Intelligent Vehicle Path Planning Based on Optimized A Algorithm
With the rapid development of the intelligent driving technology, achieving accurate path planning for unmanned vehicles has become increasingly crucial. However, path planning algorithms face challenges when dealing with complex and ever-changing road conditions. In this paper, aiming at improving...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 24; no. 10; p. 3149 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
01.05.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s24103149 |
Cover
| Abstract | With the rapid development of the intelligent driving technology, achieving accurate path planning for unmanned vehicles has become increasingly crucial. However, path planning algorithms face challenges when dealing with complex and ever-changing road conditions. In this paper, aiming at improving the accuracy and robustness of the generated path, a global programming algorithm based on optimization is proposed, while maintaining the efficiency of the traditional A* algorithm. Firstly, turning penalty function and obstacle raster coefficient are integrated into the search cost function to increase the adaptability and directionality of the search path to the map. Secondly, an efficient search strategy is proposed to solve the problem that trajectories will pass through sparse obstacles while reducing spatial complexity. Thirdly, a redundant node elimination strategy based on discrete smoothing optimization effectively reduces the total length of control points and paths, and greatly reduces the difficulty of subsequent trajectory optimization. Finally, the simulation results, based on real map rasterization, highlight the advanced performance of the path planning and the comparison among the baselines and the proposed strategy showcases that the optimized A* algorithm significantly enhances the security and rationality of the planned path. Notably, it reduces the number of traversed nodes by 84%, the total turning angle by 39%, and shortens the overall path length to a certain extent. |
|---|---|
| AbstractList | With the rapid development of the intelligent driving technology, achieving accurate path planning for unmanned vehicles has become increasingly crucial. However, path planning algorithms face challenges when dealing with complex and ever-changing road conditions. In this paper, aiming at improving the accuracy and robustness of the generated path, a global programming algorithm based on optimization is proposed, while maintaining the efficiency of the traditional A* algorithm. Firstly, turning penalty function and obstacle raster coefficient are integrated into the search cost function to increase the adaptability and directionality of the search path to the map. Secondly, an efficient search strategy is proposed to solve the problem that trajectories will pass through sparse obstacles while reducing spatial complexity. Thirdly, a redundant node elimination strategy based on discrete smoothing optimization effectively reduces the total length of control points and paths, and greatly reduces the difficulty of subsequent trajectory optimization. Finally, the simulation results, based on real map rasterization, highlight the advanced performance of the path planning and the comparison among the baselines and the proposed strategy showcases that the optimized A* algorithm significantly enhances the security and rationality of the planned path. Notably, it reduces the number of traversed nodes by 84%, the total turning angle by 39%, and shortens the overall path length to a certain extent. With the rapid development of the intelligent driving technology, achieving accurate path planning for unmanned vehicles has become increasingly crucial. However, path planning algorithms face challenges when dealing with complex and ever-changing road conditions. In this paper, aiming at improving the accuracy and robustness of the generated path, a global programming algorithm based on optimization is proposed, while maintaining the efficiency of the traditional A* algorithm. Firstly, turning penalty function and obstacle raster coefficient are integrated into the search cost function to increase the adaptability and directionality of the search path to the map. Secondly, an efficient search strategy is proposed to solve the problem that trajectories will pass through sparse obstacles while reducing spatial complexity. Thirdly, a redundant node elimination strategy based on discrete smoothing optimization effectively reduces the total length of control points and paths, and greatly reduces the difficulty of subsequent trajectory optimization. Finally, the simulation results, based on real map rasterization, highlight the advanced performance of the path planning and the comparison among the baselines and the proposed strategy showcases that the optimized A* algorithm significantly enhances the security and rationality of the planned path. Notably, it reduces the number of traversed nodes by 84%, the total turning angle by 39%, and shortens the overall path length to a certain extent.With the rapid development of the intelligent driving technology, achieving accurate path planning for unmanned vehicles has become increasingly crucial. However, path planning algorithms face challenges when dealing with complex and ever-changing road conditions. In this paper, aiming at improving the accuracy and robustness of the generated path, a global programming algorithm based on optimization is proposed, while maintaining the efficiency of the traditional A* algorithm. Firstly, turning penalty function and obstacle raster coefficient are integrated into the search cost function to increase the adaptability and directionality of the search path to the map. Secondly, an efficient search strategy is proposed to solve the problem that trajectories will pass through sparse obstacles while reducing spatial complexity. Thirdly, a redundant node elimination strategy based on discrete smoothing optimization effectively reduces the total length of control points and paths, and greatly reduces the difficulty of subsequent trajectory optimization. Finally, the simulation results, based on real map rasterization, highlight the advanced performance of the path planning and the comparison among the baselines and the proposed strategy showcases that the optimized A* algorithm significantly enhances the security and rationality of the planned path. Notably, it reduces the number of traversed nodes by 84%, the total turning angle by 39%, and shortens the overall path length to a certain extent. |
| Audience | Academic |
| Author | Du, Weiming Li, Jinwei Chu, Liang Guo, Zhiqi Wang, Yilin Li, Shibo Jiang, Zewei |
| Author_xml | – sequence: 1 givenname: Liang surname: Chu fullname: Chu, Liang – sequence: 2 givenname: Yilin surname: Wang fullname: Wang, Yilin – sequence: 3 givenname: Shibo surname: Li fullname: Li, Shibo – sequence: 4 givenname: Zhiqi surname: Guo fullname: Guo, Zhiqi – sequence: 5 givenname: Weiming surname: Du fullname: Du, Weiming – sequence: 6 givenname: Jinwei surname: Li fullname: Li, Jinwei – sequence: 7 givenname: Zewei surname: Jiang fullname: Jiang, Zewei |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38794003$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kV1rFDEUhoNUbLt64R-QAW9U2DZfk5ncdS1-LBTaC_V2OJuP2SwzyZpkkPrrzTp1kSKSi-Qcnry85z3n6MQHbxB6SfAFYxJfJsoJZoTLJ-iMcMqXLaX45K_3KTpPaYcxZYy1z9ApaxvJMWZn6GrtsxkG1xufq29m69RgqjvI2-puAO-d76v3kIyugq9u99mN7mcpVtVq6EN0eTs-R08tDMm8eLgX6OvHD1-uPy9vbj-tr1c3S8VrlpemBqssFqZhTFiOJXCptd6AJURoxghuedPWlAlCrOQMa2ioaoBtBNNNMb5A61lXB9h1--hGiPddANf9boTYdxDzwX4nxIYYiUGbxvAyMghta6IM1YRSKeqi9W7Wmvwe7n_AMBwFCe4OkXbHSAv8Zob3MXyfTMrd6JIqmYE3YUodwwKzlnDMC_r6EboLU_QllkLVsimKJfQFupipHopZ523IEVQ52oxOlc1aV_qrRtacy5Yc7L56kJ02o9FHr3-2WIC3M6BiSCka-99xLh-xymXILvjiwg3_-PEL-J22dA |
| CitedBy_id | crossref_primary_10_3390_pr12122775 |
| Cites_doi | 10.3390/electronics13020455 10.1109/LRA.2023.3332474 10.1016/j.apor.2022.103163 10.1177/0278364906067174 10.1142/S2301385022500078 10.1109/JOE.2023.3278290 10.1109/IROS.2017.8202319 10.15607/RSS.2010.VI.034 10.3390/wevj13120233 10.1007/BF02023004 10.1007/s12555-021-0440-2 10.1109/TVT.2024.3371184 10.3390/wevj14080213 10.1142/S0218195999000285 10.1109/TIV.2024.3360418 10.1109/ACCESS.2023.3241960 10.3390/machines10100931 10.3390/s20010188 10.1109/TASE.2023.3245948 10.1109/ACCESS.2014.2302442 10.1016/j.patcog.2022.109238 10.1109/ACCESS.2024.3357990 10.1007/s10514-023-10083-y 10.3901/JME.2020.18.205 10.1177/0278364911406761 10.1016/j.cie.2023.109767 10.1155/2022/3216045 10.1080/00207543.2021.2015806 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 ADTOC UNPAY DOA |
| DOI | 10.3390/s24103149 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection (NC LIVE) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_66b1e90ade7e4233a6df51ce2d122965 10.3390/s24103149 A795449815 38794003 10_3390_s24103149 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: science and technology planning project in Tianjin city grantid: 20YFZCGX00770 – fundername: science and technology planning project in Yibin city grantid: 2020GY001 – fundername: the State Scholarship Funding of CSC grantid: 202206170067 – fundername: the Changsha Automotive Innovation Research Institute Innovation Project-Research on Intelligent Trip Planning System of Pure Electric Vehicles Based on Big Data grantid: CAIRIZT20220105 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M ALIPV NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO ADRAZ ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c453t-e5afcf06e7336f409a49dddbaf116d33108478523611f9430da72c7a3b63d7023 |
| IEDL.DBID | M48 |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:40:52 EDT 2025 Sun Oct 26 04:09:00 EDT 2025 Fri Sep 05 14:25:53 EDT 2025 Tue Oct 07 07:42:35 EDT 2025 Mon Oct 20 17:05:14 EDT 2025 Mon Jul 21 06:04:10 EDT 2025 Thu Apr 24 23:02:45 EDT 2025 Thu Oct 16 04:39:48 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | A algorithm intelligent driving obstacle raster coefficient path planning turning penalty function |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c453t-e5afcf06e7336f409a49dddbaf116d33108478523611f9430da72c7a3b63d7023 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.3390/s24103149 |
| PMID | 38794003 |
| PQID | 3059710300 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_66b1e90ade7e4233a6df51ce2d122965 unpaywall_primary_10_3390_s24103149 proquest_miscellaneous_3060381404 proquest_journals_3059710300 gale_infotracacademiconefile_A795449815 pubmed_primary_38794003 crossref_primary_10_3390_s24103149 crossref_citationtrail_10_3390_s24103149 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-05-01 |
| PublicationDateYYYYMMDD | 2024-05-01 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Zhong (ref_9) 2011; 1 Duan (ref_42) 2020; 56 Hsu (ref_23) 1999; 9 Wang (ref_3) 2012; 52 Christian (ref_19) 2022; 10 Liu (ref_43) 2021; 57 ref_11 Hills (ref_10) 2014; 7 Cheng (ref_33) 2020; 15 Hsu (ref_21) 2012; 25 Arab (ref_1) 2024; 21 Lian (ref_30) 2011; 36 Zhang (ref_5) 2011; 5 Osman (ref_25) 1993; 41 Wang (ref_41) 2018; 38 Chen (ref_45) 2019; 29 ref_17 ref_39 ref_16 ref_38 ref_15 ref_37 Zhu (ref_35) 2022; 2022 Wang (ref_28) 2011; 12 Yu (ref_31) 2020; 30 Ma (ref_27) 2022; 123 Fransen (ref_36) 2023; 61 Ding (ref_26) 2023; 136 Zhu (ref_20) 2020; 42 Yu (ref_14) 2023; 47 Chen (ref_2) 2024; 9 Karaman (ref_13) 2011; 30 Long (ref_24) 2024; 60 Liao (ref_18) 2023; 21 Zhou (ref_12) 2022; 23 Yao (ref_32) 2024; 187 ref_40 Chen (ref_34) 2023; 11 ref_8 Hadi (ref_7) 2024; 49 Feng (ref_29) 2024; 12 ref_4 Elbanhawi (ref_22) 2014; 2 ref_6 Shen (ref_44) 2023; 40 |
| References_xml | – ident: ref_38 doi: 10.3390/electronics13020455 – volume: 9 start-page: 987 year: 2024 ident: ref_2 article-title: Interactive Joint Planning for Autonomous Vehicles publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2023.3332474 – volume: 23 start-page: 207 year: 2022 ident: ref_12 article-title: Crossover recombination-based global-best brain storm optimization algorithm for UAV path planning publication-title: Proc. Rom. Acad. Ser. A Math. Phys. Technol. Sci. Inf. Sci. – volume: 123 start-page: 103163 year: 2022 ident: ref_27 article-title: A new coverage path planning algorithm for unmanned surface mapping vehicle based on A-star based searching publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2022.103163 – volume: 25 start-page: 627 year: 2012 ident: ref_21 article-title: On the Probabilistic Foundations of Probabilistic Roadmap Planning publication-title: Int. J. Robot. Res. doi: 10.1177/0278364906067174 – ident: ref_11 – volume: 42 start-page: 1145 year: 2020 ident: ref_20 article-title: Path planning method for intelligent vehicles based on improved RRT algorithm for safety field publication-title: Automot. Eng. – volume: 5 start-page: 85 year: 2011 ident: ref_5 article-title: Summary of Path Planning Algorithm and Its Application publication-title: Mod. Mach. – volume: 10 start-page: 129 year: 2022 ident: ref_19 article-title: Comparison Between A* and RRT Algorithms for 3D UAV Path Planning publication-title: Unmanned Syst. doi: 10.1142/S2301385022500078 – volume: 49 start-page: 311 year: 2024 ident: ref_7 article-title: Adaptive Formation Motion Planning and Control of Autonomous Underwater Vehicles Using Deep Reinforcement Learning publication-title: IEEE J. Ocean. Eng. doi: 10.1109/JOE.2023.3278290 – ident: ref_15 doi: 10.1109/IROS.2017.8202319 – ident: ref_16 – ident: ref_17 doi: 10.15607/RSS.2010.VI.034 – volume: 29 start-page: 1187 year: 2019 ident: ref_45 article-title: Path Planning for Mobile Robots Based on Motion Constraints publication-title: Comput. Integr. Manuf. Syst. – ident: ref_37 doi: 10.3390/wevj13120233 – volume: 52 start-page: 1085 year: 2012 ident: ref_3 article-title: Indoor mobile-robot path planning based on an improved A* algorithm publication-title: J. Tsinghua Univ. Sci. Technol. – volume: 7 start-page: 261 year: 2014 ident: ref_10 article-title: Cellular neural network-based thermal modelling for real-time robotic path planning publication-title: Int. J. Agil. Syst. Manag. – volume: 41 start-page: 421 year: 1993 ident: ref_25 article-title: Metastrategy simulated annealing and tabu search algorithms for the vehicle routing problem publication-title: Ann. Oper. Res. doi: 10.1007/BF02023004 – volume: 21 start-page: 993 year: 2023 ident: ref_18 article-title: Stack-RRT*: A Random Tree Expansion Algorithm for Smooth Path Planning publication-title: Int. J. Control Autom. Syst. doi: 10.1007/s12555-021-0440-2 – ident: ref_4 doi: 10.1109/TVT.2024.3371184 – ident: ref_39 doi: 10.3390/wevj14080213 – volume: 9 start-page: 495 year: 1999 ident: ref_23 article-title: Path planning in expansive configuration spaces publication-title: Int. J. Comput. Geom. Appl. doi: 10.1142/S0218195999000285 – ident: ref_6 doi: 10.1109/TIV.2024.3360418 – volume: 11 start-page: 12360 year: 2023 ident: ref_34 article-title: Intelligent Warehouse Robot Path Planning Based on Improved Ant Colony Algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3241960 – volume: 36 start-page: 1881 year: 2011 ident: ref_30 article-title: Improved A* path planning algorithm for vision-guided multi-AGV system publication-title: Control. Decis. – volume: 38 start-page: 1523 year: 2018 ident: ref_41 article-title: The shortest path planning for mobile robots using improved A* algorithm publication-title: J. Comput. Appl. – ident: ref_40 doi: 10.3390/machines10100931 – ident: ref_8 doi: 10.3390/s20010188 – volume: 60 start-page: 366 year: 2024 ident: ref_24 article-title: Improved RRT robotic arm path planning by fusion A* publication-title: Comput. Eng. Appl. – volume: 30 start-page: 383 year: 2020 ident: ref_31 article-title: Path planning based on map preprocessing and improved A* algorithm publication-title: High Tech Commun. – volume: 21 start-page: 1488 year: 2024 ident: ref_1 article-title: Motion Planning and Control of Autonomous Aggressive Vehicle Maneuvers publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2023.3245948 – volume: 2 start-page: 56 year: 2014 ident: ref_22 article-title: Sampling-Based Robot Motion Planning: A Review publication-title: IEEE Access doi: 10.1109/ACCESS.2014.2302442 – volume: 136 start-page: 109238 year: 2023 ident: ref_26 article-title: A Sampling-Based Density Peaks Clustering Algorithm for Large-Scale Data publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2022.109238 – volume: 12 start-page: 18400 year: 2024 ident: ref_29 article-title: The Optimal Global Path Planning of Mobile Robot Based on Improved Hybrid Adaptive Genetic Algorithm in Different Tasks and Complex Road Environments publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3357990 – volume: 40 start-page: 76 year: 2023 ident: ref_44 article-title: Path planning of Mobile Robot based on improved A* Algorithm publication-title: Appl. Res. Comput. – volume: 47 start-page: 281 year: 2023 ident: ref_14 article-title: An efficient RRT-based motion planning algorithm for autonomous underwater vehicles under cylindrical sampling constraints publication-title: Auton. Robot. doi: 10.1007/s10514-023-10083-y – volume: 1 start-page: 20 year: 2011 ident: ref_9 article-title: Optimal Robot Path Planning with Cellular Neural Network publication-title: Int. J. Intell. Mechatron. Robot. – volume: 56 start-page: 205 year: 2020 ident: ref_42 article-title: Improved A-star algorithm for safety insured optimal path with smoothed corner turns publication-title: J. Mech. Eng. doi: 10.3901/JME.2020.18.205 – volume: 30 start-page: 846 year: 2011 ident: ref_13 article-title: Sampling-based algorithms for optimal motion planning publication-title: Int. J. Robot. Res. doi: 10.1177/0278364911406761 – volume: 12 start-page: 5 year: 2011 ident: ref_28 article-title: Research on Multi-Constraint Multicast Routing Algorithm Based on Dijkstra Algorithm publication-title: Comput. Technol. Dev. – volume: 187 start-page: 109767 year: 2024 ident: ref_32 article-title: Improved dynamic windows approach based on energy consumption management and fuzzy logic control for local path planning of mobile robots publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2023.109767 – volume: 2022 start-page: 3216045 year: 2022 ident: ref_35 article-title: Path Planning of Energy Robot Based on Improved Ant Colony Algorithm publication-title: Wirel. Commun. Mob. Comput. doi: 10.1155/2022/3216045 – volume: 15 start-page: 546 year: 2020 ident: ref_33 article-title: Dynamic path planning of mobile robot fusing improved A* algorithm and Morphin algorithm publication-title: J. Intell. Syst. – volume: 61 start-page: 707 year: 2023 ident: ref_36 article-title: Efficient path planning for automated guided vehicles using A* (Astar) algorithm incorporating turning costs in search heuristic publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2021.2015806 – volume: 57 start-page: 186 year: 2021 ident: ref_43 article-title: Path planning of indoor mobile robot based on improved A* algorithm publication-title: Comput. Eng. Appl. |
| SSID | ssj0023338 |
| Score | 2.46914 |
| Snippet | With the rapid development of the intelligent driving technology, achieving accurate path planning for unmanned vehicles has become increasingly crucial.... |
| SourceID | doaj unpaywall proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 3149 |
| SubjectTerms | A algorithm Algorithms Efficiency Heuristic intelligent driving Neural networks obstacle raster coefficient Optimization techniques path planning turning penalty function |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8AB8SZQkHlIcIlqx6_41i1qVZB4HCjqzfJ6nLbSNlu1WaH213dmk40WUcSFY5KJZM_Y_uaT7W8Ye5ekACOtKRHdmlKD02VtE5QevE1IH1Kd6b7zl692_0B_PjSHa6W-6ExYLw_cO27L2qnMXkTILiP0q2ihMTLlCmRVebtULxW1X5GpgWopZF69jpBCUr91gThFOu3-N_RZivT_uRSvYdHtRXsWL3_F2WwNdPbus3tDtsgnfSsfsFu5fcjurmkIPmLbn0ZRzY7_zMdkyL9jXsdX9Yj4DiIV8HnLv-H6cHpyhQ8TPpkdzc9PuuPTx-xgb_fHx_1yKItQJm1UV2YTm9QIm0nJsEF-FrUHgGlspLSgMF9DxKkNqarIhtTVIboquaimVoFD3zxhG-28zc8YFwk0GJcS5ErHZGske0bELCrAn7Io2IeVu0IaNMOpdMUsIHcgz4bRswV7M5qe9UIZNxntkM9HA9K2Xr7AiIch4uFfES_Ye4pYoBmIjUlxuEiAXSItqzBx3mjta4mWm6ughmFqXgRc4Lyj4mrYu9fjZ5xUtFMS2zxfkI2lHVQtdMGe9oNhbLOqHRWTVwV7O46Ov_f4-f_o8Qt2p8Jcqj9nuck2uvNFfom5UDd9tRz21ww3Avk priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7QE4VLwJLcg8JLhEjRPbSQ4IdlGrgsRSIYp6i7wep0XaJkubVVV-PTObB4t4HJNMJHs8zzj-PoAXTkaopdEhZbcyVJiqMDMOwxxz46h9cJnn884fp-bgSH041scbMO3PwvBvlX1MXAVqrB1_I98lu8xT5sSK3iy-h8waxburPYWG7agV8PUKYuwabMaMjDWCzcne9PDz0IIl1JG1-EIJNfu7F5S_GL89_y0rrcD7_wzRaznq-rJa2KtLO5-vJaP9W7DVVZFi3C77bdjw1R24uYYteBfevh_ANhvx1Z-yoDikek_0PEViQhkMRV2JTxQ3zr79oIuxGM9PaNrN6dk9ONrf-_LuIOzoEkKndNKEXtvSlZHxjHBYUt9mVY6IM1tKaTChOo4yUaYZbUWWjLqONo1dapOZSTAl3dyHUVVX_iGIyKFCnTqHPlbWmYyaQB1ZH8VIL_kogFe9ugrXYYkzpcW8oJ6CNVsMmg3g2SC6aAE0_iY0YZ0PAox5vbpRn58UnQsVxsykzyOLPvVUBCbWYKml8zHKOM6NDuAlr1jBnkmDcbY7YEBTYoyrYpzmWqk8kyS50y9q0bnsRfHLwAJ4OjwmZ-MdFFv5eskyhndWVaQCeNAawzDmJEuZZD4J4PlgHf-e8aP_D2EbbsRUPbV_Vu7AqDlf-sdU_TSzJ51J_wTBZADQ priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QE4UN6EFpQCElxSbMeP-NYUURUkSg8sKifLsR1asc1WbVaI_nrGm2y65SWOSSaRPZnxNyN7vgF44SjxgkqRIbrVGfeKZ4V0PtNeS4fpgytCrHf-sC_3xvz9oThcgc1FLczS_n2O6fjrc0SYyLCur8GqFBhuj2B1vH9QfplXDTH8MmOkYwy6Kn8FZ-Z0_L8vukuoc33WnNof3-1ksgQvu2uXRTrdqZJvW7O22nIXv3A2_nPkt-FWH1ymZWcNd2AlNHfh5hLl4D3YfjdwcLbp53AUBdMDDAPTRfuidAeBzafTJv2Iy8nJ8QVelGk5-To9O26PTu7DePftpzd7Wd9FIXNc5G0WhK1dTWSIxIc1pnOWa-99ZWtKpc8xvEOAKkQkYaF1JGP3VjGnbF7J3CuE9AcwaqZNeAQpcZ57oZzzgXHrZIG5oSA2EObxpUASeLXQuXE9xXjsdDExmGpEpZhBKQk8G0RPO16NPwntxB83CEQq7PkN1LPpPctIWdGgifVBBYwNcyt9LagLzFPGtBQJvIy_3USHxcE429cd4JQi9ZUplRac64Ki5MbCMkzvyecG10OtYi82nN3m8Bh9MG6s2CZMZ1FGxg1XTngCDzuLGsacFyr2ns8TeD6Y2N9n_Pi_pNbhBsPYqjt3uQGj9mwWnmBs1FZPe-_4CVS0Bbo priority: 102 providerName: Unpaywall |
| Title | Intelligent Vehicle Path Planning Based on Optimized A Algorithm |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38794003 https://www.proquest.com/docview/3059710300 https://www.proquest.com/docview/3060381404 https://doi.org/10.3390/s24103149 https://doaj.org/article/66b1e90ade7e4233a6df51ce2d122965 |
| UnpaywallVersion | publishedVersion |
| Volume | 24 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9NAEB71eIA-IG5cSmQOCV4MPvawHxA4qKEgNUSIoPTJ2uyu20quXVJHUH49M7ZjpaJIvFiyPSvtzh7fjNf7fQAvdOAbHgjuIbrlHjOSebHQxktMIjSmDzq2dN75cCwOpuzzjM82YKWx2Tnw4trUjvSkpovi9a8fl-9wwr-ljBNT9jcXiELEwp5swjYCVEIKDoes30wIo6gRtKYzXR7iod8SDF0tegWWGvb-v9foNZC6sSzP1eVPVRRraDS6Dbe6MNJN236_Axu2vAs7a-SC9-D9p55ts3a_2xMydCcY8LkroSJ3iBBm3Kp0v-DCcXb6G29SNy2Oq8VpfXJ2H6aj_W8fDrxOL8HTjEe1Z7nKde4LSxSHOTpCscQYM1d5EAgTYSCHUBRzolsJcqJdN0qGWqpoLiIj0U8PYKusSvsIXF8bZrjU2tiQKS1izAK5r6wfGixkfQderdyV6Y5MnDQtigyTCvJs1nvWgWe96XnLoHGd0ZB83hsQ6XXzoFocZ90cyoSYBzbxlbHSYhQYKWFyHmgbmiAME8EdeEk9ltFgwcpo1Z0wwCYRyVWWyoQzlsQBWu6tOjVbDbkMV75Ekuoatu5p_xpnG22hqNJWS7IRtLXKfObAw3Yw9HWOYkkq85EDz_vR8e8W7_53ZR_DzRAjqfYvyz3YqhdL-wQjoXo-gE05k3iNRx8HsD3cH0--DpqvCoNmBuCz6XiSHv0BtOsH1A |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaqcigcEDuBAmETXKI6iZf4gGAKVDN0gUNbzc14bKdFmiZDJ6Oq_Ch-I-9l6yCWW4-JXyT7-fktsf19hLywMXU8FjyC6JZHzEkWZcK6SDklLJQPNvN433l3TwwP2KcxH6-Qn91dGDxW2fnE2lG70uI_8g2wSyWRE4u-nX2PkDUKd1c7Co3GLLb9-RmUbPM3ow8wvy-TZOvj_vth1LIKRJbxtIo8N7nNqfAIBJhDeWOYcs5NTB7HwqWQ7oDDzjiCksQ5gpM7IxMrTToRqZM10AG4_CvQQJExQY4vCrwU6r0GvShNFd2YQ3REdHj1W8yrqQH-DABLEXBtUczM-ZmZTpdC3dYNcr3NUcNBY1Q3yYovbpFrS8iFt8m7UQ_lWYWH_hgFwy-QTYYdC1K4CfHRhWURfgavdPLtBzwMwsH0CJRaHZ_cIQeXora7ZLUoC3-fhNQ65ri01vmEGSsyKDE5NZ4mDj7yNCCvO3Vp2yKVI2HGVEPFgprVvWYD8qwXnTXwHH8T2kSd9wKIqF2_KE-PdLtAtRCT2CtqnJceUszUCJfz2PrExUmiBA_IK5wxjeseOmNNe30BhoQIWnogFWdMZTFIrneTqluHMNcX5huQp30zLGXcnzGFLxcoI3DfllEWkHuNMfR9TjOJFPZpQJ731vHvET_4fxeekLXh_u6O3hntbT8kVxPI05oznOtktTpd-EeQZ1WTx7Vxh-TrZa-mX-3ANgs |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaqIrEcEDuBAmYTXKJxEi_JAcGUMupQKD1QNDfjsZ0WaZoMnYyq8tP4dbyXrYNYbj0meZbs57fGz98j5JmNmBORFCF4tzzkTvEwldaFmcukhfTBph7vO3_cldv7_P1ETNbIz-4uDJZVdjaxNtSutPiPfABymSnsicUGeVsWsbc1ej3_HmIHKTxp7dppNCKy409PIH1bvBpvwV4_j-PRu89vt8O2w0BouUiq0AuT25xJj6CAOaQ6hmfOuanJo0i6BEIfMN6pQICSKEegcmdUbJVJpjJxqgY9APN_AUZnWE6oJmfJXgK5X4NkBB_ZYAGeEpHis9_8X90m4E9nsOINLy2LuTk9MbPZitsbXSNX23iVDhsBu07WfHGDXFlBMbxJ3ox7WM-KfvGHSEj3ILKkXUckugm-0tGyoJ_AQh19-wEPQzqcHQBTq8OjW2T_XNh2m6wXZeHvEsqs404oa52PubEyhXRTMONZ7GCQZwF52bFL2xa1HJtnzDRkL8hZ3XM2IE960nkD1fE3ok3keU-A6Nr1i_L4QLfKqqWcRj5jxnnlIdxMjHS5iKyPXRTHmRQBeYE7ptEGwGSsaa8ywJIQTUsPVSY4z9IIKDe6TdWtcVjoM1EOyOP-M6g1ntWYwpdLpJF4hssZD8idRhj6OSepwnb2SUCe9tLx7xXf-_8UHpGLoEf6w3h35z65HEPI1pRzbpD16njpH0DIVU0f1rJNydfzVqZfqgA6Tg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QE4UN6EFpQCElxSbMeP-NYUURUkSg8sKifLsR1asc1WbVaI_nrGm2y65SWOSSaRPZnxNyN7vgF44SjxgkqRIbrVGfeKZ4V0PtNeS4fpgytCrHf-sC_3xvz9oThcgc1FLczS_n2O6fjrc0SYyLCur8GqFBhuj2B1vH9QfplXDTH8MmOkYwy6Kn8FZ-Z0_L8vukuoc33WnNof3-1ksgQvu2uXRTrdqZJvW7O22nIXv3A2_nPkt-FWH1ymZWcNd2AlNHfh5hLl4D3YfjdwcLbp53AUBdMDDAPTRfuidAeBzafTJv2Iy8nJ8QVelGk5-To9O26PTu7DePftpzd7Wd9FIXNc5G0WhK1dTWSIxIc1pnOWa-99ZWtKpc8xvEOAKkQkYaF1JGP3VjGnbF7J3CuE9AcwaqZNeAQpcZ57oZzzgXHrZIG5oSA2EObxpUASeLXQuXE9xXjsdDExmGpEpZhBKQk8G0RPO16NPwntxB83CEQq7PkN1LPpPctIWdGgifVBBYwNcyt9LagLzFPGtBQJvIy_3USHxcE429cd4JQi9ZUplRac64Ki5MbCMkzvyecG10OtYi82nN3m8Bh9MG6s2CZMZ1FGxg1XTngCDzuLGsacFyr2ns8TeD6Y2N9n_Pi_pNbhBsPYqjt3uQGj9mwWnmBs1FZPe-_4CVS0Bbo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Vehicle+Path+Planning+Based+on+Optimized+A+Algorithm&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Chu%2C+Liang&rft.au=Wang%2C+Yilin&rft.au=Li%2C+Shibo&rft.au=Guo%2C+Zhiqi&rft.date=2024-05-01&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=10&rft_id=info:doi/10.3390%2Fs24103149&rft.externalDocID=A795449815 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |