A fast algorithm to find reduced hyperplane unit cells and solve N‐dimensional Bézout's identities

Deformation twinning on a plane is a simple shear that transforms a unit cell attached to the plane into another unit cell equivalent by mirror symmetry or 180° rotation. Thus, crystallographic models of twinning require the determination of the short unit cells attached to the planes, or hyperplane...

Full description

Saved in:
Bibliographic Details
Published inActa crystallographica. Section A, Foundations and advances Vol. 77; no. 5; pp. 453 - 459
Main Author Cayron, Cyril
Format Journal Article
LanguageEnglish
Published 5 Abbey Square, Chester, Cheshire CH1 2HU, England International Union of Crystallography 01.09.2021
Subjects
Online AccessGet full text
ISSN2053-2733
2053-2733
DOI10.1107/S2053273321006835

Cover

Abstract Deformation twinning on a plane is a simple shear that transforms a unit cell attached to the plane into another unit cell equivalent by mirror symmetry or 180° rotation. Thus, crystallographic models of twinning require the determination of the short unit cells attached to the planes, or hyperplanes for dimensions higher than 3. Here, a method is presented to find them. Equivalently, it gives the solutions of the N‐dimensional Bézout's identity associated with the Miller indices of the hyperplane. The paper describes a method to determine a short unit cell attached to any hyperplane given by its integer vector p. Equivalently, it gives all the solutions of the N‐dimensional Bézout's identity associated with the coordinates of p.
AbstractList Deformation twinning on a plane is a simple shear that transforms a unit cell attached to the plane into another unit cell equivalent by mirror symmetry or 180° rotation. Thus, crystallographic models of twinning require the determination of the short unit cells attached to the planes, or hyperplanes for dimensions higher than 3. Here, a method is presented to find them. Equivalently, it gives the solutions of the N -dimensional Bézout's identity associated with the Miller indices of the hyperplane.
The paper describes a method to determine a short unit cell attached to any hyperplane given by its integer vector p. Equivalently, it gives all the solutions of the N-dimensional Bézout’s identity associated with the coordinates of p. Deformation twinning on a plane is a simple shear that transforms a unit cell attached to the plane into another unit cell equivalent by mirror symmetry or 180° rotation. Thus, crystallographic models of twinning require the determination of the short unit cells attached to the planes, or hyperplanes for dimensions higher than 3. Here, a method is presented to find them. Equivalently, it gives the solutions of the N-dimensional Bézout’s identity associated with the Miller indices of the hyperplane.
Deformation twinning on a plane is a simple shear that transforms a unit cell attached to the plane into another unit cell equivalent by mirror symmetry or 180° rotation. Thus, crystallographic models of twinning require the determination of the short unit cells attached to the planes, or hyperplanes for dimensions higher than 3. Here, a method is presented to find them. Equivalently, it gives the solutions of the N‐dimensional Bézout's identity associated with the Miller indices of the hyperplane. The paper describes a method to determine a short unit cell attached to any hyperplane given by its integer vector p. Equivalently, it gives all the solutions of the N‐dimensional Bézout's identity associated with the coordinates of p.
Deformation twinning on a plane is a simple shear that transforms a unit cell attached to the plane into another unit cell equivalent by mirror symmetry or 180° rotation. Thus, crystallographic models of twinning require the determination of the short unit cells attached to the planes, or hyperplanes for dimensions higher than 3. Here, a method is presented to find them. Equivalently, it gives the solutions of the N-dimensional Bézout's identity associated with the Miller indices of the hyperplane.Deformation twinning on a plane is a simple shear that transforms a unit cell attached to the plane into another unit cell equivalent by mirror symmetry or 180° rotation. Thus, crystallographic models of twinning require the determination of the short unit cells attached to the planes, or hyperplanes for dimensions higher than 3. Here, a method is presented to find them. Equivalently, it gives the solutions of the N-dimensional Bézout's identity associated with the Miller indices of the hyperplane.
Author Cayron, Cyril
Author_xml – sequence: 1
  givenname: Cyril
  surname: Cayron
  fullname: Cayron, Cyril
  email: cyril.cayron@epfl.ch
  organization: EPFL
BookMark eNqFkE1uFDEQhS0URELIAdh5B5sh_u_2BmmIAkQakUXIgpXldldnjNx203YnGlYcgWtwDm7CSejRRAoEBKsqld_3_PQeo72YIiD0lJIXlJLq-IIRyVnFOaOEqJrLB-hge1psb3u_7PvoKOePhJAZk0yRR2ifC1FxousDBEvc2VywDVdp9GXd45Jw52OLR2gnBy1ebwYYh2Aj4Cn6gh2EkLGdFTmFa8Dvfnz52voeYvYp2oBfff_2OU3lWca-hVh88ZCfoIedDRmObuchunx9-v7k7WJ1_ubsZLlaOCEFWVRCEw5WsFoqoQhrnAbbNq62lldUM6IaJxulWk2FdkpzSRvoQHWOaXCK8UPEdr5THOzmxoZghtH3dtwYSsy2NpPv1zZDL3fQMDU9tG4OPdo7MFlvfn-Jfm2u0rWpRVUpQWaD57cGY_o0QS6m93lb09xZmrJhUtVSM6XVLKU7qRtTziN0f-S7-Eu-6h7jfLFlbntO48M_Sb0jb3yAzf-_MssPS7a6lIQS_hMfNLbx
CitedBy_id crossref_primary_10_1107_S2053273321011037
crossref_primary_10_1007_s11042_023_17939_6
Cites_doi 10.1007/BF01457454
10.1090/S0025-5718-99-00995-3
10.1107/S2053273320012668
10.1038/s41586-021-03229-4
10.1090/S0025-5718-97-00856-9
ContentType Journal Article
Copyright 2021 Cyril Cayron. published by IUCr Journals.
open access.
Cyril Cayron 2021 2021
Copyright_xml – notice: 2021 Cyril Cayron. published by IUCr Journals.
– notice: open access.
– notice: Cyril Cayron 2021 2021
DBID 24P
AAYXX
CITATION
7X8
5PM
ADTOC
UNPAY
DOI 10.1107/S2053273321006835
DatabaseName Openly Available Collection - Wiley Online Library Open Access
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList CrossRef


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Finding reduced hyperplane unit cells
EISSN 2053-2733
EndPage 459
ExternalDocumentID 10.1107/s2053273321006835
PMC8477640
10_1107_S2053273321006835
AYA2LU5010
Genre article
GroupedDBID .GA
10A
1OC
24P
3SF
50Z
52M
52O
52U
52W
7PT
8UM
930
A03
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ATUGU
BDRZF
BFHJK
BMXJE
BROTX
BRXPI
BY8
D-F
DCZOG
DR2
DRFUL
DRSTM
EBS
EJD
G-S
G.N
GODZA
HGLYW
LATKE
LEEKS
LH4
LITHE
LOXES
LP7
LUTES
LW6
LYRES
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
QB0
RCJ
SUPJJ
TUS
WIH
WIK
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
7X8
5PM
ADTOC
AGQPQ
UNPAY
ID FETCH-LOGICAL-c4540-74903ea428564602bc9eadbc8aa3719206bc5b66d9149c69351befe6fc29ec623
IEDL.DBID UNPAY
ISSN 2053-2733
IngestDate Sun Oct 26 04:14:52 EDT 2025
Tue Sep 30 16:50:38 EDT 2025
Thu Oct 02 12:54:59 EDT 2025
Wed Oct 01 02:01:06 EDT 2025
Thu Apr 24 23:12:08 EDT 2025
Wed Jan 22 16:29:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Attribution
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4540-74903ea428564602bc9eadbc8aa3719206bc5b66d9149c69351befe6fc29ec623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3190-5158
OpenAccessLink https://proxy.k.utb.cz/login?url=https://journals.iucr.org/a/issues/2021/05/00/lu5010/lu5010.pdf
PMID 34473098
PQID 2568592696
PQPubID 23479
PageCount 7
ParticipantIDs unpaywall_primary_10_1107_s2053273321006835
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8477640
proquest_miscellaneous_2568592696
crossref_primary_10_1107_S2053273321006835
crossref_citationtrail_10_1107_S2053273321006835
wiley_primary_10_1107_S2053273321006835_AYA2LU5010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2021
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationPlace 5 Abbey Square, Chester, Cheshire CH1 2HU, England
PublicationPlace_xml – name: 5 Abbey Square, Chester, Cheshire CH1 2HU, England
PublicationTitle Acta crystallographica. Section A, Foundations and advances
PublicationYear 2021
Publisher International Union of Crystallography
Publisher_xml – name: International Union of Crystallography
References lu5010_bb4
Gorfman (lu5010_bb6) 2020; 76
lu5010_bb10
Bailey (lu5010_bb1) 1997; 66
Ferguson (lu5010_bb5) 1999; 68
Raayoni (lu5010_bb9) 2021; 590
lu5010_bb2
Lenstra (lu5010_bb7) 1982; 261
lu5010_bb11
lu5010_bb12
References_xml – volume: 261
  start-page: 515
  year: 1982
  ident: lu5010_bb7
  publication-title: Math. Ann.
  doi: 10.1007/BF01457454
– volume: 68
  start-page: 351
  year: 1999
  ident: lu5010_bb5
  publication-title: Math. C.
  doi: 10.1090/S0025-5718-99-00995-3
– volume: 76
  start-page: 713
  year: 2020
  ident: lu5010_bb6
  publication-title: Acta Cryst. A
  doi: 10.1107/S2053273320012668
– ident: lu5010_bb4
– volume: 590
  start-page: 67
  year: 2021
  ident: lu5010_bb9
  publication-title: Nature
  doi: 10.1038/s41586-021-03229-4
– ident: lu5010_bb11
– ident: lu5010_bb12
– ident: lu5010_bb10
– ident: lu5010_bb2
– volume: 66
  start-page: 903
  year: 1997
  ident: lu5010_bb1
  publication-title: Math. C.
  doi: 10.1090/S0025-5718-97-00856-9
SSID ssj0001105260
Score 2.3163662
Snippet Deformation twinning on a plane is a simple shear that transforms a unit cell attached to the plane into another unit cell equivalent by mirror symmetry or...
The paper describes a method to determine a short unit cell attached to any hyperplane given by its integer vector p. Equivalently, it gives all the solutions...
SourceID unpaywall
pubmedcentral
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 453
SubjectTerms hyperplane unit cell
integer relation
N‐dimensional Bézout's identity
Research Papers
twinning
SummonAdditionalLinks – databaseName: Openly Available Collection - Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NitRAEC7W9aAexF-cXZUWBEEJZvov6eO4uCyii6AD6yl0Oh1nYEyGSbLL7slH8DV8Dt_EJ7GqJzPrOKDgJZekm6arKvVVdfVXAE-tVDEvvImU5xYDFJVGaSlUpJTlNhVSuUDi-u5YH43lmxN1sgMHq7swS36IdcKNLCP8r8nAbd53IQnn-h84NTVIBF1CiTUCiStwdYh4htScy_eXiZYhUZpQroUG0FUU0Z9u4jwvt2bZ9E-XoPPPkslrXTW352d2NtuEtcEvHd6Cmz2gZKOlBtyGHV_dgRu_0QzeBT9ipW1aZmef68W0nXxhbc3osJotiLjVF2yC0ehiTnWvrEMbZ5TOb5jFL1A1Tz07_vn1W0F9AJYcHuzVj-8Xddc-a9i0WLGy3oPx4euPB0dR314hckS7FyXSxMJbjD-UljrmuTOoVrlLrRUJAr9Y507lWhcGoyinjVDD3Jdel44bjyIU92G3qiv_AJjN09R5qUqOT8-5KQrh0T16LYclQogBxKtNzVzPPU4tMGZZiEHiJNuSwwCer4fMl8Qbf_v4yUpSGZoHbRLuWN01GSK6VBmujR5AsiHC9axEsL35pppOAtE2eu5Ey3gAL9bC3lpLs70WHtTh36vORp9G_O1YYUi89z-D9uE6pwqbUPH2EHbbRecfIURq88fBBH4BRrAD-Q
  priority: 102
  providerName: Wiley-Blackwell
Title A fast algorithm to find reduced hyperplane unit cells and solve N‐dimensional Bézout's identities
URI https://onlinelibrary.wiley.com/doi/abs/10.1107%2FS2053273321006835
https://www.proquest.com/docview/2568592696
https://pubmed.ncbi.nlm.nih.gov/PMC8477640
https://journals.iucr.org/a/issues/2021/05/00/lu5010/lu5010.pdf
UnpaywallVersion publishedVersion
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2053-2733
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0001105260
  issn: 2053-2733
  databaseCode: ABDBF
  dateStart: 20150701
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2053-2733
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0001105260
  issn: 2053-2733
  databaseCode: ADMLS
  dateStart: 20150701
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 2053-2733
  databaseCode: DR2
  dateStart: 20140101
  customDbUrl:
  isFulltext: true
  eissn: 2053-2733
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001105260
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD5i3QPwMK4TGWMyEhISKK3rxE7yGC7ThKCagErbU3Ach1ZkSZXLEPtH_I79MY6TtKydBEK8JJLjJCf25_g78vF3AJ5Jl1OW6MDmmkl0ULhv-6nDbc4lk77jctWKuH6YiKOp--6En_R5Ts1emL4Fq-G8UWWnEzxqLaiMmz4eUT6idJQ1HP2I_jRcJOkWbAuOZHwA29PJcXhqUsohvMzGE6dfyxybDXOm0JSho0OF3-Z4uzIb_aaYmwGSN5t8IX98l1m2TmLbWejwDnxZ2t8Fn3wbNnU8VBcb0o7_8YF3YadnqCTsIHUPbuj8Pty-olv4AFRIUlnVRGZfi3Jez85IXRCz-k1KowSrEzJD97ZcmEBa0uBPg5j1gYpIrIFYP9dkYicmrUAnCUJeXf68KJr6eUXmyVLk9SFMD99-fn1k99kabGVU_GzPDaijJbozXLiCslgFiNJY-VI6HvJIKmLFYyGSAJ0yJQKHj2OdapEqFmhEhLMLg7zI9SMgMvZ9pV2eMjxqxoIkcTTOtlq44xQZiQV02WuR6qXMTUaNLGpdGupFnzY72oIXq1sWnY7Hnyo_XUIhwtFmmgjbq2iqCAmizwMmAmGBt4aR1VONXvf6lXw-a3W7kQh4wqUWvFyh6Zot1xBqAWvx9nero_A0ZO-nBjF7__SKx3DLQK-LnNuHQV02-glSrTo-gC3mHuPxzUd20A-tX-_yIcg
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwEB4ty2HhgPjVll8jISGBIlL_JT6Wn1WBboXEVlpOkeM4tFJJqiYBwYlH4DV4Dt6EJ2EmabuUSiBxySWxZXlmMt-Mx98APLBShTzzJlCeWwxQVBzEuVCBUpbbWEjlWhLX47EeTuSrU3W6B8_Xd2E6fohNwo0so_1fk4FTQrqz8vZg_y2nrgaRoFsooUYkcQ7OS93XFIJx-eYs09InThNKttAAuosiVsebOM-TnVm2HdQZ6vyzZvKgKRb28yc7n2_j2tYxHV2GSytEyQadClyBPV9chYu_8QxeAz9gua1qZufvy-Wsnn5gdcnotJotibnVZ2yK4ehyQYWvrEEjZ5TPr5jFL1A3P3o2_vn1W0aNADoSD_b0x_cvZVM_rNgsW9OyXofJ0YuTZ8Ng1V8hcMS7F0TShMJbDECUljrkqTOoV6mLrRURIr9Qp06lWmcGwyinjVD91Ode544bjzIUN2C_KAt_CMymcey8VDnHp-fcZJnw6B-9lv0cMUQPwvWmJm5FPk49MOZJG4SEUbIjhx482gxZdMwbf_v4_lpSCdoHbRLuWNlUCUK6WBmuje5BtCXCzazEsL39pphNW6ZtdN2RlmEPHm-EvbOWanctvFWHf686Gbwb8NFEYUx8838G3YOD4cnxKBm9HL--BRc4ldu05W-3Yb9eNv4O4qU6vduawy9XcQdl
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwEB4tiwS7B_5XlF8jISGBsps6sRMfC6VaYKkQUGk5RY7jbCu6SdUkIPbEI_AaPAdvwpMwkzRdupVAgksusS3_zNjfeMbfADzUvnB5YpUjLNdooIjQCVNPOEJorkPPF6YmcX09lPsj_-WhONyAfvsWpuGHWF64kWbU-zUpuJ0laaPltWP_HaesBoFHr1BciUjiHJz3hQopsK__lp_etHSJ04QuW6gCvUXxFu5NbGdvrZXVA-oUdZ6NmbxYZTP95bOeTldxbX0wDS6DbYfUxKN83K3KeNecnGF7_N8xX4FLC-TKeo2oXYUNm12D7d_4DK-D7bFUFyXT06N8PinHx6zMGXnF2ZwYYm3Cxmj2zmcUYMsq3EwY-Q0KprEE6sAny4Y_v35LKOFAQxbCnv74fpJX5aOCTZKW_vUGjAbP3z_bdxZ5HBxD_H5O4CvXsxoNHSF96fLYKJTf2IRaewEiTFfGRsRSJgrNNSOVJ7qxTa1MDVcWZcXbgc0sz-xNYDoOQ2N9kXL8Ws5VkngWz2Er_W6KWKUDbrt4kVmQnFOujWlUGztuEK3NYAceL6vMGoaPPxV-0EpEhHpIk4QzlldFhNAxFIpLJTsQrIjKslVi8l79k03GNaM3QoRA-m4HniyFaq0vxXpfeC0rf-911PvQ4wcjgbb3rX-pdB8uvOkPooMXw1e3YYtTVE8dZXcHNst5Ze8iLCvje7XW_QJfTCjC
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1di9QwFL3o7IP64LdYXSWCICidyaRN2jxWcVlEB0EHdp9qmqbOYG2HfijuP9rfsX9sb9rOuDMLivjSQpq2t8lJcy65ORfgufI5ZamRLjdMoYPCQzfMPO5yrpgKPZ_rTsT1w0wczv13R_xoyHNq98IMLViPl62uep3gSWdBbd306YTyCaWTvOXoRwyn8SrNrsKe4EjGR7A3n32Mjm1KOYSX3XjiDWuZU7thzhbaMnR0qAi7HG8XZqPfFHM3QPJaW6zUr58qz7dJbDcLHdyCL2v7--CTb-O2Scb6ZEfa8T8-8DbcHBgqiXpI3YErprgLNy7oFt4DHZFM1Q1R-deyWjaL76QpiV39JpVVgjUpWaB7W61sIC1p8adB7PpATRTWQKz_MGTmpjatQC8JQl6fnZ6UbfOiJst0LfJ6H-YHbz-_OXSHbA2utip-buBL6hmF7gwXvqAs0RJRmuhQKS9AHklFonkiRCrRKdNCenyamMyITDNpEBHeAxgVZWEeAlFJGGrj84zh0TAm09QzONsa4U8zZCQO0HWvxXqQMrcZNfK4c2loEH_a7WgHXm5uWfU6Hn-q_GwNhRhHm20ibK-yrWMkiCGXTEjhQLCFkc1TrV739pViueh0u5EIBMKnDrzaoOmSLZcQ6gDr8PZ3q-PoOGLv5xYxj_7pFY_huoVeHzm3D6Omas0TpFpN8nQYTudsSSAI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fast+algorithm+to+find+reduced+hyperplane+unit+cells+and+solve+N-dimensional+B%C3%A9zout%27s+identities&rft.jtitle=Acta+crystallographica.+Section+A%2C+Foundations+and+advances&rft.au=Cayron%2C+Cyril&rft.date=2021-09-01&rft.issn=2053-2733&rft.eissn=2053-2733&rft.volume=77&rft.issue=Pt+5&rft.spage=453&rft_id=info:doi/10.1107%2FS2053273321006835&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2053-2733&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2053-2733&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2053-2733&client=summon