A bat optimized neural network and wavelet transform approach for short-term price forecasting

[Display omitted] •We propose a new method for short-term price forecasting (STPF).•The new method is based on Bat Algorithm, Wavelet Transform and Artificial Neural Networks.•The method has the capability to auto-tune the best simulation parameters.•We compare the proposed method in Spanish and Pen...

Full description

Saved in:
Bibliographic Details
Published inApplied energy Vol. 210; pp. 88 - 97
Main Authors Bento, P.M.R., Pombo, J.A.N., Calado, M.R.A., Mariano, S.J.P.S.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.01.2018
Subjects
Online AccessGet full text
ISSN0306-2619
1872-9118
DOI10.1016/j.apenergy.2017.10.058

Cover

Abstract [Display omitted] •We propose a new method for short-term price forecasting (STPF).•The new method is based on Bat Algorithm, Wavelet Transform and Artificial Neural Networks.•The method has the capability to auto-tune the best simulation parameters.•We compare the proposed method in Spanish and Pennsylvania-New Jersey-Maryland (PJM) electricity markets.•The proposed approach exhibits a better forecasting accuracy. In the competitive power industry environment, electricity price forecasting is a fundamental task when market participants decide upon bidding strategies. This has led researchers in the last years to intensely search for accurate forecasting methods, contributing to better risk assessment, with significant financial repercussions. This paper presents a hybrid method that combines similar and recent day-based selection, correlation and wavelet analysis in a pre-processing stage. Afterwards a feedforward neural network is used alongside Bat and Scaled Conjugate Gradient Algorithms to improve the traditional neural network learning capability. Another feature is the method’s capacity to fine-tune neural network architecture and wavelet decomposition, for which there is no optimal paradigm. Numerical testing was applied in a day-ahead framework to historical data pertaining to Spanish and Pennsylvania-New Jersey-Maryland (PJM) electricity markets, revealing positive forecasting results in comparison with other state-of-the-art methods.
AbstractList [Display omitted] •We propose a new method for short-term price forecasting (STPF).•The new method is based on Bat Algorithm, Wavelet Transform and Artificial Neural Networks.•The method has the capability to auto-tune the best simulation parameters.•We compare the proposed method in Spanish and Pennsylvania-New Jersey-Maryland (PJM) electricity markets.•The proposed approach exhibits a better forecasting accuracy. In the competitive power industry environment, electricity price forecasting is a fundamental task when market participants decide upon bidding strategies. This has led researchers in the last years to intensely search for accurate forecasting methods, contributing to better risk assessment, with significant financial repercussions. This paper presents a hybrid method that combines similar and recent day-based selection, correlation and wavelet analysis in a pre-processing stage. Afterwards a feedforward neural network is used alongside Bat and Scaled Conjugate Gradient Algorithms to improve the traditional neural network learning capability. Another feature is the method’s capacity to fine-tune neural network architecture and wavelet decomposition, for which there is no optimal paradigm. Numerical testing was applied in a day-ahead framework to historical data pertaining to Spanish and Pennsylvania-New Jersey-Maryland (PJM) electricity markets, revealing positive forecasting results in comparison with other state-of-the-art methods.
In the competitive power industry environment, electricity price forecasting is a fundamental task when market participants decide upon bidding strategies. This has led researchers in the last years to intensely search for accurate forecasting methods, contributing to better risk assessment, with significant financial repercussions. This paper presents a hybrid method that combines similar and recent day-based selection, correlation and wavelet analysis in a pre-processing stage. Afterwards a feedforward neural network is used alongside Bat and Scaled Conjugate Gradient Algorithms to improve the traditional neural network learning capability. Another feature is the method’s capacity to fine-tune neural network architecture and wavelet decomposition, for which there is no optimal paradigm. Numerical testing was applied in a day-ahead framework to historical data pertaining to Spanish and Pennsylvania-New Jersey-Maryland (PJM) electricity markets, revealing positive forecasting results in comparison with other state-of-the-art methods.
Author Calado, M.R.A.
Pombo, J.A.N.
Mariano, S.J.P.S.
Bento, P.M.R.
Author_xml – sequence: 1
  givenname: P.M.R.
  surname: Bento
  fullname: Bento, P.M.R.
  email: pedrobento194@outlook.com
– sequence: 2
  givenname: J.A.N.
  surname: Pombo
  fullname: Pombo, J.A.N.
  email: Jose_p@portugalmail.com
– sequence: 3
  givenname: M.R.A.
  surname: Calado
  fullname: Calado, M.R.A.
  email: rc@ubi.pt
– sequence: 4
  givenname: S.J.P.S.
  surname: Mariano
  fullname: Mariano, S.J.P.S.
  email: sm@ubi.pt
BookMark eNqFkE9LAzEQxYMoWKtfQXL0sjXJ7iZZ8GAp_gPBi14NaXbapm6TNUkt9dObUr146WmYx3vDvN8ZOnbeAUKXlIwoofx6OdI9OAjz7YgRKrI4IrU8QgMqBSsaSuUxGpCS8IJx2pyisxiXhBBGGRmg9zGe6oR9n-zKfkOLHayD7vJIGx8-sHYt3ugv6CDhFLSLMx9WWPd98NoscN5wXPiQigRZ74M1sBPB6Jism5-jk5nuIlz8ziF6u797nTwWzy8PT5Pxc2GqukxFO2NlZUQlCG-llMC4rqtSNrTkotKcADBWG24a01LBp5Qb3kylaapGCGilKYfoan83__W5hpjUykYDXacd-HVUjNYlL3Nnftia2dSCZ4TZyvdWE3yMAWYqF1zpsFWUqB17tVR_7NWO_U7fB2_-BY1NOlnvMkPbHY7f7uOQkX1ZCCoaC85AazPZpFpvD534AZEqp30
CitedBy_id crossref_primary_10_1021_acs_est_1c04048
crossref_primary_10_1016_j_energy_2019_04_167
crossref_primary_10_1016_j_epsr_2022_108122
crossref_primary_10_3390_en11051074
crossref_primary_10_1038_s41598_025_87328_6
crossref_primary_10_1016_j_eswa_2021_115229
crossref_primary_10_3390_en13205452
crossref_primary_10_1016_j_apenergy_2020_115801
crossref_primary_10_1016_j_ijepes_2021_107505
crossref_primary_10_1016_j_resourpol_2019_02_014
crossref_primary_10_1109_ACCESS_2021_3108629
crossref_primary_10_1016_j_resourpol_2019_02_017
crossref_primary_10_3390_en11082060
crossref_primary_10_3390_math10122094
crossref_primary_10_1016_j_autcon_2021_103958
crossref_primary_10_1016_j_apenergy_2019_01_213
crossref_primary_10_1016_j_energy_2020_117087
crossref_primary_10_1016_j_apenergy_2019_113448
crossref_primary_10_1016_j_eswa_2023_120026
crossref_primary_10_1016_j_apenergy_2021_116688
crossref_primary_10_1109_TFUZZ_2021_3113762
crossref_primary_10_1016_j_conbuildmat_2024_136091
crossref_primary_10_1016_j_rser_2024_114794
crossref_primary_10_1016_j_ijepes_2021_106800
crossref_primary_10_1016_j_renene_2021_02_017
crossref_primary_10_3390_en11051063
crossref_primary_10_3390_su11061562
crossref_primary_10_1002_2050_7038_12506
crossref_primary_10_1016_j_energy_2023_127350
crossref_primary_10_1155_2018_4671850
crossref_primary_10_2478_amns_2023_2_01313
crossref_primary_10_1016_j_apenergy_2019_114087
crossref_primary_10_1155_2018_4276176
crossref_primary_10_3390_app13169273
crossref_primary_10_1080_08839514_2024_2419571
crossref_primary_10_1016_j_apenergy_2019_114486
crossref_primary_10_1016_j_enpol_2020_111740
crossref_primary_10_1016_j_jclepro_2019_117644
crossref_primary_10_1016_j_egyai_2020_100009
crossref_primary_10_3390_en14227473
crossref_primary_10_1109_ACCESS_2020_3034113
crossref_primary_10_30798_makuiibf_1097686
crossref_primary_10_1016_j_eneco_2019_05_006
crossref_primary_10_1016_j_joitmc_2023_100079
crossref_primary_10_1109_ACCESS_2019_2932999
crossref_primary_10_1016_j_apr_2019_08_002
crossref_primary_10_1016_j_energy_2019_116704
crossref_primary_10_1016_j_jclepro_2020_120171
crossref_primary_10_1016_j_energy_2020_117858
crossref_primary_10_1016_j_eswa_2019_112842
crossref_primary_10_1016_j_physa_2019_121717
crossref_primary_10_3390_en13030532
crossref_primary_10_1016_j_ijepes_2022_108092
crossref_primary_10_17233_sosyoekonomi_2023_03_09
crossref_primary_10_3390_en12061067
crossref_primary_10_1016_j_apenergy_2024_123058
crossref_primary_10_1016_j_energy_2019_116516
crossref_primary_10_1016_j_apenergy_2019_114195
crossref_primary_10_1016_j_jup_2022_101444
crossref_primary_10_1016_j_apenergy_2019_03_129
crossref_primary_10_1016_j_asoc_2023_110018
crossref_primary_10_1109_ACCESS_2023_3280934
crossref_primary_10_1007_s42835_022_01296_9
crossref_primary_10_1016_j_apenergy_2018_06_137
crossref_primary_10_1109_JIOT_2022_3228736
crossref_primary_10_1007_s42979_021_00698_2
crossref_primary_10_1016_j_neucom_2019_05_030
crossref_primary_10_1016_j_measurement_2025_116913
crossref_primary_10_1016_j_enconman_2019_112188
crossref_primary_10_1109_TSTE_2024_3402585
crossref_primary_10_3390_a12040084
crossref_primary_10_1016_j_apenergy_2021_116983
crossref_primary_10_3233_JCM_194060
crossref_primary_10_3390_en14227820
crossref_primary_10_1016_j_procs_2020_10_063
crossref_primary_10_1016_j_ijepes_2018_08_025
crossref_primary_10_3390_en12050924
crossref_primary_10_1016_j_apenergy_2019_05_068
crossref_primary_10_1016_j_asoc_2019_04_026
crossref_primary_10_2139_ssrn_3270251
crossref_primary_10_1109_ACCESS_2019_2963416
crossref_primary_10_1109_ACCESS_2021_3100076
crossref_primary_10_1016_j_energy_2019_02_141
crossref_primary_10_1016_j_epsr_2021_107416
crossref_primary_10_1109_ACCESS_2021_3121072
crossref_primary_10_1007_s12667_023_00576_1
Cites_doi 10.1109/ISAP.2009.5352834
10.1002/etep.242
10.1109/TPWRS.2016.2556620
10.1109/CEC.2015.7256930
10.3390/en80910464
10.1016/j.ijepes.2008.09.003
10.1109/TPWRS.2010.2049385
10.1109/TPWRS.2006.873409
10.1109/TPWRS.2007.901670
10.1109/TPWRS.2008.922251
10.1016/j.asoc.2015.08.002
10.4236/jpee.2015.39001
10.1109/TPWRS.2012.2222452
10.1016/j.ijforecast.2014.08.008
10.1016/j.epsr.2006.09.022
10.1016/S0893-6080(05)80056-5
10.1109/INDICON.2015.7443460
10.1109/TPWRS.2008.2008606
10.1007/978-3-642-23193-3_5
10.1109/TPWRS.2002.1007902
10.1007/978-3-642-12538-6_6
10.1109/EEM.2008.4579109
10.1109/PES.2005.1489530
10.1016/j.enconman.2010.10.047
10.1016/j.jksuci.2013.12.001
10.1016/j.enconman.2015.08.025
10.7763/LNSE.2013.V1.61
10.1109/TPWRS.2005.846054
10.1162/089976601317098565
10.1016/j.epsr.2009.04.006
10.1109/TPWRS.2015.2438322
10.1016/j.ijforecast.2004.12.005
10.1016/S0306-2619(03)00096-5
10.1016/j.enconman.2010.08.035
10.1016/j.apenergy.2010.05.012
10.1155/2016/6097484
10.1016/S0169-2070(97)00044-7
10.1109/TPWRS.2008.2006997
10.1109/TPWRS.2002.804943
10.1016/j.eneco.2013.02.006
10.1109/TPWRS.2007.894857
10.1016/j.enconman.2015.02.023
10.1002/jhbs.1094
10.1109/CINTI.2014.7028669
10.1016/j.eswa.2009.04.059
10.1109/TPWRS.2004.840380
10.1016/j.apenergy.2016.03.089
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright_xml – notice: 2017 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2017.10.058
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
EndPage 97
ExternalDocumentID 10_1016_j_apenergy_2017_10_058
S0306261917314782
GeographicLocations Maryland
New Jersey
Pennsylvania
Spain
GeographicLocations_xml – name: Pennsylvania
– name: Spain
– name: New Jersey
– name: Maryland
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c453t-df234c74706d888e26a5438913674a60ee225c6c9cd176b16c69b8c94977ed8c3
IEDL.DBID .~1
ISSN 0306-2619
IngestDate Sat Sep 27 19:52:33 EDT 2025
Thu Oct 02 11:51:07 EDT 2025
Thu Oct 09 00:21:43 EDT 2025
Thu Apr 24 23:04:05 EDT 2025
Fri Feb 23 02:45:50 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Bat algorithm
Wavelet transform
Short-term price forecasting
Scaled conjugate gradient
Artificial neural networks
Similar day selection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c453t-df234c74706d888e26a5438913674a60ee225c6c9cd176b16c69b8c94977ed8c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://hdl.handle.net/10400.6/7057
PQID 2000576058
PQPubID 24069
PageCount 10
ParticipantIDs proquest_miscellaneous_2153630216
proquest_miscellaneous_2000576058
crossref_primary_10_1016_j_apenergy_2017_10_058
crossref_citationtrail_10_1016_j_apenergy_2017_10_058
elsevier_sciencedirect_doi_10_1016_j_apenergy_2017_10_058
PublicationCentury 2000
PublicationDate 2018-01-15
PublicationDateYYYYMMDD 2018-01-15
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-15
  day: 15
PublicationDecade 2010
PublicationTitle Applied energy
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Conejo, Contreras, Espı, Plazas (b0050) 2005; 21
Tan, Zhang, Wang, Xu (b0090) 2010; 87
Li, Wang, Goel (b0185) 2016; 31
[accessed: 04-Apr-2017].
Hua ZHZ, Li XLX, Li-zi ZLZ. Electricity price forecasting based on GARCH model in deregulated market. In: 2005 Int. Power Eng. Conf.; 2005.
Mandal P, Senjyu T, Uezato K, Funabashitm T. Several-hours-ahead electricity price and load forecasting using neural networks. In: 2005 IEEE power Eng. Soc. Gen. Meet.; 2005. p. 2205–12.
Bashir, El-Hawary (b0190) 2009; 24
Contreras, Espínola, Nogales, Conejo (b0045) 2003; 18
Nogales, Contreras, Conejo, Espínola (b0070) 2002; 17
Khan, Sahai (b0150) 2012; 4
Catalão, Mariano, Mendes, Ferreira (b0010) 2007; 77
Sánchez, Nieta, González, Contreras (b0065) 2016
Yilmaz, Kucuksille (b0160) 2013; 1
Amjady, Keynia (b9040) 2009; 24
Amjady N, Daraeepour A. Day-ahead electricity price forecasting using the relief algorithm and neural networks. In: 5th International Conference on the European Electricity Market; 2008. p. 1–7.
Shayeghi, Ghasemi, Moradzadeh, Nooshyar (b0095) 2015; 95
Setiono (b0210) 2001; 2877
Liu, Shi (b0055) 2013; 37
Jaddi, Abdullah, Hamdan (b0215) 2015; 37
Catalão, Pousinho, Mendes (b0110) Feb. 2011; 52
Mandal, Haque, Meng, Srivastava, Martinez (b0120) 2013; 28
Yang (b0140) 2010; 284
Khan, Sahai, Talal (b0155) 2014; 92
Amjady, Daraeepour (b9050) 2009; 79
Zhu, Zhu, Liu, Duan, Cao (b0200) 2016; 2016
García-Martos, Rodríguez, Sánchez (b9010) 2007; 22
Aggarwal, Saini, Kumar (b0025) 2009; 31
Crespo Cuaresma, Hlouskova, Kossmeier, Obersteiner (b0075) 2004; 77
Catalão JPS, Pousinho HMI, Mendes VMF. Neural networks and wavelet transform for short-term electricity prices forecasting. In: 15th International Conference on Intelligent System Applications to Power Systems, ISAP ’09, vol. 18; 2009. p. 85–92.
Amjady (b9020) 2006; 21
Mandal, Srivastava, Senjyu, Negnevitsky (b0015) 2017
Chintham V, Vardhan NH. Electricity price forecasting of deregulated market using Elman neural network. In: IEEE INDICON; 2015. p. 1–5.
Fister I, Yang X-S, Fong S, Zhuang Y. Bat algorithm: Recent advances. In: CINTI 2014 - 15th IEEE international symposium on computational intelligence and informatics, proceedings; 2014. p. 163–7.
Catalão, Pousinho, Mendes (b0170) 2011; 26
Guoqiang Zhang, Eddy Patuwo (b0220) 1998; 14
Reis, Alves da Silva (b0165) 2005; 20
PJM. Day-Ahead LMP [Online]. Available
Conejo, Plazas, Espinola, Molina (b0020) 2005; 20
Abedinia, Amjady, Shafie-khah, Catalão (b0115) 2015; 105
Gholipour Khajeh, Maleki, Rosen, Ahmadi (b0105) 2017
Fister I, Brest J, Yang XS. Modified bat algorithm with quaternion representation. In: 2015 IEEE Congr. Evol. Comput. CEC 2015 - Proc.; 2015. p. 491–8.
Panapakidis, Dagoumas (b0035) 2016; 172
Møller (b0130) 1993; 6
Gil HA, Gómez-Quiles C, Gómez-Expósito A, Santos JR. Forecasting prices in electricity markets: needs, tools and limitations. In: Pardalos PM, Sorokinl A, Rebennackl S, Iliadisl NA, Pereira MVF, editors. Handbook of networks in power systems I. Berlin, Heidelberg; 2012. p. 141–2.
Pavelka A, Procházka A. Algorithms for initialization of neural network weights. In: Sb. Prisp. 12. rocniku Konf. MATLAB 2004, vol. 2; 2004. p. 453–9.
Singh, Mohanty (b0040) 2015
Monteiro, Fernandez-Jimenez, Ramirez-Rosado (b0030) 2015; 8
Lora, Santos, Exposito, Ramos, Santos (b9015) 2007; 22
Lahmiri (b0085) 2014; 26
Gao, Yan (b0175) 2011
Pindoriya, Singh, Singh (b9030) 2008; 23
[accessed: 01-Jan-2017].
Amjady, Daraeepour (b9045) 2009; 36
Weron (b0005) 2014; 30
Shafie-Khah, Moghaddam, Sheikh-El-Eslami (b0080) 2011; 52
Amjady, Hemmati (b9025) 2009; 19
Abedinia, Amjady, Zareipour (b9055) 2017; 32
Abraham (b0125) 2002; 38
REE. Daily Market Hourly Price [Online]. Available
Rua D, Montero J, Lu J, Martinez L, Kerre EE. Proceedings of the 8th international FLINS conference. In: Computational intelligence in decision and control; 2008.
Nogales (10.1016/j.apenergy.2017.10.058_b0070) 2002; 17
Amjady (10.1016/j.apenergy.2017.10.058_b9050) 2009; 79
Catalão (10.1016/j.apenergy.2017.10.058_b0010) 2007; 77
Amjady (10.1016/j.apenergy.2017.10.058_b9025) 2009; 19
Catalão (10.1016/j.apenergy.2017.10.058_b0110) 2011; 52
García-Martos (10.1016/j.apenergy.2017.10.058_b9010) 2007; 22
Abraham (10.1016/j.apenergy.2017.10.058_b0125) 2002; 38
10.1016/j.apenergy.2017.10.058_b0195
Abedinia (10.1016/j.apenergy.2017.10.058_b9055) 2017; 32
Singh (10.1016/j.apenergy.2017.10.058_b0040) 2015
10.1016/j.apenergy.2017.10.058_b0235
Amjady (10.1016/j.apenergy.2017.10.058_b9020) 2006; 21
10.1016/j.apenergy.2017.10.058_b0230
Lahmiri (10.1016/j.apenergy.2017.10.058_b0085) 2014; 26
Mandal (10.1016/j.apenergy.2017.10.058_b0015) 2017
Reis (10.1016/j.apenergy.2017.10.058_b0165) 2005; 20
Contreras (10.1016/j.apenergy.2017.10.058_b0045) 2003; 18
Monteiro (10.1016/j.apenergy.2017.10.058_b0030) 2015; 8
Aggarwal (10.1016/j.apenergy.2017.10.058_b0025) 2009; 31
Shayeghi (10.1016/j.apenergy.2017.10.058_b0095) 2015; 95
10.1016/j.apenergy.2017.10.058_b0060
Amjady (10.1016/j.apenergy.2017.10.058_b9040) 2009; 24
Conejo (10.1016/j.apenergy.2017.10.058_b0020) 2005; 20
Abedinia (10.1016/j.apenergy.2017.10.058_b0115) 2015; 105
Yilmaz (10.1016/j.apenergy.2017.10.058_b0160) 2013; 1
10.1016/j.apenergy.2017.10.058_b0180
Tan (10.1016/j.apenergy.2017.10.058_b0090) 2010; 87
10.1016/j.apenergy.2017.10.058_b0145
Bashir (10.1016/j.apenergy.2017.10.058_b0190) 2009; 24
10.1016/j.apenergy.2017.10.058_b0225
10.1016/j.apenergy.2017.10.058_b9035
10.1016/j.apenergy.2017.10.058_b0100
Liu (10.1016/j.apenergy.2017.10.058_b0055) 2013; 37
10.1016/j.apenergy.2017.10.058_b9060
10.1016/j.apenergy.2017.10.058_b0205
Khan (10.1016/j.apenergy.2017.10.058_b0155) 2014; 92
Setiono (10.1016/j.apenergy.2017.10.058_b0210) 2001; 2877
Catalão (10.1016/j.apenergy.2017.10.058_b0170) 2011; 26
Sánchez (10.1016/j.apenergy.2017.10.058_b0065) 2016
Weron (10.1016/j.apenergy.2017.10.058_b0005) 2014; 30
10.1016/j.apenergy.2017.10.058_b0135
Jaddi (10.1016/j.apenergy.2017.10.058_b0215) 2015; 37
Guoqiang Zhang (10.1016/j.apenergy.2017.10.058_b0220) 1998; 14
Pindoriya (10.1016/j.apenergy.2017.10.058_b9030) 2008; 23
Yang (10.1016/j.apenergy.2017.10.058_b0140) 2010; 284
Amjady (10.1016/j.apenergy.2017.10.058_b9045) 2009; 36
Crespo Cuaresma (10.1016/j.apenergy.2017.10.058_b0075) 2004; 77
Gholipour Khajeh (10.1016/j.apenergy.2017.10.058_b0105) 2017
Gao (10.1016/j.apenergy.2017.10.058_b0175) 2011
Conejo (10.1016/j.apenergy.2017.10.058_b0050) 2005; 21
Khan (10.1016/j.apenergy.2017.10.058_b0150) 2012; 4
Shafie-Khah (10.1016/j.apenergy.2017.10.058_b0080) 2011; 52
Mandal (10.1016/j.apenergy.2017.10.058_b0120) 2013; 28
Zhu (10.1016/j.apenergy.2017.10.058_b0200) 2016; 2016
Møller (10.1016/j.apenergy.2017.10.058_b0130) 1993; 6
Li (10.1016/j.apenergy.2017.10.058_b0185) 2016; 31
Lora (10.1016/j.apenergy.2017.10.058_b9015) 2007; 22
Panapakidis (10.1016/j.apenergy.2017.10.058_b0035) 2016; 172
References_xml – reference: Chintham V, Vardhan NH. Electricity price forecasting of deregulated market using Elman neural network. In: IEEE INDICON; 2015. p. 1–5.
– reference: Pavelka A, Procházka A. Algorithms for initialization of neural network weights. In: Sb. Prisp. 12. rocniku Konf. MATLAB 2004, vol. 2; 2004. p. 453–9.
– volume: 14
  start-page: 35
  year: 1998
  end-page: 62
  ident: b0220
  article-title: Forecasting with artificial neural networks: the state of the artF
  publication-title: Int J Forecast
– volume: 52
  start-page: 2165
  year: 2011
  end-page: 2169
  ident: b0080
  article-title: Price forecasting of day-ahead electricity markets using a hybrid forecast method
  publication-title: Energy Convers Manage
– volume: 20
  start-page: 189
  year: 2005
  end-page: 198
  ident: b0165
  article-title: Feature extraction via multiresolution analysis for short-term load forecasting
  publication-title: IEEE Trans Power Syst
– start-page: 1
  year: 2011
  end-page: 224
  ident: b0175
  article-title: Wavelets: theory and applications for manufacturing
  publication-title: Wavelets Theory Appl Manuf
– volume: 23
  start-page: 1423
  year: 2008
  end-page: 1432
  ident: b9030
  article-title: An adaptive wavelet neural network-based energy price forecasting in electricity markets
  publication-title: IEEE Trans Power Syst
– volume: 284
  start-page: 65
  year: 2010
  end-page: 74
  ident: b0140
  article-title: A new metaheuristic Bat-inspired algorithm
  publication-title: Stud Comput Intell
– volume: 24
  start-page: 20
  year: 2009
  end-page: 27
  ident: b0190
  article-title: Applying wavelets to short-term load forecasting using PSO-based neural networks
  publication-title: IEEE Trans Power Syst
– reference: Amjady N, Daraeepour A. Day-ahead electricity price forecasting using the relief algorithm and neural networks. In: 5th International Conference on the European Electricity Market; 2008. p. 1–7.
– volume: 24
  start-page: 306
  year: 2009
  end-page: 318
  ident: b9040
  article-title: Day-Ahead price forecasting of electricity markets by mutual information technique and cascaded neuro-evolutionary algorithm
  publication-title: IEEE Trans Power Syst
– volume: 18
  start-page: 1014
  year: 2003
  end-page: 1020
  ident: b0045
  article-title: ARIMA models to predict next-day electricity prices
  publication-title: IEEE Trans Power Syst
– volume: 22
  start-page: 1294
  year: 2007
  end-page: 1301
  ident: b9015
  article-title: Electricity market price forecasting based on weighted nearest neighbors techniques
  publication-title: IEEE Trans Power Syst
– volume: 77
  start-page: 1297
  year: 2007
  end-page: 1304
  ident: b0010
  article-title: Short-term electricity prices forecasting in a competitive market: a neural network approach
  publication-title: Electr Power Syst Res
– reference: REE. Daily Market Hourly Price [Online]. Available: <
– reference: Rua D, Montero J, Lu J, Martinez L, Kerre EE. Proceedings of the 8th international FLINS conference. In: Computational intelligence in decision and control; 2008.
– volume: 105
  start-page: 642
  year: 2015
  end-page: 654
  ident: b0115
  article-title: Electricity price forecast using combinatorial neural network trained by a new stochastic search method
  publication-title: Energy Convers Manage
– reference: > [accessed: 01-Jan-2017].
– volume: 30
  start-page: 1030
  year: 2014
  end-page: 1081
  ident: b0005
  article-title: Electricity price forecasting: a review of the state-of-the-art with a look into the future
  publication-title: Int J Forecast
– volume: 19
  start-page: 89
  year: 2009
  end-page: 102
  ident: b9025
  article-title: Day-ahead price forecasting of electricity markets by a hybrid intelligent system
  publication-title: Eur Trans Electr Power
– volume: 95
  start-page: 371
  year: 2015
  end-page: 384
  ident: b0095
  article-title: Simultaneous day-ahead forecasting of electricity price and load in smart grids
  publication-title: Energy Convers Manage
– volume: 22
  start-page: 544
  year: 2007
  end-page: 552
  ident: b9010
  article-title: Mixed models for short-run forecasting of electricity prices: Application for the Spanish market
  publication-title: IEEE Trans Power Syst
– volume: 92
  start-page: 23
  year: 2014
  end-page: 29
  ident: b0155
  article-title: Comparative Study between the (BA) Algorithm and (PSO) Algorithm to Train (RBF) network at data classification
  publication-title: Int J Intell Syst Appl
– reference: Mandal P, Senjyu T, Uezato K, Funabashitm T. Several-hours-ahead electricity price and load forecasting using neural networks. In: 2005 IEEE power Eng. Soc. Gen. Meet.; 2005. p. 2205–12.
– start-page: 1
  year: 2015
  end-page: 19
  ident: b0040
  article-title: A review of price forecasting problem and techniques in deregulated electricity markets
  publication-title: J Power Energy Eng
– reference: Hua ZHZ, Li XLX, Li-zi ZLZ. Electricity price forecasting based on GARCH model in deregulated market. In: 2005 Int. Power Eng. Conf.; 2005.
– reference: Catalão JPS, Pousinho HMI, Mendes VMF. Neural networks and wavelet transform for short-term electricity prices forecasting. In: 15th International Conference on Intelligent System Applications to Power Systems, ISAP ’09, vol. 18; 2009. p. 85–92.
– reference: Fister I, Yang X-S, Fong S, Zhuang Y. Bat algorithm: Recent advances. In: CINTI 2014 - 15th IEEE international symposium on computational intelligence and informatics, proceedings; 2014. p. 163–7.
– volume: 20
  start-page: 1035
  year: 2005
  end-page: 1042
  ident: b0020
  article-title: Day-ahead electricity price forecasting using the wavelet transform and ARIMA models
  publication-title: IEEE Trans Power Syst
– volume: 28
  start-page: 1041
  year: 2013
  end-page: 1051
  ident: b0120
  article-title: A novel hybrid approach using wavelet, firefly algorithm, and fuzzy ARTMAP for day-ahead electricity price forecasting
  publication-title: IEEE Trans Power Syst
– volume: 36
  start-page: 12281
  year: 2009
  end-page: 12294
  ident: b9045
  article-title: Design of input vector for day-ahead price forecasting of electricity markets
  publication-title: Expert Syst Appl
– start-page: 215
  year: 2017
  end-page: 250
  ident: b0015
  article-title: Electricity price forecasting using neural networks and similar days
– start-page: 1
  year: 2016
  end-page: 19
  ident: b0065
  article-title: Portfolio decision of short-term electricity forecasted prices through stochastic programming
  publication-title: Energies
– volume: 2016
  year: 2016
  ident: b0200
  article-title: A novel quantum-behaved bat algorithm with mean best position directed for numerical optimization
  publication-title: Comput Intell Neurosci
– volume: 38
  start-page: 3
  year: 2002
  end-page: 25
  ident: b0125
  article-title: (Physio)logical circuits: the intellectual origins of the Mcculloch-Pitts neural networks
  publication-title: J History Behav Sci
– volume: 32
  start-page: 62
  year: 2017
  end-page: 74
  ident: b9055
  article-title: A new feature selection technique for load and price forecast of electrical power systems
  publication-title: IEEE Trans Power Syst
– volume: 87
  start-page: 3606
  year: 2010
  end-page: 3610
  ident: b0090
  article-title: Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models
  publication-title: Appl Energy
– volume: 26
  start-page: 218
  year: 2014
  end-page: 227
  ident: b0085
  article-title: Wavelet low- and high-frequency components as features for predicting stock prices with backpropagation neural networks
  publication-title: J King Saud Univ – Comput Inf Sci
– volume: 79
  start-page: 1329
  year: 2009
  end-page: 1336
  ident: b9050
  article-title: Mixed price and load forecasting of electricity markets by a new iterative prediction method
  publication-title: Electr Power Syst Res
– volume: 21
  start-page: 435
  year: 2005
  end-page: 462
  ident: b0050
  article-title: Forecasting electricity prices for a day-ahead pool-based electric energy market
  publication-title: Int J Forecast
– volume: 26
  start-page: 137
  year: 2011
  end-page: 144
  ident: b0170
  article-title: Hybrid wavelet-PSO-ANFIS approach for short-term electricity prices forecasting
  publication-title: IEEE Trans Power Syst
– volume: 37
  start-page: 152
  year: 2013
  end-page: 166
  ident: b0055
  article-title: Applying ARMA-GARCH approaches to forecasting short-term electricity prices
  publication-title: Energy Econ
– volume: 31
  start-page: 13
  year: 2009
  end-page: 22
  ident: b0025
  article-title: Electricity price forecasting in deregulated markets: a review and evaluation
  publication-title: Int J Electr Power Energy Syst
– start-page: 1
  year: 2017
  end-page: 12
  ident: b0105
  article-title: Electricity price forecasting using neural networks with an improved iterative training algorithm
  publication-title: Int J Ambient Energy
– reference: PJM. Day-Ahead LMP [Online]. Available: <
– volume: 37
  start-page: 71
  year: 2015
  end-page: 86
  ident: b0215
  article-title: Optimization of neural network model using modified bat-inspired algorithm
  publication-title: Appl Soft Comput J
– volume: 8
  start-page: 10464
  year: 2015
  end-page: 10486
  ident: b0030
  article-title: Explanatory information analysis for day-ahead price forecasting in the Iberian electricity market
  publication-title: Energies
– volume: 21
  start-page: 887
  year: 2006
  end-page: 896
  ident: b9020
  article-title: Day-ahead price forecasting of electricity markets by a new fuzzy neural network
  publication-title: IEEE Trans Power Syst
– volume: 52
  start-page: 1061
  year: Feb. 2011
  end-page: 1065
  ident: b0110
  article-title: Short-term electricity prices forecasting in a competitive market by a hybrid intelligent approach
  publication-title: Energy Convers Manage
– reference: Gil HA, Gómez-Quiles C, Gómez-Expósito A, Santos JR. Forecasting prices in electricity markets: needs, tools and limitations. In: Pardalos PM, Sorokinl A, Rebennackl S, Iliadisl NA, Pereira MVF, editors. Handbook of networks in power systems I. Berlin, Heidelberg; 2012. p. 141–2.
– volume: 17
  start-page: 342
  year: 2002
  end-page: 348
  ident: b0070
  article-title: Forecasting next-day electricity prices by time series models
  publication-title: IEEE Trans Power Syst
– reference: > [accessed: 04-Apr-2017].
– reference: Fister I, Brest J, Yang XS. Modified bat algorithm with quaternion representation. In: 2015 IEEE Congr. Evol. Comput. CEC 2015 - Proc.; 2015. p. 491–8.
– volume: 1
  start-page: 279
  year: 2013
  end-page: 283
  ident: b0160
  article-title: Improved Bat Algorithm (IBA) on continuous optimization problems
  publication-title: Lect Notes Softw Eng
– volume: 31
  start-page: 1788
  year: 2016
  end-page: 1798
  ident: b0185
  article-title: A novel wavelet-based ensemble method for short-term load forecasting with hybrid neural networks and feature selection
  publication-title: IEEE Trans Power Syst
– volume: 2877
  start-page: 2865
  year: 2001
  end-page: 2877
  ident: b0210
  article-title: Feedforward neural network construction using cross validation
  publication-title: Neural Comput
– volume: 172
  start-page: 132
  year: 2016
  end-page: 151
  ident: b0035
  article-title: Day-ahead electricity price forecasting via the application of artificial neural network based models
  publication-title: Appl Energy
– volume: 4
  start-page: 23
  year: 2012
  end-page: 29
  ident: b0150
  article-title: A comparison of BA, GA, PSO, BP and LM for training feed forward neural networks in e-learning context
  publication-title: Int J Intell Syst Appl
– volume: 77
  start-page: 87
  year: 2004
  end-page: 106
  ident: b0075
  article-title: Forecasting electricity spot-prices using linear univariate time-series models
  publication-title: Appl Energy
– volume: 6
  start-page: 525
  year: 1993
  end-page: 533
  ident: b0130
  article-title: A scaled conjugate gradient algorithm for fast supervised learning
  publication-title: Neural Networks
– ident: 10.1016/j.apenergy.2017.10.058_b0205
– ident: 10.1016/j.apenergy.2017.10.058_b0230
– volume: 92
  start-page: 23
  issue: 5
  year: 2014
  ident: 10.1016/j.apenergy.2017.10.058_b0155
  article-title: Comparative Study between the (BA) Algorithm and (PSO) Algorithm to Train (RBF) network at data classification
  publication-title: Int J Intell Syst Appl
– ident: 10.1016/j.apenergy.2017.10.058_b9035
  doi: 10.1109/ISAP.2009.5352834
– volume: 19
  start-page: 89
  issue: 1
  year: 2009
  ident: 10.1016/j.apenergy.2017.10.058_b9025
  article-title: Day-ahead price forecasting of electricity markets by a hybrid intelligent system
  publication-title: Eur Trans Electr Power
  doi: 10.1002/etep.242
– volume: 32
  start-page: 62
  issue: 1
  year: 2017
  ident: 10.1016/j.apenergy.2017.10.058_b9055
  article-title: A new feature selection technique for load and price forecast of electrical power systems
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2016.2556620
– ident: 10.1016/j.apenergy.2017.10.058_b0195
  doi: 10.1109/CEC.2015.7256930
– ident: 10.1016/j.apenergy.2017.10.058_b0060
– volume: 8
  start-page: 10464
  issue: 9
  year: 2015
  ident: 10.1016/j.apenergy.2017.10.058_b0030
  article-title: Explanatory information analysis for day-ahead price forecasting in the Iberian electricity market
  publication-title: Energies
  doi: 10.3390/en80910464
– volume: 31
  start-page: 13
  issue: 1
  year: 2009
  ident: 10.1016/j.apenergy.2017.10.058_b0025
  article-title: Electricity price forecasting in deregulated markets: a review and evaluation
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2008.09.003
– volume: 26
  start-page: 137
  issue: 1
  year: 2011
  ident: 10.1016/j.apenergy.2017.10.058_b0170
  article-title: Hybrid wavelet-PSO-ANFIS approach for short-term electricity prices forecasting
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2010.2049385
– volume: 21
  start-page: 887
  issue: 2
  year: 2006
  ident: 10.1016/j.apenergy.2017.10.058_b9020
  article-title: Day-ahead price forecasting of electricity markets by a new fuzzy neural network
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2006.873409
– volume: 22
  start-page: 1294
  issue: 3
  year: 2007
  ident: 10.1016/j.apenergy.2017.10.058_b9015
  article-title: Electricity market price forecasting based on weighted nearest neighbors techniques
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2007.901670
– volume: 23
  start-page: 1423
  issue: 3
  year: 2008
  ident: 10.1016/j.apenergy.2017.10.058_b9030
  article-title: An adaptive wavelet neural network-based energy price forecasting in electricity markets
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2008.922251
– volume: 37
  start-page: 71
  year: 2015
  ident: 10.1016/j.apenergy.2017.10.058_b0215
  article-title: Optimization of neural network model using modified bat-inspired algorithm
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2015.08.002
– start-page: 1
  issue: September
  year: 2015
  ident: 10.1016/j.apenergy.2017.10.058_b0040
  article-title: A review of price forecasting problem and techniques in deregulated electricity markets
  publication-title: J Power Energy Eng
  doi: 10.4236/jpee.2015.39001
– volume: 28
  start-page: 1041
  issue: 2
  year: 2013
  ident: 10.1016/j.apenergy.2017.10.058_b0120
  article-title: A novel hybrid approach using wavelet, firefly algorithm, and fuzzy ARTMAP for day-ahead electricity price forecasting
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2012.2222452
– volume: 30
  start-page: 1030
  issue: 4
  year: 2014
  ident: 10.1016/j.apenergy.2017.10.058_b0005
  article-title: Electricity price forecasting: a review of the state-of-the-art with a look into the future
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2014.08.008
– start-page: 1
  year: 2016
  ident: 10.1016/j.apenergy.2017.10.058_b0065
  article-title: Portfolio decision of short-term electricity forecasted prices through stochastic programming
  publication-title: Energies
– volume: 77
  start-page: 1297
  issue: 10
  year: 2007
  ident: 10.1016/j.apenergy.2017.10.058_b0010
  article-title: Short-term electricity prices forecasting in a competitive market: a neural network approach
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2006.09.022
– volume: 6
  start-page: 525
  issue: 4
  year: 1993
  ident: 10.1016/j.apenergy.2017.10.058_b0130
  article-title: A scaled conjugate gradient algorithm for fast supervised learning
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(05)80056-5
– ident: 10.1016/j.apenergy.2017.10.058_b0100
  doi: 10.1109/INDICON.2015.7443460
– ident: 10.1016/j.apenergy.2017.10.058_b0135
– volume: 24
  start-page: 20
  issue: 1
  year: 2009
  ident: 10.1016/j.apenergy.2017.10.058_b0190
  article-title: Applying wavelets to short-term load forecasting using PSO-based neural networks
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2008.2008606
– ident: 10.1016/j.apenergy.2017.10.058_b0225
  doi: 10.1007/978-3-642-23193-3_5
– volume: 17
  start-page: 342
  issue: 2
  year: 2002
  ident: 10.1016/j.apenergy.2017.10.058_b0070
  article-title: Forecasting next-day electricity prices by time series models
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2002.1007902
– volume: 284
  start-page: 65
  year: 2010
  ident: 10.1016/j.apenergy.2017.10.058_b0140
  article-title: A new metaheuristic Bat-inspired algorithm
  publication-title: Stud Comput Intell
  doi: 10.1007/978-3-642-12538-6_6
– ident: 10.1016/j.apenergy.2017.10.058_b9060
  doi: 10.1109/EEM.2008.4579109
– start-page: 1
  year: 2017
  ident: 10.1016/j.apenergy.2017.10.058_b0105
  article-title: Electricity price forecasting using neural networks with an improved iterative training algorithm
  publication-title: Int J Ambient Energy
– ident: 10.1016/j.apenergy.2017.10.058_b0180
  doi: 10.1109/PES.2005.1489530
– volume: 52
  start-page: 2165
  issue: 5
  year: 2011
  ident: 10.1016/j.apenergy.2017.10.058_b0080
  article-title: Price forecasting of day-ahead electricity markets using a hybrid forecast method
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2010.10.047
– volume: 26
  start-page: 218
  issue: 2
  year: 2014
  ident: 10.1016/j.apenergy.2017.10.058_b0085
  article-title: Wavelet low- and high-frequency components as features for predicting stock prices with backpropagation neural networks
  publication-title: J King Saud Univ – Comput Inf Sci
  doi: 10.1016/j.jksuci.2013.12.001
– volume: 105
  start-page: 642
  issue: 2015
  year: 2015
  ident: 10.1016/j.apenergy.2017.10.058_b0115
  article-title: Electricity price forecast using combinatorial neural network trained by a new stochastic search method
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2015.08.025
– start-page: 1
  year: 2011
  ident: 10.1016/j.apenergy.2017.10.058_b0175
  article-title: Wavelets: theory and applications for manufacturing
  publication-title: Wavelets Theory Appl Manuf
– volume: 1
  start-page: 279
  issue: 3
  year: 2013
  ident: 10.1016/j.apenergy.2017.10.058_b0160
  article-title: Improved Bat Algorithm (IBA) on continuous optimization problems
  publication-title: Lect Notes Softw Eng
  doi: 10.7763/LNSE.2013.V1.61
– volume: 20
  start-page: 1035
  issue: 2
  year: 2005
  ident: 10.1016/j.apenergy.2017.10.058_b0020
  article-title: Day-ahead electricity price forecasting using the wavelet transform and ARIMA models
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2005.846054
– volume: 2877
  start-page: 2865
  issue: 1
  year: 2001
  ident: 10.1016/j.apenergy.2017.10.058_b0210
  article-title: Feedforward neural network construction using cross validation
  publication-title: Neural Comput
  doi: 10.1162/089976601317098565
– volume: 79
  start-page: 1329
  issue: 9
  year: 2009
  ident: 10.1016/j.apenergy.2017.10.058_b9050
  article-title: Mixed price and load forecasting of electricity markets by a new iterative prediction method
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2009.04.006
– start-page: 215
  year: 2017
  ident: 10.1016/j.apenergy.2017.10.058_b0015
– volume: 31
  start-page: 1788
  issue: 3
  year: 2016
  ident: 10.1016/j.apenergy.2017.10.058_b0185
  article-title: A novel wavelet-based ensemble method for short-term load forecasting with hybrid neural networks and feature selection
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2015.2438322
– volume: 21
  start-page: 435
  year: 2005
  ident: 10.1016/j.apenergy.2017.10.058_b0050
  article-title: Forecasting electricity prices for a day-ahead pool-based electric energy market
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2004.12.005
– volume: 77
  start-page: 87
  issue: 1
  year: 2004
  ident: 10.1016/j.apenergy.2017.10.058_b0075
  article-title: Forecasting electricity spot-prices using linear univariate time-series models
  publication-title: Appl Energy
  doi: 10.1016/S0306-2619(03)00096-5
– volume: 52
  start-page: 1061
  issue: 2
  year: 2011
  ident: 10.1016/j.apenergy.2017.10.058_b0110
  article-title: Short-term electricity prices forecasting in a competitive market by a hybrid intelligent approach
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2010.08.035
– volume: 87
  start-page: 3606
  issue: 11
  year: 2010
  ident: 10.1016/j.apenergy.2017.10.058_b0090
  article-title: Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2010.05.012
– volume: 2016
  year: 2016
  ident: 10.1016/j.apenergy.2017.10.058_b0200
  article-title: A novel quantum-behaved bat algorithm with mean best position directed for numerical optimization
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2016/6097484
– volume: 14
  start-page: 35
  year: 1998
  ident: 10.1016/j.apenergy.2017.10.058_b0220
  article-title: Forecasting with artificial neural networks: the state of the artF
  publication-title: Int J Forecast
  doi: 10.1016/S0169-2070(97)00044-7
– volume: 24
  start-page: 306
  issue: 1
  year: 2009
  ident: 10.1016/j.apenergy.2017.10.058_b9040
  article-title: Day-Ahead price forecasting of electricity markets by mutual information technique and cascaded neuro-evolutionary algorithm
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2008.2006997
– volume: 18
  start-page: 1014
  issue: 3
  year: 2003
  ident: 10.1016/j.apenergy.2017.10.058_b0045
  article-title: ARIMA models to predict next-day electricity prices
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2002.804943
– volume: 37
  start-page: 152
  year: 2013
  ident: 10.1016/j.apenergy.2017.10.058_b0055
  article-title: Applying ARMA-GARCH approaches to forecasting short-term electricity prices
  publication-title: Energy Econ
  doi: 10.1016/j.eneco.2013.02.006
– volume: 22
  start-page: 544
  issue: 2
  year: 2007
  ident: 10.1016/j.apenergy.2017.10.058_b9010
  article-title: Mixed models for short-run forecasting of electricity prices: Application for the Spanish market
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2007.894857
– volume: 95
  start-page: 371
  year: 2015
  ident: 10.1016/j.apenergy.2017.10.058_b0095
  article-title: Simultaneous day-ahead forecasting of electricity price and load in smart grids
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2015.02.023
– volume: 4
  start-page: 23
  issue: 7
  year: 2012
  ident: 10.1016/j.apenergy.2017.10.058_b0150
  article-title: A comparison of BA, GA, PSO, BP and LM for training feed forward neural networks in e-learning context
  publication-title: Int J Intell Syst Appl
– volume: 38
  start-page: 3
  issue: 1
  year: 2002
  ident: 10.1016/j.apenergy.2017.10.058_b0125
  article-title: (Physio)logical circuits: the intellectual origins of the Mcculloch-Pitts neural networks
  publication-title: J History Behav Sci
  doi: 10.1002/jhbs.1094
– ident: 10.1016/j.apenergy.2017.10.058_b0235
– ident: 10.1016/j.apenergy.2017.10.058_b0145
  doi: 10.1109/CINTI.2014.7028669
– volume: 36
  start-page: 12281
  issue: 10
  year: 2009
  ident: 10.1016/j.apenergy.2017.10.058_b9045
  article-title: Design of input vector for day-ahead price forecasting of electricity markets
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.04.059
– volume: 20
  start-page: 189
  issue: 1
  year: 2005
  ident: 10.1016/j.apenergy.2017.10.058_b0165
  article-title: Feature extraction via multiresolution analysis for short-term load forecasting
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2004.840380
– volume: 172
  start-page: 132
  year: 2016
  ident: 10.1016/j.apenergy.2017.10.058_b0035
  article-title: Day-ahead electricity price forecasting via the application of artificial neural network based models
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.03.089
SSID ssj0002120
Score 2.527255
Snippet [Display omitted] •We propose a new method for short-term price forecasting (STPF).•The new method is based on Bat Algorithm, Wavelet Transform and Artificial...
In the competitive power industry environment, electricity price forecasting is a fundamental task when market participants decide upon bidding strategies....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 88
SubjectTerms algorithms
Artificial neural networks
Bat algorithm
electricity
electricity costs
energy industry
learning
markets
Maryland
methodology
neural networks
New Jersey
Pennsylvania
prices
researchers
risk assessment
Scaled conjugate gradient
Short-term price forecasting
Similar day selection
Spain
wavelet
Wavelet transform
Title A bat optimized neural network and wavelet transform approach for short-term price forecasting
URI https://dx.doi.org/10.1016/j.apenergy.2017.10.058
https://www.proquest.com/docview/2000576058
https://www.proquest.com/docview/2153630216
Volume 210
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AKRWK
  dateStart: 19750101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGJ9lBW8bts0m0lyLGKpir2o4Mmwr2JF02BTBA_-dmfSxFYRPXjMMgvLzu7Mt-Sbbxg7McaEoZNaRF7HCGmtFlprJWIbOwekkFX0IbsawuBWXtwFdzV2WtXCEK2yjP3zmF5E63KkXe5mOxuP29eEdgn_e6HvSUx0VMEuQ-pi0Hpf0Dy6pTQjGguyXqoSfmypzBUVdkTxClvE8qLW7z8nqG-husg__Q22XgJH3puvbZPVXLrF1pbkBLfY7tmiag1Ny2s73Wb3Pa5VzicYHp7Hb85yUrFEi3TOAecqtfxVUQuKnOcVkuWV3DjHLz59QJwuKI7zjHSIaNAZNSXW9A677Z_dnA5E2VhBGBn4ubCjri8NPiQ6YPEF7LqgAln8sIRQKug4h7fcgImN9ULQHhiIdWRiiWDR2cj4u6yeTlK3xzjoECwELhrFSsYkj-ePEHFg2ACjOqOowYJqNxNTqo5T84unpKKXPSaVFxLyAo2jFxqs_Tkvm-tu_DkjrpyVfDlBCSaHP-ceV95N8HrRPxOVuslsSl06EdHC7zaYNcDHkwb7_1jDAVvFL2IWCi84ZPX8ZeaOEPDkulmc6CZb6Z1fDoYfZaECqA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58HNSD-MS3Ebxmd7tNp-1RRFmfFxU8WfJaXNHu4lYED_52Z7qtL0QPHptOIGSSmS_kyzcAu9baOPbKyCRoWamcM9IYo2XqUu-RFbLKOmRn59i5UsfX0fUY7NdvYZhWWcX-UUwvo3XV0qxmszno9ZoXjHYZ_wdxGChKdOMwqaJ2zCewxusHz6NdaTOStWTzT8-E7xp64MsndszxihtM8-La7z9nqG-xukxAh3MwWyFHsTca3DyM-XwBZj7pCS7A8sHHszUyrfbtcBFu9oTRhehTfHjovXgnWMaSLPIRCVzo3IlnzTUoClHUUFbUeuOCvsTwloC65EAuBixExI3e6iHTppfg6vDgcr8jq8oK0qooLKTrtkNl6STRQkdHYN9GHanyxhJjpbHlPW1ziza1LojRBGgxNYlNFaFF7xIbLsNE3s_9Cgg0MTqMfNJNtUpZHy_sEuSguIFWt7rJKkT1bGa2kh3n6hf3Wc0vu8tqL2TsBW4nL6xC873fYCS88WePtHZW9mUJZZQd_uy7U3s3o_3FlyY69_2nIZfpJEiLv9tQ2sCQVhqu_WMM2zDVuTw7zU6Pzk_WYZr-MM1QBtEGTBSPT36T0E9htsrV_QZPWQQ9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+bat+optimized+neural+network+and+wavelet+transform+approach+for+short-term+price+forecasting&rft.jtitle=Applied+energy&rft.au=Bento%2C+P.M.R.&rft.au=Pombo%2C+J.A.N.&rft.au=Calado%2C+M.R.A.&rft.au=Mariano%2C+S.J.P.S.&rft.date=2018-01-15&rft.issn=0306-2619&rft.volume=210+p.88-97&rft.spage=88&rft.epage=97&rft_id=info:doi/10.1016%2Fj.apenergy.2017.10.058&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon