A bat optimized neural network and wavelet transform approach for short-term price forecasting
[Display omitted] •We propose a new method for short-term price forecasting (STPF).•The new method is based on Bat Algorithm, Wavelet Transform and Artificial Neural Networks.•The method has the capability to auto-tune the best simulation parameters.•We compare the proposed method in Spanish and Pen...
        Saved in:
      
    
          | Published in | Applied energy Vol. 210; pp. 88 - 97 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        15.01.2018
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0306-2619 1872-9118  | 
| DOI | 10.1016/j.apenergy.2017.10.058 | 
Cover
| Abstract | [Display omitted]
•We propose a new method for short-term price forecasting (STPF).•The new method is based on Bat Algorithm, Wavelet Transform and Artificial Neural Networks.•The method has the capability to auto-tune the best simulation parameters.•We compare the proposed method in Spanish and Pennsylvania-New Jersey-Maryland (PJM) electricity markets.•The proposed approach exhibits a better forecasting accuracy.
In the competitive power industry environment, electricity price forecasting is a fundamental task when market participants decide upon bidding strategies. This has led researchers in the last years to intensely search for accurate forecasting methods, contributing to better risk assessment, with significant financial repercussions. This paper presents a hybrid method that combines similar and recent day-based selection, correlation and wavelet analysis in a pre-processing stage. Afterwards a feedforward neural network is used alongside Bat and Scaled Conjugate Gradient Algorithms to improve the traditional neural network learning capability. Another feature is the method’s capacity to fine-tune neural network architecture and wavelet decomposition, for which there is no optimal paradigm. Numerical testing was applied in a day-ahead framework to historical data pertaining to Spanish and Pennsylvania-New Jersey-Maryland (PJM) electricity markets, revealing positive forecasting results in comparison with other state-of-the-art methods. | 
    
|---|---|
| AbstractList | [Display omitted]
•We propose a new method for short-term price forecasting (STPF).•The new method is based on Bat Algorithm, Wavelet Transform and Artificial Neural Networks.•The method has the capability to auto-tune the best simulation parameters.•We compare the proposed method in Spanish and Pennsylvania-New Jersey-Maryland (PJM) electricity markets.•The proposed approach exhibits a better forecasting accuracy.
In the competitive power industry environment, electricity price forecasting is a fundamental task when market participants decide upon bidding strategies. This has led researchers in the last years to intensely search for accurate forecasting methods, contributing to better risk assessment, with significant financial repercussions. This paper presents a hybrid method that combines similar and recent day-based selection, correlation and wavelet analysis in a pre-processing stage. Afterwards a feedforward neural network is used alongside Bat and Scaled Conjugate Gradient Algorithms to improve the traditional neural network learning capability. Another feature is the method’s capacity to fine-tune neural network architecture and wavelet decomposition, for which there is no optimal paradigm. Numerical testing was applied in a day-ahead framework to historical data pertaining to Spanish and Pennsylvania-New Jersey-Maryland (PJM) electricity markets, revealing positive forecasting results in comparison with other state-of-the-art methods. In the competitive power industry environment, electricity price forecasting is a fundamental task when market participants decide upon bidding strategies. This has led researchers in the last years to intensely search for accurate forecasting methods, contributing to better risk assessment, with significant financial repercussions. This paper presents a hybrid method that combines similar and recent day-based selection, correlation and wavelet analysis in a pre-processing stage. Afterwards a feedforward neural network is used alongside Bat and Scaled Conjugate Gradient Algorithms to improve the traditional neural network learning capability. Another feature is the method’s capacity to fine-tune neural network architecture and wavelet decomposition, for which there is no optimal paradigm. Numerical testing was applied in a day-ahead framework to historical data pertaining to Spanish and Pennsylvania-New Jersey-Maryland (PJM) electricity markets, revealing positive forecasting results in comparison with other state-of-the-art methods.  | 
    
| Author | Calado, M.R.A. Pombo, J.A.N. Mariano, S.J.P.S. Bento, P.M.R.  | 
    
| Author_xml | – sequence: 1 givenname: P.M.R. surname: Bento fullname: Bento, P.M.R. email: pedrobento194@outlook.com – sequence: 2 givenname: J.A.N. surname: Pombo fullname: Pombo, J.A.N. email: Jose_p@portugalmail.com – sequence: 3 givenname: M.R.A. surname: Calado fullname: Calado, M.R.A. email: rc@ubi.pt – sequence: 4 givenname: S.J.P.S. surname: Mariano fullname: Mariano, S.J.P.S. email: sm@ubi.pt  | 
    
| BookMark | eNqFkE9LAzEQxYMoWKtfQXL0sjXJ7iZZ8GAp_gPBi14NaXbapm6TNUkt9dObUr146WmYx3vDvN8ZOnbeAUKXlIwoofx6OdI9OAjz7YgRKrI4IrU8QgMqBSsaSuUxGpCS8IJx2pyisxiXhBBGGRmg9zGe6oR9n-zKfkOLHayD7vJIGx8-sHYt3ugv6CDhFLSLMx9WWPd98NoscN5wXPiQigRZ74M1sBPB6Jism5-jk5nuIlz8ziF6u797nTwWzy8PT5Pxc2GqukxFO2NlZUQlCG-llMC4rqtSNrTkotKcADBWG24a01LBp5Qb3kylaapGCGilKYfoan83__W5hpjUykYDXacd-HVUjNYlL3Nnftia2dSCZ4TZyvdWE3yMAWYqF1zpsFWUqB17tVR_7NWO_U7fB2_-BY1NOlnvMkPbHY7f7uOQkX1ZCCoaC85AazPZpFpvD534AZEqp30 | 
    
| CitedBy_id | crossref_primary_10_1021_acs_est_1c04048 crossref_primary_10_1016_j_energy_2019_04_167 crossref_primary_10_1016_j_epsr_2022_108122 crossref_primary_10_3390_en11051074 crossref_primary_10_1038_s41598_025_87328_6 crossref_primary_10_1016_j_eswa_2021_115229 crossref_primary_10_3390_en13205452 crossref_primary_10_1016_j_apenergy_2020_115801 crossref_primary_10_1016_j_ijepes_2021_107505 crossref_primary_10_1016_j_resourpol_2019_02_014 crossref_primary_10_1109_ACCESS_2021_3108629 crossref_primary_10_1016_j_resourpol_2019_02_017 crossref_primary_10_3390_en11082060 crossref_primary_10_3390_math10122094 crossref_primary_10_1016_j_autcon_2021_103958 crossref_primary_10_1016_j_apenergy_2019_01_213 crossref_primary_10_1016_j_energy_2020_117087 crossref_primary_10_1016_j_apenergy_2019_113448 crossref_primary_10_1016_j_eswa_2023_120026 crossref_primary_10_1016_j_apenergy_2021_116688 crossref_primary_10_1109_TFUZZ_2021_3113762 crossref_primary_10_1016_j_conbuildmat_2024_136091 crossref_primary_10_1016_j_rser_2024_114794 crossref_primary_10_1016_j_ijepes_2021_106800 crossref_primary_10_1016_j_renene_2021_02_017 crossref_primary_10_3390_en11051063 crossref_primary_10_3390_su11061562 crossref_primary_10_1002_2050_7038_12506 crossref_primary_10_1016_j_energy_2023_127350 crossref_primary_10_1155_2018_4671850 crossref_primary_10_2478_amns_2023_2_01313 crossref_primary_10_1016_j_apenergy_2019_114087 crossref_primary_10_1155_2018_4276176 crossref_primary_10_3390_app13169273 crossref_primary_10_1080_08839514_2024_2419571 crossref_primary_10_1016_j_apenergy_2019_114486 crossref_primary_10_1016_j_enpol_2020_111740 crossref_primary_10_1016_j_jclepro_2019_117644 crossref_primary_10_1016_j_egyai_2020_100009 crossref_primary_10_3390_en14227473 crossref_primary_10_1109_ACCESS_2020_3034113 crossref_primary_10_30798_makuiibf_1097686 crossref_primary_10_1016_j_eneco_2019_05_006 crossref_primary_10_1016_j_joitmc_2023_100079 crossref_primary_10_1109_ACCESS_2019_2932999 crossref_primary_10_1016_j_apr_2019_08_002 crossref_primary_10_1016_j_energy_2019_116704 crossref_primary_10_1016_j_jclepro_2020_120171 crossref_primary_10_1016_j_energy_2020_117858 crossref_primary_10_1016_j_eswa_2019_112842 crossref_primary_10_1016_j_physa_2019_121717 crossref_primary_10_3390_en13030532 crossref_primary_10_1016_j_ijepes_2022_108092 crossref_primary_10_17233_sosyoekonomi_2023_03_09 crossref_primary_10_3390_en12061067 crossref_primary_10_1016_j_apenergy_2024_123058 crossref_primary_10_1016_j_energy_2019_116516 crossref_primary_10_1016_j_apenergy_2019_114195 crossref_primary_10_1016_j_jup_2022_101444 crossref_primary_10_1016_j_apenergy_2019_03_129 crossref_primary_10_1016_j_asoc_2023_110018 crossref_primary_10_1109_ACCESS_2023_3280934 crossref_primary_10_1007_s42835_022_01296_9 crossref_primary_10_1016_j_apenergy_2018_06_137 crossref_primary_10_1109_JIOT_2022_3228736 crossref_primary_10_1007_s42979_021_00698_2 crossref_primary_10_1016_j_neucom_2019_05_030 crossref_primary_10_1016_j_measurement_2025_116913 crossref_primary_10_1016_j_enconman_2019_112188 crossref_primary_10_1109_TSTE_2024_3402585 crossref_primary_10_3390_a12040084 crossref_primary_10_1016_j_apenergy_2021_116983 crossref_primary_10_3233_JCM_194060 crossref_primary_10_3390_en14227820 crossref_primary_10_1016_j_procs_2020_10_063 crossref_primary_10_1016_j_ijepes_2018_08_025 crossref_primary_10_3390_en12050924 crossref_primary_10_1016_j_apenergy_2019_05_068 crossref_primary_10_1016_j_asoc_2019_04_026 crossref_primary_10_2139_ssrn_3270251 crossref_primary_10_1109_ACCESS_2019_2963416 crossref_primary_10_1109_ACCESS_2021_3100076 crossref_primary_10_1016_j_energy_2019_02_141 crossref_primary_10_1016_j_epsr_2021_107416 crossref_primary_10_1109_ACCESS_2021_3121072 crossref_primary_10_1007_s12667_023_00576_1  | 
    
| Cites_doi | 10.1109/ISAP.2009.5352834 10.1002/etep.242 10.1109/TPWRS.2016.2556620 10.1109/CEC.2015.7256930 10.3390/en80910464 10.1016/j.ijepes.2008.09.003 10.1109/TPWRS.2010.2049385 10.1109/TPWRS.2006.873409 10.1109/TPWRS.2007.901670 10.1109/TPWRS.2008.922251 10.1016/j.asoc.2015.08.002 10.4236/jpee.2015.39001 10.1109/TPWRS.2012.2222452 10.1016/j.ijforecast.2014.08.008 10.1016/j.epsr.2006.09.022 10.1016/S0893-6080(05)80056-5 10.1109/INDICON.2015.7443460 10.1109/TPWRS.2008.2008606 10.1007/978-3-642-23193-3_5 10.1109/TPWRS.2002.1007902 10.1007/978-3-642-12538-6_6 10.1109/EEM.2008.4579109 10.1109/PES.2005.1489530 10.1016/j.enconman.2010.10.047 10.1016/j.jksuci.2013.12.001 10.1016/j.enconman.2015.08.025 10.7763/LNSE.2013.V1.61 10.1109/TPWRS.2005.846054 10.1162/089976601317098565 10.1016/j.epsr.2009.04.006 10.1109/TPWRS.2015.2438322 10.1016/j.ijforecast.2004.12.005 10.1016/S0306-2619(03)00096-5 10.1016/j.enconman.2010.08.035 10.1016/j.apenergy.2010.05.012 10.1155/2016/6097484 10.1016/S0169-2070(97)00044-7 10.1109/TPWRS.2008.2006997 10.1109/TPWRS.2002.804943 10.1016/j.eneco.2013.02.006 10.1109/TPWRS.2007.894857 10.1016/j.enconman.2015.02.023 10.1002/jhbs.1094 10.1109/CINTI.2014.7028669 10.1016/j.eswa.2009.04.059 10.1109/TPWRS.2004.840380 10.1016/j.apenergy.2016.03.089  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2017 Elsevier Ltd | 
    
| Copyright_xml | – notice: 2017 Elsevier Ltd | 
    
| DBID | AAYXX CITATION 7S9 L.6  | 
    
| DOI | 10.1016/j.apenergy.2017.10.058 | 
    
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | AGRICOLA AGRICOLA  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Environmental Sciences  | 
    
| EISSN | 1872-9118 | 
    
| EndPage | 97 | 
    
| ExternalDocumentID | 10_1016_j_apenergy_2017_10_058 S0306261917314782  | 
    
| GeographicLocations | Maryland New Jersey Pennsylvania Spain  | 
    
| GeographicLocations_xml | – name: Pennsylvania – name: Spain – name: New Jersey – name: Maryland  | 
    
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ZY4 ~HD 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-c453t-df234c74706d888e26a5438913674a60ee225c6c9cd176b16c69b8c94977ed8c3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0306-2619 | 
    
| IngestDate | Sat Sep 27 19:52:33 EDT 2025 Thu Oct 02 11:51:07 EDT 2025 Thu Oct 09 00:21:43 EDT 2025 Thu Apr 24 23:04:05 EDT 2025 Fri Feb 23 02:45:50 EST 2024  | 
    
| IsDoiOpenAccess | false | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Bat algorithm Wavelet transform Short-term price forecasting Scaled conjugate gradient Artificial neural networks Similar day selection  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c453t-df234c74706d888e26a5438913674a60ee225c6c9cd176b16c69b8c94977ed8c3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| OpenAccessLink | http://hdl.handle.net/10400.6/7057 | 
    
| PQID | 2000576058 | 
    
| PQPubID | 24069 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | proquest_miscellaneous_2153630216 proquest_miscellaneous_2000576058 crossref_primary_10_1016_j_apenergy_2017_10_058 crossref_citationtrail_10_1016_j_apenergy_2017_10_058 elsevier_sciencedirect_doi_10_1016_j_apenergy_2017_10_058  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2018-01-15 | 
    
| PublicationDateYYYYMMDD | 2018-01-15 | 
    
| PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-15 day: 15  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Applied energy | 
    
| PublicationYear | 2018 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Conejo, Contreras, Espı, Plazas (b0050) 2005; 21 Tan, Zhang, Wang, Xu (b0090) 2010; 87 Li, Wang, Goel (b0185) 2016; 31 [accessed: 04-Apr-2017]. Hua ZHZ, Li XLX, Li-zi ZLZ. Electricity price forecasting based on GARCH model in deregulated market. In: 2005 Int. Power Eng. Conf.; 2005. Mandal P, Senjyu T, Uezato K, Funabashitm T. Several-hours-ahead electricity price and load forecasting using neural networks. In: 2005 IEEE power Eng. Soc. Gen. Meet.; 2005. p. 2205–12. Bashir, El-Hawary (b0190) 2009; 24 Contreras, Espínola, Nogales, Conejo (b0045) 2003; 18 Nogales, Contreras, Conejo, Espínola (b0070) 2002; 17 Khan, Sahai (b0150) 2012; 4 Catalão, Mariano, Mendes, Ferreira (b0010) 2007; 77 Sánchez, Nieta, González, Contreras (b0065) 2016 Yilmaz, Kucuksille (b0160) 2013; 1 Amjady, Keynia (b9040) 2009; 24 Amjady N, Daraeepour A. Day-ahead electricity price forecasting using the relief algorithm and neural networks. In: 5th International Conference on the European Electricity Market; 2008. p. 1–7. Shayeghi, Ghasemi, Moradzadeh, Nooshyar (b0095) 2015; 95 Setiono (b0210) 2001; 2877 Liu, Shi (b0055) 2013; 37 Jaddi, Abdullah, Hamdan (b0215) 2015; 37 Catalão, Pousinho, Mendes (b0110) Feb. 2011; 52 Mandal, Haque, Meng, Srivastava, Martinez (b0120) 2013; 28 Yang (b0140) 2010; 284 Khan, Sahai, Talal (b0155) 2014; 92 Amjady, Daraeepour (b9050) 2009; 79 Zhu, Zhu, Liu, Duan, Cao (b0200) 2016; 2016 García-Martos, Rodríguez, Sánchez (b9010) 2007; 22 Aggarwal, Saini, Kumar (b0025) 2009; 31 Crespo Cuaresma, Hlouskova, Kossmeier, Obersteiner (b0075) 2004; 77 Catalão JPS, Pousinho HMI, Mendes VMF. Neural networks and wavelet transform for short-term electricity prices forecasting. In: 15th International Conference on Intelligent System Applications to Power Systems, ISAP ’09, vol. 18; 2009. p. 85–92. Amjady (b9020) 2006; 21 Mandal, Srivastava, Senjyu, Negnevitsky (b0015) 2017 Chintham V, Vardhan NH. Electricity price forecasting of deregulated market using Elman neural network. In: IEEE INDICON; 2015. p. 1–5. Fister I, Yang X-S, Fong S, Zhuang Y. Bat algorithm: Recent advances. In: CINTI 2014 - 15th IEEE international symposium on computational intelligence and informatics, proceedings; 2014. p. 163–7. Catalão, Pousinho, Mendes (b0170) 2011; 26 Guoqiang Zhang, Eddy Patuwo (b0220) 1998; 14 Reis, Alves da Silva (b0165) 2005; 20 PJM. Day-Ahead LMP [Online]. Available Conejo, Plazas, Espinola, Molina (b0020) 2005; 20 Abedinia, Amjady, Shafie-khah, Catalão (b0115) 2015; 105 Gholipour Khajeh, Maleki, Rosen, Ahmadi (b0105) 2017 Fister I, Brest J, Yang XS. Modified bat algorithm with quaternion representation. In: 2015 IEEE Congr. Evol. Comput. CEC 2015 - Proc.; 2015. p. 491–8. Panapakidis, Dagoumas (b0035) 2016; 172 Møller (b0130) 1993; 6 Gil HA, Gómez-Quiles C, Gómez-Expósito A, Santos JR. Forecasting prices in electricity markets: needs, tools and limitations. In: Pardalos PM, Sorokinl A, Rebennackl S, Iliadisl NA, Pereira MVF, editors. Handbook of networks in power systems I. Berlin, Heidelberg; 2012. p. 141–2. Pavelka A, Procházka A. Algorithms for initialization of neural network weights. In: Sb. Prisp. 