Hardware Implementations of a Deep Learning Approach to Optimal Configuration of Reconfigurable Intelligence Surfaces
Reconfigurable intelligent surfaces (RIS) offer the potential to customize the radio propagation environment for wireless networks, and will be a key element for 6G communications. However, due to the unique constraints in these systems, the optimization problems associated to RIS configuration are...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 24; no. 3; p. 899 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
30.01.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s24030899 |
Cover
| Abstract | Reconfigurable intelligent surfaces (RIS) offer the potential to customize the radio propagation environment for wireless networks, and will be a key element for 6G communications. However, due to the unique constraints in these systems, the optimization problems associated to RIS configuration are challenging to solve. This paper illustrates a new approach to the RIS configuration problem, based on the use of artificial intelligence (AI) and deep learning (DL) algorithms. Concretely, a custom convolutional neural network (CNN) intended for edge computing is presented, and implementations on different representative edge devices are compared, including the use of commercial AI-oriented devices and a field-programmable gate array (FPGA) platform. This FPGA option provides the best performance, with ×20 performance increase over the closest FP32, GPU-accelerated option, and almost ×3 performance advantage when compared with the INT8-quantized, TPU-accelerated implementation. More noticeably, this is achieved even when high-level synthesis (HLS) tools are used and no custom accelerators are developed. At the same time, the inherent reconfigurability of FPGAs opens a new field for their use as enabler hardware in RIS applications. |
|---|---|
| AbstractList | Reconfigurable intelligent surfaces (RIS) offer the potential to customize the radio propagation environment for wireless networks, and will be a key element for 6G communications. However, due to the unique constraints in these systems, the optimization problems associated to RIS configuration are challenging to solve. This paper illustrates a new approach to the RIS configuration problem, based on the use of artificial intelligence (AI) and deep learning (DL) algorithms. Concretely, a custom convolutional neural network (CNN) intended for edge computing is presented, and implementations on different representative edge devices are compared, including the use of commercial AI-oriented devices and a field-programmable gate array (FPGA) platform. This FPGA option provides the best performance, with ×20 performance increase over the closest FP32, GPU-accelerated option, and almost ×3 performance advantage when compared with the INT8-quantized, TPU-accelerated implementation. More noticeably, this is achieved even when high-level synthesis (HLS) tools are used and no custom accelerators are developed. At the same time, the inherent reconfigurability of FPGAs opens a new field for their use as enabler hardware in RIS applications. Reconfigurable intelligent surfaces (RIS) offer the potential to customize the radio propagation environment for wireless networks, and will be a key element for 6G communications. However, due to the unique constraints in these systems, the optimization problems associated to RIS configuration are challenging to solve. This paper illustrates a new approach to the RIS configuration problem, based on the use of artificial intelligence (AI) and deep learning (DL) algorithms. Concretely, a custom convolutional neural network (CNN) intended for edge computing is presented, and implementations on different representative edge devices are compared, including the use of commercial AI-oriented devices and a field-programmable gate array (FPGA) platform. This FPGA option provides the best performance, with ×20 performance increase over the closest FP32, GPU-accelerated option, and almost ×3 performance advantage when compared with the INT8-quantized, TPU-accelerated implementation. More noticeably, this is achieved even when high-level synthesis (HLS) tools are used and no custom accelerators are developed. At the same time, the inherent reconfigurability of FPGAs opens a new field for their use as enabler hardware in RIS applications.Reconfigurable intelligent surfaces (RIS) offer the potential to customize the radio propagation environment for wireless networks, and will be a key element for 6G communications. However, due to the unique constraints in these systems, the optimization problems associated to RIS configuration are challenging to solve. This paper illustrates a new approach to the RIS configuration problem, based on the use of artificial intelligence (AI) and deep learning (DL) algorithms. Concretely, a custom convolutional neural network (CNN) intended for edge computing is presented, and implementations on different representative edge devices are compared, including the use of commercial AI-oriented devices and a field-programmable gate array (FPGA) platform. This FPGA option provides the best performance, with ×20 performance increase over the closest FP32, GPU-accelerated option, and almost ×3 performance advantage when compared with the INT8-quantized, TPU-accelerated implementation. More noticeably, this is achieved even when high-level synthesis (HLS) tools are used and no custom accelerators are developed. At the same time, the inherent reconfigurability of FPGAs opens a new field for their use as enabler hardware in RIS applications. |
| Audience | Academic |
| Author | Castillo, Encarnación Morán, Alejandro Parellada-Serrano, Ignacio Padial-Allué, Rubén Martín-Martín, Alberto Parrilla, Luis García, Antonio |
| Author_xml | – sequence: 1 givenname: Alberto orcidid: 0000-0001-5237-7756 surname: Martín-Martín fullname: Martín-Martín, Alberto – sequence: 2 givenname: Rubén orcidid: 0000-0002-9741-4351 surname: Padial-Allué fullname: Padial-Allué, Rubén – sequence: 3 givenname: Encarnación orcidid: 0000-0001-6476-8105 surname: Castillo fullname: Castillo, Encarnación – sequence: 4 givenname: Luis orcidid: 0000-0001-8126-1146 surname: Parrilla fullname: Parrilla, Luis – sequence: 5 givenname: Ignacio orcidid: 0000-0003-1930-0241 surname: Parellada-Serrano fullname: Parellada-Serrano, Ignacio – sequence: 6 givenname: Alejandro orcidid: 0000-0001-7628-0019 surname: Morán fullname: Morán, Alejandro – sequence: 7 givenname: Antonio orcidid: 0000-0003-3533-4660 surname: García fullname: García, Antonio |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38339618$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kktr3DAUhU1JaR7ton-gGLpJC5PIkjyWlsP0kYGBQB9rcy1dTTXIkivZhPz7auJkKKEUL2Qu3zkcnavz4sQHj0XxtiJXjElynSgnjAgpXxRnFad8ISglJ3_9nxbnKe0JoYwx8ao4ZSLrlpU4K6YbiPoOIpabfnDYox9htMGnMpgSyk-IQ7lFiN76XbkahhhA_SrHUN4Oo-3Blevgjd1N8UF1EH1D9TTqXLb1Izpnd-gVlt-naEBhel28NOASvnk8L4qfXz7_WN8strdfN-vVdqF4zcYFCl5zJoSpaiYaXmkuUBIFVFYcNZWdoUo3pjGSU02BNkQaIpEuBRENcM0uis3sqwPs2yHmxPG-DWDbh0GIuxbiaJXDljcCeKUQaFdxYEYiV8CUJqaWojNV9vo4e01-gPs7cO5oWJH2sIf2uIcMX85wLuz3hGlse5tULgI8him1VNKakJxzmdH3z9B9mKLPtRwoTghvlgfqaqZ2kMNab8IYQeVPY29z4Whsnq8aQYmkomFZ8O7Rdup61MesT6vPwIcZUDGkFNH89zrXz1hl53eSU1j3D8UfJoDLpg |
| CitedBy_id | crossref_primary_10_22399_ijcesen_559 |
| Cites_doi | 10.1109/ACCESS.2020.2991734 10.3390/network2030025 10.1109/TNNLS.2021.3084827 10.1016/j.iot.2023.100749 10.1109/ICCT.2018.8600086 10.1109/JSAC.2023.3274037 10.1109/TAP.2021.3111325 10.1109/COMST.2021.3077737 10.1109/ICC40277.2020.9149302 10.1007/s10586-016-0536-2 10.1109/ICCIT51783.2020.9392723 10.1007/s13042-020-01248-7 10.1109/ACCESS.2020.2977772 10.1109/ACCESS.2019.2935192 10.1177/1748302619873601 10.23919/ICN.2022.0005 10.12968/S0047-9624(23)60543-7 10.1109/JIOT.2020.2984887 10.1109/TPAMI.2019.2938758 10.1109/TCCN.2020.2992604 10.1109/MWC.008.2200124 10.1109/ACCESS.2022.3229767 10.1109/MCOM.001.2001076 10.1109/TVT.2022.3214818 10.1038/nature14539 10.1109/OJCOMS.2021.3076271 10.1162/neco.1989.1.4.541 10.1109/MCOM.001.2001161 10.1109/TITS.2020.3032396 10.3390/electronics12194085 10.3390/electronics11060945 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 ADTOC UNPAY DOA |
| DOI | 10.3390/s24030899 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_478a41cea2b14a3f9e4ca3cd0f598bf1 10.3390/s24030899 A782092873 38339618 10_3390_s24030899 |
| Genre | Journal Article |
| GeographicLocations | Iran United States |
| GeographicLocations_xml | – name: Iran – name: United States |
| GrantInformation_xml | – fundername: Ministerio de Ciencia e Innovación grantid: TED2021-129938B-I00 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M ALIPV NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 PUEGO ADRAZ ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c453t-e8454388f1538741d48e90ca2914ed29bf2cd7f7f942d2a2709f09e268087a4d3 |
| IEDL.DBID | M48 |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:42:45 EDT 2025 Sun Oct 26 02:56:42 EDT 2025 Thu Sep 04 16:19:06 EDT 2025 Tue Oct 07 07:31:11 EDT 2025 Mon Oct 20 17:11:12 EDT 2025 Mon Jul 21 05:59:48 EDT 2025 Thu Oct 16 04:43:57 EDT 2025 Thu Apr 24 23:11:06 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | reconfigurable intelligent surfaces 6G FPGA artificial intelligence neural networks |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c453t-e8454388f1538741d48e90ca2914ed29bf2cd7f7f942d2a2709f09e268087a4d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-1930-0241 0000-0002-9741-4351 0000-0003-3533-4660 0000-0001-6476-8105 0000-0001-7628-0019 0000-0001-5237-7756 0000-0001-8126-1146 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s24030899 |
| PMID | 38339618 |
| PQID | 2924004766 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_478a41cea2b14a3f9e4ca3cd0f598bf1 unpaywall_primary_10_3390_s24030899 proquest_miscellaneous_2925006806 proquest_journals_2924004766 gale_infotracacademiconefile_A782092873 pubmed_primary_38339618 crossref_primary_10_3390_s24030899 crossref_citationtrail_10_3390_s24030899 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Jan-30 |
| PublicationDateYYYYMMDD | 2024-01-30 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-Jan-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Molero (ref_9) 2021; 59 Dai (ref_7) 2020; 8 ref_11 Deng (ref_20) 2020; 7 Zhang (ref_31) 2019; 13 Li (ref_12) 2022; 2 Le (ref_26) 2021; 12 LeCun (ref_28) 1989; 1 ElMossallamy (ref_6) 2020; 6 Gao (ref_24) 2021; 43 Lee (ref_40) 2016; 19 Hosseininoorbin (ref_41) 2023; 22 Horng (ref_25) 2022; 23 ref_21 Dhilleswararao (ref_14) 2022; 10 Chen (ref_5) 2023; 41 ref_29 Gros (ref_23) 2021; 2 ref_27 Basar (ref_3) 2019; 7 Cao (ref_13) 2020; 8 Pan (ref_15) 2021; 59 ref_36 ref_35 ref_34 ref_33 ref_32 Wu (ref_22) 2022; 70 ref_30 ref_39 ref_38 Zhang (ref_16) 2023; 72 ref_37 LeCun (ref_18) 2015; 521 Jian (ref_17) 2022; 3 ref_47 ref_46 ref_45 ref_44 ref_43 ref_42 ref_1 ref_2 Liu (ref_8) 2021; 23 Ge (ref_10) 2023; 30 ref_49 ref_48 Li (ref_19) 2022; 33 ref_4 |
| References_xml | – ident: ref_49 – volume: 8 start-page: 85714 year: 2020 ident: ref_13 article-title: An Overview on Edge Computing Research publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2991734 – ident: ref_32 – ident: ref_39 – ident: ref_42 – ident: ref_1 – ident: ref_35 – volume: 2 start-page: 398 year: 2022 ident: ref_12 article-title: Phase Shift Design in RIS Empowered Wireless Networks: From Optimization to AI-Based Methods publication-title: Network doi: 10.3390/network2030025 – volume: 33 start-page: 6999 year: 2022 ident: ref_19 article-title: A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/TNNLS.2021.3084827 – volume: 22 start-page: 100749 year: 2023 ident: ref_41 article-title: Exploring Edge TPU for deep feed-forward neural networks publication-title: Internet Things doi: 10.1016/j.iot.2023.100749 – ident: ref_4 – ident: ref_30 doi: 10.1109/ICCT.2018.8600086 – ident: ref_48 – volume: 41 start-page: 1592 year: 2023 ident: ref_5 article-title: 5G-Advanced Toward 6G: Past, Present, and Future publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2023.3274037 – volume: 70 start-page: 813 year: 2022 ident: ref_22 article-title: Design of a Compact Polarization-Agile and Frequency-Tailored Array Antenna With Digital-Controllable Radiation Beams publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.2021.3111325 – volume: 23 start-page: 1546 year: 2021 ident: ref_8 article-title: Reconfigurable Intelligent Surfaces: Principles and Opportunities publication-title: IEEE Commun. Surv. Tutorials doi: 10.1109/COMST.2021.3077737 – ident: ref_11 doi: 10.1109/ICC40277.2020.9149302 – volume: 19 start-page: 335 year: 2016 ident: ref_40 article-title: Fast implementation of block ciphers and PRNGs in Maxwell GPU architecture publication-title: Clust. Comput. doi: 10.1007/s10586-016-0536-2 – ident: ref_38 – ident: ref_45 – ident: ref_29 doi: 10.1109/ICCIT51783.2020.9392723 – volume: 12 start-page: 3235 year: 2021 ident: ref_26 article-title: IoT enabled depthwise separable convolution neural network with deep support vector machine for COVID-19 diagnosis and classification publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-020-01248-7 – volume: 8 start-page: 45913 year: 2020 ident: ref_7 article-title: Reconfigurable Intelligent Surface-Based Wireless Communications: Antenna Design, Prototyping, and Experimental Results publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2977772 – ident: ref_34 – volume: 7 start-page: 116753 year: 2019 ident: ref_3 article-title: Wireless Communications Through Reconfigurable Intelligent Surfaces publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2935192 – ident: ref_47 – volume: 13 start-page: 1748302619873601 year: 2019 ident: ref_31 article-title: Pedestrian detection based on improved LeNet-5 convolutional neural network publication-title: J. Algorithms Comput. Technol. doi: 10.1177/1748302619873601 – volume: 3 start-page: 1 year: 2022 ident: ref_17 article-title: Reconfigurable intelligent surfaces for wireless communications: Overview of hardware designs, channel models, and estimation techniques publication-title: Intell. Converg. Netw. doi: 10.23919/ICN.2022.0005 – ident: ref_2 doi: 10.12968/S0047-9624(23)60543-7 – ident: ref_37 – ident: ref_44 – volume: 7 start-page: 7457 year: 2020 ident: ref_20 article-title: Edge Intelligence: The Confluence of Edge Computing and Artificial Intelligence publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.2984887 – volume: 43 start-page: 652 year: 2021 ident: ref_24 article-title: Res2Net: A New Multi-Scale Backbone Architecture publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2938758 – volume: 6 start-page: 990 year: 2020 ident: ref_6 article-title: Reconfigurable Intelligent Surfaces for Wireless Communications: Principles, Challenges, and Opportunities publication-title: IEEE Trans. Cogn. Commun. Netw. doi: 10.1109/TCCN.2020.2992604 – volume: 30 start-page: 119 year: 2023 ident: ref_10 article-title: Intelligent reflecting surface-enhanced UAV communications: Advances, challenges, and prospects publication-title: IEEE Wirel. Commun. doi: 