role of TDP‐43 and FUS in synaptic functions publication-title: Neural Plast – volume: 294 start-page: 7137 issue: 18 year: 2019 end-page: 7150 article-title: Friend or foe‐post‐translational modifications as regulators of phase separation and RNP granule dynamics publication-title: J Biol Chem – volume: 163 start-page: 123 issue: 1 year: 2015 end-page: 133 article-title: Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization publication-title: Cell – volume: 103 start-page: 802 year: 2019 end-page: 819.e11 article-title: Small‐molecule modulation of TDP‐43 recruitment to stress granules prevents persistent TDP‐43 accumulation in ALS/FTD publication-title: Neuron – volume: 2 start-page: 976 issue: 3 year: 2013 end-page: 1033 article-title: The role of nuclear bodies in gene expression and disease publication-title: Biology (Basel) – volume: 9 start-page: a023598 issue: 3 year: 2017 article-title: Cross‐beta polymerization of low complexity sequence domains publication-title: Cold Spring Harb Perspect Biol – volume: 25 start-page: 169 issue: 1 year: 2014 end-page: 183 article-title: NEAT1 long noncoding RNA regulates transcription via protein sequestration within subnuclear bodies publication-title: Mol Biol Cell – volume: 4 year: 2015 article-title: SPOP mutation leads to genomic instability in prostate cancer publication-title: Elife – volume: 53 start-page: 393 issue: 3 year: 2014 end-page: 406 article-title: Long noncoding RNA NEAT1‐dependent SFPQ relocation from promoter region to paraspeckle mediates IL8 expression upon immune stimuli publication-title: Mol Cell – volume: 274 start-page: 34337 issue: 48 year: 1999 end-page: 34342 article-title: Human 75‐kDa DNA‐pairing protein is identical to the pro‐oncoprotein TLS/FUS and is able to promote D‐loop formation publication-title: J Biol Chem – volume: 20 issue: 1 year: 2019 article-title: Bacterial FtsZ protein forms phase‐separated condensates with its nucleoid‐associated inhibitor SlmA publication-title: EMBO Rep – volume: 112 start-page: E6426 issue: 47 year: 2015 end-page: E6435 article-title: Conserved interdomain linker promotes phase separation of the multivalent adaptor protein Nck publication-title: Proc Natl Acad Sci U S A – volume: 36 start-page: 2951 issue: 20 year: 2017 end-page: 2967 article-title: Phosphorylation of the FUS low‐complexity domain disrupts phase separation, aggregation, and toxicity publication-title: EMBO J – volume: 208 start-page: 913 issue: 7 year: 2015 end-page: 929 article-title: YB‐1 regulates stress granule formation and tumor progression by translationally activating G3BP1 publication-title: J Cell Biol – volume: 3 start-page: 915 issue: 5 year: 2008 end-page: 922 article-title: Assessment of protein dynamics and DNA repair following generation of DNA double‐strand breaks at defined genomic sites publication-title: Nat Protoc – volume: 15 start-page: 272 issue: 5 year: 2019 end-page: 286 article-title: Bridging biophysics and neurology: aberrant phase transitions in neurodegenerative disease publication-title: Nat Rev Neurol – volume: 2 start-page: a000422 issue: 10 year: 2010 article-title: Cell biology of prokaryotic organelles publication-title: Cold Spring Harb Perspect Biol – volume: 10 start-page: 1629 issue: 1 year: 2019 article-title: Influenza A virus ribonucleoproteins form liquid organelles at endoplasmic reticulum exit sites publication-title: Nat Commun – volume: 169 start-page: 871 issue: 6 year: 2005 end-page: 884 article-title: Stress granules and processing bodies are dynamically linked sites of mRNP remodeling publication-title: J Cell Biol – volume: 152 start-page: 1218 issue: 6 year: 2013 end-page: 1221 article-title: Uncovering nuclear pore complexity with innovation publication-title: Cell – volume: 4 start-page: a012286 issue: 9 year: 2012 article-title: P‐bodies and stress granules: possible roles in the control of translation and mRNA degradation publication-title: Cold Spring Harb Perspect Biol – volume: 2 start-page: a000687 issue: 7 year: 2010 article-title: Paraspeckles publication-title: Cold Spring Harb Perspect Biol – volume: 71 start-page: 703 issue: 5 year: 2018 end-page: 717.e9 article-title: Poly(ADP‐ribose) prevents pathological phase separation of TDP‐43 by promoting liquid demixing and stress granule localization publication-title: Mol Cell – volume: 69 start-page: 965 issue: 6 year: 2018 end-page: 978.e6 article-title: Ubiquitin modulates liquid‐liquid phase separation of UBQLN2 via disruption of multivalent interactions publication-title: Mol Cell – volume: 1803 start-page: 361 issue: 3 year: 2010 end-page: 371 article-title: Microtubules govern stress granule mobility and dynamics publication-title: Biochim Biophys Acta – volume: 3 start-page: 243 issue: 4 year: 2018 end-page: 252 article-title: NEAT1 and paraspeckles in neurodegenerative diseases: a missing lnc found? publication-title: Noncoding RNA Res – volume: 116 start-page: 4218 year: 2019 end-page: 4227 article-title: Phosphoregulated FMRP phase separation models activity‐dependent translation through bidirectional control of mRNA granule formation publication-title: Proc Natl Acad Sci U S A – volume: 165 start-page: 1686 issue: 7 year: 2016 end-page: 1697 article-title: Coexisting liquid phases underlie nucleolar subcompartments publication-title: Cell – volume: 25 start-page: 833 issue: 9 year: 2018 end-page: 840 article-title: RNA polymerase II clustering through carboxy‐terminal domain phase separation publication-title: Nat Struct Mol Biol – volume: 1693 start-page: 11 issue: Pt A year: 2018 end-page: 23 article-title: The physiological and pathological biophysics of phase separation and gelation of RNA binding proteins in amyotrophic lateral sclerosis and fronto‐temporal lobar degeneration publication-title: Brain Res – volume: 14 start-page: 581 issue: 7 year: 2007 end-page: 590 article-title: The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere‐binding proteins publication-title: Nat Struct Mol Biol – volume: 24 start-page: 175 issue: 2 year: 2000 end-page: 179 article-title: Fus deficiency in mice results in defective B‐lymphocyte development and activation, high levels of chromosomal instability and perinatal death publication-title: Nat Genet – volume: 43 start-page: 124 issue: 2 year: 2018 end-page: 135 article-title: Paraspeckles: where long noncoding RNA meets phase separation publication-title: Trends Biochem Sci – volume: 360 start-page: 922 issue: 6391 year: 2018 end-page: 927 article-title: mRNA structure determines specificity of a polyQ‐driven phase separation publication-title: Science – volume: 57 start-page: 2424 issue: 17 year: 2018 end-page: 2431 article-title: P‐bodies: composition, properties, and functions publication-title: Biochemistry – volume: 17 start-page: 47 issue: 91 year: 2014 end-page: 52 article-title: Physiological protein aggregation run amuck: stress granules and the genesis of neurodegenerative disease publication-title: Discov Med – volume: 9 start-page: e02290‐17 issue: 5 year: 2018 article-title: Phase transitions drive the formation of vesicular stomatitis virus replication compartments publication-title: MBio – volume: 26 start-page: 668 issue: 9 year: 2016 end-page: 679 article-title: Principles and properties of stress granules publication-title: Trends Cell Biol – volume: 17 start-page: 705 issue: 6 year: 2015 end-page: 718 article-title: Directly reprogrammed human neurons retain aging‐associated transcriptomic signatures and reveal age‐related nucleocytoplasmic defects publication-title: Cell Stem Cell – volume: 6 year: 2017 article-title: Localizing order to boost signaling publication-title: Elife – volume: 3 start-page: a000638 issue: 3 year: 2011 article-title: The nucleolus publication-title: Cold Spring Harb Perspect Biol – volume: 546 start-page: 243 issue: 7657 year: 2017 end-page: 247 article-title: RNA phase transitions in repeat expansion disorders publication-title: Nature – volume: 31 start-page: 4258 issue: 22 year: 2012 end-page: 4275 article-title: Arginine methylation next to the PY‐NLS modulates Transportin binding and nuclear import of FUS publication-title: EMBO J – volume: 69 start-page: 517 issue: 3 year: 2018 end-page: 532.e11 article-title: High‐density proximity mapping reveals the subcellular organization of mRNA‐associated granules and bodies publication-title: Mol Cell – volume: 294 start-page: 354 issue: 2 year: 2002 end-page: 358 article-title: Age‐associated reduction of nuclear protein import in human fibroblasts publication-title: Biochem Biophys Res Commun – volume: 281 start-page: 12664 issue: 18 year: 2006 end-page: 12672 article-title: BTB domain‐containing speckle‐type POZ protein (SPOP) serves as an adaptor of Daxx for ubiquitination by Cul3‐based ubiquitin ligase publication-title: J Biol Chem – volume: 43 start-page: 81 issue: 2 year: 2018 end-page: 94 article-title: Organization and function of non‐dynamic biomolecular condensates publication-title: Trends Biochem Sci – volume: 350 start-page: 158 year: 2017 end-page: 168 article-title: Aberrant distributions of nuclear pore complex proteins in ALS mice and ALS patients publication-title: Neuroscience – volume: 174 start-page: 688 issue: 3 year: 2018 end-page: 699.e16 article-title: A molecular grammar governing the driving forces for phase separation of prion‐like RNA binding proteins publication-title: Cell – volume: 6 start-page: 8088 year: 2015 article-title: Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP‐ribose) publication-title: Nat Commun – volume: 206 start-page: 579 issue: 5 year: 2014 end-page: 588 article-title: Assemblages: functional units formed by cellular phase separation publication-title: J Cell Biol – volume: 94 start-page: 48 issue: 1 year: 2017 end-page: 57.e4 article-title: Polyglutamine‐expanded huntingtin exacerbates age‐related disruption of nuclear integrity and nucleocytoplasmic transport publication-title: Neuron – volume: 173 start-page: 958 issue: 4 year: 2018 end-page: 971.e17 article-title: Stress granule assembly disrupts nucleocytoplasmic transport publication-title: Cell – volume: 5 year: 2016 article-title: RNA polymerase II cluster dynamics predict mRNA output in living cells publication-title: Elife – volume: 324 start-page: 1729 issue: 5935 year: 2009 end-page: 1732 article-title: Germline P granules are liquid droplets that localize by controlled dissolution/condensation publication-title: Science – volume: 36 start-page: 2226 issue: 17 year: 2016 end-page: 2235 article-title: The C‐terminal RGG domain of human Lsm4 promotes processing body formation stimulated by arginine dimethylation publication-title: Mol Cell Biol – volume: 48 start-page: 465 year: 2019 end-page: 494 article-title: Regulation of transmembrane signaling by phase separation publication-title: Annu Rev Biophys – volume: 63 start-page: 796 issue: 5 year: 2016 end-page: 810 article-title: A surveillance function of the HSPB8‐BAG3‐HSP70 chaperone complex ensures stress granule integrity and dynamism publication-title: Mol Cell – volume: 290 start-page: 20904 issue: 34 year: 2015 end-page: 20918 article-title: Intracellular bacterial pathogens trigger the formation of U small nuclear RNA bodies (U bodies) through metabolic stress induction publication-title: J Biol Chem – volume: 73 start-page: 110 year: 2019 end-page: 119 article-title: 53BP1: a key player of DNA damage response with critical functions in cancer publication-title: DNA Repair (Amst) – volume: 115 start-page: 2734 issue: 11 year: 2018 end-page: 2739 article-title: RNA self‐assembly contributes to stress granule formation and defining the stress granule transcriptome publication-title: Proc Natl Acad Sci U S A – volume: 294 start-page: 11286 issue: 29 year: 2019 end-page: 11296 article-title: Engineered protein disaggregases mitigate toxicity of aberrant prion‐like fusion proteins underlying sarcoma publication-title: J Biol Chem – volume: 57 start-page: 936 issue: 5 year: 2015 end-page: 947 article-title: Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles publication-title: Mol Cell – volume: 2 start-page: a000695 issue: 6 year: 2010 article-title: Nuclear stress bodies publication-title: Cold Spring Harb Perspect Biol – volume: 7 year: 2018 article-title: Proteasome storage granules protect proteasomes from autophagic degradation upon carbon starvation publication-title: Elife – volume: 8 issue: 6 year: 2013 article-title: Identification of novel stress granule components that are involved in nuclear transport publication-title: PLoS One – volume: 171 start-page: 163 issue: 1 year: 2017 end-page: 178.e19 article-title: Cancer‐specific retargeting of BAF complexes by a prion‐like domain publication-title: Cell – volume: 34 start-page: 7802 issue: 23 year: 2014 end-page: 7813 article-title: FUS is phosphorylated by DNA‐PK and accumulates in the cytoplasm after DNA damage publication-title: J Neurosci – year: 2010 – volume: 21 start-page: 228 issue: 2 year: 2018 end-page: 239 article-title: TDP‐43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in ALS/FTD publication-title: Nat Neurosci – volume: 24 start-page: 735 issue: 4 year: 2019 end-page: 748 article-title: Quantitative bioimage analytics enables measurement of targeted cellular stress response induced by celastrol‐loaded nanoparticles publication-title: Cell Stress Chaperones – volume: 116 start-page: 18078 year: 2019 end-page: 18087 article-title: CPEB3 inhibits translation of mRNA targets by localizing them to P bodies publication-title: Proc Natl Acad Sci U S A – volume: 2 start-page: a000653 issue: 7 year: 2010 article-title: The Cajal body and histone locus body publication-title: Cold Spring Harb Perspect Biol – volume: 151 start-page: 1257 issue: 6 year: 2000 end-page: 1268 article-title: Dynamic shuttling of TIA‐1 accompanies the recruitment of mRNA to mammalian stress granules publication-title: J Cell Biol – volume: 18 start-page: 285 issue: 5 year: 2017 end-page: 298 article-title: Biomolecular condensates: organizers of cellular biochemistry publication-title: Nat Rev Mol Cell Biol – volume: 3 start-page: 459 issue: 6 year: 2003 end-page: 465 article-title: RAS oncogenes: the first 30 years publication-title: Nat Rev Cancer – volume: 3 start-page: a000646 issue: 2 year: 2011 article-title: Nuclear speckles publication-title: Cold Spring Harb Perspect Biol – volume: 99 start-page: 1030 issue: 7 year: 2019 end-page: 1040 article-title: N‐terminal sequences in matrin 3 mediate phase separation into droplet‐like structures that recruit TDP43 variants lacking RNA binding elements publication-title: Lab Invest – volume: 8 start-page: 574 issue: 7 year: 2007 end-page: 585 article-title: The multifunctional nucleolus publication-title: Nat Rev Mol Cell Biol – volume: 117 start-page: 1314 issue: 5 year: 2007 end-page: 1323 article-title: Ewing sarcoma gene EWS is essential for meiosis and B lymphocyte development publication-title: J Clin Invest – volume: 155 start-page: 1049 issue: 5 year: 2013 end-page: 1060 article-title: Phosphorylation‐regulated binding of RNA polymerase II to fibrous polymers of low‐complexity domains publication-title: Cell – volume: 404 start-page: 604 issue: 6778 year: 2000 end-page: 609 article-title: High mobility of proteins in the mammalian cell nucleus publication-title: Nature – volume: 6 start-page: 20877 year: 2016 article-title: Drosophila screen connects nuclear transport genes to DPR pathology in c9ALS/FTD publication-title: Sci Rep – volume: 6 start-page: 25996 year: 2016 article-title: Cancer‐associated DDX3X mutations drive stress granule assembly and impair global translation publication-title: Sci Rep – volume: 164 start-page: 1162 issue: 6 year: 2016 end-page: 1171 article-title: The nuclear pore complex as a flexible and dynamic gate publication-title: Cell – volume: 29 start-page: 233 issue: 3 year: 2019 end-page: 247 article-title: PARylation regulates stress granule dynamics, phase separation, and neurotoxicity of disease‐related RNA‐binding proteins publication-title: Cell Res – volume: 173 start-page: 677 issue: 3 year: 2018 end-page: 692.e20 article-title: Nuclear‐import receptors reverse aberrant phase transitions of RNA‐binding proteins with prion‐like domains publication-title: Cell – volume: 112 start-page: E5237 issue: 38 year: 2015 end-page: E5245 article-title: RNA transcription modulates phase transition‐driven nuclear body assembly publication-title: Proc Natl Acad Sci U S A – volume: 95 start-page: 808 issue: 4 year: 2017 end-page: 816.e9 article-title: TIA1 mutations in amyotrophic lateral sclerosis and frontotemporal dementia promote phase separation and alter stress granule dynamics publication-title: Neuron – volume: 10 start-page: 33 issue: 237 year: 1899 end-page: 45 article-title: The structure of protoplasm publication-title: Science – volume: 71 start-page: 1027 issue: 6 year: 2018 end-page: 1039.e14 article-title: Alpha‐proteobacterial RNA degradosomes assemble liquid‐liquid phase‐separated RNP bodies publication-title: Mol Cell – volume: 23 start-page: 3694 issue: 18 year: 2012 end-page: 3706 article-title: SRSF1 regulates the assembly of pre‐mRNA processing factors in nuclear speckles publication-title: Mol Biol Cell – volume: 12 start-page: 224 issue: 6 year: 1996 end-page: 228 article-title: Genetic manipulation of genomes with rare‐cutting endonucleases publication-title: Trends Genet – volume: 359 start-page: eaao5654 issue: 6371 year: 2018 article-title: Phase separation of a yeast prion protein promotes cellular fitness publication-title: Science – volume: 21 start-page: 14 issue: 1 year: 2011 end-page: 16 article-title: Beyond stereospecificity: liquids and mesoscale organization of cytoplasm publication-title: Dev Cell – volume: 59 start-page: 917 issue: 6 year: 2015 end-page: 930 article-title: SPOP promotes ubiquitination and degradation of the ERG oncoprotein to suppress prostate cancer progression publication-title: Mol Cell – volume: 294 start-page: 7160 issue: 18 year: 2019 end-page: 7168 article-title: Matter over mind: liquid phase separation and neurodegeneration publication-title: J Biol Chem – volume: 37 start-page: 198 issue: 2 year: 2005 end-page: 204 article-title: Polyglutamine expansion of huntingtin impairs its nuclear export publication-title: Nat Genet – volume: 68 start-page: 1184 issue: 11 year: 2009 end-page: 1192 article-title: Nuclear contour irregularity and abnormal transporter protein distribution in anterior horn cells in amyotrophic lateral sclerosis publication-title: J Neuropathol Exp Neurol – volume: 64 start-page: 137 issue: 1 year: 2018 end-page: 140 article-title: The paradox of proteasome granules publication-title: Curr Genet – volume: 26 start-page: 193 issue: 3 year: 2019 end-page: 203 article-title: Phase separation of ligand‐activated enhancers licenses cooperative chromosomal enhancer assembly publication-title: Nat Struct Mol Biol – volume: 363 start-page: 1098 issue: 6431 year: 2019 end-page: 1103 article-title: A molecular assembly phase transition and kinetic proofreading modulate Ras activation by SOS publication-title: Science – volume: 123 start-page: 2014 issue: Pt 12 year: 2010 end-page: 2024 article-title: Two‐step colocalization of MORC3 with PML nuclear bodies publication-title: J Cell Sci – volume: 146 start-page: 905 issue: 5 year: 1999 end-page: 916 article-title: Megabase chromatin domains involved in DNA double‐strand breaks in vivo publication-title: J Cell Biol – volume: 24 start-page: 1713 issue: 7 year: 2018 end-page: 1721.e14 article-title: Stress‐induced low complexity RNA activates physiological amyloidogenesis publication-title: Cell Rep – volume: 150 start-page: 738 issue: 4 year: 2012 end-page: 751 article-title: The permeability of reconstituted nuclear pores provides direct evidence for the selective phase model publication-title: Cell – volume: 33 start-page: 717 issue: 6 year: 2009 end-page: 726 article-title: An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles publication-title: Mol Cell – volume: 199 start-page: 129 year: 2019 end-page: 138 article-title: Super‐enhancers in cancer publication-title: Pharmacol Ther – volume: 8 start-page: 279 issue: 10 year: 2017 article-title: Potential role of phase separation of repetitive DNA in chromosomal organization publication-title: Genes (Basel) – volume: 7 year: 2018 article-title: Protein gradients on the nucleoid position the carbon‐fixing organelles of cyanobacteria publication-title: Elife – volume: 547 start-page: 241 issue: 7662 year: 2017 end-page: 245 article-title: Phase separation drives heterochromatin domain formation publication-title: Nature – volume: 10 start-page: 173 year: 2019 article-title: Aberrant phase transitions: side effects and novel therapeutic strategies in human disease publication-title: Front Genet – volume: 2017 start-page: 1809592 year: 2017 article-title: Relationships between stress granules, oxidative stress, and neurodegenerative diseases publication-title: Oxid Med Cell Longev – volume: 373 start-page: 20170193 issue: 1747 year: 2018 article-title: Controlling compartmentalization by non‐membrane‐bound organelles publication-title: Philos Trans R Soc Lond B Biol Sci – volume: 81 start-page: 536 issue: 3 year: 2014 end-page: 543 article-title: Axonal transport of TDP‐43 mRNA granules is impaired by ALS‐causing mutations publication-title: Neuron – volume: 144 start-page: 646 issue: 5 year: 2011 end-page: 674 article-title: Hallmarks of cancer: the next generation publication-title: Cell – volume: 46 start-page: 285 issue: 3 year: 2018 end-page: 301.e9 article-title: Tdrd6a regulates the aggregation of Buc into functional subcellular compartments that drive germ cell specification publication-title: Dev Cell – volume: 41 start-page: 543 year: 2012 end-page: 556 article-title: Receptor signaling clusters in the immune synapse publication-title: Annu Rev Biophys – volume: 85 start-page: 151 issue: 3‐4 year: 2006 end-page: 157 article-title: The leukocyte podosome publication-title: Eur J Cell Biol – volume: 158 start-page: 139 year: 2013 end-page: 152 article-title: The perinucleolar compartment: RNA metabolism and cancer publication-title: Cancer Treat Res – volume: 3 start-page: 04132 year: 2014 article-title: A stress assembly that confers cell viability by preserving ERES components during amino‐acid starvation publication-title: Elife – volume: 173 start-page: 693 issue: 3 year: 2018 end-page: 705.e22 article-title: Nuclear import receptor inhibits phase separation of FUS through binding to multiple sites publication-title: Cell – volume: 20 start-page: 650 issue: 9 year: 2019 end-page: 660 article-title: Germ granules in Drosophila publication-title: Traffic – volume: 48 start-page: 429 issue: 4 year: 2019 end-page: 444 article-title: Wnt/Beta‐catenin signaling regulation and a role for biomolecular condensates publication-title: Dev Cell – volume: 16 start-page: 7812 issue: 24 year: 1996 end-page: 7820 article-title: Translocation of RNA granules in living neurons publication-title: J Neurosci – volume: 73 start-page: 490 issue: 3 year: 2019 end-page: 504.e6 article-title: The solution structure of FUS bound to RNA reveals a bipartite mode of RNA recognition with both sequence and shape specificity publication-title: Mol Cell – volume: 69 start-page: 465 issue: 3 year: 2018 end-page: 479.e7 article-title: Mechanistic view of hnRNPA2 low‐complexity domain structure, interactions, and phase separation altered by mutation and arginine methylation publication-title: Mol Cell – volume: 193 start-page: 97 issue: 1 year: 2011 end-page: 108 article-title: Replication stress induces 53BP1‐containing OPT domains in G1 cells publication-title: J Cell Biol – volume: 19 issue: 5 year: 2018 article-title: Acetylation disfavors tau phase separation publication-title: Int J Mol Sci – volume: 75 start-page: 875 issue: 4 year: 2019 end-page: 887.e5 article-title: Proximity RNA labeling by APEX‐Seq reveals the organization of translation initiation complexes and repressive RNA granules publication-title: Mol Cell – volume: 5 year: 2016 article-title: Distinct stages in stress granule assembly and disassembly publication-title: Elife – volume: 294 start-page: 7128 issue: 18 year: 2019 end-page: 7136 article-title: Prion‐like low‐complexity sequences: key regulators of protein solubility and phase behavior publication-title: J Biol Chem – volume: 365 start-page: 825 issue: 6455 year: 2019 end-page: 829 article-title: Phospho‐dependent phase separation of FMRP and CAPRIN1 recapitulates regulation of translation and deadenylation publication-title: Science – volume: 2 start-page: a000679 issue: 2 year: 2010 article-title: The perinucleolar compartment publication-title: Cold Spring Harb Perspect Biol – volume: 20 start-page: 639 issue: 9 year: 2019 end-page: 649 article-title: Neuronal ribonucleoprotein granules: dynamic sensors of localized signals publication-title: Traffic – volume: 169 start-page: 13 issue: 1 year: 2017 end-page: 23 article-title: A phase separation model for transcriptional control publication-title: Cell – volume: 70 start-page: 1038 issue: 6 year: 2018 end-page: 1053.e7 article-title: Functional domains of NEAT1 architectural lncRNA induce paraspeckle assembly through phase separation publication-title: Mol Cell – volume: 1803 start-page: 865 issue: 7 year: 2010 end-page: 871 article-title: Identification of importin alpha1 as a novel constituent of RNA stress granules publication-title: Biochim Biophys Acta – volume: 535 start-page: 308 issue: 7611 year: 2016 end-page: 312 article-title: Ki‐67 acts as a biological surfactant to disperse mitotic chromosomes publication-title: Nature – volume: 149 start-page: 753 issue: 4 year: 2012 end-page: 767 article-title: Cell‐free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels publication-title: Cell – volume: 361 start-page: 604 issue: 6402 year: 2018 end-page: 607 article-title: A liquid phase of synapsin and lipid vesicles publication-title: Science – volume: 28 start-page: 405 issue: 4 year: 2018 end-page: 415 article-title: Polyubiquitin chain‐induced p62 phase separation drives autophagic cargo segregation publication-title: Cell Res – volume: 5 start-page: 572 issue: 6 year: 2003 end-page: 577 article-title: Colocalization of multiple DNA double‐strand breaks at a single Rad52 repair centre publication-title: Nat Cell Biol – volume: 166 start-page: 1163 issue: 5 year: 2016 end-page: 1175.e12 article-title: Phase transition in postsynaptic densities underlies formation of synaptic complexes and synaptic plasticity publication-title: Cell – volume: 3 start-page: 125 year: 2013 article-title: Differential roles of PML isoforms publication-title: Front Oncol – volume: 122 start-page: 3973 issue: Pt 21 year: 2009 end-page: 3982 article-title: Dynein and kinesin regulate stress‐granule and P‐body dynamics publication-title: J Cell Sci – volume: 114 start-page: 146 issue: 3 year: 2005 end-page: 154 article-title: Imaging of protein movement induced by chromosomal breakage: tiny 'local' lesions pose great 'global' challenges publication-title: Chromosoma – volume: 2 start-page: a000661 issue: 5 year: 2010 article-title: PML nuclear bodies publication-title: Cold Spring Harb Perspect Biol – volume: 38 issue: 16 year: 2019 article-title: Phase separation of 53BP1 determines liquid‐like behavior of DNA repair compartments publication-title: EMBO J – volume: 6 start-page: 655 issue: 6 year: 2018 end-page: 663.e5 article-title: Protein phase separation provides long‐term memory of transient spatial stimuli publication-title: Cell Syst – volume: 37 issue: 7 year: 2018 article-title: Tau protein liquid‐liquid phase separation can initiate tau aggregation publication-title: EMBO J – volume: 166 start-page: 1572 issue: 6 year: 2016 end-page: 1584.e16 article-title: Polar positioning of phase‐separated liquid compartments in cells regulated by an mRNA competition mechanism publication-title: Cell – volume: 47 start-page: 7734 year: 2019 end-page: 7752 article-title: DAXX in cancer: phenomena, processes, mechanisms and regulation publication-title: Nucleic Acids Res – volume: 7 year: 2016 article-title: PML nuclear body disruption impairs DNA double‐strand break sensing and repair in APL publication-title: Cell Death Dis – volume: 483 start-page: 336 issue: 7389 year: 2012 end-page: 340 article-title: Phase transitions in the assembly of multivalent signalling proteins publication-title: Nature – volume: 114 start-page: E2466 issue: 12 year: 2017 end-page: E2475 article-title: Amyotrophic lateral sclerosis‐linked mutations increase the viscosity of liquid‐like TDP‐43 RNP granules in neurons publication-title: Proc Natl Acad Sci U S A – volume: 10 start-page: 455 issue: 1 year: 2019 article-title: Cycles of protein condensation and discharge in nuclear organelles studied by fluorescence lifetime imaging publication-title: Nat Commun – volume: 352 start-page: 95 issue: 6281 year: 2016 end-page: 99 article-title: Mouse oocytes differentiate through organelle enrichment from sister cyst germ cells publication-title: Science – volume: 176 start-page: 419 issue: 3 year: 2019 end-page: 434 article-title: Considerations and challenges in studying liquid‐liquid phase separation and biomolecular condensates publication-title: Cell – volume: 35 start-page: 1233 issue: 12 year: 2011 end-page: 1238 article-title: Gem formation upon constitutive Gemin3 overexpression in Drosophila publication-title: Cell Biol Int – volume: 363 start-page: 1093 issue: 6431 year: 2019 end-page: 1097 article-title: Stoichiometry controls activity of phase‐separated clusters of actin signaling proteins publication-title: Science – volume: 41 start-page: 180 year: 2016 end-page: 186 article-title: Liquid‐liquid phase separation in cellular signaling systems publication-title: Curr Opin Struct Biol – volume: 291 start-page: 22671 issue: 43 year: 2016 end-page: 22685 article-title: Arginine demethylation of G3BP1 promotes stress granule assembly publication-title: J Biol Chem – volume: 21 start-page: 3573 issue: 12 year: 2017 end-page: 3584 article-title: ALS/FTD‐associated C9ORF72 repeat RNA promotes phase transitions in vitro and in cells publication-title: Cell Rep – volume: 4 start-page: 04251 year: 2015 article-title: Nup98 FG domains from diverse species spontaneously phase‐separate into particles with nuclear pore‐like permselectivity publication-title: Elife – volume: 25 start-page: 455 issue: 4 year: 2014 end-page: 468 article-title: SPOP promotes tumorigenesis by acting as a key regulatory hub in kidney cancer publication-title: Cancer Cell – volume: 38 start-page: 1197 issue: 12 year: 2016 end-page: 1208 article-title: Cajal body function in genome organization and transcriptome diversity publication-title: Bioessays – volume: 123 start-page: 249 issue: 2 year: 2005 end-page: 263 article-title: Regulating gene expression through RNA nuclear retention publication-title: Cell – volume: 114 start-page: 2891 issue: Pt 16 year: 2001 end-page: 2893 article-title: Nuclear domains publication-title: J Cell Sci – volume: 440 start-page: 818 issue: 7085 year: 2006 end-page: 823 article-title: Nck adaptor proteins link nephrin to the actin cytoskeleton of kidney podocytes publication-title: Nature – volume: 341 start-page: 664 issue: 6146 year: 2013 end-page: 667 article-title: Real‐time dynamics of RNA polymerase II clustering in live human cells publication-title: Science – volume: 35 start-page: 1254 issue: 12 year: 2016 end-page: 1275 article-title: Higher‐order oligomerization promotes localization of SPOP to liquid nuclear speckles publication-title: EMBO J – volume: 8 start-page: 1900 issue: 10 year: 2017 end-page: 1907 article-title: Role of Y box protein‐1 in cancer: as potential biomarker and novel therapeutic target publication-title: J Cancer – volume: 441 start-page: 1144 issue: 7097 year: 2006 end-page: 1148 article-title: Activity‐dependent dynamics and sequestration of proteasomes in dendritic spines publication-title: Nature – volume: 6 year: 2017 article-title: The synaptonemal complex has liquid crystalline properties and spatially regulates meiotic recombination factors publication-title: Elife – ident: e_1_2_6_64_1 doi: 10.1016/j.cell.2017.05.028 – ident: e_1_2_6_245_1 doi: 10.1126/science.aad2156 – ident: e_1_2_6_128_1 doi: 10.1016/j.cell.2013.05.037 – ident: e_1_2_6_229_1 doi: 10.1093/carcin/bgu022 – ident: e_1_2_6_137_1 doi: 10.1016/j.cell.2016.01.034 – ident: e_1_2_6_124_1 doi: 10.1038/ng1503 – ident: e_1_2_6_107_1 doi: 10.1016/j.brainres.2018.04.036 – ident: e_1_2_6_317_1 doi: 10.15252/embj.201798049 – ident: e_1_2_6_264_1 doi: 10.1101/cshperspect.a000687 – ident: e_1_2_6_194_1 doi: 10.1074/jbc.274.48.34337 – ident: e_1_2_6_175_1 doi: 10.1038/s41467-017-02299-1 – ident: e_1_2_6_37_1 doi: 10.1073/pnas.1504822112 – ident: e_1_2_6_51_1 doi: 10.1016/j.jmb.2018.08.003 – ident: e_1_2_6_99_1 doi: 10.1083/jcb.200502088 – ident: e_1_2_6_253_1 doi: 10.1080/15476286.2016.1265198 – ident: e_1_2_6_138_1 doi: 10.1016/j.cell.2007.06.024 – ident: e_1_2_6_62_1 doi: 10.1126/science.aau6313 – ident: e_1_2_6_104_1 doi: 10.1083/jcb.151.6.1257 – ident: e_1_2_6_210_1 doi: 10.1016/j.pharmthera.2019.02.014 – ident: e_1_2_6_132_1 doi: 10.1016/j.neuron.2006.08.021 – ident: e_1_2_6_19_1 doi: 10.1016/j.cell.2016.05.026 – ident: e_1_2_6_316_1 doi: 10.1038/s41467-017-00480-0 – ident: e_1_2_6_77_1 doi: 10.1016/j.cell.2018.05.045 – ident: e_1_2_6_170_1 doi: 10.1038/nature07433 – ident: e_1_2_6_69_1 doi: 10.1126/science.aat5671 – ident: e_1_2_6_33_1 doi: 10.1126/science.aar7366 – ident: e_1_2_6_39_1 doi: 10.1073/pnas.1800038115 – ident: e_1_2_6_12_1 doi: 10.1016/j.conb.2018.12.001 – ident: e_1_2_6_27_1 doi: 10.15252/embj.2018101379 – ident: e_1_2_6_114_1 doi: 10.1016/j.celrep.2017.11.093 – ident: e_1_2_6_32_1 doi: 10.1016/j.molcel.2015.08.018 – ident: e_1_2_6_174_1 doi: 10.1523/JNEUROSCI.0172-14.2014 – ident: e_1_2_6_142_1 doi: 10.1016/j.jmb.2018.07.011 – ident: e_1_2_6_310_1 doi: 10.1128/MCB.01102-15 – ident: e_1_2_6_116_1 doi: 10.7554/eLife.39578 – ident: e_1_2_6_2_1 doi: 10.1101/cshperspect.a000638 – ident: e_1_2_6_53_1 doi: 10.1126/science.aau5721 – ident: e_1_2_6_180_1 doi: 10.1038/s41467-018-06111-6 – ident: e_1_2_6_101_1 doi: 10.1016/j.neuron.2015.10.030 – ident: e_1_2_6_146_1 doi: 10.1097/NEN.0b013e3181bc3bec – ident: e_1_2_6_9_1 doi: 10.7554/eLife.34532 – ident: e_1_2_6_18_1 doi: 10.1038/nrm.2017.7 – start-page: 633040 year: 2019 ident: e_1_2_6_208_1 article-title: Liquid condensation drives telomere clustering during ALT publication-title: bioRxiv – ident: e_1_2_6_182_1 doi: 10.1155/2012/428010 – ident: e_1_2_6_16_1 doi: 10.15252/embr.201845946 – ident: e_1_2_6_84_1 doi: 10.1016/j.molcel.2017.12.020 – ident: e_1_2_6_129_1 doi: 10.1074/jbc.M109.042879 – ident: e_1_2_6_158_1 doi: 10.1093/hmg/ddt622 – ident: e_1_2_6_179_1 doi: 10.1093/nar/gkt835 – ident: e_1_2_6_147_1 doi: 10.1038/nature14973 – ident: e_1_2_6_257_1 doi: 10.1098/rstb.2013.0459 – ident: e_1_2_6_307_1 doi: 10.3390/ijms19051360 – ident: e_1_2_6_155_1 doi: 10.1016/j.molcel.2014.01.009 – ident: e_1_2_6_97_1 doi: 10.1016/j.cell.2015.09.015 – ident: e_1_2_6_290_1 doi: 10.7554/eLife.04132 – ident: e_1_2_6_118_1 doi: 10.1007/s11910-018-0914-7 – ident: e_1_2_6_11_1 doi: 10.1101/cshperspect.a002774 – ident: e_1_2_6_139_1 doi: 10.1016/j.bpj.2011.08.025 – ident: e_1_2_6_150_1 doi: 10.1073/pnas.1620293114 – ident: e_1_2_6_21_1 doi: 10.1016/j.devcel.2011.06.013 – ident: e_1_2_6_47_1 doi: 10.1126/science.aar7432 – ident: e_1_2_6_148_1 doi: 10.1016/j.neuroscience.2017.03.024 – ident: e_1_2_6_120_1 doi: 10.1016/j.cell.2018.03.004 – ident: e_1_2_6_76_1 doi: 10.1038/nchem.2519 – ident: e_1_2_6_136_1 doi: 10.1016/j.cell.2013.02.042 – ident: e_1_2_6_140_1 doi: 10.1016/j.tibs.2015.11.001 – ident: e_1_2_6_106_1 doi: 10.3389/fgene.2019.00173 – ident: e_1_2_6_305_1 doi: 10.1016/j.molcel.2018.11.012 – ident: e_1_2_6_167_1 doi: 10.1007/s00412-005-0011-y – ident: e_1_2_6_79_1 doi: 10.1016/j.cels.2018.05.002 – ident: e_1_2_6_181_1 doi: 10.1016/j.mad.2017.08.004 – ident: e_1_2_6_55_1 doi: 10.1016/j.cell.2016.04.047 – ident: e_1_2_6_71_1 doi: 10.1016/j.celrep.2017.08.042 – ident: e_1_2_6_219_1 doi: 10.1074/jbc.RA119.009494 – ident: e_1_2_6_201_1 doi: 10.4161/19491034.2014.970104 – ident: e_1_2_6_279_1 doi: 10.1016/j.celrep.2017.06.082 – ident: e_1_2_6_282_1 doi: 10.1101/cshperspect.a000695 – ident: e_1_2_6_122_1 doi: 10.1016/j.cell.2018.03.056 – ident: e_1_2_6_186_1 doi: 10.1038/nature05292 – ident: e_1_2_6_191_1 doi: 10.1093/emboj/19.3.453 – ident: e_1_2_6_286_1 doi: 10.1101/cshperspect.a000679 – ident: e_1_2_6_276_1 doi: 10.7554/eLife.25375 – ident: e_1_2_6_20_1 doi: 10.1126/science.10.237.33 – ident: e_1_2_6_45_1 doi: 10.1016/j.jmb.2018.08.007 – ident: e_1_2_6_82_1 doi: 10.1016/j.cell.2015.12.038 – ident: e_1_2_6_166_1 doi: 10.1016/0168-9525(96)10019-6 – ident: e_1_2_6_195_1 doi: 10.1016/j.dnarep.2018.11.008 – ident: e_1_2_6_215_1 doi: 10.1083/jcb.201404124 – ident: e_1_2_6_14_1 doi: 10.1016/j.molcel.2018.08.003 – ident: e_1_2_6_168_1 doi: 10.1038/ncb997 – ident: e_1_2_6_200_1 doi: 10.1101/cshperspect.a000661 – ident: e_1_2_6_315_1 doi: 10.15252/embj.201696394 – ident: e_1_2_6_65_1 doi: 10.1126/science.aar4199 – ident: e_1_2_6_164_1 doi: 10.1038/s41467-019-08354-3 – volume-title: Histology, Keratohyalin Granules year: 2019 ident: e_1_2_6_263_1 – ident: e_1_2_6_204_1 doi: 10.1128/MCB.00897-08 – ident: e_1_2_6_96_1 doi: 10.1016/j.cell.2018.03.025 – ident: e_1_2_6_172_1 doi: 10.1016/j.mrfmmm.2014.11.010 – ident: e_1_2_6_300_1 doi: 10.1126/science.aaa3923 – ident: e_1_2_6_202_1 doi: 10.1016/j.cell.2016.06.010 – ident: e_1_2_6_274_1 doi: 10.1146/annurev-biophys-042910-155238 – ident: e_1_2_6_152_1 doi: 10.1016/S0006-291X(02)00492-8 – ident: e_1_2_6_292_1 doi: 10.1016/j.devcel.2019.01.025 – ident: e_1_2_6_246_1 doi: 10.1016/j.neuron.2019.05.048 – ident: e_1_2_6_205_1 doi: 10.1038/cddis.2016.115 – ident: e_1_2_6_258_1 doi: 10.1016/j.cell.2018.10.007 – ident: e_1_2_6_25_1 doi: 10.7554/eLife.31486 – ident: e_1_2_6_26_1 doi: 10.1101/cshperspect.a023598 – ident: e_1_2_6_319_1 doi: 10.1016/j.molcel.2018.07.002 – ident: e_1_2_6_91_1 doi: 10.1083/jcb.201609081 – ident: e_1_2_6_105_1 doi: 10.1371/journal.pbio.1001545 – ident: e_1_2_6_235_1 doi: 10.1038/s41589-018-0180-7 – ident: e_1_2_6_109_1 doi: 10.1074/jbc.REV118.001188 – ident: e_1_2_6_262_1 doi: 10.1111/tra.12674 – ident: e_1_2_6_294_1 doi: 10.1038/s41594-019-0190-5 – ident: e_1_2_6_231_1 doi: 10.7150/jca.17689 – ident: e_1_2_6_236_1 doi: 10.7554/eLife.09347 – ident: e_1_2_6_243_1 doi: 10.1146/annurev-virology-031413-085505 – ident: e_1_2_6_5_1 doi: 10.1002/bies.201600144 – ident: e_1_2_6_271_1 doi: 10.1016/j.ejcb.2005.09.003 – ident: e_1_2_6_126_1 doi: 10.15252/embj.201695957 – ident: e_1_2_6_163_1 doi: 10.1038/35007077 – ident: e_1_2_6_214_1 doi: 10.7554/eLife.13617 – ident: e_1_2_6_87_1 doi: 10.1016/j.semcdb.2018.07.001 – ident: e_1_2_6_237_1 doi: 10.1126/science.aaf6846 – ident: e_1_2_6_36_1 doi: 10.1016/j.cell.2016.08.006 – ident: e_1_2_6_57_1 doi: 10.1016/j.cub.2015.01.012 – ident: e_1_2_6_256_1 doi: 10.1016/j.gde.2011.11.004 – ident: e_1_2_6_63_1 doi: 10.7554/eLife.04123 – ident: e_1_2_6_272_1 doi: 10.1038/nature04662 – ident: e_1_2_6_34_1 doi: 10.1016/j.molcel.2015.09.017 – ident: e_1_2_6_130_1 doi: 10.1242/jcs.051383 – ident: e_1_2_6_260_1 doi: 10.1126/science.1172046 – ident: e_1_2_6_44_1 doi: 10.1016/j.cell.2015.07.047 – ident: e_1_2_6_199_1 doi: 10.1186/s13578-018-0204-8 – ident: e_1_2_6_223_1 doi: 10.1016/j.ccr.2014.02.007 – ident: e_1_2_6_10_1 doi: 10.1007/978-3-319-38882-3_10 – ident: e_1_2_6_249_1 doi: 10.1101/cshperspect.a000653 – ident: e_1_2_6_318_1 doi: 10.1073/pnas.1815275116 – ident: e_1_2_6_301_1 doi: 10.1016/j.bbapap.2017.10.001 – ident: e_1_2_6_58_1 doi: 10.1016/j.molcel.2015.01.013 – ident: e_1_2_6_173_1 doi: 10.1016/j.pneurobio.2011.04.013 – ident: e_1_2_6_289_1 doi: 10.1007/s00294-017-0739-y – ident: e_1_2_6_251_1 doi: 10.3390/biology2030976 – ident: e_1_2_6_160_1 doi: 10.1093/nar/gkx759 – ident: e_1_2_6_121_1 doi: 10.1016/j.cell.2018.03.002 – ident: e_1_2_6_183_1 doi: 10.1016/j.cell.2013.07.038 – ident: e_1_2_6_61_1 doi: 10.1126/science.aad9964 – ident: e_1_2_6_206_1 doi: 10.1038/nsmb1259 – ident: e_1_2_6_314_1 doi: 10.1038/s41422-019-0141-z – ident: e_1_2_6_119_1 doi: 10.1038/s41593-017-0047-3 – ident: e_1_2_6_156_1 doi: 10.1016/j.cell.2005.08.033 – ident: e_1_2_6_232_1 doi: 10.1038/s41568-018-0076-6 – start-page: 768119 year: 2019 ident: e_1_2_6_188_1 article-title: DNA repair by Rad52 liquid droplets publication-title: bioRxiv – ident: e_1_2_6_213_1 doi: 10.1126/science.1239053 – ident: e_1_2_6_299_1 doi: 10.1074/jbc.AC117.001037 – ident: e_1_2_6_78_1 doi: 10.1016/j.cell.2012.07.019 – ident: e_1_2_6_110_1 doi: 10.1074/jbc.REV119.007944 – ident: e_1_2_6_133_1 doi: 10.1523/JNEUROSCI.16-24-07812.1996 – ident: e_1_2_6_255_1 doi: 10.1101/cshperspect.a012286 – ident: e_1_2_6_15_1 doi: 10.7554/eLife.39723 – ident: e_1_2_6_171_1 doi: 10.1083/jcb.146.5.905 – ident: e_1_2_6_102_1 doi: 10.1016/j.molcel.2018.02.004 – ident: e_1_2_6_117_1 doi: 10.1111/febs.12287 – ident: e_1_2_6_252_1 doi: 10.1042/CBI20110147 – ident: e_1_2_6_288_1 doi: 10.1038/nature04769 – ident: e_1_2_6_17_1 doi: 10.1146/annurev-cellbio-100913-013325 – ident: e_1_2_6_221_1 doi: 10.1126/science.aar2555 – ident: e_1_2_6_268_1 doi: 10.1016/j.devcel.2016.09.002 – ident: e_1_2_6_22_1 doi: 10.1021/acs.biochem.8b00058 – ident: e_1_2_6_24_1 doi: 10.1074/jbc.TM118.001190 – ident: e_1_2_6_35_1 doi: 10.1073/pnas.1509317112 – ident: e_1_2_6_212_1 doi: 10.1038/s41594-018-0112-y – ident: e_1_2_6_113_1 doi: 10.1016/j.neuron.2017.07.025 – ident: e_1_2_6_7_1 doi: 10.1016/j.bbadis.2016.12.022 – ident: e_1_2_6_185_1 doi: 10.5607/en.2015.24.4.325 – ident: e_1_2_6_30_1 doi: 10.1016/j.cell.2016.07.008 – ident: e_1_2_6_265_1 doi: 10.1016/j.cell.2017.08.008 – ident: e_1_2_6_196_1 doi: 10.1128/MCB.23.7.2556-2563.2003 – ident: e_1_2_6_227_1 doi: 10.1016/j.molcel.2015.07.026 – ident: e_1_2_6_261_1 doi: 10.1111/tra.12644 – ident: e_1_2_6_233_1 doi: 10.1038/nrc1097 – ident: e_1_2_6_43_1 doi: 10.1016/j.cell.2016.06.051 – ident: e_1_2_6_67_1 doi: 10.1126/science.aao5654 – volume: 114 start-page: 2891 issue: 16 year: 2001 ident: e_1_2_6_284_1 article-title: Nuclear domains publication-title: J Cell Sci doi: 10.1242/jcs.114.16.2891 – ident: e_1_2_6_125_1 doi: 10.1073/pnas.1207247109 – ident: e_1_2_6_250_1 doi: 10.1091/mbc.e05-08-0768 – ident: e_1_2_6_56_1 doi: 10.1126/science.aax4240 – ident: e_1_2_6_226_1 doi: 10.7554/eLife.09207 – ident: e_1_2_6_92_1 doi: 10.4161/15476286.2014.972208 – ident: e_1_2_6_46_1 doi: 10.1073/pnas.1614462114 – ident: e_1_2_6_60_1 doi: 10.1038/ncb2830 – ident: e_1_2_6_103_1 doi: 10.1016/j.cell.2018.06.006 – ident: e_1_2_6_153_1 doi: 10.1016/j.molcel.2009.01.026 – ident: e_1_2_6_42_1 doi: 10.1016/j.tibs.2017.11.005 – ident: e_1_2_6_141_1 doi: 10.7554/eLife.04251 – ident: e_1_2_6_234_1 doi: 10.1016/j.cell.2016.11.035 – ident: e_1_2_6_28_1 doi: 10.7554/eLife.13571 – ident: e_1_2_6_285_1 doi: 10.1083/jcb.201011083 – ident: e_1_2_6_85_1 doi: 10.1016/j.cell.2017.12.032 – ident: e_1_2_6_52_1 doi: 10.1038/srep25996 – ident: e_1_2_6_178_1 doi: 10.1038/emboj.2012.261 – ident: e_1_2_6_228_1 doi: 10.15252/embj.201593169 – ident: e_1_2_6_218_1 doi: 10.1155/2011/837474 – ident: e_1_2_6_216_1 doi: 10.1016/j.cell.2017.07.036 – ident: e_1_2_6_269_1 doi: 10.1016/j.celrep.2018.07.040 – ident: e_1_2_6_177_1 doi: 10.1172/JCI72723 – ident: e_1_2_6_203_1 doi: 10.3389/fonc.2013.00125 – ident: e_1_2_6_248_1 doi: 10.1091/mbc.E04-08-0742 – ident: e_1_2_6_312_1 doi: 10.1016/j.celrep.2019.04.031 – ident: e_1_2_6_40_1 doi: 10.1186/s12964-015-0125-7 – ident: e_1_2_6_94_1 doi: 10.1016/j.bbamcr.2010.03.020 – ident: e_1_2_6_135_1 doi: 10.1016/j.neuron.2013.12.018 – ident: e_1_2_6_297_1 doi: 10.1038/s41467-019-09549-4 – ident: e_1_2_6_81_1 doi: 10.1016/j.cell.2018.10.048 – ident: e_1_2_6_48_1 doi: 10.1016/j.molcel.2018.05.019 – ident: e_1_2_6_95_1 doi: 10.1371/journal.pone.0068356 – ident: e_1_2_6_197_1 doi: 10.1016/j.molcel.2018.02.016 – ident: e_1_2_6_217_1 doi: 10.1016/j.cell.2012.04.017 – ident: e_1_2_6_111_1 doi: 10.3389/fncel.2015.00423 – ident: e_1_2_6_190_1 doi: 10.1038/72842 – ident: e_1_2_6_313_1 doi: 10.1016/j.molcel.2011.04.015 – ident: e_1_2_6_240_1 doi: 10.1073/pnas.1017150108 – ident: e_1_2_6_131_1 doi: 10.1016/j.bbamcr.2009.12.004 – ident: e_1_2_6_184_1 doi: 10.1155/2017/1809592 – ident: e_1_2_6_8_1 doi: 10.1016/j.tibs.2016.09.009 – ident: e_1_2_6_80_1 doi: 10.1038/nature18610 – ident: e_1_2_6_98_1 doi: 10.7554/eLife.18413 – ident: e_1_2_6_311_1 doi: 10.1016/j.devcel.2018.07.009 – ident: e_1_2_6_108_1 doi: 10.1038/s41582-019-0157-5 – ident: e_1_2_6_100_1 doi: 10.1016/j.str.2016.07.007 – ident: e_1_2_6_239_1 doi: 10.1016/j.cell.2017.02.007 – ident: e_1_2_6_149_1 doi: 10.1038/s41582-018-0047-2 – ident: e_1_2_6_298_1 doi: 10.1128/mBio.02290-17 – ident: e_1_2_6_296_1 doi: 10.1074/jbc.M115.659466 – ident: e_1_2_6_88_1 doi: 10.1002/wrna.1514 – ident: e_1_2_6_211_1 doi: 10.1016/j.cell.2018.10.042 – ident: e_1_2_6_72_1 doi: 10.1038/nature22822 – ident: e_1_2_6_295_1 doi: 10.1073/pnas.0704977104 – ident: e_1_2_6_266_1 doi: 10.1111/tra.12672 – start-page: 524231 year: 2019 ident: e_1_2_6_59_1 article-title: Phase separation provides a mechanism to reduce noise in cells publication-title: bioRxiv – ident: e_1_2_6_66_1 doi: 10.1126/science.aar3958 – ident: e_1_2_6_49_1 doi: 10.1038/s41586-019-1374-1 – ident: e_1_2_6_283_1 doi: 10.1007/s12192-019-00999-9 – ident: e_1_2_6_134_1 doi: 10.1155/2018/8413496 – ident: e_1_2_6_230_1 doi: 10.1083/jcb.201411047 – ident: e_1_2_6_207_1 doi: 10.1101/gad.324905.119 – ident: e_1_2_6_4_1 doi: 10.1021/acs.biochem.7b01162 – ident: e_1_2_6_209_1 doi: 10.1242/jcs.063586 – ident: e_1_2_6_259_1 doi: 10.4199/C00023ED1V01Y201012DEB005 – ident: e_1_2_6_6_1 doi: 10.1016/j.tibs.2017.12.001 – ident: e_1_2_6_143_1 doi: 10.1242/dmm.027730 – ident: e_1_2_6_154_1 doi: 10.1091/mbc.e13-09-0558 – ident: e_1_2_6_198_1 doi: 10.1016/j.mrfmmm.2017.05.002 – ident: e_1_2_6_241_1 doi: 10.3390/genes8100279 – ident: e_1_2_6_50_1 doi: 10.1074/jbc.TM118.001189 – ident: e_1_2_6_273_1 doi: 10.1038/nature10879 – ident: e_1_2_6_157_1 doi: 10.1083/jcb.201504117 – ident: e_1_2_6_90_1 doi: 10.1016/j.tcb.2016.05.004 – ident: e_1_2_6_86_1 doi: 10.1016/j.molcel.2019.07.030 – ident: e_1_2_6_176_1 doi: 10.1038/nn.3514 – ident: e_1_2_6_244_1 doi: 10.1038/s41374-019-0260-7 – ident: e_1_2_6_302_1 doi: 10.1074/jbc.AC119.009198 – ident: e_1_2_6_144_1 doi: 10.1016/j.neuron.2017.03.027 – ident: e_1_2_6_38_1 doi: 10.1038/nature22386 – ident: e_1_2_6_29_1 doi: 10.1016/j.molcel.2018.08.027 – ident: e_1_2_6_41_1 doi: 10.1016/j.cell.2018.12.035 – ident: e_1_2_6_13_1 doi: 10.1101/cshperspect.a000422 – ident: e_1_2_6_123_1 doi: 10.1016/j.cell.2018.03.003 – ident: e_1_2_6_169_1 doi: 10.1038/s41467-018-05009-7 – ident: e_1_2_6_3_1 doi: 10.1101/cshperspect.a000646 – ident: e_1_2_6_75_1 doi: 10.1016/j.cell.2016.11.054 – ident: e_1_2_6_193_1 doi: 10.1074/jbc.M113.497974 – start-page: 523662 year: 2019 ident: e_1_2_6_74_1 article-title: Organization and regulation of chromatin by liquid‐liquid phase separation publication-title: bioRxiv – ident: e_1_2_6_287_1 doi: 10.1007/978-3-642-31659-3_6 – ident: e_1_2_6_151_1 doi: 10.1016/j.stem.2015.09.001 – ident: e_1_2_6_187_1 doi: 10.1016/j.cell.2011.02.013 – ident: e_1_2_6_224_1 doi: 10.1093/nar/gkz634 – ident: e_1_2_6_281_1 doi: 10.1083/jcb.201701084 – ident: e_1_2_6_254_1 doi: 10.1038/nrm2184 – ident: e_1_2_6_220_1 doi: 10.1016/j.cell.2013.10.033 – ident: e_1_2_6_145_1 doi: 10.1016/j.neuron.2017.03.023 – ident: e_1_2_6_159_1 doi: 10.1016/j.ncrna.2018.11.003 – ident: e_1_2_6_68_1 doi: 10.1073/pnas.1814385116 – volume: 20 start-page: 623 issue: 9 year: 2019 ident: e_1_2_6_293_1 article-title: Cellular stress leads to the formation of membraneless stress assemblies in eukaryotic cells publication-title: Traffic doi: 10.1111/tra.12669 – ident: e_1_2_6_54_1 doi: 10.1146/annurev-biophys-052118-115534 – ident: e_1_2_6_280_1 doi: 10.1016/j.neuron.2016.03.011 – ident: e_1_2_6_308_1 doi: 10.1016/j.molcel.2017.12.022 – ident: e_1_2_6_115_1 doi: 10.1038/srep20877 – ident: e_1_2_6_189_1 doi: 10.1038/ncomms9088 – volume: 17 start-page: 47 issue: 91 year: 2014 ident: e_1_2_6_112_1 article-title: Physiological protein aggregation run amuck: stress granules and the genesis of neurodegenerative disease publication-title: Discov Med – start-page: 721001 year: 2019 ident: e_1_2_6_247_1 article-title: Small molecules for modulating protein driven liquid‐liquid phase separation in treating neurodegenerative disease publication-title: bioRxiv – ident: e_1_2_6_306_1 doi: 10.1016/j.cub.2015.11.065 – ident: e_1_2_6_23_1 doi: 10.1098/rstb.2017.0193 – ident: e_1_2_6_127_1 doi: 10.1016/j.molcel.2016.07.021 – ident: e_1_2_6_267_1 doi: 10.1101/cshperspect.a005678 – ident: e_1_2_6_270_1 doi: 10.1038/ncb3191 – ident: e_1_2_6_83_1 doi: 10.1016/j.molcel.2017.09.003 – ident: e_1_2_6_225_1 doi: 10.1074/jbc.M600204200 – ident: e_1_2_6_73_1 doi: 10.1038/nature22989 – ident: e_1_2_6_303_1 doi: 10.1016/j.accpm.2018.05.012 – ident: e_1_2_6_70_1 doi: 10.7554/eLife.21455 – ident: e_1_2_6_165_1 doi: 10.1038/nprot.2008.54 – ident: e_1_2_6_31_1 doi: 10.1016/j.molcel.2015.09.006 – ident: e_1_2_6_277_1 doi: 10.1534/genetics.112.145540 – ident: e_1_2_6_291_1 doi: 10.7554/eLife.21475 – ident: e_1_2_6_89_1 doi: 10.1083/jcb.201508028 – ident: e_1_2_6_222_1 doi: 10.1073/pnas.1500536112 – ident: e_1_2_6_238_1 doi: 10.1016/j.sbi.2016.08.001 – ident: e_1_2_6_242_1 doi: 10.1038/s41422-018-0017-7 – ident: e_1_2_6_304_1 doi: 10.1073/pnas.1508778112 – ident: e_1_2_6_93_1 doi: 10.1093/nar/gkp717 – ident: e_1_2_6_192_1 doi: 10.1172/JCI31222 – ident: e_1_2_6_309_1 doi: 10.1074/jbc.M116.739573 – ident: e_1_2_6_275_1 doi: 10.7554/eLife.42695 – ident: e_1_2_6_278_1 doi: 10.7554/eLife.02409 – ident: e_1_2_6_162_1 doi: 10.1091/mbc.e12-03-0206 – ident: e_1_2_6_161_1 doi: 10.1038/ncb2157 |
SSID | ssj0002544 |
Score | 2.5402753 |
SecondaryResourceType | review_article |
Snippet | The intracellular environment is partitioned into functionally distinct compartments containing specific sets of molecules and reactions. Biomolecular... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 890 |
SubjectTerms | biomolecular condensates cancer Condensates disease membrane‐less organelles Neurodegeneration Organelles phase separation phase transition Prokaryotes |
Title | Biomolecular condensates in neurodegeneration and cancer |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftra.12704 https://www.ncbi.nlm.nih.gov/pubmed/31606941 https://www.proquest.com/docview/2316668470 https://www.proquest.com/docview/2305478279 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1600-0854 dateEnd: 20240930 omitProxy: true ssIdentifier: ssj0002544 issn: 1398-9219 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1600-0854 dateEnd: 20250330 omitProxy: true ssIdentifier: ssj0002544 issn: 1398-9219 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1398-9219 databaseCode: DR2 dateStart: 20000101 customDbUrl: isFulltext: true eissn: 1600-0854 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002544 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6KIHrxUV_VKlE8eEnZZPNo8FSKIoIeSoUehDD7qIiaSpse9Nc7u3n4BvGWx2x2M7OT_Sa7-w3AMRJK9hMfXU9x6QahZm7CMHI5JlIrxT1lcyxdXUcXN8HlKBw14LTaC1PwQ9Q_3Ixn2O-1cXAUsw9Onk-xY6ZNDReox0M7RTt4p44y1Fs22ErIocktS1Yhs4qnLvl5LPoGMD_jVTvgnK_CbdXUYp3JQ2eei458_cLi-M93WYOVEog6vaLnrENDZ01YLFJTvjRhqV9lgtuALl19qtLoOhRA07dqZjCqc585lhBT6TtLX22s7GCmHGk603QTbs7Phv0Lt8y44MqA9OXyrtYioJgKY4GSxWqMFO_IUEkfQ8EFi5ivmOgyFLHPtYgUJkgBjM9iqQk88i1YyCaZ3gFHjEOuzKLsgJ6MieoGXoyIY6W8KBYhtuCk0n0qSzpykxXjMa3CEjpLrVJacFSLPhccHD8JtSsDpqUbzlICrxSe0QDMWnBY3ybtmVkRzPRkbmSY4TTz46QF24Xh61qouNkY7FFjrfl-rz4dDnr2YPfvonuwTPArKRbHtGEhn871PkGcXBzYvvwG82H2Hg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT-swEB7xQAgubO8BZQ2Iw7ukcvZG4lIVUFkPqEhcnqLxUoSAgEp7gF_PjLOwPglxy2LHzozH_sbLNwA7SCjZT310PR0oN4yMcFOBsRtgqozWgadtjKXTs7h7ER5dRpdjsFudhSn4IeoJN7YM21-zgfOE9BsrHw6wyeum4S-Y4PU5Nsu981fyKCbfsu5WSiZNhlnyCvE-njrr-9HoE8R8j1jtkHMwC_-qyhY7TW6ao6FsqucPPI4__Zs5mCmxqNMuGs88jJl8ASaL6JRPCzDVqYLB_YYWPb2rIuk65ENTd_XIMNW5zh3LianNlWWwZkU7mGtHcXsa_IGLg_1ep-uWQRdcFZLA3KBljAzJrcJEohKJ7iO5PCrSysdIBlLEwtdCtgTKxA-MjDWmSD6MLxJlCD8GizCe3-dmGRzZjwLN-7JD-jKmuhV6CSL2tfbiREbYgL-V8DNVMpJzYIzbrPJM6C6zQmnAdp30oaDh-CrRWqXBrLTEx4zwK3loNAaLBmzVr0l6vDCCubkfcRrBtGZ-kjZgqdB8XQpl57PBHlXW6u__xWe987a9WPl-0k2Y6vZOT7KTw7PjVZgmNJYWe2XWYHw4GJl1QjxDuWEb9gtVV_o6 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BEcuFfSkUCIgDl1TO3ogTAirWClVF4oAUjZciBATU5QBfz9hZ2CXELcs4dmY88ZvYfgOwg4SS3dhF25GesP1AMTtmGNoexkJJ6TnS5Fi6aIXHV_7pdXA9AnvFXpiMH6L84aY9w3yvtYM_y-4HJx_0sK6nTf1RGPNDiq40Imq_c0dp7i0TbcXk0eSXOa2QXsZTFv08GH1DmJ8BqxlxmjNwU7Q1W2hyXx8OeF28fqFx_OfLzMJ0jkSt_azrzMGISudhPMtN-TIPkwdFKrgFaNDVxyKPrkURNH2s-hqkWnepZRgxpbo1_NXazBam0hK6N_UW4ap51Dk4tvOUC7bwSV-211CK-xRUYcRRsEh2kQIeEUjhYsA9zkjRkvEGQx65nuKhxBgpgnFZJBShR28JKulTqlbA4t3Ak3pVtk9Pxlg2fCdCxK6UThjxAKuwW-g-ETkfuU6L8ZAUcQmdJUYpVdguRZ8zEo6fhGqFAZPcD_sJoVeKz2gEZlXYKm-T9vS0CKbqaahlmCY1c6O4CsuZ4ctaqLjeGexQY435fq8-6bT3zcHq30U3YeLysJmcn7TO1mCKoFicLZSpQWXQG6p1gjsDvmG69Rtucfjp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biomolecular+condensates+in+neurodegeneration+and+cancer&rft.jtitle=Traffic+%28Copenhagen%2C+Denmark%29&rft.au=Spannl%2C+Stephanie&rft.au=Tereshchenko%2C+Maria&rft.au=Mastromarco%2C+Giovanni+J&rft.au=Ihn%2C+Sean+J&rft.date=2019-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1398-9219&rft.eissn=1600-0854&rft.volume=20&rft.issue=12&rft.spage=890&rft.epage=911&rft_id=info:doi/10.1111%2Ftra.12704&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1398-9219&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1398-9219&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1398-9219&client=summon |