12. rocniku Konf. MATLAB 2004, vol. 2; 2004. p. 453–9. Singh, Mohanty (b0040) 2015 Monteiro, Fernandez-Jimenez, Ramirez-Rosado (b0030) 2015; 8 Lora, Santos, Exposito, Ramos, Santos (b9015) 2007; 22 Lahmiri (b0085) 2014; 26 Gao, Yan (b0175) 2011 Pindoriya, Singh, Singh (b9030) 2008; 23 [accessed: 01-Jan-2017]. Amjady, Daraeepour (b9045) 2009; 36 Weron (b0005) 2014; 30 Shafie-Khah, Moghaddam, Sheikh-El-Eslami (b0080) 2011; 52 Amjady, Hemmati (b9025) 2009; 19 Abedinia, Amjady, Zareipour (b9055) 2017; 32 Abraham (b0125) 2002; 38 REE. Daily Market Hourly Price [Online]. Available Rua D, Montero J, Lu J, Martinez L, Kerre EE. Proceedings of the 8th international FLINS conference. In: Computational intelligence in decision and control; 2008. Nogales (10.1016/j.apenergy.2017.10.058_b0070) 2002; 17 Amjady (10.1016/j.apenergy.2017.10.058_b9050) 2009; 79 Catalão (10.1016/j.apenergy.2017.10.058_b0010) 2007; 77 Amjady (10.1016/j.apenergy.2017.10.058_b9025) 2009; 19 Catalão (10.1016/j.apenergy.2017.10.058_b0110) 2011; 52 García-Martos (10.1016/j.apenergy.2017.10.058_b9010) 2007; 22 Abraham (10.1016/j.apenergy.2017.10.058_b0125) 2002; 38 10.1016/j.apenergy.2017.10.058_b0195 Abedinia (10.1016/j.apenergy.2017.10.058_b9055) 2017; 32 Singh (10.1016/j.apenergy.2017.10.058_b0040) 2015 10.1016/j.apenergy.2017.10.058_b0235 Amjady (10.1016/j.apenergy.2017.10.058_b9020) 2006; 21 10.1016/j.apenergy.2017.10.058_b0230 Lahmiri (10.1016/j.apenergy.2017.10.058_b0085) 2014; 26 Mandal (10.1016/j.apenergy.2017.10.058_b0015) 2017 Reis (10.1016/j.apenergy.2017.10.058_b0165) 2005; 20 Contreras (10.1016/j.apenergy.2017.10.058_b0045) 2003; 18 Monteiro (10.1016/j.apenergy.2017.10.058_b0030) 2015; 8 Aggarwal (10.1016/j.apenergy.2017.10.058_b0025) 2009; 31 Shayeghi (10.1016/j.apenergy.2017.10.058_b0095) 2015; 95 10.1016/j.apenergy.2017.10.058_b0060 Amjady (10.1016/j.apenergy.2017.10.058_b9040) 2009; 24 Conejo (10.1016/j.apenergy.2017.10.058_b0020) 2005; 20 Abedinia (10.1016/j.apenergy.2017.10.058_b0115) 2015; 105 Yilmaz (10.1016/j.apenergy.2017.10.058_b0160) 2013; 1 10.1016/j.apenergy.2017.10.058_b0180 Tan (10.1016/j.apenergy.2017.10.058_b0090) 2010; 87 10.1016/j.apenergy.2017.10.058_b0145 Bashir (10.1016/j.apenergy.2017.10.058_b0190) 2009; 24 10.1016/j.apenergy.2017.10.058_b0225 10.1016/j.apenergy.2017.10.058_b9035 10.1016/j.apenergy.2017.10.058_b0100 Liu (10.1016/j.apenergy.2017.10.058_b0055) 2013; 37 10.1016/j.apenergy.2017.10.058_b9060 10.1016/j.apenergy.2017.10.058_b0205 Khan (10.1016/j.apenergy.2017.10.058_b0155) 2014; 92 Setiono (10.1016/j.apenergy.2017.10.058_b0210) 2001; 2877 Catalão (10.1016/j.apenergy.2017.10.058_b0170) 2011; 26 Sánchez (10.1016/j.apenergy.2017.10.058_b0065) 2016 Weron (10.1016/j.apenergy.2017.10.058_b0005) 2014; 30 10.1016/j.apenergy.2017.10.058_b0135 Jaddi (10.1016/j.apenergy.2017.10.058_b0215) 2015; 37 Guoqiang Zhang (10.1016/j.apenergy.2017.10.058_b0220) 1998; 14 Pindoriya (10.1016/j.apenergy.2017.10.058_b9030) 2008; 23 Yang (10.1016/j.apenergy.2017.10.058_b0140) 2010; 284 Amjady (10.1016/j.apenergy.2017.10.058_b9045) 2009; 36 Crespo Cuaresma (10.1016/j.apenergy.2017.10.058_b0075) 2004; 77 Gholipour Khajeh (10.1016/j.apenergy.2017.10.058_b0105) 2017 Gao (10.1016/j.apenergy.2017.10.058_b0175) 2011 Conejo (10.1016/j.apenergy.2017.10.058_b0050) 2005; 21 Khan (10.1016/j.apenergy.2017.10.058_b0150) 2012; 4 Shafie-Khah (10.1016/j.apenergy.2017.10.058_b0080) 2011; 52 Mandal (10.1016/j.apenergy.2017.10.058_b0120) 2013; 28 Zhu (10.1016/j.apenergy.2017.10.058_b0200) 2016; 2016 Møller (10.1016/j.apenergy.2017.10.058_b0130) 1993; 6 Li (10.1016/j.apenergy.2017.10.058_b0185) 2016; 31 Lora (10.1016/j.apenergy.2017.10.058_b9015) 2007; 22 Panapakidis (10.1016/j.apenergy.2017.10.058_b0035) 2016; 172  | 
    
| References_xml | – reference: Chintham V, Vardhan NH. Electricity price forecasting of deregulated market using Elman neural network. In: IEEE INDICON; 2015. p. 1–5. – reference: Pavelka A, Procházka A. Algorithms for initialization of neural network weights. In: Sb. Prisp. 12. rocniku Konf. MATLAB 2004, vol. 2; 2004. p. 453–9. – volume: 14 start-page: 35 year: 1998 end-page: 62 ident: b0220 article-title: Forecasting with artificial neural networks: the state of the artF publication-title: Int J Forecast – volume: 52 start-page: 2165 year: 2011 end-page: 2169 ident: b0080 article-title: Price forecasting of day-ahead electricity markets using a hybrid forecast method publication-title: Energy Convers Manage – volume: 20 start-page: 189 year: 2005 end-page: 198 ident: b0165 article-title: Feature extraction via multiresolution analysis for short-term load forecasting publication-title: IEEE Trans Power Syst – start-page: 1 year: 2011 end-page: 224 ident: b0175 article-title: Wavelets: theory and applications for manufacturing publication-title: Wavelets Theory Appl Manuf – volume: 23 start-page: 1423 year: 2008 end-page: 1432 ident: b9030 article-title: An adaptive wavelet neural network-based energy price forecasting in electricity markets publication-title: IEEE Trans Power Syst – volume: 284 start-page: 65 year: 2010 end-page: 74 ident: b0140 article-title: A new metaheuristic Bat-inspired algorithm publication-title: Stud Comput Intell – volume: 24 start-page: 20 year: 2009 end-page: 27 ident: b0190 article-title: Applying wavelets to short-term load forecasting using PSO-based neural networks publication-title: IEEE Trans Power Syst – reference: Amjady N, Daraeepour A. Day-ahead electricity price forecasting using the relief algorithm and neural networks. In: 5th International Conference on the European Electricity Market; 2008. p. 1–7. – volume: 24 start-page: 306 year: 2009 end-page: 318 ident: b9040 article-title: Day-Ahead price forecasting of electricity markets by mutual information technique and cascaded neuro-evolutionary algorithm publication-title: IEEE Trans Power Syst – volume: 18 start-page: 1014 year: 2003 end-page: 1020 ident: b0045 article-title: ARIMA models to predict next-day electricity prices publication-title: IEEE Trans Power Syst – volume: 22 start-page: 1294 year: 2007 end-page: 1301 ident: b9015 article-title: Electricity market price forecasting based on weighted nearest neighbors techniques publication-title: IEEE Trans Power Syst – volume: 77 start-page: 1297 year: 2007 end-page: 1304 ident: b0010 article-title: Short-term electricity prices forecasting in a competitive market: a neural network approach publication-title: Electr Power Syst Res – reference: REE. Daily Market Hourly Price [Online]. Available: < – reference: Rua D, Montero J, Lu J, Martinez L, Kerre EE. Proceedings of the 8th international FLINS conference. In: Computational intelligence in decision and control; 2008. – volume: 105 start-page: 642 year: 2015 end-page: 654 ident: b0115 article-title: Electricity price forecast using combinatorial neural network trained by a new stochastic search method publication-title: Energy Convers Manage – reference: > [accessed: 01-Jan-2017]. – volume: 30 start-page: 1030 year: 2014 end-page: 1081 ident: b0005 article-title: Electricity price forecasting: a review of the state-of-the-art with a look into the future publication-title: Int J Forecast – volume: 19 start-page: 89 year: 2009 end-page: 102 ident: b9025 article-title: Day-ahead price forecasting of electricity markets by a hybrid intelligent system publication-title: Eur Trans Electr Power – volume: 95 start-page: 371 year: 2015 end-page: 384 ident: b0095 article-title: Simultaneous day-ahead forecasting of electricity price and load in smart grids publication-title: Energy Convers Manage – volume: 22 start-page: 544 year: 2007 end-page: 552 ident: b9010 article-title: Mixed models for short-run forecasting of electricity prices: Application for the Spanish market publication-title: IEEE Trans Power Syst – volume: 92 start-page: 23 year: 2014 end-page: 29 ident: b0155 article-title: Comparative Study between the (BA) Algorithm and (PSO) Algorithm to Train (RBF) network at data classification publication-title: Int J Intell Syst Appl – reference: Mandal P, Senjyu T, Uezato K, Funabashitm T. Several-hours-ahead electricity price and load forecasting using neural networks. In: 2005 IEEE power Eng. Soc. Gen. Meet.; 2005. p. 2205–12. – start-page: 1 year: 2015 end-page: 19 ident: b0040 article-title: A review of price forecasting problem and techniques in deregulated electricity markets publication-title: J Power Energy Eng – reference: Hua ZHZ, Li XLX, Li-zi ZLZ. Electricity price forecasting based on GARCH model in deregulated market. In: 2005 Int. Power Eng. Conf.; 2005. – reference: Catalão JPS, Pousinho HMI, Mendes VMF. Neural networks and wavelet transform for short-term electricity prices forecasting. In: 15th International Conference on Intelligent System Applications to Power Systems, ISAP ’09, vol. 18; 2009. p. 85–92. – reference: Fister I, Yang X-S, Fong S, Zhuang Y. Bat algorithm: Recent advances. In: CINTI 2014 - 15th IEEE international symposium on computational intelligence and informatics, proceedings; 2014. p. 163–7. – volume: 20 start-page: 1035 year: 2005 end-page: 1042 ident: b0020 article-title: Day-ahead electricity price forecasting using the wavelet transform and ARIMA models publication-title: IEEE Trans Power Syst – volume: 28 start-page: 1041 year: 2013 end-page: 1051 ident: b0120 article-title: A novel hybrid approach using wavelet, firefly algorithm, and fuzzy ARTMAP for day-ahead electricity price forecasting publication-title: IEEE Trans Power Syst – volume: 36 start-page: 12281 year: 2009 end-page: 12294 ident: b9045 article-title: Design of input vector for day-ahead price forecasting of electricity markets publication-title: Expert Syst Appl – start-page: 215 year: 2017 end-page: 250 ident: b0015 article-title: Electricity price forecasting using neural networks and similar days – start-page: 1 year: 2016 end-page: 19 ident: b0065 article-title: Portfolio decision of short-term electricity forecasted prices through stochastic programming publication-title: Energies – volume: 2016 year: 2016 ident: b0200 article-title: A novel quantum-behaved bat algorithm with mean best position directed for numerical optimization publication-title: Comput Intell Neurosci – volume: 38 start-page: 3 year: 2002 end-page: 25 ident: b0125 article-title: (Physio)logical circuits: the intellectual origins of the Mcculloch-Pitts neural networks publication-title: J History Behav Sci – volume: 32 start-page: 62 year: 2017 end-page: 74 ident: b9055 article-title: A new feature selection technique for load and price forecast of electrical power systems publication-title: IEEE Trans Power Syst – volume: 87 start-page: 3606 year: 2010 end-page: 3610 ident: b0090 article-title: Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models publication-title: Appl Energy – volume: 26 start-page: 218 year: 2014 end-page: 227 ident: b0085 article-title: Wavelet low- and high-frequency components as features for predicting stock prices with backpropagation neural networks publication-title: J King Saud Univ – Comput Inf Sci – volume: 79 start-page: 1329 year: 2009 end-page: 1336 ident: b9050 article-title: Mixed price and load forecasting of electricity markets by a new iterative prediction method publication-title: Electr Power Syst Res – volume: 21 start-page: 435 year: 2005 end-page: 462 ident: b0050 article-title: Forecasting electricity prices for a day-ahead pool-based electric energy market publication-title: Int J Forecast – volume: 26 start-page: 137 year: 2011 end-page: 144 ident: b0170 article-title: Hybrid wavelet-PSO-ANFIS approach for short-term electricity prices forecasting publication-title: IEEE Trans Power Syst – volume: 37 start-page: 152 year: 2013 end-page: 166 ident: b0055 article-title: Applying ARMA-GARCH approaches to forecasting short-term electricity prices publication-title: Energy Econ – volume: 31 start-page: 13 year: 2009 end-page: 22 ident: b0025 article-title: Electricity price forecasting in deregulated markets: a review and evaluation publication-title: Int J Electr Power Energy Syst – start-page: 1 year: 2017 end-page: 12 ident: b0105 article-title: Electricity price forecasting using neural networks with an improved iterative training algorithm publication-title: Int J Ambient Energy – reference: PJM. Day-Ahead LMP [Online]. Available: < – volume: 37 start-page: 71 year: 2015 end-page: 86 ident: b0215 article-title: Optimization of neural network model using modified bat-inspired algorithm publication-title: Appl Soft Comput J – volume: 8 start-page: 10464 year: 2015 end-page: 10486 ident: b0030 article-title: Explanatory information analysis for day-ahead price forecasting in the Iberian electricity market publication-title: Energies – volume: 21 start-page: 887 year: 2006 end-page: 896 ident: b9020 article-title: Day-ahead price forecasting of electricity markets by a new fuzzy neural network publication-title: IEEE Trans Power Syst – volume: 52 start-page: 1061 year: Feb. 2011 end-page: 1065 ident: b0110 article-title: Short-term electricity prices forecasting in a competitive market by a hybrid intelligent approach publication-title: Energy Convers Manage – reference: Gil HA, Gómez-Quiles C, Gómez-Expósito A, Santos JR. Forecasting prices in electricity markets: needs, tools and limitations. In: Pardalos PM, Sorokinl A, Rebennackl S, Iliadisl NA, Pereira MVF, editors. Handbook of networks in power systems I. Berlin, Heidelberg; 2012. p. 141–2. – volume: 17 start-page: 342 year: 2002 end-page: 348 ident: b0070 article-title: Forecasting next-day electricity prices by time series models publication-title: IEEE Trans Power Syst – reference: > [accessed: 04-Apr-2017]. – reference: Fister I, Brest J, Yang XS. Modified bat algorithm with quaternion representation. In: 2015 IEEE Congr. Evol. Comput. CEC 2015 - Proc.; 2015. p. 491–8. – volume: 1 start-page: 279 year: 2013 end-page: 283 ident: b0160 article-title: Improved Bat Algorithm (IBA) on continuous optimization problems publication-title: Lect Notes Softw Eng – volume: 31 start-page: 1788 year: 2016 end-page: 1798 ident: b0185 article-title: A novel wavelet-based ensemble method for short-term load forecasting with hybrid neural networks and feature selection publication-title: IEEE Trans Power Syst – volume: 2877 start-page: 2865 year: 2001 end-page: 2877 ident: b0210 article-title: Feedforward neural network construction using cross validation publication-title: Neural Comput – volume: 172 start-page: 132 year: 2016 end-page: 151 ident: b0035 article-title: Day-ahead electricity price forecasting via the application of artificial neural network based models publication-title: Appl Energy – volume: 4 start-page: 23 year: 2012 end-page: 29 ident: b0150 article-title: A comparison of BA, GA, PSO, BP and LM for training feed forward neural networks in e-learning context publication-title: Int J Intell Syst Appl – volume: 77 start-page: 87 year: 2004 end-page: 106 ident: b0075 article-title: Forecasting electricity spot-prices using linear univariate time-series models publication-title: Appl Energy – volume: 6 start-page: 525 year: 1993 end-page: 533 ident: b0130 article-title: A scaled conjugate gradient algorithm for fast supervised learning publication-title: Neural Networks – ident: 10.1016/j.apenergy.2017.10.058_b0205 – ident: 10.1016/j.apenergy.2017.10.058_b0230 – volume: 92 start-page: 23 issue: 5 year: 2014 ident: 10.1016/j.apenergy.2017.10.058_b0155 article-title: Comparative Study between the (BA) Algorithm and (PSO) Algorithm to Train (RBF) network at data classification publication-title: Int J Intell Syst Appl – ident: 10.1016/j.apenergy.2017.10.058_b9035 doi: 10.1109/ISAP.2009.5352834 – volume: 19 start-page: 89 issue: 1 year: 2009 ident: 10.1016/j.apenergy.2017.10.058_b9025 article-title: Day-ahead price forecasting of electricity markets by a hybrid intelligent system publication-title: Eur Trans Electr Power doi: 10.1002/etep.242 – volume: 32 start-page: 62 issue: 1 year: 2017 ident: 10.1016/j.apenergy.2017.10.058_b9055 article-title: A new feature selection technique for load and price forecast of electrical power systems publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2016.2556620 – ident: 10.1016/j.apenergy.2017.10.058_b0195 doi: 10.1109/CEC.2015.7256930 – ident: 10.1016/j.apenergy.2017.10.058_b0060 – volume: 8 start-page: 10464 issue: 9 year: 2015 ident: 10.1016/j.apenergy.2017.10.058_b0030 article-title: Explanatory information analysis for day-ahead price forecasting in the Iberian electricity market publication-title: Energies doi: 10.3390/en80910464 – volume: 31 start-page: 13 issue: 1 year: 2009 ident: 10.1016/j.apenergy.2017.10.058_b0025 article-title: Electricity price forecasting in deregulated markets: a review and evaluation publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2008.09.003 – volume: 26 start-page: 137 issue: 1 year: 2011 ident: 10.1016/j.apenergy.2017.10.058_b0170 article-title: Hybrid wavelet-PSO-ANFIS approach for short-term electricity prices forecasting publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2010.2049385 – volume: 21 start-page: 887 issue: 2 year: 2006 ident: 10.1016/j.apenergy.2017.10.058_b9020 article-title: Day-ahead price forecasting of electricity markets by a new fuzzy neural network publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2006.873409 – volume: 22 start-page: 1294 issue: 3 year: 2007 ident: 10.1016/j.apenergy.2017.10.058_b9015 article-title: Electricity market price forecasting based on weighted nearest neighbors techniques publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2007.901670 – volume: 23 start-page: 1423 issue: 3 year: 2008 ident: 10.1016/j.apenergy.2017.10.058_b9030 article-title: An adaptive wavelet neural network-based energy price forecasting in electricity markets publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2008.922251 – volume: 37 start-page: 71 year: 2015 ident: 10.1016/j.apenergy.2017.10.058_b0215 article-title: Optimization of neural network model using modified bat-inspired algorithm publication-title: Appl Soft Comput J doi: 10.1016/j.asoc.2015.08.002 – start-page: 1 issue: September year: 2015 ident: 10.1016/j.apenergy.2017.10.058_b0040 article-title: A review of price forecasting problem and techniques in deregulated electricity markets publication-title: J Power Energy Eng doi: 10.4236/jpee.2015.39001 – volume: 28 start-page: 1041 issue: 2 year: 2013 ident: 10.1016/j.apenergy.2017.10.058_b0120 article-title: A novel hybrid approach using wavelet, firefly algorithm, and fuzzy ARTMAP for day-ahead electricity price forecasting publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2012.2222452 – volume: 30 start-page: 1030 issue: 4 year: 2014 ident: 10.1016/j.apenergy.2017.10.058_b0005 article-title: Electricity price forecasting: a review of the state-of-the-art with a look into the future publication-title: Int J Forecast doi: 10.1016/j.ijforecast.2014.08.008 – start-page: 1 year: 2016 ident: 10.1016/j.apenergy.2017.10.058_b0065 article-title: Portfolio decision of short-term electricity forecasted prices through stochastic programming publication-title: Energies – volume: 77 start-page: 1297 issue: 10 year: 2007 ident: 10.1016/j.apenergy.2017.10.058_b0010 article-title: Short-term electricity prices forecasting in a competitive market: a neural network approach publication-title: Electr Power Syst Res doi: 10.1016/j.epsr.2006.09.022 – volume: 6 start-page: 525 issue: 4 year: 1993 ident: 10.1016/j.apenergy.2017.10.058_b0130 article-title: A scaled conjugate gradient algorithm for fast supervised learning publication-title: Neural Networks doi: 10.1016/S0893-6080(05)80056-5 – ident: 10.1016/j.apenergy.2017.10.058_b0100 doi: 10.1109/INDICON.2015.7443460 – ident: 10.1016/j.apenergy.2017.10.058_b0135 – volume: 24 start-page: 20 issue: 1 year: 2009 ident: 10.1016/j.apenergy.2017.10.058_b0190 article-title: Applying wavelets to short-term load forecasting using PSO-based neural networks publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2008.2008606 – ident: 10.1016/j.apenergy.2017.10.058_b0225 doi: 10.1007/978-3-642-23193-3_5 – volume: 17 start-page: 342 issue: 2 year: 2002 ident: 10.1016/j.apenergy.2017.10.058_b0070 article-title: Forecasting next-day electricity prices by time series models publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2002.1007902 – volume: 284 start-page: 65 year: 2010 ident: 10.1016/j.apenergy.2017.10.058_b0140 article-title: A new metaheuristic Bat-inspired algorithm publication-title: Stud Comput Intell doi: 10.1007/978-3-642-12538-6_6 – ident: 10.1016/j.apenergy.2017.10.058_b9060 doi: 10.1109/EEM.2008.4579109 – start-page: 1 year: 2017 ident: 10.1016/j.apenergy.2017.10.058_b0105 article-title: Electricity price forecasting using neural networks with an improved iterative training algorithm publication-title: Int J Ambient Energy – ident: 10.1016/j.apenergy.2017.10.058_b0180 doi: 10.1109/PES.2005.1489530 – volume: 52 start-page: 2165 issue: 5 year: 2011 ident: 10.1016/j.apenergy.2017.10.058_b0080 article-title: Price forecasting of day-ahead electricity markets using a hybrid forecast method publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2010.10.047 – volume: 26 start-page: 218 issue: 2 year: 2014 ident: 10.1016/j.apenergy.2017.10.058_b0085 article-title: Wavelet low- and high-frequency components as features for predicting stock prices with backpropagation neural networks publication-title: J King Saud Univ – Comput Inf Sci doi: 10.1016/j.jksuci.2013.12.001 – volume: 105 start-page: 642 issue: 2015 year: 2015 ident: 10.1016/j.apenergy.2017.10.058_b0115 article-title: Electricity price forecast using combinatorial neural network trained by a new stochastic search method publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2015.08.025 – start-page: 1 year: 2011 ident: 10.1016/j.apenergy.2017.10.058_b0175 article-title: Wavelets: theory and applications for manufacturing publication-title: Wavelets Theory Appl Manuf – volume: 1 start-page: 279 issue: 3 year: 2013 ident: 10.1016/j.apenergy.2017.10.058_b0160 article-title: Improved Bat Algorithm (IBA) on continuous optimization problems publication-title: Lect Notes Softw Eng doi: 10.7763/LNSE.2013.V1.61 – volume: 20 start-page: 1035 issue: 2 year: 2005 ident: 10.1016/j.apenergy.2017.10.058_b0020 article-title: Day-ahead electricity price forecasting using the wavelet transform and ARIMA models publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2005.846054 – volume: 2877 start-page: 2865 issue: 1 year: 2001 ident: 10.1016/j.apenergy.2017.10.058_b0210 article-title: Feedforward neural network construction using cross validation publication-title: Neural Comput doi: 10.1162/089976601317098565 – volume: 79 start-page: 1329 issue: 9 year: 2009 ident: 10.1016/j.apenergy.2017.10.058_b9050 article-title: Mixed price and load forecasting of electricity markets by a new iterative prediction method publication-title: Electr Power Syst Res doi: 10.1016/j.epsr.2009.04.006 – start-page: 215 year: 2017 ident: 10.1016/j.apenergy.2017.10.058_b0015 – volume: 31 start-page: 1788 issue: 3 year: 2016 ident: 10.1016/j.apenergy.2017.10.058_b0185 article-title: A novel wavelet-based ensemble method for short-term load forecasting with hybrid neural networks and feature selection publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2015.2438322 – volume: 21 start-page: 435 year: 2005 ident: 10.1016/j.apenergy.2017.10.058_b0050 article-title: Forecasting electricity prices for a day-ahead pool-based electric energy market publication-title: Int J Forecast doi: 10.1016/j.ijforecast.2004.12.005 – volume: 77 start-page: 87 issue: 1 year: 2004 ident: 10.1016/j.apenergy.2017.10.058_b0075 article-title: Forecasting electricity spot-prices using linear univariate time-series models publication-title: Appl Energy doi: 10.1016/S0306-2619(03)00096-5 – volume: 52 start-page: 1061 issue: 2 year: 2011 ident: 10.1016/j.apenergy.2017.10.058_b0110 article-title: Short-term electricity prices forecasting in a competitive market by a hybrid intelligent approach publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2010.08.035 – volume: 87 start-page: 3606 issue: 11 year: 2010 ident: 10.1016/j.apenergy.2017.10.058_b0090 article-title: Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models publication-title: Appl Energy doi: 10.1016/j.apenergy.2010.05.012 – volume: 2016 year: 2016 ident: 10.1016/j.apenergy.2017.10.058_b0200 article-title: A novel quantum-behaved bat algorithm with mean best position directed for numerical optimization publication-title: Comput Intell Neurosci doi: 10.1155/2016/6097484 – volume: 14 start-page: 35 year: 1998 ident: 10.1016/j.apenergy.2017.10.058_b0220 article-title: Forecasting with artificial neural networks: the state of the artF publication-title: Int J Forecast doi: 10.1016/S0169-2070(97)00044-7 – volume: 24 start-page: 306 issue: 1 year: 2009 ident: 10.1016/j.apenergy.2017.10.058_b9040 article-title: Day-Ahead price forecasting of electricity markets by mutual information technique and cascaded neuro-evolutionary algorithm publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2008.2006997 – volume: 18 start-page: 1014 issue: 3 year: 2003 ident: 10.1016/j.apenergy.2017.10.058_b0045 article-title: ARIMA models to predict next-day electricity prices publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2002.804943 – volume: 37 start-page: 152 year: 2013 ident: 10.1016/j.apenergy.2017.10.058_b0055 article-title: Applying ARMA-GARCH approaches to forecasting short-term electricity prices publication-title: Energy Econ doi: 10.1016/j.eneco.2013.02.006 – volume: 22 start-page: 544 issue: 2 year: 2007 ident: 10.1016/j.apenergy.2017.10.058_b9010 article-title: Mixed models for short-run forecasting of electricity prices: Application for the Spanish market publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2007.894857 – volume: 95 start-page: 371 year: 2015 ident: 10.1016/j.apenergy.2017.10.058_b0095 article-title: Simultaneous day-ahead forecasting of electricity price and load in smart grids publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2015.02.023 – volume: 4 start-page: 23 issue: 7 year: 2012 ident: 10.1016/j.apenergy.2017.10.058_b0150 article-title: A comparison of BA, GA, PSO, BP and LM for training feed forward neural networks in e-learning context publication-title: Int J Intell Syst Appl – volume: 38 start-page: 3 issue: 1 year: 2002 ident: 10.1016/j.apenergy.2017.10.058_b0125 article-title: (Physio)logical circuits: the intellectual origins of the Mcculloch-Pitts neural networks publication-title: J History Behav Sci doi: 10.1002/jhbs.1094 – ident: 10.1016/j.apenergy.2017.10.058_b0235 – ident: 10.1016/j.apenergy.2017.10.058_b0145 doi: 10.1109/CINTI.2014.7028669 – volume: 36 start-page: 12281 issue: 10 year: 2009 ident: 10.1016/j.apenergy.2017.10.058_b9045 article-title: Design of input vector for day-ahead price forecasting of electricity markets publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2009.04.059 – volume: 20 start-page: 189 issue: 1 year: 2005 ident: 10.1016/j.apenergy.2017.10.058_b0165 article-title: Feature extraction via multiresolution analysis for short-term load forecasting publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2004.840380 – volume: 172 start-page: 132 year: 2016 ident: 10.1016/j.apenergy.2017.10.058_b0035 article-title: Day-ahead electricity price forecasting via the application of artificial neural network based models publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.03.089  | 
    
| SSID | ssj0002120 | 
    
| Score | 2.527255 | 
    
| Snippet | [Display omitted]
•We propose a new method for short-term price forecasting (STPF).•The new method is based on Bat Algorithm, Wavelet Transform and Artificial... In the competitive power industry environment, electricity price forecasting is a fundamental task when market participants decide upon bidding strategies....  | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 88 | 
    
| SubjectTerms | algorithms Artificial neural networks Bat algorithm electricity electricity costs energy industry learning markets Maryland methodology neural networks New Jersey Pennsylvania prices researchers risk assessment Scaled conjugate gradient Short-term price forecasting Similar day selection Spain wavelet Wavelet transform  | 
    
| Title | A bat optimized neural network and wavelet transform approach for short-term price forecasting | 
    
| URI | https://dx.doi.org/10.1016/j.apenergy.2017.10.058 https://www.proquest.com/docview/2000576058 https://www.proquest.com/docview/2153630216  | 
    
| Volume | 210 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AKRWK dateStart: 19750101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGJ9lBW8bts0m0lyLGKpir2o4Mmwr2JF02BTBA_-dmfSxFYRPXjMMgvLzu7Mt-Sbbxg7McaEoZNaRF7HCGmtFlprJWIbOwekkFX0IbsawuBWXtwFdzV2WtXCEK2yjP3zmF5E63KkXe5mOxuP29eEdgn_e6HvSUx0VMEuQ-pi0Hpf0Dy6pTQjGguyXqoSfmypzBUVdkTxClvE8qLW7z8nqG-husg__Q22XgJH3puvbZPVXLrF1pbkBLfY7tmiag1Ny2s73Wb3Pa5VzicYHp7Hb85yUrFEi3TOAecqtfxVUQuKnOcVkuWV3DjHLz59QJwuKI7zjHSIaNAZNSXW9A677Z_dnA5E2VhBGBn4ubCjri8NPiQ6YPEF7LqgAln8sIRQKug4h7fcgImN9ULQHhiIdWRiiWDR2cj4u6yeTlK3xzjoECwELhrFSsYkj-ePEHFg2ACjOqOowYJqNxNTqo5T84unpKKXPSaVFxLyAo2jFxqs_Tkvm-tu_DkjrpyVfDlBCSaHP-ceV95N8HrRPxOVuslsSl06EdHC7zaYNcDHkwb7_1jDAVvFL2IWCi84ZPX8ZeaOEPDkulmc6CZb6Z1fDoYfZaECqA | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58HNSD-MS3Ebxmd7tNp-1RRFmfFxU8WfJaXNHu4lYED_52Z7qtL0QPHptOIGSSmS_kyzcAu9baOPbKyCRoWamcM9IYo2XqUu-RFbLKOmRn59i5UsfX0fUY7NdvYZhWWcX-UUwvo3XV0qxmszno9ZoXjHYZ_wdxGChKdOMwqaJ2zCewxusHz6NdaTOStWTzT8-E7xp64MsndszxihtM8-La7z9nqG-xukxAh3MwWyFHsTca3DyM-XwBZj7pCS7A8sHHszUyrfbtcBFu9oTRhehTfHjovXgnWMaSLPIRCVzo3IlnzTUoClHUUFbUeuOCvsTwloC65EAuBixExI3e6iHTppfg6vDgcr8jq8oK0qooLKTrtkNl6STRQkdHYN9GHanyxhJjpbHlPW1ziza1LojRBGgxNYlNFaFF7xIbLsNE3s_9Cgg0MTqMfNJNtUpZHy_sEuSguIFWt7rJKkT1bGa2kh3n6hf3Wc0vu8tqL2TsBW4nL6xC873fYCS88WePtHZW9mUJZZQd_uy7U3s3o_3FlyY69_2nIZfpJEiLv9tQ2sCQVhqu_WMM2zDVuTw7zU6Pzk_WYZr-MM1QBtEGTBSPT36T0E9htsrV_QZPWQQ9 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+bat+optimized+neural+network+and+wavelet+transform+approach+for+short-term+price+forecasting&rft.jtitle=Applied+energy&rft.au=Bento%2C+P.M.R.&rft.au=Pombo%2C+J.A.N.&rft.au=Calado%2C+M.R.A.&rft.au=Mariano%2C+S.J.P.S.&rft.date=2018-01-15&rft.issn=0306-2619&rft.volume=210+p.88-97&rft.spage=88&rft.epage=97&rft_id=info:doi/10.1016%2Fj.apenergy.2017.10.058&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |