Validation of a Genome-Wide Polygenic Score for Coronary Artery Disease in South Asians

Genome-wide polygenic scores (GPS) integrate information from many common DNA variants into a single number. Because rates of coronary artery disease (CAD) are substantially higher among South Asians, a GPS to identify high-risk individuals may be particularly useful in this population. This analysi...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American College of Cardiology Vol. 76; no. 6; pp. 703 - 714
Main Authors Wang, Minxian, Menon, Ramesh, Mishra, Sanghamitra, Patel, Aniruddh P., Chaffin, Mark, Tanneeru, Deepak, Deshmukh, Manjari, Mathew, Oshin, Apte, Sanika, Devanboo, Christina S., Sundaram, Sumathi, Lakshmipathy, Praveena, Murugan, Sakthivel, Sharma, Krishna Kumar, Rajendran, Karthikeyan, Santhosh, Sam, Thachathodiyl, Rajesh, Ahamed, Hisham, Balegadde, Aniketh Vijay, Alexander, Thomas, Swaminathan, Krishnan, Gupta, Rajeev, Mullasari, Ajit S., Sigamani, Alben, Kanchi, Muralidhar, Peterson, Andrew S., Butterworth, Adam S., Danesh, John, Di Angelantonio, Emanuele, Naheed, Aliya, Inouye, Michael, Chowdhury, Rajiv, Vedam, Ramprasad L., Kathiresan, Sekar, Gupta, Ravi, Khera, Amit V.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 11.08.2020
Subjects
Online AccessGet full text
ISSN0735-1097
1558-3597
1558-3597
DOI10.1016/j.jacc.2020.06.024

Cover

Abstract Genome-wide polygenic scores (GPS) integrate information from many common DNA variants into a single number. Because rates of coronary artery disease (CAD) are substantially higher among South Asians, a GPS to identify high-risk individuals may be particularly useful in this population. This analysis used summary statistics from a prior genome-wide association study to derive a new GPSCAD for South Asians. This GPSCAD was validated in 7,244 South Asian UK Biobank participants and tested in 491 individuals from a case-control study in Bangladesh. Next, a static ancestry and GPSCAD reference distribution was built using whole-genome sequencing from 1,522 Indian individuals, and a framework was tested for projecting individuals onto this static ancestry and GPSCAD reference distribution using 1,800 CAD cases and 1,163 control subjects newly recruited in India. The GPSCAD, containing 6,630,150 common DNA variants, had an odds ratio (OR) per SD of 1.58 in South Asian UK Biobank participants and 1.60 in the Bangladeshi study (p < 0.001 for each). Next, individuals of the Indian case-control study were projected onto static reference distributions, observing an OR/SD of 1.66 (p < 0.001). Compared with the middle quintile, risk for CAD was most pronounced for those in the top 5% of the GPSCAD distribution—ORs of 4.16, 2.46, and 3.22 in the South Asian UK Biobank, Bangladeshi, and Indian studies, respectively (p < 0.05 for each). The new GPSCAD has been developed and tested using 3 distinct South Asian studies, and provides a generalizable framework for ancestry-specific GPS assessment. [Display omitted]
AbstractList AbstractBackgroundGenome-wide polygenic scores (GPS) integrate information from many common DNA variants into a single number. Because rates of coronary artery disease (CAD) are substantially higher among South Asians, a GPS to identify high-risk individuals may be particularly useful in this population. ObjectivesThis analysis used summary statistics from a prior genome-wide association study to derive a new GPS CAD for South Asians. MethodsThis GPS CAD was validated in 7,244 South Asian UK Biobank participants and tested in 491 individuals from a case-control study in Bangladesh. Next, a static ancestry and GPS CAD reference distribution was built using whole-genome sequencing from 1,522 Indian individuals, and a framework was tested for projecting individuals onto this static ancestry and GPS CAD reference distribution using 1,800 CAD cases and 1,163 control subjects newly recruited in India. ResultsThe GPS CAD, containing 6,630,150 common DNA variants, had an odds ratio (OR) per SD of 1.58 in South Asian UK Biobank participants and 1.60 in the Bangladeshi study (p < 0.001 for each). Next, individuals of the Indian case-control study were projected onto static reference distributions, observing an OR/SD of 1.66 (p < 0.001). Compared with the middle quintile, risk for CAD was most pronounced for those in the top 5% of the GPS CAD distribution—ORs of 4.16, 2.46, and 3.22 in the South Asian UK Biobank, Bangladeshi, and Indian studies, respectively (p < 0.05 for each). ConclusionsThe new GPS CAD has been developed and tested using 3 distinct South Asian studies, and provides a generalizable framework for ancestry-specific GPS assessment.
Genome-wide polygenic scores (GPS) integrate information from many common DNA variants into a single number. Because rates of coronary artery disease (CAD) are substantially higher among South Asians, a GPS to identify high-risk individuals may be particularly useful in this population.BACKGROUNDGenome-wide polygenic scores (GPS) integrate information from many common DNA variants into a single number. Because rates of coronary artery disease (CAD) are substantially higher among South Asians, a GPS to identify high-risk individuals may be particularly useful in this population.This analysis used summary statistics from a prior genome-wide association study to derive a new GPSCAD for South Asians.OBJECTIVESThis analysis used summary statistics from a prior genome-wide association study to derive a new GPSCAD for South Asians.This GPSCAD was validated in 7,244 South Asian UK Biobank participants and tested in 491 individuals from a case-control study in Bangladesh. Next, a static ancestry and GPSCAD reference distribution was built using whole-genome sequencing from 1,522 Indian individuals, and a framework was tested for projecting individuals onto this static ancestry and GPSCAD reference distribution using 1,800 CAD cases and 1,163 control subjects newly recruited in India.METHODSThis GPSCAD was validated in 7,244 South Asian UK Biobank participants and tested in 491 individuals from a case-control study in Bangladesh. Next, a static ancestry and GPSCAD reference distribution was built using whole-genome sequencing from 1,522 Indian individuals, and a framework was tested for projecting individuals onto this static ancestry and GPSCAD reference distribution using 1,800 CAD cases and 1,163 control subjects newly recruited in India.The GPSCAD, containing 6,630,150 common DNA variants, had an odds ratio (OR) per SD of 1.58 in South Asian UK Biobank participants and 1.60 in the Bangladeshi study (p < 0.001 for each). Next, individuals of the Indian case-control study were projected onto static reference distributions, observing an OR/SD of 1.66 (p < 0.001). Compared with the middle quintile, risk for CAD was most pronounced for those in the top 5% of the GPSCAD distribution-ORs of 4.16, 2.46, and 3.22 in the South Asian UK Biobank, Bangladeshi, and Indian studies, respectively (p < 0.05 for each).RESULTSThe GPSCAD, containing 6,630,150 common DNA variants, had an odds ratio (OR) per SD of 1.58 in South Asian UK Biobank participants and 1.60 in the Bangladeshi study (p < 0.001 for each). Next, individuals of the Indian case-control study were projected onto static reference distributions, observing an OR/SD of 1.66 (p < 0.001). Compared with the middle quintile, risk for CAD was most pronounced for those in the top 5% of the GPSCAD distribution-ORs of 4.16, 2.46, and 3.22 in the South Asian UK Biobank, Bangladeshi, and Indian studies, respectively (p < 0.05 for each).The new GPSCAD has been developed and tested using 3 distinct South Asian studies, and provides a generalizable framework for ancestry-specific GPS assessment.CONCLUSIONSThe new GPSCAD has been developed and tested using 3 distinct South Asian studies, and provides a generalizable framework for ancestry-specific GPS assessment.
Genome-wide polygenic scores (GPS) integrate information from many common DNA variants into a single number. Because rates of coronary artery disease (CAD) are substantially higher among South Asians, a GPS to identify high-risk individuals may be particularly useful in this population. This analysis used summary statistics from a prior genome-wide association study to derive a new GPS for South Asians. This GPS was validated in 7,244 South Asian UK Biobank participants and tested in 491 individuals from a case-control study in Bangladesh. Next, a static ancestry and GPS reference distribution was built using whole-genome sequencing from 1,522 Indian individuals, and a framework was tested for projecting individuals onto this static ancestry and GPS reference distribution using 1,800 CAD cases and 1,163 control subjects newly recruited in India. The GPS , containing 6,630,150 common DNA variants, had an odds ratio (OR) per SD of 1.58 in South Asian UK Biobank participants and 1.60 in the Bangladeshi study (p < 0.001 for each). Next, individuals of the Indian case-control study were projected onto static reference distributions, observing an OR/SD of 1.66 (p < 0.001). Compared with the middle quintile, risk for CAD was most pronounced for those in the top 5% of the GPS distribution-ORs of 4.16, 2.46, and 3.22 in the South Asian UK Biobank, Bangladeshi, and Indian studies, respectively (p < 0.05 for each). The new GPS has been developed and tested using 3 distinct South Asian studies, and provides a generalizable framework for ancestry-specific GPS assessment.
Genome-wide polygenic scores (GPS) integrate information from many common DNA variants into a single number. Because rates of coronary artery disease (CAD) are substantially higher among South Asians, a GPS to identify high-risk individuals may be particularly useful in this population. This analysis used summary statistics from a prior genome-wide association study to derive a new GPSCAD for South Asians. This GPSCAD was validated in 7,244 South Asian UK Biobank participants and tested in 491 individuals from a case-control study in Bangladesh. Next, a static ancestry and GPSCAD reference distribution was built using whole-genome sequencing from 1,522 Indian individuals, and a framework was tested for projecting individuals onto this static ancestry and GPSCAD reference distribution using 1,800 CAD cases and 1,163 control subjects newly recruited in India. The GPSCAD, containing 6,630,150 common DNA variants, had an odds ratio (OR) per SD of 1.58 in South Asian UK Biobank participants and 1.60 in the Bangladeshi study (p < 0.001 for each). Next, individuals of the Indian case-control study were projected onto static reference distributions, observing an OR/SD of 1.66 (p < 0.001). Compared with the middle quintile, risk for CAD was most pronounced for those in the top 5% of the GPSCAD distribution—ORs of 4.16, 2.46, and 3.22 in the South Asian UK Biobank, Bangladeshi, and Indian studies, respectively (p < 0.05 for each). The new GPSCAD has been developed and tested using 3 distinct South Asian studies, and provides a generalizable framework for ancestry-specific GPS assessment. [Display omitted]
Author Swaminathan, Krishnan
Gupta, Rajeev
Naheed, Aliya
Murugan, Sakthivel
Khera, Amit V.
Rajendran, Karthikeyan
Sundaram, Sumathi
Mullasari, Ajit S.
Inouye, Michael
Danesh, John
Patel, Aniruddh P.
Butterworth, Adam S.
Wang, Minxian
Devanboo, Christina S.
Santhosh, Sam
Sigamani, Alben
Di Angelantonio, Emanuele
Chaffin, Mark
Thachathodiyl, Rajesh
Mishra, Sanghamitra
Apte, Sanika
Alexander, Thomas
Mathew, Oshin
Ahamed, Hisham
Chowdhury, Rajiv
Tanneeru, Deepak
Deshmukh, Manjari
Menon, Ramesh
Kanchi, Muralidhar
Balegadde, Aniketh Vijay
Kathiresan, Sekar
Gupta, Ravi
Lakshmipathy, Praveena
Sharma, Krishna Kumar
Peterson, Andrew S.
Vedam, Ramprasad L.
Author_xml – sequence: 1
  givenname: Minxian
  surname: Wang
  fullname: Wang, Minxian
  organization: Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
– sequence: 2
  givenname: Ramesh
  surname: Menon
  fullname: Menon, Ramesh
  organization: MedGenome Labs Ltd., Bengaluru, India
– sequence: 3
  givenname: Sanghamitra
  surname: Mishra
  fullname: Mishra, Sanghamitra
  organization: MedGenome Labs Ltd., Bengaluru, India
– sequence: 4
  givenname: Aniruddh P.
  surname: Patel
  fullname: Patel, Aniruddh P.
  organization: Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
– sequence: 5
  givenname: Mark
  surname: Chaffin
  fullname: Chaffin, Mark
  organization: Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
– sequence: 6
  givenname: Deepak
  surname: Tanneeru
  fullname: Tanneeru, Deepak
  organization: MedGenome Labs Ltd., Bengaluru, India
– sequence: 7
  givenname: Manjari
  surname: Deshmukh
  fullname: Deshmukh, Manjari
  organization: MedGenome Labs Ltd., Bengaluru, India
– sequence: 8
  givenname: Oshin
  surname: Mathew
  fullname: Mathew, Oshin
  organization: MedGenome Labs Ltd., Bengaluru, India
– sequence: 9
  givenname: Sanika
  surname: Apte
  fullname: Apte, Sanika
  organization: MedGenome Labs Ltd., Bengaluru, India
– sequence: 10
  givenname: Christina S.
  surname: Devanboo
  fullname: Devanboo, Christina S.
  organization: MedGenome Labs Ltd., Bengaluru, India
– sequence: 11
  givenname: Sumathi
  surname: Sundaram
  fullname: Sundaram, Sumathi
  organization: MedGenome Labs Ltd., Bengaluru, India
– sequence: 12
  givenname: Praveena
  surname: Lakshmipathy
  fullname: Lakshmipathy, Praveena
  organization: MedGenome Labs Ltd., Bengaluru, India
– sequence: 13
  givenname: Sakthivel
  surname: Murugan
  fullname: Murugan, Sakthivel
  organization: MedGenome Labs Ltd., Bengaluru, India
– sequence: 14
  givenname: Krishna Kumar
  surname: Sharma
  fullname: Sharma, Krishna Kumar
  organization: Eternal Heart Care Centre, Jaipur, India
– sequence: 15
  givenname: Karthikeyan
  surname: Rajendran
  fullname: Rajendran, Karthikeyan
  organization: Narayana Health, Bengaluru, India
– sequence: 16
  givenname: Sam
  surname: Santhosh
  fullname: Santhosh, Sam
  organization: MedGenome Labs Ltd., Bengaluru, India
– sequence: 17
  givenname: Rajesh
  surname: Thachathodiyl
  fullname: Thachathodiyl, Rajesh
  organization: Amrita Institute Medical Sciences, Kochi, India
– sequence: 18
  givenname: Hisham
  surname: Ahamed
  fullname: Ahamed, Hisham
  organization: Amrita Institute Medical Sciences, Kochi, India
– sequence: 19
  givenname: Aniketh Vijay
  surname: Balegadde
  fullname: Balegadde, Aniketh Vijay
  organization: Amrita Institute Medical Sciences, Kochi, India
– sequence: 20
  givenname: Thomas
  surname: Alexander
  fullname: Alexander, Thomas
  organization: Kovai Medical Center and Hospital Research Foundation, Coimbatore, India
– sequence: 21
  givenname: Krishnan
  surname: Swaminathan
  fullname: Swaminathan, Krishnan
  organization: Kovai Medical Center and Hospital Research Foundation, Coimbatore, India
– sequence: 22
  givenname: Rajeev
  surname: Gupta
  fullname: Gupta, Rajeev
  organization: Eternal Heart Care Centre, Jaipur, India
– sequence: 23
  givenname: Ajit S.
  surname: Mullasari
  fullname: Mullasari, Ajit S.
  organization: Madras Medical Mission, Chennai, India
– sequence: 24
  givenname: Alben
  surname: Sigamani
  fullname: Sigamani, Alben
  organization: Narayana Health, Bengaluru, India
– sequence: 25
  givenname: Muralidhar
  surname: Kanchi
  fullname: Kanchi, Muralidhar
  organization: Narayana Health, Bengaluru, India
– sequence: 26
  givenname: Andrew S.
  surname: Peterson
  fullname: Peterson, Andrew S.
  organization: MedGenome Inc., Foster City, California
– sequence: 27
  givenname: Adam S.
  surname: Butterworth
  fullname: Butterworth, Adam S.
  organization: British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
– sequence: 28
  givenname: John
  surname: Danesh
  fullname: Danesh, John
  organization: British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
– sequence: 29
  givenname: Emanuele
  surname: Di Angelantonio
  fullname: Di Angelantonio, Emanuele
  organization: British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
– sequence: 30
  givenname: Aliya
  surname: Naheed
  fullname: Naheed, Aliya
  organization: International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
– sequence: 31
  givenname: Michael
  surname: Inouye
  fullname: Inouye, Michael
  organization: Cambridge Baker Systems Genomics Initiative, Melbourne, Victoria, Australia, and Cambridge, United Kingdom
– sequence: 32
  givenname: Rajiv
  surname: Chowdhury
  fullname: Chowdhury, Rajiv
  organization: British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
– sequence: 33
  givenname: Ramprasad L.
  surname: Vedam
  fullname: Vedam, Ramprasad L.
  organization: MedGenome Labs Ltd., Bengaluru, India
– sequence: 34
  givenname: Sekar
  surname: Kathiresan
  fullname: Kathiresan, Sekar
  organization: Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
– sequence: 35
  givenname: Ravi
  surname: Gupta
  fullname: Gupta, Ravi
  organization: MedGenome Labs Ltd., Bengaluru, India
– sequence: 36
  givenname: Amit V.
  surname: Khera
  fullname: Khera, Amit V.
  email: avkhera@mgh.harvard.edu
  organization: Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32762905$$D View this record in MEDLINE/PubMed
BookMark eNp9kctu1DAUhi1URKeFF2CBvGSTcHzJxSyQRgNtkSqBVC4SG8vjnIBDxi52gjRv02fpk-Ew7QaJriwdff9_5O-ckCMfPBLynEHJgNWvhnIw1pYcOJRQl8DlI7JiVdUWolLNEVlBI6qCgWqOyUlKAwDULVNPyLHgTc0VVCvy7YsZXWcmFzwNPTX0HH3YYfHVdUg_hnH_Hb2ztzdXNkSkfYh0E2LwJu7pOk4Y97c3b11Ck5A6n7EwTz_oOjnj01PyuDdjwmd37yn5fPbu0-aiuPxw_n6zviysrMRUbGXbG45oESyXFQjFpWIcum0vG6hBmqZFJRojeplnppVSqL5TsrNbozojTsnLQ-91DL9mTJPeuWRxHI3HMCfNpWAtZ0yKjL64Q-ftDjt9Hd0uf0Xf-8hAewBsDClF7LV10187UzRu1Az0ol4PelGvF_Uaap3V5yj_J3rf_mDozSGEWdBvh1Hb0WXhZvyJe0xDmKPP7jTTiWvQV8tFl4NyEFUtZZsLXv-_QHfBPbT9D2jWsrU
CitedBy_id crossref_primary_10_1186_s13073_024_01304_9
crossref_primary_10_1002_adbi_202101326
crossref_primary_10_1016_j_atherosclerosis_2023_117356
crossref_primary_10_1002_cpt_2715
crossref_primary_10_1016_j_jacl_2024_01_006
crossref_primary_10_3389_fcvm_2024_1296415
crossref_primary_10_1161_CIRCGEN_123_004272
crossref_primary_10_1002_cpz1_911
crossref_primary_10_1186_s12920_023_01598_5
crossref_primary_10_3389_fgene_2022_971484
crossref_primary_10_1016_j_jacc_2020_06_028
crossref_primary_10_1016_j_xgen_2022_100118
crossref_primary_10_1161_CIRCGEN_121_003178
crossref_primary_10_1016_j_patter_2021_100364
crossref_primary_10_1007_s11886_022_01734_0
crossref_primary_10_1097_CM9_0000000000002694
crossref_primary_10_1002_gepi_22492
crossref_primary_10_1016_j_ajpc_2024_100661
crossref_primary_10_1016_j_tcm_2022_11_001
crossref_primary_10_1186_s13058_021_01465_0
crossref_primary_10_1161_CIRCULATIONAHA_120_052430
crossref_primary_10_1161_CIR_0000000000001209
crossref_primary_10_1210_jendso_bvad167
crossref_primary_10_1007_s12265_021_10144_6
crossref_primary_10_1177_1358863X211067564
crossref_primary_10_7759_cureus_58361
crossref_primary_10_1161_CIR_0000000000001123
crossref_primary_10_1007_s12265_024_10511_z
crossref_primary_10_1161_CIR_0000000000001052
crossref_primary_10_1038_s41467_023_38990_9
crossref_primary_10_2174_1573399817666201228121145
crossref_primary_10_1002_clc_23627
crossref_primary_10_1002_mds_29676
crossref_primary_10_1161_CIRCRESAHA_123_321999
crossref_primary_10_1186_s13073_022_01074_2
crossref_primary_10_1016_j_ihj_2023_08_003
crossref_primary_10_1038_s41467_022_32095_5
crossref_primary_10_2147_DMSO_S487884
crossref_primary_10_1161_JAHA_123_032831
crossref_primary_10_1038_s41576_023_00637_2
crossref_primary_10_1016_j_jacbts_2020_09_004
crossref_primary_10_3390_jcdd11020056
crossref_primary_10_1016_j_ihj_2022_08_003
crossref_primary_10_1161_CIRCGEN_122_003712
crossref_primary_10_1038_s41591_023_02429_x
crossref_primary_10_1007_s11886_021_01540_0
crossref_primary_10_1016_j_jaccao_2022_04_003
crossref_primary_10_12688_wellcomeopenres_16336_2
crossref_primary_10_1146_annurev_med_042921_112629
crossref_primary_10_1007_s12170_024_00741_w
crossref_primary_10_1161_STROKEAHA_120_032619
crossref_primary_10_1093_ehjcvp_pvad059
crossref_primary_10_1161_JAHA_123_033413
crossref_primary_10_1161_CIR_0000000000001303
crossref_primary_10_1016_j_ajpc_2024_100926
crossref_primary_10_1186_s12920_022_01331_8
crossref_primary_10_1016_j_pcad_2022_10_001
crossref_primary_10_1038_s41467_023_41985_1
crossref_primary_10_1097_CRD_0000000000000384
crossref_primary_10_24072_pcjournal_35
crossref_primary_10_1016_j_jacasi_2021_08_008
crossref_primary_10_1038_s41467_023_38766_1
crossref_primary_10_1016_j_jjcc_2021_09_005
crossref_primary_10_1016_j_jacbts_2021_04_001
crossref_primary_10_1016_j_xgen_2024_100523
crossref_primary_10_3390_ijms25158552
Cites_doi 10.1016/j.ajhg.2017.03.004
10.1038/s41467-020-15464-w
10.1002/sim.4085
10.1056/NEJM199404143301503
10.1038/s41586-019-1310-4
10.1016/j.cell.2019.10.004
10.1371/journal.pmed.1001779
10.1093/bioinformatics/btx299
10.1001/jamanetworkopen.2020.3959
10.1093/eurheartj/ehw028
10.1056/NEJMoa1605086
10.1161/CIRCULATIONAHA.119.044434
10.1016/j.jacc.2019.03.009
10.1161/CIR.0000000000000580
10.1038/nature15393
10.1093/eurheartj/eht273
10.1016/j.jacc.2016.03.520
10.1016/j.ajhg.2018.07.015
10.1038/s41588-019-0379-x
10.1186/s13073-019-0682-2
10.1038/s41576-018-0018-x
10.1016/j.jacc.2018.11.003
10.1038/s41586-019-1793-z
10.1038/s41467-019-11112-0
10.1038/s41588-018-0183-z
10.1016/j.jacc.2018.08.1041
10.1126/science.aaf7000
10.1038/ng.3643
10.1007/s10654-015-0037-2
10.1186/1471-2105-12-77
10.1016/j.ajhg.2015.09.001
10.1161/CIRCULATIONAHA.116.024436
10.1016/j.cell.2019.02.048
10.1161/CIRCULATIONAHA.119.043805
10.1038/ng.3396
10.1016/j.jacc.2018.07.079
10.1186/s13742-015-0047-8
10.1161/CIRCULATIONAHA.118.035658
10.1371/journal.pgen.1008500
10.1038/s41586-018-0579-z
10.1590/1678-4685-gmb-2017-0173
10.1161/CIRCULATIONAHA.115.020109
ContentType Journal Article
Copyright 2020 American College of Cardiology Foundation
American College of Cardiology Foundation
Copyright © 2020 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2020 American College of Cardiology Foundation
– notice: American College of Cardiology Foundation
– notice: Copyright © 2020 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.jacc.2020.06.024
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1558-3597
EndPage 714
ExternalDocumentID 32762905
10_1016_j_jacc_2020_06_024
1_s2_0_S0735109720356448
S0735109720356448
Genre Validation Study
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations Bangladesh
India
GeographicLocations_xml – name: India
– name: Bangladesh
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: T32 HL007208
– fundername: Medical Research Council
  grantid: MC_PC_17228
– fundername: NHGRI NIH HHS
  grantid: K08 HG010155
– fundername: NHGRI NIH HHS
  grantid: UM1 HG008895
– fundername: Medical Research Council
  grantid: MC_QA137853
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
18M
1B1
1P~
1~.
1~5
2WC
4.4
457
4G.
53G
5GY
5RE
5VS
6PF
7-5
71M
8P~
AABNK
AABVL
AAEDT
AAEDW
AAIKJ
AALRI
AAOAW
AAQFI
AAQQT
AAXUO
ABBQC
ABFNM
ABFRF
ABLJU
ABMAC
ABMZM
ABOCM
ACGFO
ACGFS
ACIUM
ACJTP
ACPRK
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEFWE
AEKER
AENEX
AEUPX
AEVXI
AEXQZ
AFPUW
AFRAH
AFRHN
AFTJW
AGCQF
AGYEJ
AHMBA
AIGII
AITUG
AJRQY
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BLXMC
CS3
DIK
DU5
E3Z
EBS
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FNPLU
G-Q
GBLVA
GX1
HVGLF
IHE
IXB
J1W
K-O
KQ8
L7B
MO0
N9A
O-L
O9-
OA.
OAUVE
OK1
OL~
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SSZ
TR2
UNMZH
UV1
W8F
WH7
WOQ
WOW
YYM
YZZ
Z5R
.55
.GJ
0SF
1CY
29L
3O-
3V.
6I.
7RV
AACTN
AAFTH
AAKUH
AAQXK
AAYOK
ABVKL
ABWVN
ABXDB
ACRPL
ADMUD
ADNMO
AFCTW
AFETI
AFFNX
AGHFR
AJOXV
AMFUW
ASPBG
AVWKF
AZFZN
BENPR
BPHCQ
EJD
FGOYB
H13
HX~
HZ~
J5H
N4W
NCXOZ
PROAC
QTD
R2-
RIG
SEW
T5K
X7M
XPP
YYP
ZGI
ZXP
AAYWO
AAYXX
AGQPQ
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFLBG
~HD
ID FETCH-LOGICAL-c453t-b48fa2eece0c245039249120dbf470604a78e937a3f4dbfa84439fd94dcba9da3
ISSN 0735-1097
1558-3597
IngestDate Sat Sep 27 20:17:43 EDT 2025
Mon Jul 21 06:06:40 EDT 2025
Tue Jul 01 01:24:42 EDT 2025
Thu Apr 24 23:11:38 EDT 2025
Sun Feb 23 10:19:43 EST 2025
Tue Aug 26 16:31:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords coronary artery disease
genomic medicine
PCs
OR/SD
CI
CAD
South Asian
GPS
polygenic score
AUC
area under the receiver-operator curve
genome-wide polygenic score(s)
confidence interval
principal components
odds ratios per standard deviation
Language English
License This article is made available under the Elsevier license.
Copyright © 2020 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c453t-b48fa2eece0c245039249120dbf470604a78e937a3f4dbfa84439fd94dcba9da3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://www.clinicalkey.com/#!/content/1-s2.0-S0735109720356448
PMID 32762905
PQID 2431821143
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2431821143
pubmed_primary_32762905
crossref_citationtrail_10_1016_j_jacc_2020_06_024
crossref_primary_10_1016_j_jacc_2020_06_024
elsevier_clinicalkeyesjournals_1_s2_0_S0735109720356448
elsevier_clinicalkey_doi_10_1016_j_jacc_2020_06_024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-11
PublicationDateYYYYMMDD 2020-08-11
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-11
  day: 11
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American College of Cardiology
PublicationTitleAlternate J Am Coll Cardiol
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Kullo, Jouni, Austin (bib43) 2016; 133
Khera, Emdin, Drake (bib39) 2016; 375
Natarajan (bib33) 2018; 72
Gurdasani, Carstensen, Fatumo (bib36) 2019; 179
Abul-Husn, Manickam, Jones (bib8) 2016; 354
Inouye, Abraham, Nelson (bib13) 2018; 72
Abraham, Qiu, Inouye (bib28) 2017; 33
Marston, Kamanu, Nordio (bib42) 2020; 141
Browning, Zhou, Browning (bib27) 2018; 103
Duncan, Shen, Gelaye (bib35) 2019; 10
Nordestgaard, Chapman, Humphries (bib6) 2013; 34
Arnett, Blumenthal, Albert (bib2) 2019; 74
Khera, Chaffin, Aragam (bib11) 2018; 50
Robin, Turck, Hainard (bib30) 2011; 12
Natarajan, Young, Stitziel (bib40) 2017; 135
Vilhjálmsson, Yang, Finucane (bib23) 2015; 97
Chang, Chow, Tellier, Vattikuti, Purcell, Lee (bib25) 2015; 4
Kowalski, Qian, Hou (bib37) 2019; 15
Homburger, Neben, Mishne, Zhou, Kathiresan, Khera (bib18) 2019; 11
Bycroft, Freeman, Petkova (bib20) 2018; 562
Martin, Gignoux, Walters (bib15) 2017; 100
Patel, Wang, Fahed (bib10) 2020; 3
Pereira, Mendonca, Borges (bib32) 2018; 41
Marenberg, Risch, Berkman, Floderus, Faire (bib5) 1994; 330
Khera, Won, Peloso (bib7) 2016; 67
Pencina, D’Agostino, Steyerberg (bib31) 2011; 30
Sudlow, Gallacher, Allen (bib19) 2015; 12
(bib24) 2015; 526
Chowdhury, Alam, Fakir (bib21) 2015; 30
(bib29) 2016; 48
Sirugo, Williams, Tishkoff (bib14) 2019; 177
Torkamani, Wineinger, Topol (bib34) 2018; 19
Wojcik, Graff, Nishimura (bib17) 2019; 570
Gertler (bib4) 1951; 147
Grundy, Stone, Bailey (bib3) 2019; 73
Taliun, Harris, Kessler (bib38) 2019
Marnetto, Pärna, Läll (bib44) 2020; 11
Benn, Watts, Tybjærg-Hansen, Nordestgaard (bib9) 2016; 37
Nikpay, Goel, Won (bib22) 2015; 47
(bib26) 2019; 576
Martin, Kanai, Kamatani, Okada, Neale, Daly (bib16) 2019; 51
Volgman, Palaniappan, Aggarwal (bib1) 2018; 138
Khera, Chaffin, Zekavat (bib12) 2019; 139
Damask, Steg, Schwartz (bib41) 2020; 141
Gertler (10.1016/j.jacc.2020.06.024_bib4) 1951; 147
Chang (10.1016/j.jacc.2020.06.024_bib25) 2015; 4
Grundy (10.1016/j.jacc.2020.06.024_bib3) 2019; 73
Duncan (10.1016/j.jacc.2020.06.024_bib35) 2019; 10
Homburger (10.1016/j.jacc.2020.06.024_bib18) 2019; 11
Volgman (10.1016/j.jacc.2020.06.024_bib1) 2018; 138
Abul-Husn (10.1016/j.jacc.2020.06.024_bib8) 2016; 354
Kowalski (10.1016/j.jacc.2020.06.024_bib37) 2019; 15
Kullo (10.1016/j.jacc.2020.06.024_bib43) 2016; 133
(10.1016/j.jacc.2020.06.024_bib24) 2015; 526
Khera (10.1016/j.jacc.2020.06.024_bib7) 2016; 67
Sudlow (10.1016/j.jacc.2020.06.024_bib19) 2015; 12
Marenberg (10.1016/j.jacc.2020.06.024_bib5) 1994; 330
Wojcik (10.1016/j.jacc.2020.06.024_bib17) 2019; 570
Vilhjálmsson (10.1016/j.jacc.2020.06.024_bib23) 2015; 97
Abraham (10.1016/j.jacc.2020.06.024_bib28) 2017; 33
Khera (10.1016/j.jacc.2020.06.024_bib11) 2018; 50
Robin (10.1016/j.jacc.2020.06.024_bib30) 2011; 12
(10.1016/j.jacc.2020.06.024_bib26) 2019; 576
Benn (10.1016/j.jacc.2020.06.024_bib9) 2016; 37
Damask (10.1016/j.jacc.2020.06.024_bib41) 2020; 141
Patel (10.1016/j.jacc.2020.06.024_bib10) 2020; 3
Torkamani (10.1016/j.jacc.2020.06.024_bib34) 2018; 19
Gurdasani (10.1016/j.jacc.2020.06.024_bib36) 2019; 179
Khera (10.1016/j.jacc.2020.06.024_bib39) 2016; 375
Inouye (10.1016/j.jacc.2020.06.024_bib13) 2018; 72
Pencina (10.1016/j.jacc.2020.06.024_bib31) 2011; 30
Martin (10.1016/j.jacc.2020.06.024_bib15) 2017; 100
Marston (10.1016/j.jacc.2020.06.024_bib42) 2020; 141
Nikpay (10.1016/j.jacc.2020.06.024_bib22) 2015; 47
Natarajan (10.1016/j.jacc.2020.06.024_bib33) 2018; 72
(10.1016/j.jacc.2020.06.024_bib29) 2016; 48
Pereira (10.1016/j.jacc.2020.06.024_bib32) 2018; 41
Chowdhury (10.1016/j.jacc.2020.06.024_bib21) 2015; 30
Arnett (10.1016/j.jacc.2020.06.024_bib2) 2019; 74
Taliun (10.1016/j.jacc.2020.06.024_bib38) 2019
Khera (10.1016/j.jacc.2020.06.024_bib12) 2019; 139
Bycroft (10.1016/j.jacc.2020.06.024_bib20) 2018; 562
Martin (10.1016/j.jacc.2020.06.024_bib16) 2019; 51
Marnetto (10.1016/j.jacc.2020.06.024_bib44) 2020; 11
Nordestgaard (10.1016/j.jacc.2020.06.024_bib6) 2013; 34
Sirugo (10.1016/j.jacc.2020.06.024_bib14) 2019; 177
Browning (10.1016/j.jacc.2020.06.024_bib27) 2018; 103
Natarajan (10.1016/j.jacc.2020.06.024_bib40) 2017; 135
32762906 - J Am Coll Cardiol. 2020 Aug 11;76(6):715-718. doi: 10.1016/j.jacc.2020.06.028.
References_xml – volume: 33
  start-page: 2776
  year: 2017
  end-page: 2778
  ident: bib28
  article-title: FlashPCA2: principal component analysis of Biobank-scale genotype datasets Stegle O, editor
  publication-title: Bioinformatics
– volume: 67
  start-page: 2578
  year: 2016
  end-page: 2589
  ident: bib7
  article-title: Diagnostic yield and clinical utility of sequencing familial hypercholesterolemia genes in patients with severe hypercholesterolemia
  publication-title: J Am Coll Cardiol
– volume: 34
  start-page: 3478
  year: 2013
  end-page: 3490
  ident: bib6
  article-title: Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: Consensus Statement of the European Atherosclerosis Society
  publication-title: Eur Heart J
– volume: 179
  start-page: 984
  year: 2019
  end-page: 1002.e36
  ident: bib36
  article-title: Uganda genome resource enables insights into population history and genomic discovery in Africa
  publication-title: Cell
– volume: 48
  start-page: 1279
  year: 2016
  end-page: 1283
  ident: bib29
  article-title: A reference panel of 64,976 haplotypes for genotype imputation
  publication-title: Nat Genet
– volume: 139
  start-page: 1593
  year: 2019
  end-page: 1602
  ident: bib12
  article-title: Whole-genome sequencing to characterize monogenic and polygenic contributions in patients hospitalized with early-onset myocardial infarction
  publication-title: Circulation
– volume: 72
  start-page: 1894
  year: 2018
  end-page: 1897
  ident: bib33
  article-title: Polygenic risk scoring for coronary heart disease
  publication-title: J Am Coll Cardiol
– volume: 30
  start-page: 11
  year: 2011
  end-page: 21
  ident: bib31
  article-title: Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers
  publication-title: Stat Med
– volume: 138
  start-page: e1
  year: 2018
  end-page: e34
  ident: bib1
  article-title: Atherosclerotic cardiovascular disease in South Asians in the United States: epidemiology, risk factors, and treatments: a scientific statement from the American Heart Association
  publication-title: Circulation
– volume: 37
  start-page: 1384
  year: 2016
  end-page: 1394
  ident: bib9
  article-title: Mutations causative of familial hypercholesterolaemia: screening of 98 098 individuals from the Copenhagen General Population Study estimated a prevalence of 1 in 217
  publication-title: Eur Heart J
– volume: 11
  start-page: 1628
  year: 2020
  ident: bib44
  article-title: Ancestry deconvolution and partial polygenic score can improve susceptibility predictions in recently admixed individuals
  publication-title: Nat Commun
– volume: 100
  start-page: 635
  year: 2017
  end-page: 649
  ident: bib15
  article-title: Human demographic history impacts genetic risk prediction across diverse populations
  publication-title: Am J Hum Genet
– volume: 12
  year: 2011
  ident: bib30
  article-title: pROC: an open-source package for R and S+ to analyze and compare ROC curves
  publication-title: BMC Bioinformatics
– volume: 72
  start-page: 1883
  year: 2018
  end-page: 1893
  ident: bib13
  article-title: Genomic risk prediction of coronary artery disease in 480,000 adults
  publication-title: J Am Coll Cardiol
– volume: 562
  start-page: 203
  year: 2018
  end-page: 209
  ident: bib20
  article-title: The UK Biobank resource with deep phenotyping and genomic data
  publication-title: Nature
– volume: 135
  start-page: 2091
  year: 2017
  end-page: 2101
  ident: bib40
  article-title: Polygenic risk score identifies subgroup with higher burden of atherosclerosis and greater relative benefit from statin therapy in the primary prevention setting
  publication-title: Circulation
– year: 2019
  ident: bib38
  article-title: Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program
  publication-title: Genomics
– volume: 47
  start-page: 1121
  year: 2015
  end-page: 1130
  ident: bib22
  article-title: A comprehensive 1000 Genomes–based genome-wide association meta-analysis of coronary artery disease
  publication-title: Nat Genet
– volume: 375
  start-page: 2349
  year: 2016
  end-page: 2358
  ident: bib39
  article-title: Genetic risk, adherence to a healthy lifestyle, and coronary disease
  publication-title: N Engl J Med
– volume: 570
  start-page: 514
  year: 2019
  end-page: 518
  ident: bib17
  article-title: Genetic analyses of diverse populations improves discovery for complex traits
  publication-title: Nature
– volume: 103
  start-page: 338
  year: 2018
  end-page: 348
  ident: bib27
  article-title: A one-penny imputed genome from next-generation reference panels
  publication-title: Am J Hum Genet
– volume: 526
  start-page: 68
  year: 2015
  end-page: 74
  ident: bib24
  article-title: A global reference for human genetic variation
  publication-title: Nature
– volume: 12
  year: 2015
  ident: bib19
  article-title: UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age
  publication-title: PLOS Med
– volume: 133
  start-page: 1181
  year: 2016
  end-page: 1188
  ident: bib43
  article-title: Incorporating a genetic risk score into coronary heart disease risk estimates: effect on low-density lipoprotein cholesterol levels (the MI-GENES Clinical Trial)
  publication-title: Circulation
– volume: 30
  start-page: 577
  year: 2015
  end-page: 587
  ident: bib21
  article-title: for the Cardiology Research Group The Bangladesh Risk of Acute Vascular Events (BRAVE) study: objectives and design
  publication-title: Eur J Epidemiol
– volume: 19
  start-page: 581
  year: 2018
  end-page: 590
  ident: bib34
  article-title: The personal and clinical utility of polygenic risk scores
  publication-title: Nat Rev Genet
– volume: 141
  start-page: 624
  year: 2020
  end-page: 636
  ident: bib41
  article-title: Patients with high genome-wide polygenic risk scores for coronary artery disease may receive greater clinical benefit from alirocumab treatment in the Odyssey Outcomes Trial
  publication-title: Circulation
– volume: 50
  start-page: 1219
  year: 2018
  end-page: 1224
  ident: bib11
  article-title: Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations
  publication-title: Nat Genet
– volume: 11
  start-page: 74
  year: 2019
  ident: bib18
  article-title: Low coverage whole genome sequencing enables accurate assessment of common variants and calculation of genome-wide polygenic scores
  publication-title: Genome Med
– volume: 177
  start-page: 26
  year: 2019
  end-page: 31
  ident: bib14
  article-title: The missing diversity in human genetic studies
  publication-title: Cell
– volume: 10
  start-page: 3328
  year: 2019
  ident: bib35
  article-title: Analysis of polygenic risk score usage and performance in diverse human populations
  publication-title: Nat Commun
– volume: 330
  start-page: 1041
  year: 1994
  end-page: 1046
  ident: bib5
  article-title: Genetic susceptibility to death from coronary heart disease in a study of twins
  publication-title: N Engl J Med
– volume: 73
  start-page: e285
  year: 2019
  end-page: e350
  ident: bib3
  article-title: 2018 guideline on the management of blood cholesterol
  publication-title: J Am Coll Cardiol
– volume: 354
  year: 2016
  ident: bib8
  article-title: Genetic identification of familial hypercholesterolemia within a single U.S. health care system
  publication-title: Science
– volume: 3
  year: 2020
  ident: bib10
  article-title: Association of rare pathogenic DNA variants for familial hypercholesterolemia, hereditary breast and ovarian cancer syndrome, and lynch syndrome with disease risk in adults according to family history
  publication-title: JAMA Netw Open
– volume: 147
  start-page: 621
  year: 1951
  ident: bib4
  article-title: Young candidates for coronary heart disease
  publication-title: J Am Med Assoc
– volume: 15
  year: 2019
  ident: bib37
  article-title: Use of >100,000 NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium whole genome sequences improves imputation quality and detection of rare variant associations in admixed African and Hispanic/Latino populations
  publication-title: PLOS Genet
– volume: 4
  start-page: 7
  year: 2015
  ident: bib25
  article-title: Second-generation PLINK: rising to the challenge of larger and richer datasets
  publication-title: GigaScience
– volume: 74
  start-page: 1376
  year: 2019
  end-page: 1414
  ident: bib2
  article-title: 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines
  publication-title: J Am Coll Cardiol
– volume: 97
  start-page: 576
  year: 2015
  end-page: 592
  ident: bib23
  article-title: Modeling linkage disequilibrium increases accuracy of polygenic risk scores
  publication-title: Am J Hum Genet
– volume: 41
  start-page: 766
  year: 2018
  end-page: 774
  ident: bib32
  article-title: Additional value of a combined genetic risk score to standard cardiovascular stratification
  publication-title: Genet Mol Biol
– volume: 51
  start-page: 584
  year: 2019
  end-page: 591
  ident: bib16
  article-title: Clinical use of current polygenic risk scores may exacerbate health disparities
  publication-title: Nat Genet
– volume: 141
  start-page: 616
  year: 2020
  end-page: 623
  ident: bib42
  article-title: Predicting benefit from evolocumab therapy in patients with atherosclerotic disease using a genetic risk score: results from the FOURIER Trial
  publication-title: Circulation
– volume: 576
  start-page: 106
  year: 2019
  end-page: 111
  ident: bib26
  article-title: The GenomeAsia 100K Project enables genetic discoveries across Asia
  publication-title: Nature
– volume: 100
  start-page: 635
  year: 2017
  ident: 10.1016/j.jacc.2020.06.024_bib15
  article-title: Human demographic history impacts genetic risk prediction across diverse populations
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2017.03.004
– volume: 11
  start-page: 1628
  year: 2020
  ident: 10.1016/j.jacc.2020.06.024_bib44
  article-title: Ancestry deconvolution and partial polygenic score can improve susceptibility predictions in recently admixed individuals
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-15464-w
– volume: 30
  start-page: 11
  year: 2011
  ident: 10.1016/j.jacc.2020.06.024_bib31
  article-title: Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers
  publication-title: Stat Med
  doi: 10.1002/sim.4085
– volume: 330
  start-page: 1041
  year: 1994
  ident: 10.1016/j.jacc.2020.06.024_bib5
  article-title: Genetic susceptibility to death from coronary heart disease in a study of twins
  publication-title: N Engl J Med
  doi: 10.1056/NEJM199404143301503
– volume: 570
  start-page: 514
  year: 2019
  ident: 10.1016/j.jacc.2020.06.024_bib17
  article-title: Genetic analyses of diverse populations improves discovery for complex traits
  publication-title: Nature
  doi: 10.1038/s41586-019-1310-4
– volume: 179
  start-page: 984
  year: 2019
  ident: 10.1016/j.jacc.2020.06.024_bib36
  article-title: Uganda genome resource enables insights into population history and genomic discovery in Africa
  publication-title: Cell
  doi: 10.1016/j.cell.2019.10.004
– volume: 12
  year: 2015
  ident: 10.1016/j.jacc.2020.06.024_bib19
  article-title: UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age
  publication-title: PLOS Med
  doi: 10.1371/journal.pmed.1001779
– volume: 33
  start-page: 2776
  year: 2017
  ident: 10.1016/j.jacc.2020.06.024_bib28
  article-title: FlashPCA2: principal component analysis of Biobank-scale genotype datasets Stegle O, editor
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx299
– volume: 3
  year: 2020
  ident: 10.1016/j.jacc.2020.06.024_bib10
  article-title: Association of rare pathogenic DNA variants for familial hypercholesterolemia, hereditary breast and ovarian cancer syndrome, and lynch syndrome with disease risk in adults according to family history
  publication-title: JAMA Netw Open
  doi: 10.1001/jamanetworkopen.2020.3959
– volume: 37
  start-page: 1384
  year: 2016
  ident: 10.1016/j.jacc.2020.06.024_bib9
  article-title: Mutations causative of familial hypercholesterolaemia: screening of 98 098 individuals from the Copenhagen General Population Study estimated a prevalence of 1 in 217
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehw028
– volume: 375
  start-page: 2349
  year: 2016
  ident: 10.1016/j.jacc.2020.06.024_bib39
  article-title: Genetic risk, adherence to a healthy lifestyle, and coronary disease
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1605086
– volume: 141
  start-page: 624
  year: 2020
  ident: 10.1016/j.jacc.2020.06.024_bib41
  article-title: Patients with high genome-wide polygenic risk scores for coronary artery disease may receive greater clinical benefit from alirocumab treatment in the Odyssey Outcomes Trial
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.119.044434
– volume: 74
  start-page: 1376
  year: 2019
  ident: 10.1016/j.jacc.2020.06.024_bib2
  article-title: 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2019.03.009
– volume: 138
  start-page: e1
  year: 2018
  ident: 10.1016/j.jacc.2020.06.024_bib1
  article-title: Atherosclerotic cardiovascular disease in South Asians in the United States: epidemiology, risk factors, and treatments: a scientific statement from the American Heart Association
  publication-title: Circulation
  doi: 10.1161/CIR.0000000000000580
– volume: 526
  start-page: 68
  year: 2015
  ident: 10.1016/j.jacc.2020.06.024_bib24
  article-title: A global reference for human genetic variation
  publication-title: Nature
  doi: 10.1038/nature15393
– volume: 34
  start-page: 3478
  year: 2013
  ident: 10.1016/j.jacc.2020.06.024_bib6
  article-title: Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: Consensus Statement of the European Atherosclerosis Society
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/eht273
– volume: 67
  start-page: 2578
  year: 2016
  ident: 10.1016/j.jacc.2020.06.024_bib7
  article-title: Diagnostic yield and clinical utility of sequencing familial hypercholesterolemia genes in patients with severe hypercholesterolemia
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2016.03.520
– volume: 103
  start-page: 338
  year: 2018
  ident: 10.1016/j.jacc.2020.06.024_bib27
  article-title: A one-penny imputed genome from next-generation reference panels
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2018.07.015
– volume: 51
  start-page: 584
  year: 2019
  ident: 10.1016/j.jacc.2020.06.024_bib16
  article-title: Clinical use of current polygenic risk scores may exacerbate health disparities
  publication-title: Nat Genet
  doi: 10.1038/s41588-019-0379-x
– volume: 11
  start-page: 74
  year: 2019
  ident: 10.1016/j.jacc.2020.06.024_bib18
  article-title: Low coverage whole genome sequencing enables accurate assessment of common variants and calculation of genome-wide polygenic scores
  publication-title: Genome Med
  doi: 10.1186/s13073-019-0682-2
– volume: 19
  start-page: 581
  year: 2018
  ident: 10.1016/j.jacc.2020.06.024_bib34
  article-title: The personal and clinical utility of polygenic risk scores
  publication-title: Nat Rev Genet
  doi: 10.1038/s41576-018-0018-x
– volume: 73
  start-page: e285
  year: 2019
  ident: 10.1016/j.jacc.2020.06.024_bib3
  article-title: 2018 guideline on the management of blood cholesterol
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2018.11.003
– volume: 576
  start-page: 106
  year: 2019
  ident: 10.1016/j.jacc.2020.06.024_bib26
  article-title: The GenomeAsia 100K Project enables genetic discoveries across Asia
  publication-title: Nature
  doi: 10.1038/s41586-019-1793-z
– volume: 10
  start-page: 3328
  year: 2019
  ident: 10.1016/j.jacc.2020.06.024_bib35
  article-title: Analysis of polygenic risk score usage and performance in diverse human populations
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-11112-0
– volume: 50
  start-page: 1219
  year: 2018
  ident: 10.1016/j.jacc.2020.06.024_bib11
  article-title: Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations
  publication-title: Nat Genet
  doi: 10.1038/s41588-018-0183-z
– volume: 72
  start-page: 1894
  year: 2018
  ident: 10.1016/j.jacc.2020.06.024_bib33
  article-title: Polygenic risk scoring for coronary heart disease
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2018.08.1041
– volume: 147
  start-page: 621
  year: 1951
  ident: 10.1016/j.jacc.2020.06.024_bib4
  article-title: Young candidates for coronary heart disease
  publication-title: J Am Med Assoc
– volume: 354
  year: 2016
  ident: 10.1016/j.jacc.2020.06.024_bib8
  article-title: Genetic identification of familial hypercholesterolemia within a single U.S. health care system
  publication-title: Science
  doi: 10.1126/science.aaf7000
– volume: 48
  start-page: 1279
  year: 2016
  ident: 10.1016/j.jacc.2020.06.024_bib29
  article-title: A reference panel of 64,976 haplotypes for genotype imputation
  publication-title: Nat Genet
  doi: 10.1038/ng.3643
– volume: 30
  start-page: 577
  year: 2015
  ident: 10.1016/j.jacc.2020.06.024_bib21
  article-title: for the Cardiology Research Group The Bangladesh Risk of Acute Vascular Events (BRAVE) study: objectives and design
  publication-title: Eur J Epidemiol
  doi: 10.1007/s10654-015-0037-2
– volume: 12
  year: 2011
  ident: 10.1016/j.jacc.2020.06.024_bib30
  article-title: pROC: an open-source package for R and S+ to analyze and compare ROC curves
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-77
– volume: 97
  start-page: 576
  year: 2015
  ident: 10.1016/j.jacc.2020.06.024_bib23
  article-title: Modeling linkage disequilibrium increases accuracy of polygenic risk scores
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2015.09.001
– volume: 135
  start-page: 2091
  year: 2017
  ident: 10.1016/j.jacc.2020.06.024_bib40
  article-title: Polygenic risk score identifies subgroup with higher burden of atherosclerosis and greater relative benefit from statin therapy in the primary prevention setting
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.116.024436
– volume: 177
  start-page: 26
  year: 2019
  ident: 10.1016/j.jacc.2020.06.024_bib14
  article-title: The missing diversity in human genetic studies
  publication-title: Cell
  doi: 10.1016/j.cell.2019.02.048
– volume: 141
  start-page: 616
  year: 2020
  ident: 10.1016/j.jacc.2020.06.024_bib42
  article-title: Predicting benefit from evolocumab therapy in patients with atherosclerotic disease using a genetic risk score: results from the FOURIER Trial
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.119.043805
– volume: 47
  start-page: 1121
  year: 2015
  ident: 10.1016/j.jacc.2020.06.024_bib22
  article-title: A comprehensive 1000 Genomes–based genome-wide association meta-analysis of coronary artery disease
  publication-title: Nat Genet
  doi: 10.1038/ng.3396
– volume: 72
  start-page: 1883
  year: 2018
  ident: 10.1016/j.jacc.2020.06.024_bib13
  article-title: Genomic risk prediction of coronary artery disease in 480,000 adults
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2018.07.079
– volume: 4
  start-page: 7
  year: 2015
  ident: 10.1016/j.jacc.2020.06.024_bib25
  article-title: Second-generation PLINK: rising to the challenge of larger and richer datasets
  publication-title: GigaScience
  doi: 10.1186/s13742-015-0047-8
– volume: 139
  start-page: 1593
  year: 2019
  ident: 10.1016/j.jacc.2020.06.024_bib12
  article-title: Whole-genome sequencing to characterize monogenic and polygenic contributions in patients hospitalized with early-onset myocardial infarction
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.118.035658
– volume: 15
  year: 2019
  ident: 10.1016/j.jacc.2020.06.024_bib37
  article-title: Use of >100,000 NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium whole genome sequences improves imputation quality and detection of rare variant associations in admixed African and Hispanic/Latino populations
  publication-title: PLOS Genet
  doi: 10.1371/journal.pgen.1008500
– volume: 562
  start-page: 203
  year: 2018
  ident: 10.1016/j.jacc.2020.06.024_bib20
  article-title: The UK Biobank resource with deep phenotyping and genomic data
  publication-title: Nature
  doi: 10.1038/s41586-018-0579-z
– volume: 41
  start-page: 766
  year: 2018
  ident: 10.1016/j.jacc.2020.06.024_bib32
  article-title: Additional value of a combined genetic risk score to standard cardiovascular stratification
  publication-title: Genet Mol Biol
  doi: 10.1590/1678-4685-gmb-2017-0173
– year: 2019
  ident: 10.1016/j.jacc.2020.06.024_bib38
  article-title: Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program
  publication-title: Genomics
– volume: 133
  start-page: 1181
  year: 2016
  ident: 10.1016/j.jacc.2020.06.024_bib43
  article-title: Incorporating a genetic risk score into coronary heart disease risk estimates: effect on low-density lipoprotein cholesterol levels (the MI-GENES Clinical Trial)
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.115.020109
– reference: 32762906 - J Am Coll Cardiol. 2020 Aug 11;76(6):715-718. doi: 10.1016/j.jacc.2020.06.028.
SSID ssj0006819
Score 2.5825806
Snippet Genome-wide polygenic scores (GPS) integrate information from many common DNA variants into a single number. Because rates of coronary artery disease (CAD) are...
AbstractBackgroundGenome-wide polygenic scores (GPS) integrate information from many common DNA variants into a single number. Because rates of coronary artery...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 703
SubjectTerms Adult
Aged
Bangladesh
Cardiovascular
Case-Control Studies
coronary artery disease
Coronary Artery Disease - genetics
Female
Genome-Wide Association Study
genomic medicine
Humans
India
Male
Middle Aged
Multifactorial Inheritance
polygenic score
South Asian
Title Validation of a Genome-Wide Polygenic Score for Coronary Artery Disease in South Asians
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0735109720356448
https://www.clinicalkey.es/playcontent/1-s2.0-S0735109720356448
https://www.ncbi.nlm.nih.gov/pubmed/32762905
https://www.proquest.com/docview/2431821143
Volume 76
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3datswFBZZB6U3Y__L_vBgvQoOsiwl9mXINsogY5B2K7sRsi0Th8YpcQLrLvYAe4o-S59s50iy421N2XZjjCw5xufL0afj7xwR8poPhA5ZrH2eCVigMMX9GGViqVDIMOIgjzAbefJhcHTC35-K007nR0u1tFkn_fTbtXkl_2NVaAO7YpbsP1i2uSk0wDnYF45gYTj-lY0_AYnOGs6nsIb0cqH9z0WmUdh2AQOL9HDMDkd0iuUqjaZwjDULUCs3QjXnhb38xn6n6RWl644764HtADzVDv7aykkp2_GHsVG4_hqstw5lUpRfW2icwNPaCAAqdZuw9KSoZmbzo94Uxs3UolivmrnjI1BjKysoi9Umy2YuP83FLZhRzTm_qp2vFZEfCivPrZ2x3QzGga7tWYemFMKfHt8GH-b9uUqxIiWjphyrzctuQeB8YTAQMnD-MRXb2a_RJNaXbpHbcDZAn9n_vpULDYA6uaQrqw_8_QcPyH59i10cZ9caxnCZ47vkjjOiN7KIukc6urxP9idOZvGAfNkCy1vmnvJawPIaYF1dGlB5ACqvBpVnQXV16QDlFSV0QzB5FkwPycm7t8fjI99twuGnXIRrP-FRrpjWqaYp44KGuGAPGM2SnJvKS2oYaeC4Ksw5tKmIA8XNs5hnaaLiTIWPyB6gST8hXkKjnCqGGxoEPGHDCJYSwzwD0imSKKRZlwT1a5Opq1CPG6WcyVqKOJf41iW-dYl6TMa7pNeMObf1WW7sHdbWkHXmMcyVEsB046jhdaN05VxBJQNZMUnlFOZLgZIORkOBgY8ueVWbXILbxm9xqtTLTSUZEPeIBbBa6ZLHFgvN89cwerrzyjNysP1LPSd769VGvwByvE5eGtT-BC--t_k
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validation+of+a+Genome-Wide+Polygenic%C2%A0Score+for+Coronary+Artery%C2%A0Disease+in%C2%A0South+Asians&rft.jtitle=Journal+of+the+American+College+of+Cardiology&rft.au=Wang%2C+Minxian&rft.au=Menon%2C+Ramesh&rft.au=Mishra%2C+Sanghamitra&rft.au=Patel%2C+Aniruddh+P&rft.date=2020-08-11&rft.eissn=1558-3597&rft.volume=76&rft.issue=6&rft.spage=703&rft_id=info:doi/10.1016%2Fj.jacc.2020.06.024&rft_id=info%3Apmid%2F32762905&rft.externalDocID=32762905
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F07351097%2FS0735109720X00301%2Fcov150h.gif