Dispersal and Good Habitat Quality Promote Neutral Genetic Diversity in Metapopulations
Dispersal is a fundamental and crucial ecological process for a metapopulation to survive in heterogeneous or changing habitats. In this paper, we investigate the effect of the habitat quality and the dispersal on the neutral genetics diversity of a metapopulation. We model the metapopulation dynami...
Saved in:
Published in | Bulletin of mathematical biology Vol. 83; no. 3; p. 20 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.03.2021
Springer Nature B.V Springer Verlag |
Subjects | |
Online Access | Get full text |
ISSN | 0092-8240 1522-9602 1522-9602 |
DOI | 10.1007/s11538-020-00853-5 |
Cover
Abstract | Dispersal is a fundamental and crucial ecological process for a metapopulation to survive in heterogeneous or changing habitats. In this paper, we investigate the effect of the habitat quality and the dispersal on the neutral genetics diversity of a metapopulation. We model the metapopulation dynamics on heterogeneous habitats using a deterministic system of ordinary differential equations. We decompose the metapopulation into several neutral genetic fractions seeing as they could be located in different habitats. By using a mathematical model which describes their temporal dynamics inside the metapopulation, we provide the analytical results of their transient dynamics, as well as their asymptotic proportion in the different habitats. The diversity indices show how the genetic diversity at a global metapopulation scale is preserved by the correlation of two factors: the dispersal of the population, as well as the existence of adequate and sufficiently large habitats. The diversity indices show how the genetic diversity at a global metapopulation scale is preserved by the correlation of two factors: the dispersal of the population as well as the existence of adequate and sufficiently large habitats. Moreover, they ensure genetic diversity at the local habitat scale. In a source–sink metapopulation, we demonstrate that the diversity of the sink can be rescued if the condition of the sink is not too deteriorated and the migration from the source is larger than the migration from the sink. Furthermore, our study provides an analytical insight into the dynamics of the solutions of the systems of ordinary differential equations. |
---|---|
AbstractList | Dispersal is a fundamental and crucial ecological process for a metapopulation to survive in heterogeneous or changing habitats. In this paper, we investigate the effect of the habitat quality and the dispersal on the neutral genetics diversity of a metapopulation. We model the metapopulation dynamics on heterogeneous habitats using a deterministic system of ordinary differential equations. We decompose the metapopulation into several neutral genetic fractions seeing as they could be located in different habitats. By using a mathematical model which describes their temporal dynamics inside the metapopulation, we provide the analytical results of their transient dynamics, as well as their asymptotic proportion in the different habitats. The diversity indices show how the genetic diversity at a global metapopulation scale is preserved by the correlation of two factors: the dispersal of the population, as well as the existence of adequate and sufficiently large habitats. The diversity indices show how the genetic diversity at a global metapopulation scale is preserved by the correlation of two factors: the dispersal of the population as well as the existence of adequate and sufficiently large habitats. Moreover, they ensure genetic diversity at the local habitat scale. In a source-sink metapopulation, we demonstrate that the diversity of the sink can be rescued if the condition of the sink is not too deteriorated and the migration from the source is larger than the migration from the sink. Furthermore, our study provides an analytical insight into the dynamics of the solutions of the systems of ordinary differential equations.Dispersal is a fundamental and crucial ecological process for a metapopulation to survive in heterogeneous or changing habitats. In this paper, we investigate the effect of the habitat quality and the dispersal on the neutral genetics diversity of a metapopulation. We model the metapopulation dynamics on heterogeneous habitats using a deterministic system of ordinary differential equations. We decompose the metapopulation into several neutral genetic fractions seeing as they could be located in different habitats. By using a mathematical model which describes their temporal dynamics inside the metapopulation, we provide the analytical results of their transient dynamics, as well as their asymptotic proportion in the different habitats. The diversity indices show how the genetic diversity at a global metapopulation scale is preserved by the correlation of two factors: the dispersal of the population, as well as the existence of adequate and sufficiently large habitats. The diversity indices show how the genetic diversity at a global metapopulation scale is preserved by the correlation of two factors: the dispersal of the population as well as the existence of adequate and sufficiently large habitats. Moreover, they ensure genetic diversity at the local habitat scale. In a source-sink metapopulation, we demonstrate that the diversity of the sink can be rescued if the condition of the sink is not too deteriorated and the migration from the source is larger than the migration from the sink. Furthermore, our study provides an analytical insight into the dynamics of the solutions of the systems of ordinary differential equations. Dispersal is a fundamental and crucial ecological process for a metapopulation to survive in heterogeneous or changing habitats. In this paper, we investigate the effect of the habitat quality and the dispersal on the neutral genetics diversity of a metapopulation. We model the metapopulation dynamics on heterogeneous habitats using a deterministic system of ordinary differential equations. We decompose the metapopulation into several neutral genetic fractions seeing as they could be located in different habitats. By using a mathematical model which describes their temporal dynamics inside the metapopulation, we provide the analytical results of their transient dynamics, as well as their asymptotic proportion in the different habitats. The diversity indices show how the genetic diversity at a global metapopulation scale is preserved by the correlation of two factors: the dispersal of the population, as well as the existence of adequate and sufficiently large habitats. The diversity indices show how the genetic diversity at a global metapopulation scale is preserved by the correlation of two factors: the dispersal of the population as well as the existence of adequate and sufficiently large habitats. Moreover, they ensure genetic diversity at the local habitat scale. In a source-sink metapopulation, we demonstrate that the diversity of the sink can be rescued if the condition of the sink is not too deteriorated and the migration from the source is larger than the migration from the sink. Furthermore, our study provides an analytical insight into the dynamics of the solutions of the systems of ordinary differential equations. Dispersal is a fundamental and crucial ecological process for a metapopulation to survive in heterogeneous or changing habitats. In this paper, we investigate the effect of the habitat quality and the dispersal on the neutral genetics diversity of a metapopulation. We model the metapopulation dynamics on heterogeneous habitats using a deterministic system of ordinary differential equations. We decompose the metapopulation into several neutral genetic fractions seeing as they could be located in different habitats. By using a mathematical model which describes their temporal dynamics inside the metapopulation, we provide the analytical results of their transient dynamics, as well as their asymptotic proportion in the different habitats. The diversity indices show how the genetic diversity at a global metapopulation scale is preserved by the correlation of two factors: the dispersal of the population, as well as the existence of adequate and sufficiently large habitats. The diversity indices show how the genetic diversity at a global metapopulation scale is preserved by the correlation of two factors: the dispersal of the population as well as the existence of adequate and sufficiently large habitats. Moreover, they ensure genetic diversity at the local habitat scale. In a source-sink metapopulation, we demonstrate that the diversity of the sink can be rescued if the condition of the sink is not too deteriorated and the migration from the source is larger than the migration from the sink. Furthermore, our study provides an analytical insight on the dynamics of the solutions of the systems of ordinary differential equations. |
ArticleNumber | 20 |
Author | Garnier, Jimmy Lafontaine, Pierre |
Author_xml | – sequence: 1 givenname: Jimmy surname: Garnier fullname: Garnier, Jimmy email: jimmy.garnier@univ-smb.fr organization: Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LAMA – sequence: 2 givenname: Pierre surname: Lafontaine fullname: Lafontaine, Pierre organization: Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LAMA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33452944$$D View this record in MEDLINE/PubMed https://hal.science/hal-03007055$$DView record in HAL |
BookMark | eNqNkc1u1DAUhS1URKeFF2CBIrGhi8CNfybxsmphBmn4k0AsLce5AVcZO7Wdonn7epqBSl1UrCxdfcf2-e4JOXLeISEvK3hbAdTvYlUJ1pRAoQRoBCvFE7KoBKWlXAI9IgsAScuGcjgmJzFeQQ5JJp-RY8a4oJLzBfl5aeOIIeqh0K4rVt53xVq3NulUfJv0YNOu-Br81icsPuOUQgZX6DBZU1zam5zcE9YVnzDp0Y_ToJP1Lj4nT3s9RHxxOE_Jjw_vv1-sy82X1ceL801puGCpxA5r7PuuasRSQt22S6Sat6xva6BS8qrtW4Zg-LJrBBijW2NyhzyqORWMs1PC5nsnN-rdHz0Magx2q8NOVaD2mtSsSWVN6k6TEjl1Nqd-63vea6vW5xu1nwHLSRDipsrsm5kdg7-eMCa1tdHgMGiHfoqK8roRUjDKMvr6AXrlp-By_zsqS2-ozNSrAzW1W-z-vf93KRloZsAEH2PAXpn9PrLWrN8OjxejD6L_ZePgMGbY_cJw_-1HUrdnUr6N |
CitedBy_id | crossref_primary_10_3390_genes13020337 crossref_primary_10_1007_s00285_022_01749_9 crossref_primary_10_1016_j_ecocom_2021_100912 |
Cites_doi | 10.1111/j.1365-2745.2005.01048.x 10.1111/ddi.12273 10.1073/pnas.1201695109 10.1038/35016000 10.1016/j.tpb.2007.08.008 10.1073/pnas.77.11.6710 10.1038/hdy.2009.110 10.1007/BF01725761 10.2307/2261207 10.1007/BF00276896 10.1086/392950 10.1038/163688a0 10.3389/fgene.2015.00275 10.1214/105051604000000882 10.1007/s11538-016-0213-x 10.1146/annurev.es.16.110185.002141 10.1038/hdy.1963.8 10.1016/0025-5564(93)90032-6 10.1111/j.1469-1809.1949.tb02451.x 10.1111/j.1558-5646.1999.tb05362.x 10.1007/s10021-001-0030-3 10.1016/0040-5809(77)90045-4 10.1093/genetics/134.4.1289 10.1007/s00285-015-0954-4 10.1098/rstb.2000.0716 10.1016/0040-5809(87)90038-4 10.1016/j.biocon.2017.05.017 10.1098/rstb.2000.0740 10.1017/S0016672300014634 10.1093/genetics/146.1.427 10.1098/rspb.2007.0997 10.1016/S0304-3800(98)00200-2 10.1073/pnas.71.7.2744 10.1046/j.1365-2745.2002.00692.x 10.1111/j.1558-5646.1992.tb02046.x 10.1016/0040-5809(85)90027-9 10.1111/j.1558-5646.1988.tb04152.x 10.1146/annurev.ecolsys.34.011802.132428 10.1111/j.2041-210X.2012.00193.x 10.1016/j.ecocom.2014.05.003 10.1023/A:1009770924942 10.1590/S1415-47572002000200007 10.1111/j.1558-5646.1997.tb02385.x |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Society for Mathematical Biology 2021 The Author(s), under exclusive licence to Society for Mathematical Biology 2021. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s), under exclusive licence to Society for Mathematical Biology 2021 – notice: The Author(s), under exclusive licence to Society for Mathematical Biology 2021. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION NPM 7SS 7TK JQ2 K9. 7X8 1XC VOOES ADTOC UNPAY |
DOI | 10.1007/s11538-020-00853-5 |
DatabaseName | CrossRef PubMed Entomology Abstracts (Full archive) Neurosciences Abstracts ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef PubMed Entomology Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Entomology Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Mathematics |
EISSN | 1522-9602 |
ExternalDocumentID | oai:HAL:hal-03007055v1 oai_HAL_hal_03007055v1 33452944 10_1007_s11538_020_00853_5 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Agence Nationale de la Recherche grantid: ANR-16-CE02-0009; ANR-14-CE25-0013 funderid: http://dx.doi.org/10.13039/501100001665 – fundername: European Unions Horizon 2020 grantid: 639638, MesoProbio – fundername: Agence Nationale de la Recherche grantid: ANR-14-CE25-0013 – fundername: Agence Nationale de la Recherche grantid: ANR-16-CE02-0009 |
GroupedDBID | --- --K --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .GJ .VR 06D 0R~ 0VY 199 1B1 1N0 1RT 1~5 2.D 203 23N 28- 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3O- 3V. 4.4 406 408 40D 40E 4G. 53G 5GY 5RE 5VS 67Z 6J9 6NX 7-5 71M 78A 7X7 88A 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AACTN AAEDT AAHNG AAIAL AAJBT AAJKR AALCJ AALRI AANZL AAQFI AAQXK AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXUO AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMAC ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABWVN ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACRPL ACZOJ ADBBV ADFGL ADHIR ADINQ ADKNI ADKPE ADMUD ADNMO ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHHHB AHKAY AHMBA AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AITUG AJBLW AJRNO AJZVZ AKRWK ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DM4 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMOBN ESBYG F5P FDB FEDTE FERAY FFXSO FGOYB FIGPU FINBP FIRID FNLPD FRRFC FSGXE FWDCC FYUFA G-2 GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG5 HG6 HLV HMCUK HMJXF HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ K6V K7- KDC KOV L6V LG5 LK8 LLZTM LW8 M0L M1P M4Y M7P M7S MA- N2Q NB0 NDZJH NF0 NPVJJ NQJWS NU0 O-L O9- O93 O9G O9I O9J OZT P19 P2P P62 P9R PF0 PKN PQQKQ PROAC PSQYO PT4 PT5 PTHSS Q2X QOK QOS R2- R89 R9I RHV RIG RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAB SAP SCLPG SDD SDH SDM SEW SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSZ STPWE SV3 SZN T13 T16 TN5 TSG TSK TSV TUC TWZ U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 WUQ XPP XSW YLTOR Z45 Z7U Z83 ZGI ZMT ZMTXR ZWQNP ZXP ~A9 ~EX ~KM AAPKM AAYWO AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIGII AIXLP AMVHM ATHPR AYFIA CITATION M2P PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO NPM 7SS 7TK JQ2 K9. 7X8 1XC VOOES ADTOC UNPAY |
ID | FETCH-LOGICAL-c453t-ede7effd1856907bb6e2a4b3fb7029941bfb3e0c46d850ccabcc7933e07425343 |
IEDL.DBID | AGYKE |
ISSN | 0092-8240 1522-9602 |
IngestDate | Sun Sep 07 11:10:42 EDT 2025 Fri Sep 12 12:44:07 EDT 2025 Thu Sep 04 16:50:02 EDT 2025 Thu Sep 18 00:00:30 EDT 2025 Wed Feb 19 02:30:22 EST 2025 Thu Apr 24 23:07:06 EDT 2025 Wed Oct 01 03:09:44 EDT 2025 Fri Feb 21 02:49:34 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Neutral genetic diversity Metapopulation Inside dynamics 34D23 92D25 37N25 Dynamical system 92D40 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 other-oa |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c453t-ede7effd1856907bb6e2a4b3fb7029941bfb3e0c46d850ccabcc7933e07425343 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0003-4773-3252 0000-0002-0145-1028 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://hal.science/hal-03007055 |
PMID | 33452944 |
PQID | 2478345829 |
PQPubID | 55445 |
ParticipantIDs | unpaywall_primary_10_1007_s11538_020_00853_5 hal_primary_oai_HAL_hal_03007055v1 proquest_miscellaneous_2478595323 proquest_journals_2478345829 pubmed_primary_33452944 crossref_citationtrail_10_1007_s11538_020_00853_5 crossref_primary_10_1007_s11538_020_00853_5 springer_journals_10_1007_s11538_020_00853_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationSubtitle | A journal devoted to research at the interface of the life and mathematical sciences |
PublicationTitle | Bulletin of mathematical biology |
PublicationTitleAbbrev | Bull Math Biol |
PublicationTitleAlternate | Bull Math Biol |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V Springer Verlag |
Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: Springer Verlag |
References | SlatkinMGene flow in natural populationsAnnu Rev Ecol Syst19851639343010.1146/annurev.es.16.110185.002141 VisserMEKeeping up with a warming world; assessing the rate of adaptation to climate changeProc R Soc B: Biol Sciences2008275163564965910.1098/rspb.2007.0997 BohrerGNathanRVolisSEffects of long-distance dispersal for metapopulation survival and genetic structure at ecological time and spatial scalesJ Ecol20059351029104010.1111/j.1365-2745.2005.01048.x HusbandBCBarrettSCHA metapopulation perspective in plant population biologyJ Ecol19968446146910.2307/2261207 ParsonsPAMigration as a factor in natural selectionGenetica196333118420610.1007/BF01725761 JenouvrierSGarnierJPatoutFDesvillettesLInfluence of dispersal processes on the global dynamics of emperor penguin, a species threatened by climate changeBiol Conserv2017212637310.1016/j.biocon.2017.05.017 PannellJRCharlesworthBEffects of metapopulation processes on measures of genetic diversityPhilos Trans R Soc B: Biol Sci200035514041851186410.1098/rstb.2000.0740 HallatschekONelsonDRGene surfing in expanding populationsTheor Popul Biol20087315817010.1016/j.tpb.2007.08.008 RoquesLGarnierJHamelFKleinEAllee effect promotes diversity in traveling waves of colonizationProc Natl Acad Sci USA201210988288833303322910.1073/pnas.1201695109 LevinSAMuller-LandauHCNathanRChaveJThe ecology and evolution of seed dispersal: a theoretical perspectiveAnnu Rev Ecol Evol Syst20033457560410.1146/annurev.ecolsys.34.011802.132428 TravisJMJMustinKBartońKABentonTGClobertJModelling dispersal: an eco-evolutionary framework incorporating migration, movement, settlement behaviour and the multiple costs involvedMethods Ecol Evol20123462864110.1111/j.2041-210X.2012.00193.x MaruyamaTKimuraMGenetic variability and effective population size when local extinction and recolonization of subpopulations are frequentProc Natl Acad Sci USA1980776710671410.1073/pnas.77.11.6710 van Heerwaarden J, van Eeuwijk FA, Ross-Ibarra J (2010) Genetic diversity in a crop metapopulation. Heredity 104(1):28–39. https://doi.org/10.1038/hdy.2009.110 BonnefonOCovilleJGarnierJHamelFRoquesLThe spatio-temporal dynamics of neutral genetic diversityEcol Complexity20142028229210.1016/j.ecocom.2014.05.003 SimpsonEHMeasurment of diversityNature194916368810.1038/163688a0 SlatkinMGene flow and genetic drift in a species subject to frequent local extinctionsTheor Popul Biol19771225326210.1016/0040-5809(77)90045-4 HewittGMThe genetic legacy of the quarternary ice agesNature200040590791310.1038/35016000 SouzaFLCunhaAFOliveiraMAPereiraGAGReisSFdEstimating dispersal and gene flow in the neotropical freshwater turtle hydromedusa maximiliani (chelidae) by combining ecological and genetic methodsGenet Mol Biol200225215115510.1590/S1415-47572002000200007 LynchMThe divergence of neutral quantitative characters among partially isolated populationsEvolution198842345546610.1111/j.1558-5646.1988.tb04152.x PonchonAGarnierRGrémilletDBoulinierTPredicting population response to environmental change: the importance of considering informed dispersal strategies in spatially structured population modelsDivers Distrib2015218810010.1111/ddi.12273 SlatkinMThe average number of sites separating dna sequences drawn from a subdivided populationTheor Popul Biol198732424910.1016/0040-5809(87)90038-4 SmithJMHaighJThe hitch-hiking effect of a favorable geneGenet Res1974231233510.1017/S0016672300014634 CharlesworthBMorganMTCharlesworthDThe effect of deleterious mutations on neutral molecular variationGenetics199313441289130310.1093/genetics/134.4.1289 MoodyMPolymorphism with selection and genotype-dependent migrationJ Math Biol19811124526761376210.1007/BF00276896 SchwartzMWIversonLRPrasadAMPredicting the potential future distribution of four tree species in ohio using current habitat availability and climatic forcingEcosystems2001456858110.1007/s10021-001-0030-3 BohonakAJDispersal, gene flow, and population structureQ Rev Biol1999741214510.1086/392950 IversonLRPrasadASchwartzMWModeling potential future individual tree-species distributions in the eastern united states under a climate change scenario: a case study with pinus virginianaEcol Model1999115779310.1016/S0304-3800(98)00200-2 RoquesLWalkerEFranckPSoubeyrandSKleinEKUsing genetic data to estimate diffusion rates in heterogeneous landscapesJ Math Biol2016732397422352110910.1007/s00285-015-0954-41388.35103 GarnierJLewisMAExpansion under climate change: the genetic consequencesBull Math Biol2016781121652185356769410.1007/s11538-016-0213-x1357.92080 GyllenbergMSderbackaGEricssonSDoes migration stabilize local population dynamics? Analysis of a discrete metapopulation modelMath Biosci199311812549124469110.1016/0025-5564(93)90032-60784.92019 PannellJRCharlesworthBNeutral genetic diversity in a metapopulation with recurrent local extinction and recolonizationEvolution199953366467610.1111/j.1558-5646.1999.tb05362.x LandeRNeutral theory of quantitative genetic variance in an island model with local extinction and colonizationEvolution199246238138910.1111/j.1558-5646.1992.tb02046.x FournierNMéléardSA microscopic probabilistic description of a locally regulated population and macroscopic approximationsAnn Appl Probab200414418801919209965610.1214/105051604000000882 FreckletonRPWatkinsonARLarge-scale spatial dynamics of plants: metapopulations, regional ensembles and patchy populationsJ Ecol19909041943410.1046/j.1365-2745.2002.00692.x Watts AG, Schlichting PE, Billerman SM, Jesmer BR, Micheletti S, Fortin MJ, Funk WC, Hapeman P, Muths E, Murphy MA (2015) How spatio-temporal habitat connectivity affects amphibian genetic structure. Front Genet 6: https://doi.org/10.3389/fgene.2015.00275 HoltRDPopulation dynamics in two-patch environments: some anomalous consequences of an optimal habitat distributionTheor Popul Biol19852818120880977710.1016/0040-5809(85)90027-9 BartonNHGenetic hitchhikingPhilos Trans R Soc Lond B Biol Sci200035514031553156210.1098/rstb.2000.0716 BansayeVMéléardSStochastic models for structured populations2015BerlinSpringer1333.92004 GarnierJGilettiTHamelFRoquesLInside dynamics of pulled and pushed frontsJ Math Pures Appl20121117318829681631255.35073 IngvarssonPThe effect of delayed population growth on the genetic differentiation of local populations subject to frequent extinctions and recolonizationsEvolution199751293510.1111/j.1558-5646.1997.tb02385.x EdwardsAWFMigrational selectionHeredity19631810110610.1038/hdy.1963.8 WhitlockMBartonNThe effective size of a subdivided populationGenetics199714642744110.1093/genetics/146.1.427 MalansonGPCairnsDMEffects of dispersal, population delays, and forest fragmentation on tree migration ratesPlant Ecol19971311677910.1023/A:1009770924942 WrightSThe genetical structure of populationsAnn Eugen19491513233544141310.1111/j.1469-1809.1949.tb02451.x LevinSAPaineRTDisturbance, patch formation, and community structureProc Natl Acad Sci19747172744274710.1073/pnas.71.7.27440289.92008 LR Iverson (853_CR18) 1999; 115 ME Visser (853_CR42) 2008; 275 SA Levin (853_CR21) 1974; 71 S Wright (853_CR45) 1949; 15 O Hallatschek (853_CR13) 2008; 73 T Maruyama (853_CR25) 1980; 77 FL Souza (853_CR39) 2002; 25 N Fournier (853_CR8) 2004; 14 M Gyllenberg (853_CR12) 1993; 118 O Bonnefon (853_CR5) 2014; 20 L Roques (853_CR32) 2016; 73 AJ Bohonak (853_CR3) 1999; 74 R Lande (853_CR20) 1992; 46 NH Barton (853_CR2) 2000; 355 V Bansaye (853_CR1) 2015 AWF Edwards (853_CR7) 1963; 18 GM Hewitt (853_CR14) 2000; 405 JR Pannell (853_CR27) 1999; 53 A Ponchon (853_CR30) 2015; 21 MW Schwartz (853_CR33) 2001; 4 RP Freckleton (853_CR9) 1990; 90 J Garnier (853_CR11) 2012; 11 BC Husband (853_CR16) 1996; 84 M Slatkin (853_CR37) 1987; 32 JR Pannell (853_CR28) 2000; 355 M Whitlock (853_CR44) 1997; 146 G Bohrer (853_CR4) 2005; 93 GP Malanson (853_CR24) 1997; 131 M Slatkin (853_CR36) 1985; 16 M Lynch (853_CR23) 1988; 42 EH Simpson (853_CR34) 1949; 163 PA Parsons (853_CR29) 1963; 33 B Charlesworth (853_CR6) 1993; 134 J Garnier (853_CR10) 2016; 78 M Moody (853_CR26) 1981; 11 JMJ Travis (853_CR40) 2012; 3 L Roques (853_CR31) 2012; 109 SA Levin (853_CR22) 2003; 34 JM Smith (853_CR38) 1974; 23 S Jenouvrier (853_CR19) 2017; 212 853_CR41 RD Holt (853_CR15) 1985; 28 853_CR43 M Slatkin (853_CR35) 1977; 12 P Ingvarsson (853_CR17) 1997; 51 |
References_xml | – reference: SlatkinMGene flow and genetic drift in a species subject to frequent local extinctionsTheor Popul Biol19771225326210.1016/0040-5809(77)90045-4 – reference: WrightSThe genetical structure of populationsAnn Eugen19491513233544141310.1111/j.1469-1809.1949.tb02451.x – reference: BartonNHGenetic hitchhikingPhilos Trans R Soc Lond B Biol Sci200035514031553156210.1098/rstb.2000.0716 – reference: SouzaFLCunhaAFOliveiraMAPereiraGAGReisSFdEstimating dispersal and gene flow in the neotropical freshwater turtle hydromedusa maximiliani (chelidae) by combining ecological and genetic methodsGenet Mol Biol200225215115510.1590/S1415-47572002000200007 – reference: BohonakAJDispersal, gene flow, and population structureQ Rev Biol1999741214510.1086/392950 – reference: IngvarssonPThe effect of delayed population growth on the genetic differentiation of local populations subject to frequent extinctions and recolonizationsEvolution199751293510.1111/j.1558-5646.1997.tb02385.x – reference: SchwartzMWIversonLRPrasadAMPredicting the potential future distribution of four tree species in ohio using current habitat availability and climatic forcingEcosystems2001456858110.1007/s10021-001-0030-3 – reference: MalansonGPCairnsDMEffects of dispersal, population delays, and forest fragmentation on tree migration ratesPlant Ecol19971311677910.1023/A:1009770924942 – reference: BonnefonOCovilleJGarnierJHamelFRoquesLThe spatio-temporal dynamics of neutral genetic diversityEcol Complexity20142028229210.1016/j.ecocom.2014.05.003 – reference: GarnierJGilettiTHamelFRoquesLInside dynamics of pulled and pushed frontsJ Math Pures Appl20121117318829681631255.35073 – reference: SmithJMHaighJThe hitch-hiking effect of a favorable geneGenet Res1974231233510.1017/S0016672300014634 – reference: FreckletonRPWatkinsonARLarge-scale spatial dynamics of plants: metapopulations, regional ensembles and patchy populationsJ Ecol19909041943410.1046/j.1365-2745.2002.00692.x – reference: van Heerwaarden J, van Eeuwijk FA, Ross-Ibarra J (2010) Genetic diversity in a crop metapopulation. Heredity 104(1):28–39. https://doi.org/10.1038/hdy.2009.110 – reference: GarnierJLewisMAExpansion under climate change: the genetic consequencesBull Math Biol2016781121652185356769410.1007/s11538-016-0213-x1357.92080 – reference: ParsonsPAMigration as a factor in natural selectionGenetica196333118420610.1007/BF01725761 – reference: JenouvrierSGarnierJPatoutFDesvillettesLInfluence of dispersal processes on the global dynamics of emperor penguin, a species threatened by climate changeBiol Conserv2017212637310.1016/j.biocon.2017.05.017 – reference: SimpsonEHMeasurment of diversityNature194916368810.1038/163688a0 – reference: EdwardsAWFMigrational selectionHeredity19631810110610.1038/hdy.1963.8 – reference: LynchMThe divergence of neutral quantitative characters among partially isolated populationsEvolution198842345546610.1111/j.1558-5646.1988.tb04152.x – reference: VisserMEKeeping up with a warming world; assessing the rate of adaptation to climate changeProc R Soc B: Biol Sciences2008275163564965910.1098/rspb.2007.0997 – reference: BohrerGNathanRVolisSEffects of long-distance dispersal for metapopulation survival and genetic structure at ecological time and spatial scalesJ Ecol20059351029104010.1111/j.1365-2745.2005.01048.x – reference: TravisJMJMustinKBartońKABentonTGClobertJModelling dispersal: an eco-evolutionary framework incorporating migration, movement, settlement behaviour and the multiple costs involvedMethods Ecol Evol20123462864110.1111/j.2041-210X.2012.00193.x – reference: RoquesLWalkerEFranckPSoubeyrandSKleinEKUsing genetic data to estimate diffusion rates in heterogeneous landscapesJ Math Biol2016732397422352110910.1007/s00285-015-0954-41388.35103 – reference: HallatschekONelsonDRGene surfing in expanding populationsTheor Popul Biol20087315817010.1016/j.tpb.2007.08.008 – reference: HusbandBCBarrettSCHA metapopulation perspective in plant population biologyJ Ecol19968446146910.2307/2261207 – reference: LevinSAPaineRTDisturbance, patch formation, and community structureProc Natl Acad Sci19747172744274710.1073/pnas.71.7.27440289.92008 – reference: PannellJRCharlesworthBEffects of metapopulation processes on measures of genetic diversityPhilos Trans R Soc B: Biol Sci200035514041851186410.1098/rstb.2000.0740 – reference: CharlesworthBMorganMTCharlesworthDThe effect of deleterious mutations on neutral molecular variationGenetics199313441289130310.1093/genetics/134.4.1289 – reference: RoquesLGarnierJHamelFKleinEAllee effect promotes diversity in traveling waves of colonizationProc Natl Acad Sci USA201210988288833303322910.1073/pnas.1201695109 – reference: MoodyMPolymorphism with selection and genotype-dependent migrationJ Math Biol19811124526761376210.1007/BF00276896 – reference: SlatkinMThe average number of sites separating dna sequences drawn from a subdivided populationTheor Popul Biol198732424910.1016/0040-5809(87)90038-4 – reference: IversonLRPrasadASchwartzMWModeling potential future individual tree-species distributions in the eastern united states under a climate change scenario: a case study with pinus virginianaEcol Model1999115779310.1016/S0304-3800(98)00200-2 – reference: HoltRDPopulation dynamics in two-patch environments: some anomalous consequences of an optimal habitat distributionTheor Popul Biol19852818120880977710.1016/0040-5809(85)90027-9 – reference: LevinSAMuller-LandauHCNathanRChaveJThe ecology and evolution of seed dispersal: a theoretical perspectiveAnnu Rev Ecol Evol Syst20033457560410.1146/annurev.ecolsys.34.011802.132428 – reference: HewittGMThe genetic legacy of the quarternary ice agesNature200040590791310.1038/35016000 – reference: PannellJRCharlesworthBNeutral genetic diversity in a metapopulation with recurrent local extinction and recolonizationEvolution199953366467610.1111/j.1558-5646.1999.tb05362.x – reference: SlatkinMGene flow in natural populationsAnnu Rev Ecol Syst19851639343010.1146/annurev.es.16.110185.002141 – reference: WhitlockMBartonNThe effective size of a subdivided populationGenetics199714642744110.1093/genetics/146.1.427 – reference: LandeRNeutral theory of quantitative genetic variance in an island model with local extinction and colonizationEvolution199246238138910.1111/j.1558-5646.1992.tb02046.x – reference: PonchonAGarnierRGrémilletDBoulinierTPredicting population response to environmental change: the importance of considering informed dispersal strategies in spatially structured population modelsDivers Distrib2015218810010.1111/ddi.12273 – reference: BansayeVMéléardSStochastic models for structured populations2015BerlinSpringer1333.92004 – reference: GyllenbergMSderbackaGEricssonSDoes migration stabilize local population dynamics? Analysis of a discrete metapopulation modelMath Biosci199311812549124469110.1016/0025-5564(93)90032-60784.92019 – reference: Watts AG, Schlichting PE, Billerman SM, Jesmer BR, Micheletti S, Fortin MJ, Funk WC, Hapeman P, Muths E, Murphy MA (2015) How spatio-temporal habitat connectivity affects amphibian genetic structure. Front Genet 6: https://doi.org/10.3389/fgene.2015.00275 – reference: FournierNMéléardSA microscopic probabilistic description of a locally regulated population and macroscopic approximationsAnn Appl Probab200414418801919209965610.1214/105051604000000882 – reference: MaruyamaTKimuraMGenetic variability and effective population size when local extinction and recolonization of subpopulations are frequentProc Natl Acad Sci USA1980776710671410.1073/pnas.77.11.6710 – volume: 93 start-page: 1029 issue: 5 year: 2005 ident: 853_CR4 publication-title: J Ecol doi: 10.1111/j.1365-2745.2005.01048.x – volume: 21 start-page: 88 year: 2015 ident: 853_CR30 publication-title: Divers Distrib doi: 10.1111/ddi.12273 – volume: 109 start-page: 8828 year: 2012 ident: 853_CR31 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1201695109 – volume: 405 start-page: 907 year: 2000 ident: 853_CR14 publication-title: Nature doi: 10.1038/35016000 – volume: 73 start-page: 158 year: 2008 ident: 853_CR13 publication-title: Theor Popul Biol doi: 10.1016/j.tpb.2007.08.008 – volume: 77 start-page: 6710 year: 1980 ident: 853_CR25 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.77.11.6710 – ident: 853_CR41 doi: 10.1038/hdy.2009.110 – volume: 33 start-page: 184 issue: 1 year: 1963 ident: 853_CR29 publication-title: Genetica doi: 10.1007/BF01725761 – volume: 84 start-page: 461 year: 1996 ident: 853_CR16 publication-title: J Ecol doi: 10.2307/2261207 – volume: 11 start-page: 245 year: 1981 ident: 853_CR26 publication-title: J Math Biol doi: 10.1007/BF00276896 – volume: 74 start-page: 21 issue: 1 year: 1999 ident: 853_CR3 publication-title: Q Rev Biol doi: 10.1086/392950 – volume: 163 start-page: 688 year: 1949 ident: 853_CR34 publication-title: Nature doi: 10.1038/163688a0 – ident: 853_CR43 doi: 10.3389/fgene.2015.00275 – volume: 14 start-page: 1880 issue: 4 year: 2004 ident: 853_CR8 publication-title: Ann Appl Probab doi: 10.1214/105051604000000882 – volume: 78 start-page: 2165 issue: 11 year: 2016 ident: 853_CR10 publication-title: Bull Math Biol doi: 10.1007/s11538-016-0213-x – volume: 16 start-page: 393 year: 1985 ident: 853_CR36 publication-title: Annu Rev Ecol Syst doi: 10.1146/annurev.es.16.110185.002141 – volume: 18 start-page: 101 year: 1963 ident: 853_CR7 publication-title: Heredity doi: 10.1038/hdy.1963.8 – volume: 118 start-page: 25 issue: 1 year: 1993 ident: 853_CR12 publication-title: Math Biosci doi: 10.1016/0025-5564(93)90032-6 – volume: 15 start-page: 323 issue: 1 year: 1949 ident: 853_CR45 publication-title: Ann Eugen doi: 10.1111/j.1469-1809.1949.tb02451.x – volume: 53 start-page: 664 issue: 3 year: 1999 ident: 853_CR27 publication-title: Evolution doi: 10.1111/j.1558-5646.1999.tb05362.x – volume: 4 start-page: 568 year: 2001 ident: 853_CR33 publication-title: Ecosystems doi: 10.1007/s10021-001-0030-3 – volume: 12 start-page: 253 year: 1977 ident: 853_CR35 publication-title: Theor Popul Biol doi: 10.1016/0040-5809(77)90045-4 – volume: 11 start-page: 173 year: 2012 ident: 853_CR11 publication-title: J Math Pures Appl – volume: 134 start-page: 1289 issue: 4 year: 1993 ident: 853_CR6 publication-title: Genetics doi: 10.1093/genetics/134.4.1289 – volume: 73 start-page: 397 issue: 2 year: 2016 ident: 853_CR32 publication-title: J Math Biol doi: 10.1007/s00285-015-0954-4 – volume: 355 start-page: 1553 issue: 1403 year: 2000 ident: 853_CR2 publication-title: Philos Trans R Soc Lond B Biol Sci doi: 10.1098/rstb.2000.0716 – volume: 32 start-page: 42 year: 1987 ident: 853_CR37 publication-title: Theor Popul Biol doi: 10.1016/0040-5809(87)90038-4 – volume: 212 start-page: 63 year: 2017 ident: 853_CR19 publication-title: Biol Conserv doi: 10.1016/j.biocon.2017.05.017 – volume: 355 start-page: 1851 issue: 1404 year: 2000 ident: 853_CR28 publication-title: Philos Trans R Soc B: Biol Sci doi: 10.1098/rstb.2000.0740 – volume: 23 start-page: 2335 issue: 1 year: 1974 ident: 853_CR38 publication-title: Genet Res doi: 10.1017/S0016672300014634 – volume: 146 start-page: 427 year: 1997 ident: 853_CR44 publication-title: Genetics doi: 10.1093/genetics/146.1.427 – volume: 275 start-page: 649 issue: 1635 year: 2008 ident: 853_CR42 publication-title: Proc R Soc B: Biol Sciences doi: 10.1098/rspb.2007.0997 – volume: 115 start-page: 77 year: 1999 ident: 853_CR18 publication-title: Ecol Model doi: 10.1016/S0304-3800(98)00200-2 – volume: 71 start-page: 2744 issue: 7 year: 1974 ident: 853_CR21 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.71.7.2744 – volume: 90 start-page: 419 year: 1990 ident: 853_CR9 publication-title: J Ecol doi: 10.1046/j.1365-2745.2002.00692.x – volume: 46 start-page: 381 issue: 2 year: 1992 ident: 853_CR20 publication-title: Evolution doi: 10.1111/j.1558-5646.1992.tb02046.x – volume: 28 start-page: 181 year: 1985 ident: 853_CR15 publication-title: Theor Popul Biol doi: 10.1016/0040-5809(85)90027-9 – volume: 42 start-page: 455 issue: 3 year: 1988 ident: 853_CR23 publication-title: Evolution doi: 10.1111/j.1558-5646.1988.tb04152.x – volume: 34 start-page: 575 year: 2003 ident: 853_CR22 publication-title: Annu Rev Ecol Evol Syst doi: 10.1146/annurev.ecolsys.34.011802.132428 – volume: 3 start-page: 628 issue: 4 year: 2012 ident: 853_CR40 publication-title: Methods Ecol Evol doi: 10.1111/j.2041-210X.2012.00193.x – volume: 20 start-page: 282 year: 2014 ident: 853_CR5 publication-title: Ecol Complexity doi: 10.1016/j.ecocom.2014.05.003 – volume: 131 start-page: 67 issue: 1 year: 1997 ident: 853_CR24 publication-title: Plant Ecol doi: 10.1023/A:1009770924942 – volume: 25 start-page: 151 issue: 2 year: 2002 ident: 853_CR39 publication-title: Genet Mol Biol doi: 10.1590/S1415-47572002000200007 – volume-title: Stochastic models for structured populations year: 2015 ident: 853_CR1 – volume: 51 start-page: 29 year: 1997 ident: 853_CR17 publication-title: Evolution doi: 10.1111/j.1558-5646.1997.tb02385.x |
SSID | ssj0007939 |
Score | 2.3054032 |
Snippet | Dispersal is a fundamental and crucial ecological process for a metapopulation to survive in heterogeneous or changing habitats. In this paper, we investigate... |
SourceID | unpaywall hal proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 20 |
SubjectTerms | Analysis of PDEs Cell Biology Differential equations Dispersal Dispersion Diversity indices Dynamics Ecology, environment Genetic diversity Habitats Life Sciences Mathematical and Computational Biology Mathematical models Mathematics Mathematics and Statistics Metapopulations Ordinary differential equations Original Article |
SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9tnRDsgY_xlTGQQbyxTG38seSxYowK0WoPVIynyHYcbaJKK5KAyl_PXZykA6QK3qLETuL4d_Zd7u53AK-zGEEk0DpRmbZooCQW10GtwkTpGAFlYzWi5OTpTE3m4sOlvNwB1uXCXKHG2a79dBwiBodE-LILe4pcSAPYm88uxl88uSQKc-RzHlGNwPtTsM7hJjuukWayj0ix4KH8be_ZvaLIx7_Vyhsu0X24XRcrvf6hF4sbu875PR_9WDZkhRRs8vWkrsyJ_fkHleO2Ad2Hu63KycYeIw9gxxUHcMsXoVwfwP60Z24tH8Lns2viDi-xgy4y9n65zNhEG8pEY55vY80umhA-x2aupv8kjKirsTc762I82HXBpq7Sq746WPkI5ufvPr2dhG3xhdAKyavQZe7U5XmG-zkZ0MYoF2lheG5Oh7iFiZHJDXdDK1QWyyHiwFiLso6n0NiWXPDHMCiWhXsKTHCeyDjDhTTKhXLOkPdTK2OkzLjLeQCjblpS2zKTU4GMRbrhVKapTLFf2kxlKgN40_dZeV6Ora1f4bfvGxKl9mT8MaVz3Xx8HwVw1IEhbQW5TCNBlUhkHCUBvOwvowiSX0UXbln7NjKRPMKRPPEg6h_FOXm2hQjguEPV5ubbXvi4R94_jO_w_5o_gzsRheY0oXRHMKi-1e456laVedGK1y9YYRd3 priority: 102 providerName: Unpaywall |
Title | Dispersal and Good Habitat Quality Promote Neutral Genetic Diversity in Metapopulations |
URI | https://link.springer.com/article/10.1007/s11538-020-00853-5 https://www.ncbi.nlm.nih.gov/pubmed/33452944 https://www.proquest.com/docview/2478345829 https://www.proquest.com/docview/2478595323 https://hal.science/hal-03007055 |
UnpaywallVersion | submittedVersion |
Volume | 83 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1522-9602 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007939 issn: 0092-8240 databaseCode: AKRWK dateStart: 19730201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1522-9602 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007939 issn: 0092-8240 databaseCode: AFBBN dateStart: 19390301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1522-9602 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007939 issn: 0092-8240 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1522-9602 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007939 issn: 0092-8240 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6RVAh6KFBKayjVgrhRV4l317WPVl8RIVGFsNqerF17LSoiJ6rtovDrmfEr5aGKnqI4u5us_c0rO_MNwIfEQxAJjE7cRMUYoPgx6kHl2r6rPARU7LlDKk6eTN1RKD5dysumKCxvs93bI8lKU6-K3SrhpHCH_ARuyx6sSQpQ-rAWnF2NTzoNjJir3V4fpR1NVlMs8-9VfjNIvW-UDvm3r3nnnHQdnpTZQi1_qNnsjik6fQZhu4k6A-X7QVnog_jnH_yOD93lc9hofFMW1GB6AY9MtgmP626Vy01Yn3QUr_lLuDi-JpLxHCeoLGFn83nCRkpTyRqriTmW7LzK9TNsakr6Q4URxzXOZsdtMgi7ztjEFGrRtRHLtyA8Pfl6NLKbLg12LCQvbJOYQ5OmCRp-irS1do2jhOapPhygrRNDnWpuBrFwE08OEDA6jvEB4SWMyiUX_BX0s3lmdoAJzn3pJahxnVS4xmg6JlWu1lIm3KTcgmH7qKK4oTCnThqzaEW-TLcvwnlRdfsiacHHbs6iJvC4d_R7REA3kLi3R8HniK6hNhwQ9dDt0ILdFiBRI_F55AhqWSI9x7fgXfcxyiodwKjMzMt6jPQld3An2zWwuq_inI7AhbBgvwXGavH7fvB-h8b_2N_rh63-Bp46lMNT5dztQr-4Kc1bdMIKvdfIHL2Ov1yM96AXOgG-C6fnwdUvhzomJA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB7RVKj0wKMUMBRYEDfqKvY-ah8j-jA0iTg0opysXXstKiInwjYo_Hpm_Ep5qKJXZ3fttb-Z2cnMfAPwJg0QRAK9E5XqBB2UMEE9qJUbKh0goJJAeVScPJmqaCY-XMiLtiis6LLdu5BkranXxW61cJK7Q-cE7soN2BReEIgBbI5OP58d9xoYMdcce0OUdjRZbbHMv1f5zSBtfKF0yL_PmlfipNuwVeVLvfqh5_MrpujkHsy6TTQZKF8PqtIcJD__4He86S7vw932bMpGDZgewC2b78Dtplvlage2Jz3Fa_EQPh1dEsl4gRN0nrLTxSJlkTZUssYaYo4V-1jn-lk2tRX9ocKI4xpns6MuGYRd5mxiS73s24gVuzA7OT5_F7ltlwY3EZKXrk3toc2yFA0_edrGKOtrYXhmDodo64RnMsPtMBEqDeQQAWOSBD8QXkKvXHLBH8EgX-T2CTDBeSiDFDWunwllraEwqVbGSJlym3EHvO5TxUlLYU6dNObxmnyZXl-M8-L69cXSgbf9nGVD4HHt6NeIgH4gcW9Ho3FM11AbDol66LvnwF4HkLiV-CL2BbUskYEfOvCq_xlllQIwOreLqhkjQ8l93MnjBlj9rTinELgQDux3wFgvft0D7_do_I_9Pb3Z6i9hKzqfjOPx--nZM7jjUz5PnX-3B4PyW2Wf44GsNC9a-fsFQQIk2Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9NADLfYEB97QGxsENjgQLyxaG3uY8ljRdcVWKs9ULG3013uok2q0oqmoP732PlqJ9DEXpO7Sy62z3Zs_wzw0cXIRAK9E-VMig5KkuI5aFSYKBMjQ6Wx6lJx8mishhPx9UpebVTxl9nuTUiyqmkglKa8OJm77GRd-FYKKrk-ZDPwUG7BQ4G6mtyvSdRrz2LkvsoATlDuUXnVZTP_XuOWatq6psTIv63OjYjpDjxZ5nOz-m2m0w2lNHgOz2prkvUq8u_CA5_vwaOqv-RqD3ZGLSjr4gX86N8QLPgCJ5jcsfPZzLGhsVRkxioojRW7LLPzPBv7Jf0CYYRKjbNZv0nfYDc5G_nCzNvGX4t9mAzOvn8ehnVfhTAVkhehd_7UZ5lDVU2-sbXKR0ZYntnTDmon0bWZ5b6TCuVi2UES2zTFD4mX0I-WXPAD2M5nuX8FTHCeyNjhGRllQnlvKbBplLVSOu4zHkC3-aQ6rUHHqffFVK_hkokMGufpkgxaBvCpnTOvIDfuHP0BKdUOJLTsYe9C0zU8vzoEFvSrG8BhQ0hdy-hCR4KajMg4SgJ4395G6aKQicn9bFmNkYnkEe7kZcUA7aM4p6C1EAEcNxyxXvyuFz5uueY_9vf6fqu_g8eX_YG--DL-9gaeRpSAUybMHcJ28XPpj9CCKuzbUkj-AB0CDCQ |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9tnRDsgY_xlTGQQbyxTG38seSxYowK0WoPVIynyHYcbaJKK5KAyl_PXZykA6QK3qLETuL4d_Zd7u53AK-zGEEk0DpRmbZooCQW10GtwkTpGAFlYzWi5OTpTE3m4sOlvNwB1uXCXKHG2a79dBwiBodE-LILe4pcSAPYm88uxl88uSQKc-RzHlGNwPtTsM7hJjuukWayj0ix4KH8be_ZvaLIx7_Vyhsu0X24XRcrvf6hF4sbu875PR_9WDZkhRRs8vWkrsyJ_fkHleO2Ad2Hu63KycYeIw9gxxUHcMsXoVwfwP60Z24tH8Lns2viDi-xgy4y9n65zNhEG8pEY55vY80umhA-x2aupv8kjKirsTc762I82HXBpq7Sq746WPkI5ufvPr2dhG3xhdAKyavQZe7U5XmG-zkZ0MYoF2lheG5Oh7iFiZHJDXdDK1QWyyHiwFiLso6n0NiWXPDHMCiWhXsKTHCeyDjDhTTKhXLOkPdTK2OkzLjLeQCjblpS2zKTU4GMRbrhVKapTLFf2kxlKgN40_dZeV6Ora1f4bfvGxKl9mT8MaVz3Xx8HwVw1IEhbQW5TCNBlUhkHCUBvOwvowiSX0UXbln7NjKRPMKRPPEg6h_FOXm2hQjguEPV5ubbXvi4R94_jO_w_5o_gzsRheY0oXRHMKi-1e456laVedGK1y9YYRd3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dispersal+and+Good+Habitat+Quality+Promote+Neutral+Genetic+Diversity+in+Metapopulations&rft.jtitle=Bulletin+of+mathematical+biology&rft.au=Garnier%2C+Jimmy&rft.au=Lafontaine%2C+Pierre&rft.date=2021-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0092-8240&rft.eissn=1522-9602&rft.volume=83&rft.issue=3&rft_id=info:doi/10.1007%2Fs11538-020-00853-5&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8240&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8240&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8240&client=summon |