10.1109/MWC.008.2200124 – volume: 10 start-page: 131788 year: 2022 ident: ref_14 article-title: Efficient Hardware Architectures for Accelerating Deep Neural Networks: Survey publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3229767 – volume: 59 start-page: 14 year: 2021 ident: ref_15 article-title: Reconfigurable Intelligent Surfaces for 6G Systems: Principles, Applications, and Research Directions publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.001.2001076 – ident: ref_33 – ident: ref_46 – volume: 72 start-page: 2718 year: 2023 ident: ref_16 article-title: RIS-Aided 6G Communication System with Accurate Traceable User Mobility publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2022.3214818 – volume: 521 start-page: 436 year: 2015 ident: ref_18 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 2 start-page: 1055 year: 2021 ident: ref_23 article-title: A Reconfigurable Intelligent Surface at mmWave Based on a Binary Phase Tunable Metasurface publication-title: IEEE Open J. Commun. Soc. doi: 10.1109/OJCOMS.2021.3076271 – volume: 1 start-page: 541 year: 1989 ident: ref_28 article-title: Backpropagation Applied to Handwritten Zip Code Recognition publication-title: Neural Comput. doi: 10.1162/neco.1989.1.4.541 – ident: ref_36 – ident: ref_43 – volume: 59 start-page: 42 year: 2021 ident: ref_9 article-title: Metamaterial-Based Reconfigurable Intelligent Surface: 3D Meta-Atoms Controlled by Graphene Structures publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.001.2001161 – volume: 23 start-page: 2103 year: 2022 ident: ref_25 article-title: Recognizing Very Small Face Images Using Convolution Neural Networks publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.3032396 – ident: ref_27 doi: 10.3390/electronics12194085 – ident: ref_21 doi: 10.3390/electronics11060945 |
| SSID | ssj0023338 |
| Score | 2.424747 |
| Snippet | Reconfigurable intelligent surfaces (RIS) offer the potential to customize the radio propagation environment for wireless networks, and will be a key element... |
| SourceID | doaj unpaywall proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 899 |
| SubjectTerms | Algorithms Artificial intelligence Comparative analysis Data processing Deep learning Digital integrated circuits Edge computing Field programmable gate arrays Forecasts and trends FPGA Internet of Things Neural networks Optimization R&D Receivers & amplifiers reconfigurable intelligent surfaces Research & development Semiconductor industry Telecommunication systems Wireless communications |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8AB8Sa0IPOQ4BI18Sv2cXlUFRJwgEq9WY4fFdI2u9rdqOLfdybxRkGAuHB1xpbHM2PPxJ5vCHktax4r5WMZA1MlugylTg0vq5CiUm0IkmG-8-cv6vRMfDqX57NSX_gmbIQHHhfuWDTaidpHx9paOJ5MFN5xH6okjW7TEPhU2uyDqRxqcYi8RhwhDkH98RZR5_CC65fTZwDp_30rnp1FN_tu7X5eueVyduic3CV3srdIF-Ms75EbsbtPbs8wBB-QHu_er9wm0gHo9zLnEnVbukrU0Q8xrmkGUb2gi4wgTncr-hU2i0sYHHP-flz0oyZgJ4xIc1O7hGFnoJ30W79J-IjrITk7-fj9_WmZaymUXki-K6MWUnCtE-5w4EUEoaOpvGOmFiAm0ybmQ5OaZAQLzLGmMqkykWFljsaJwB-Rg27VxSeEJlO1rWMgUtWIKLXmAnpLkJDgIei6IG_3a2x9BhrHehdLCwEHisNO4ijIy4l0PaJr_InoHQpqIkBA7KEB1MRmNbH_UpOCvEExWzRbmIx3OfsAWEIALLtA3EAD4SMvyNFeE2y2561lBt_aikapgryYPoMl4vWK6-KqH2jkUMoEaB6PGjTNmWvgSdW6IK8mlfo7x0__B8eH5BYDBwx_F_HqiBzsNn18Bg7Urn0-2Mo1N6EZFA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbK9gAcEG8CLTIPCS5RE9tJ7ANCW2hVIbEgoFJvkePHCmmbLLsbVf33zCROuhWPazKOxpmHZ2zPN4S8zlLukty42FmWxxgyxNIXPE6sd3leWZsxrHf-PMtPTsWns-xsh8yGWhi8Vjn4xM5R28bgHvkBU3jbURR5_n75K8auUXi6OrTQ0KG1gn3XQYzdILsMkbEmZPfwaPb125iCccjIenwhDsn-wRrR6PDg69qq1IH3_-mit9aom2291JcXerHYWoyO75I7IYqk017s98iOq--T21vYgg9Ii2fyF3rlaAcAfB5qjOo1bTzV9KNzSxrAVed0GpDF6aahX8CJnMPHsRbw57ztNQQHYaYaHlUL-OwWmCf93q48Xu56SE6Pj358OIlDj4XYiIxvYidFJriUHj0fRBdWSKcSo5lKBYhPVZ4ZW_jCK8Es06xIlE-UY9ixo9DC8kdkUje1e0KoV0lVaQaizgvhMim5gNGZ00xwa2UakbfDPy5NACDHPhiLEhIRFEc5iiMiL0fSZY-68TeiQxTUSIBA2d2DZjUvg92VopBapAaYqFKhuVdOGM2NTXymZOWBqTco5hLNGZgxOlQlwJQQGKucIp6ggrSSR2Rv0IQy2Pm6vNLKiLwYX4OF4rGLrl3TdjRZ1-IEaB73GjTyzCXMKU9lRF6NKvXvGT_9PwvPyC0GIRduEPFkj0w2q9btQ8i0qZ4HO_gNbSAV6Q priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgewAO5VkIFGQeElzSJLaT2Ce0PKoKiYIEK5VT5MT2qmKbrHaTVvDrmUm80fKSENdkbI3lz_OwPZ8JeZYm3MZZZUNrWBZiyBBKl_MwNs5mWWlMyrDe-f1xdjQT707SE7_htvbXKiEVP-2NNFZhheDB4oiJiEeQGkRL416e-50kZH4B7wIu9DLZyVKIxSdkZ3b8cfqlLynybQc6IQ65fbRG8jk85_rJCfVc_b9b5C2XdKWrl_rbhV4stnzP4XVSbLQerpx8Peja8qD6_guh4_8P6wbZ9WEpnQ44ukku2foWubZFVnibdHjIf6FXlvaMwme-aKle08ZRTd9Yu6SerXVOp56qnLYN_QBW6Qw6x-LC03k3QA4bYerrP5UL6HaLHZR-6lYOb4vdIbPDt59fH4X-0YawEilvQytFKriUDk0phCtGSKviSjOVCMCDKh2rTO5ypwQzTLM8Vi5WluETILkWhu-RSd3U9h6hTsVlqRlgJ8uFTaXkAlqnVjPBjZFJQF5sZrGoPKM5PqyxKCCzwQkvxgkPyJNRdDnQePxJ6BVCYRRA5u3-Q7OaF34hFyKXWiQVKFEmQnOnrKg0r0zsUiVLB0o9RyAVaB9AmUr7MgcYEjJtFVMkKFSQp_KA7G-wVnjDsS6Ywku9Is-ygDwef8OSx3McXdum62XS_s0UkLk7YHTUmUsYU5bIgDwdQfv3Ed__J6kH5CqDUA43nni8TybtqrMPIRRry0d-vf0AaOUs0g priority: 102 providerName: Unpaywall |
| Title | Hardware Implementations of a Deep Learning Approach to Optimal Configuration of Reconfigurable Intelligence Surfaces |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38339618 https://www.proquest.com/docview/2924004766 https://www.proquest.com/docview/2925006806 https://www.mdpi.com/1424-8220/24/3/899/pdf?version=1706614584 https://doaj.org/article/478a41cea2b14a3f9e4ca3cd0f598bf1 |
| UnpaywallVersion | publishedVersion |
| Volume | 24 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf28QA8IL4JjMp8SPASSGwnsR8Q6mBlQlqZgErdU-TEdoWUJSVtNPbfc5ekUSeGxEsUOefo7Dvbd7bvd4S8ikJugzi3vjUs9tFk8KVLuB8YZ-M4MyZiGO98Mo2PZ-LLPJrvkE2Ozb4DV9e6dphPalYXb3__uvwAA_49epzgsr9bIaYcHl_tkn14VZjB4UQMhwmM8zahNcZ0-bAeBh3A0NWqV5alFr3_7zl6a5G60ZRLfXmhi2JrNZrcIbd7M5KOO7nfJTu2vEdubYEL3icNHspf6NrSFgH4vA8yKle0clTTT9YuaY-uuqDjHlqcriv6FWaRc_g5BgP-XDSdimAldFX7oqyA326hedLvTe3wdtcDMpsc_fh47PdJFvxcRHztWykiwaV0OPWBeWGEtCrINVOhAPmpzLHcJC5xSjDDNEsC5QJlGabsSLQw_CHZK6vSPibUqSDLNANZx4mwkZRcQO3Iaia4MTL0yJtNH6d5j0COiTCKFDwRFEc6iMMjLwbSZQe7cR3RIQpqIECk7LagqhdpP_BSkUgtwhyYyEKhuVNW5JrnJnCRkpkDpl6jmFPUMGAm131YAjQJkbHSMQIKKvAruUcONpqQbvQ0ZQov4Yokjj3yfPgMQxTPXXRpq6alidocJ0DzqNOggWcuoU1xKD3yclCpf7f4yX8z-5TcZGB-4WYRDw7I3rpu7DMwn9bZiOwm8wSecvJ5RPYPj6an30btVsSoHTZQNpuejs_-AF2CHNo |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKORQOiDeBAuYleoma2E5iHxBaKNWWPjjQSnszTmyvkLbJsrvRqn-K38hMkk0X8bj1mkysceblsT3fEPI6ibmL0sKFzrI0xCVDKH3Gw8h6l6a5tQnDeufjk3R4Jj6PktEG-bmqhcFrlSuf2DhqWxW4R77LFN52FFmavp_-CLFrFJ6urlpotGpx6C6WkLLN3x3sgXzfMLb_6fTjMOy6CoSFSPgidFIkgkvp0dYhnlohnYoKw1QsgGGVe1bYzGdeCWaZYVmkfKQcwx4VmRGWw7jXyHXBwZeA_WSjywSPQ77XohdxrqLdOWLd4bHabzGvaQ3wZwBYi4BbdTk1F0szmayFuv3b5Fa3RqWDVqnukA1X3iU315AL75EaT_yXZuZoAy983lUwlXNaeWronnNT2kG3jumgwy2ni4p-ARd1DoNjpeH3cd3qH36EeXD3KJ_AsGtQofRrPfN4dew-ObuSf_2AbJZV6R4R6lWU54aBIqWZcImUXMDXiTNMcGtlHJCd1T_WRQdvjl02JhrSHBSH7sURkJc96bTF9Pgb0QcUVE-AMNzNg2o21p1Va5FJI-ICmMhjYbhXThSGFzbyiZK5B6beopg1OgtgpjBdzQNMCWG39ADRChUkrTwg2ytN0J0XmetLnQ_Ii_412D8e6pjSVXVDkzQNVIDmYatBPc9cwpzSWAbkVa9S_57x4_-z8JxsDU-Pj_TRwcnhE3KDweIOt6J4tE02F7PaPYXF2SJ_1lgEJd-u2gR_AQfkSr4 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkGA8ID5HYYD5ErxETWwnsR8QKpRqYzCQ2KS-BSe2K6QuKW2jav8afx13iZsV8fG21-RinXNfPtv3O0KexxG3YVLYwBqWBLhkCKRLeRAaZ5MkNyZmWO_86SjZPxEfxvF4i_xc18Lgtcq1T2wctakK3CPvM4W3HUWaJH3nr0V8GY7ezH4E2EEKT1rX7TRaFTm0ZytI3xavD4Yg6xeMjd4fv9sPfIeBoBAxXwZWilhwKR3aPcRWI6RVYaGZigQwr3LHCpO61CnBDNMsDZULlWXYryLVwnAY9xK5nHKu8DphOj5P9jjkfi2SEbwM-wvEvcMjtt_iX9Mm4M9gsBENr9blTJ-t9HS6EfZGN8h1v16lg1bBbpItW94i1zZQDG-TGk__V3puaQM1fOqrmcoFrRzVdGjtjHoY1wkdeAxzuqzoZ3BXpzA4Vh1-n9StLuJHmBP7R_kUht2ADaVf67nDa2R3yMmF_Ou7ZLusSnuPUKfCPNcMlCpJhY2l5AK-jq1mghsjox55tf7HWeGhzrHjxjSDlAfFkXXi6JGnHemsxff4G9FbFFRHgJDczYNqPsm8hWcilVpEBTCRR0Jzp6woNC9M6GIlcwdMvUQxZ-g4gJlC-_oHmBJCcGUDRC5UkMDyHtlba0LmPcoiO9f_HnnSvQZfgAc8urRV3dDETTMVoNltNajjmUuYUxLJHnnWqdS_Z3z__yw8JlfA-LKPB0eHD8gOg3Ue7krxcI9sL-e1fQjrtGX-qDEISr5dtAX-AqhTTwE |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgewAO5VkIFGQeElzSJLaT2Ce0PKoKiYIEK5VT5MT2qmKbrHaTVvDrmUm80fKSENdkbI3lz_OwPZ8JeZYm3MZZZUNrWBZiyBBKl_MwNs5mWWlMyrDe-f1xdjQT707SE7_htvbXKiEVP-2NNFZhheDB4oiJiEeQGkRL416e-50kZH4B7wIu9DLZyVKIxSdkZ3b8cfqlLynybQc6IQ65fbRG8jk85_rJCfVc_b9b5C2XdKWrl_rbhV4stnzP4XVSbLQerpx8Peja8qD6_guh4_8P6wbZ9WEpnQ44ukku2foWubZFVnibdHjIf6FXlvaMwme-aKle08ZRTd9Yu6SerXVOp56qnLYN_QBW6Qw6x-LC03k3QA4bYerrP5UL6HaLHZR-6lYOb4vdIbPDt59fH4X-0YawEilvQytFKriUDk0phCtGSKviSjOVCMCDKh2rTO5ypwQzTLM8Vi5WluETILkWhu-RSd3U9h6hTsVlqRlgJ8uFTaXkAlqnVjPBjZFJQF5sZrGoPKM5PqyxKCCzwQkvxgkPyJNRdDnQePxJ6BVCYRRA5u3-Q7OaF34hFyKXWiQVKFEmQnOnrKg0r0zsUiVLB0o9RyAVaB9AmUr7MgcYEjJtFVMkKFSQp_KA7G-wVnjDsS6Ywku9Is-ygDwef8OSx3McXdum62XS_s0UkLk7YHTUmUsYU5bIgDwdQfv3Ed__J6kH5CqDUA43nni8TybtqrMPIRRry0d-vf0AaOUs0g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hardware+Implementations+of+a+Deep+Learning+Approach+to+Optimal+Configuration+of+Reconfigurable+Intelligence+Surfaces&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Mart%C3%ADn-Mart%C3%ADn%2C+Alberto&rft.au=Padial-Allu%C3%A9%2C+Rub%C3%A9n&rft.au=Castillo%2C+Encarnaci%C3%B3n&rft.au=Parrilla%2C+Luis&rft.date=2024-01-30&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=3&rft_id=info:doi/10.3390%2Fs24030899&rft.externalDocID=A782092873 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |