The compensatory interaction between motor unit firing behavior and muscle force during fatigue
Throughout the literature, different observations of motor unit firing behavior during muscle fatigue have been reported and explained with varieties of conjectures. The disagreement amongst previous studies has resulted, in part, from the limited number of available motor units and from the mislead...
Saved in:
Published in | Journal of neurophysiology Vol. 116; no. 4; pp. 1579 - 1585 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Physiological Society
01.10.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-3077 1522-1598 |
DOI | 10.1152/jn.00347.2016 |
Cover
Abstract | Throughout the literature, different observations of motor unit firing behavior during muscle fatigue have been reported and explained with varieties of conjectures. The disagreement amongst previous studies has resulted, in part, from the limited number of available motor units and from the misleading practice of grouping motor unit data across different subjects, contractions, and force levels. To establish a more clear understanding of motor unit control during fatigue, we investigated the firing behavior of motor units from the vastus lateralis muscle of individual subjects during a fatigue protocol of repeated voluntary constant force isometric contractions. Surface electromyographic decomposition technology provided the firings of 1,890 motor unit firing trains. These data revealed that to sustain the contraction force as the muscle fatigued, the following occurred: 1) motor unit firing rates increased; 2) new motor units were recruited; and 3) motor unit recruitment thresholds decreased. Although the degree of these adaptations was subject specific, the behavior was consistent in all subjects. When we compared our empirical observations with those obtained from simulation, we found that the fatigue-induced changes in motor unit firing behavior can be explained by increasing excitation to the motoneuron pool that compensates for the fatigue-induced decrease in muscle force twitch reported in empirical studies. Yet, the fundamental motor unit control scheme remains invariant throughout the development of fatigue. These findings indicate that the central nervous system regulates motor unit firing behavior by adjusting the operating point of the excitation to the motoneuron pool to sustain the contraction force as the muscle fatigues. |
---|---|
AbstractList | Throughout the literature, different observations of motor unit firing behavior during muscle fatigue have been reported and explained with varieties of conjectures. The disagreement amongst previous studies has resulted, in part, from the limited number of available motor units and from the misleading practice of grouping motor unit data across different subjects, contractions, and force levels. To establish a more clear understanding of motor unit control during fatigue, we investigated the firing behavior of motor units from the vastus lateralis muscle of individual subjects during a fatigue protocol of repeated voluntary constant force isometric contractions. Surface electromyographic decomposition technology provided the firings of 1,890 motor unit firing trains. These data revealed that to sustain the contraction force as the muscle fatigued, the following occurred: 1) motor unit firing rates increased; 2) new motor units were recruited; and 3) motor unit recruitment thresholds decreased. Although the degree of these adaptations was subject specific, the behavior was consistent in all subjects. When we compared our empirical observations with those obtained from simulation, we found that the fatigue-induced changes in motor unit firing behavior can be explained by increasing excitation to the motoneuron pool that compensates for the fatigue-induced decrease in muscle force twitch reported in empirical studies. Yet, the fundamental motor unit control scheme remains invariant throughout the development of fatigue. These findings indicate that the central nervous system regulates motor unit firing behavior by adjusting the operating point of the excitation to the motoneuron pool to sustain the contraction force as the muscle fatigues. This work provides a clear understanding of motor unit control during fatigue. It reveals that the excitation to the motoneuron pool adjusts motor unit firing behavior to compensate for the changing muscle force twitch. The degree of motor unit adaptation is subject specific. Yet, across all subjects, the fundamental control scheme governing motor unit firings remains unchanged . Throughout the literature, different observations of motor unit firing behavior during muscle fatigue have been reported and explained with varieties of conjectures. The disagreement amongst previous studies has resulted, in part, from the limited number of available motor units and from the misleading practice of grouping motor unit data across different subjects, contractions, and force levels. To establish a more clear understanding of motor unit control during fatigue, we investigated the firing behavior of motor units from the vastus lateralis muscle of individual subjects during a fatigue protocol of repeated voluntary constant force isometric contractions. Surface electromyographic decomposition technology provided the firings of 1,890 motor unit firing trains. These data revealed that to sustain the contraction force as the muscle fatigued, the following occurred: 1 ) motor unit firing rates increased; 2 ) new motor units were recruited; and 3 ) motor unit recruitment thresholds decreased. Although the degree of these adaptations was subject specific, the behavior was consistent in all subjects. When we compared our empirical observations with those obtained from simulation, we found that the fatigue-induced changes in motor unit firing behavior can be explained by increasing excitation to the motoneuron pool that compensates for the fatigue-induced decrease in muscle force twitch reported in empirical studies. Yet, the fundamental motor unit control scheme remains invariant throughout the development of fatigue. These findings indicate that the central nervous system regulates motor unit firing behavior by adjusting the operating point of the excitation to the motoneuron pool to sustain the contraction force as the muscle fatigues. |
Author | De Luca, Carlo J. Contessa, Paola Kline, Joshua C. |
Author_xml | – sequence: 1 givenname: Paola surname: Contessa fullname: Contessa, Paola organization: Delsys Incorporated, Natick, Massachusetts; and – sequence: 2 givenname: Carlo J. surname: De Luca fullname: De Luca, Carlo J. organization: Delsys Incorporated, Natick, Massachusetts; and, Department of Biomedical Engineering, Boston University, Boston, Massachusetts – sequence: 3 givenname: Joshua C. surname: Kline fullname: Kline, Joshua C. organization: Delsys Incorporated, Natick, Massachusetts; and |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27385798$$D View this record in MEDLINE/PubMed |
BookMark | eNptkUuLFDEUhYOMOD2jS7eSpZtq86xUbQQZfMGAm3EdUslNd5qqpE1SI_PvTc9DVFwl3PPdc-CeC3QWUwSEXlOypVSyd4e4JYQLtWWE9s_Qps1YR-U4nKENIe3PiVLn6KKUAyFEScJeoHOm-CDVOGyQvtkDtmk5QiympnyHQ6yQja0hRTxB_QkQ8ZKahNcYKvYhh7hryt7chjY00eFlLXYG7FO2gN16D3hTw26Fl-i5N3OBV4_vJfr-6ePN1Zfu-tvnr1cfrjsrJK_dxCkdnJejG7gApwxh0ygodSB83090knb0zg9eSTE4S4X3zLHJAWOEWyb4JXr_4HtcpwWchVizmfUxh8XkO51M0H8rMez1Lt1qSYXoR94M3j4a5PRjhVL1EoqFeTYR0lo0HVivGO1l39A3f2b9Dnm6agP4A2BzKiWD1zZUc7poiw6zpkSfutOHqO-706fu2lb3z9aT8f_5X2c5nbg |
CitedBy_id | crossref_primary_10_1007_s00421_019_04090_0 crossref_primary_10_1007_s00421_020_04363_z crossref_primary_10_1139_apnm_2017_0646 crossref_primary_10_3389_fphys_2019_00545 crossref_primary_10_1080_02701367_2020_1734521 crossref_primary_10_3390_jfmk8020053 crossref_primary_10_1007_s00421_019_04273_9 crossref_primary_10_1152_jn_00490_2018 crossref_primary_10_1080_02701367_2023_2201311 crossref_primary_10_1519_JSC_0000000000004762 crossref_primary_10_1002_ar_25079 crossref_primary_10_1016_j_bspc_2024_106769 crossref_primary_10_1016_j_heliyon_2024_e34609 crossref_primary_10_1109_JSEN_2018_2883660 crossref_primary_10_1016_j_humov_2020_102650 crossref_primary_10_1016_j_smhs_2022_12_005 crossref_primary_10_3389_fphys_2022_955912 crossref_primary_10_1007_s40279_024_02110_4 crossref_primary_10_14283_jfa_2020_19 crossref_primary_10_1007_s00394_025_03634_9 crossref_primary_10_1080_02640414_2024_2413721 crossref_primary_10_3390_jfmk8020085 crossref_primary_10_1109_TNSRE_2025_3525517 crossref_primary_10_1152_japplphysiol_00603_2024 crossref_primary_10_1519_JSC_0000000000003694 crossref_primary_10_1007_s00421_021_04790_6 crossref_primary_10_1088_1361_6579_ad7fcd crossref_primary_10_1177_0031512520926369 crossref_primary_10_1519_JSC_0000000000004379 crossref_primary_10_1007_s00421_023_05201_8 crossref_primary_10_14814_phy2_13675 crossref_primary_10_1519_JSC_0000000000002796 crossref_primary_10_1519_JSC_0000000000003643 crossref_primary_10_1007_s00221_021_06278_3 crossref_primary_10_1123_mc_2020_0050 crossref_primary_10_14814_phy2_13636 crossref_primary_10_1519_JSC_0000000000004812 crossref_primary_10_3390_cells11203299 crossref_primary_10_1139_apnm_2023_0208 crossref_primary_10_1519_JSC_0000000000003529 crossref_primary_10_1186_s12984_020_0645_2 crossref_primary_10_1519_JSC_0000000000004418 crossref_primary_10_1007_s11357_019_00134_7 crossref_primary_10_1088_1361_6579_ab4025 crossref_primary_10_1007_s00421_018_3909_9 crossref_primary_10_1007_s10974_019_09516_y crossref_primary_10_1016_j_medengphy_2017_08_015 crossref_primary_10_1519_JSC_0000000000004190 crossref_primary_10_1152_jn_00675_2017 crossref_primary_10_14814_phy2_13151 crossref_primary_10_14814_phy2_13590 crossref_primary_10_3390_life12040483 crossref_primary_10_1002_tsm2_187 crossref_primary_10_1080_10255842_2024_2422900 crossref_primary_10_1080_1091367X_2021_2013229 crossref_primary_10_3390_sports6040104 crossref_primary_10_2478_hukin_2022_0027 crossref_primary_10_1113_JP286143 crossref_primary_10_7717_peerj_18163 crossref_primary_10_1152_jn_00071_2019 crossref_primary_10_14814_phy2_14677 crossref_primary_10_1152_jn_00766_2017 crossref_primary_10_1007_s00221_019_05612_0 crossref_primary_10_1016_j_jsams_2025_01_002 crossref_primary_10_1007_s40520_019_01438_6 crossref_primary_10_14814_phy2_13580 crossref_primary_10_3389_fphys_2019_00131 crossref_primary_10_1016_j_brainres_2020_147221 crossref_primary_10_1113_EP091058 crossref_primary_10_1007_s00421_021_04606_7 crossref_primary_10_1007_s00221_020_05906_8 crossref_primary_10_1111_apha_14024 crossref_primary_10_1152_japplphysiol_00675_2023 crossref_primary_10_1080_00222895_2018_1495172 crossref_primary_10_1152_jn_00326_2018 crossref_primary_10_1007_s42978_020_00076_z crossref_primary_10_1113_EP086262 crossref_primary_10_1016_j_jelekin_2019_03_010 crossref_primary_10_1016_j_exger_2023_112346 crossref_primary_10_1016_j_humov_2019_04_011 crossref_primary_10_1007_s42978_020_00052_7 crossref_primary_10_1111_sms_13256 crossref_primary_10_1016_j_crphys_2020_02_002 crossref_primary_10_1016_j_jelekin_2020_102421 crossref_primary_10_1007_s00221_019_05508_z |
Cites_doi | 10.1152/jn.00237.2012 10.1152/jn.00961.2010 10.1152/jn.00837.2004 10.1016/0166-2236(94)90064-7 10.1152/japplphysiol.01344.2004 10.1152/jn.00009.2006 10.1016/0014-4886(76)90210-7 10.1016/j.clinph.2009.11.092 10.1016/0014-4886(83)90163-2 10.1152/jn.00179.2003 10.1113/jphysiol.2005.103044 10.1152/jn.1989.62.6.1344 10.1152/jn.00301.2012 10.1152/jappl.1985.58.4.1073 10.1007/s00421-005-1356-x 10.1152/jn.00944.2012 10.1249/MSS.0b013e318235d81d 10.1007/s00221-015-4455-x 10.1126/science.126.3287.1345 10.1152/jn.00146.2015 |
ContentType | Journal Article |
Copyright | Copyright © 2016 the American Physiological Society. Copyright © 2016 the American Physiological Society 2016 American Physiological Society |
Copyright_xml | – notice: Copyright © 2016 the American Physiological Society. – notice: Copyright © 2016 the American Physiological Society 2016 American Physiological Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1152/jn.00347.2016 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1522-1598 |
EndPage | 1585 |
ExternalDocumentID | PMC5144693 27385798 10_1152_jn_00347_2016 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R44 NS077526 – fundername: NINDS NIH HHS grantid: R43 NS093651 – fundername: HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS) grantid: R43NS093651; R44NS077526 – fundername: Delsys Inc. |
GroupedDBID | --- -DZ -~X .55 18M 29L 2WC 39C 4.4 53G 5GY 5VS AAYXX ABCQX ABHWK ABIVO ABJNI ABKWE ACGFO ACGFS ACNCT ADBBV ADFNX ADHGD ADIYS AENEX AETEA AFFNX AFOSN AIZAD ALMA_UNASSIGNED_HOLDINGS BAWUL BKKCC BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD EMOBN F5P H13 H~9 ITBOX KQ8 L7B OK1 P2P RAP RHI RPL RPRKH SJN TR2 UHB UPT W8F WH7 WOQ WOW X7M XSW YBH YQT YSK CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c453t-b3118df59d834ed7a02b9411de4f66b1b5c9fdf8f7548dc14ff2d2bde2203c243 |
ISSN | 0022-3077 |
IngestDate | Thu Aug 21 17:24:50 EDT 2025 Fri Sep 05 05:13:26 EDT 2025 Mon Jul 21 05:42:27 EDT 2025 Tue Jul 01 04:09:06 EDT 2025 Thu Apr 24 23:11:09 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | force twitch firing rates muscle fatigue recruitment threshold motor units |
Language | English |
License | Copyright © 2016 the American Physiological Society. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c453t-b3118df59d834ed7a02b9411de4f66b1b5c9fdf8f7548dc14ff2d2bde2203c243 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/5144693 |
PMID | 27385798 |
PQID | 1826721656 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5144693 proquest_miscellaneous_1826721656 pubmed_primary_27385798 crossref_citationtrail_10_1152_jn_00347_2016 crossref_primary_10_1152_jn_00347_2016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-10-01 |
PublicationDateYYYYMMDD | 2016-10-01 |
PublicationDate_xml | – month: 10 year: 2016 text: 2016-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bethesda, MD |
PublicationTitle | Journal of neurophysiology |
PublicationTitleAlternate | J Neurophysiol |
PublicationYear | 2016 |
Publisher | American Physiological Society |
Publisher_xml | – name: American Physiological Society |
References | B20 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B1 B2 B3 B4 B5 B6 B7 B8 B9 25761952 - J Neurophysiol. 2015 May 1;113(9):3186-96 13495469 - Science. 1957 Dec 27;126(3287):1345-7 26449966 - Exp Brain Res. 2016 Jan;234(1):267-76 23699053 - J Neurophysiol. 2013 Sep;110(5):1205-20 16513673 - J Physiol. 2006 May 15;573(Pt 1):161-71 16036904 - J Appl Physiol (1985). 2005 Jul;99(1):268-80 16899649 - J Neurophysiol. 2006 Sep;96(3):1646-57 14615422 - J Neurophysiol. 2003 Nov;90(5):2919-27 2600629 - J Neurophysiol. 1989 Dec;62(6):1344-59 20430694 - Clin Neurophysiol. 2010 Oct;121(10):1602-15 21975447 - J Neurophysiol. 2012 Jan;107(1):178-95 15887021 - Eur J Appl Physiol. 2005 Aug;94(5-6):659-69 23678020 - J Neurophysiol. 2013 Aug;110(4):891-8 23236008 - J Neurophysiol. 2013 Mar;109(6):1548-70 954913 - Exp Neurol. 1976 Sep;52(3):345-55 15483059 - J Neurophysiol. 2005 Mar;93(3):1381-92 21904248 - Med Sci Sports Exerc. 2012 Apr;44(4):616-24 3988664 - J Appl Physiol (1985). 1985 Apr;58(4):1073-9 7524216 - Trends Neurosci. 1994 Jul;17(7):299-305 6861942 - Exp Neurol. 1983 Jul;81(1):141-52 |
References_xml | – ident: B3 doi: 10.1152/jn.00237.2012 – ident: B5 doi: 10.1152/jn.00961.2010 – ident: B16 doi: 10.1152/jn.00837.2004 – ident: B6 doi: 10.1016/0166-2236(94)90064-7 – ident: B1 doi: 10.1152/japplphysiol.01344.2004 – ident: B4 doi: 10.1152/jn.00009.2006 – ident: B9 doi: 10.1016/0014-4886(76)90210-7 – ident: B17 doi: 10.1016/j.clinph.2009.11.092 – ident: B19 doi: 10.1016/0014-4886(83)90163-2 – ident: B2 doi: 10.1152/jn.00179.2003 – ident: B13 doi: 10.1113/jphysiol.2005.103044 – ident: B8 doi: 10.1152/jn.1989.62.6.1344 – ident: B11 doi: 10.1152/jn.00301.2012 – ident: B18 doi: 10.1152/jappl.1985.58.4.1073 – ident: B7 doi: 10.1007/s00421-005-1356-x – ident: B12 doi: 10.1152/jn.00944.2012 – ident: B20 doi: 10.1249/MSS.0b013e318235d81d – ident: B15 doi: 10.1007/s00221-015-4455-x – ident: B10 doi: 10.1126/science.126.3287.1345 – ident: B14 doi: 10.1152/jn.00146.2015 – reference: 14615422 - J Neurophysiol. 2003 Nov;90(5):2919-27 – reference: 3988664 - J Appl Physiol (1985). 1985 Apr;58(4):1073-9 – reference: 15887021 - Eur J Appl Physiol. 2005 Aug;94(5-6):659-69 – reference: 15483059 - J Neurophysiol. 2005 Mar;93(3):1381-92 – reference: 26449966 - Exp Brain Res. 2016 Jan;234(1):267-76 – reference: 16899649 - J Neurophysiol. 2006 Sep;96(3):1646-57 – reference: 23699053 - J Neurophysiol. 2013 Sep;110(5):1205-20 – reference: 23678020 - J Neurophysiol. 2013 Aug;110(4):891-8 – reference: 23236008 - J Neurophysiol. 2013 Mar;109(6):1548-70 – reference: 954913 - Exp Neurol. 1976 Sep;52(3):345-55 – reference: 2600629 - J Neurophysiol. 1989 Dec;62(6):1344-59 – reference: 25761952 - J Neurophysiol. 2015 May 1;113(9):3186-96 – reference: 16036904 - J Appl Physiol (1985). 2005 Jul;99(1):268-80 – reference: 21975447 - J Neurophysiol. 2012 Jan;107(1):178-95 – reference: 21904248 - Med Sci Sports Exerc. 2012 Apr;44(4):616-24 – reference: 13495469 - Science. 1957 Dec 27;126(3287):1345-7 – reference: 6861942 - Exp Neurol. 1983 Jul;81(1):141-52 – reference: 16513673 - J Physiol. 2006 May 15;573(Pt 1):161-71 – reference: 7524216 - Trends Neurosci. 1994 Jul;17(7):299-305 – reference: 20430694 - Clin Neurophysiol. 2010 Oct;121(10):1602-15 |
SSID | ssj0007502 |
Score | 2.520364 |
Snippet | Throughout the literature, different observations of motor unit firing behavior during muscle fatigue have been reported and explained with varieties of... This work provides a clear understanding of motor unit control during fatigue. It reveals that the excitation to the motoneuron pool adjusts motor unit firing... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1579 |
SubjectTerms | Action Potentials - physiology Adaptation, Physiological - physiology Adult Electromyography Female Humans Isometric Contraction - physiology Male Models, Biological Motor Activity - physiology Motor Neurons - physiology Muscle Fatigue - physiology Rapid Reports Volition Young Adult |
Title | The compensatory interaction between motor unit firing behavior and muscle force during fatigue |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27385798 https://www.proquest.com/docview/1826721656 https://pubmed.ncbi.nlm.nih.gov/PMC5144693 |
Volume | 116 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1522-1598 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007502 issn: 0022-3077 databaseCode: KQ8 dateStart: 19970101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1522-1598 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007502 issn: 0022-3077 databaseCode: DIK dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BuXBBQHmUlxYJ5RJcsi8_jhW0qmhUQEqk3Cyvd5e2Su2SxAf49cw-bMe0SIWLFTmrtbXzeXZmZ-YbhN4RIwtWMBVJURQR7BAkSknJI0USBdYxVxPtEmRP4-M5_7wQi76EwFWXbOR--evGupL_kSrcA7naKtl_kGw3KdyA3yBfuIKE4XprGduccHBFfbDckj-sQvfvNgMLZFGvxg18umNz7rLt2tJ8Fzi4bNYwq802hC88FC0amP97M0wS6g1XR4HpTkQGR_KO52q9LrxdWi87ff9Jj6dNWYT0kmXdR6JOPM2pi0OcNUU4sQ1nECTustlgCwl6E3xasIzSgWL1VZQBQXxLTRLhO8iELZcI37bnujoXlh72otq3NDqJTcS7gTb79Et-NJ9O89nhYja6-hHZjmI28h7aq9xF92gSx7a7xcm3nkkeLCXacq4K-mHwjKGNcs3x-DN_dssgmT1ED4JA8IGHxSN0R1eP0e5BBUi4_IlH-GsnoV2UA1LwNlLwFlJwQAp2SMEWKdgjBbdIwYAU7JGCHVKwRwoOSHmC5keHs4_HUWitEZVcsE0kGTiWyohMpYxrlRQTKjNOiNLcxLEkUpSZUSY1CXi0qiTcGKqoVJrSCSspZ0_RTlVX-jnCsTFEg91XUpPxGDZAozVjEjwPafVDuofet4uZl4F33rY_WebO_xQ0v6hyt_a5Xfs9NOqGX3nClb8NfNtKJgeVaONcRaXrZp1bl9lyUgkY88xLqpvKsTclGbxVMpBhN8DSrQ__qc7PHO26sEcnGXtxi-e-RPf7z-QV2tmsGv0ajNeNfONQ-BvOhKRf |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+compensatory+interaction+between+motor+unit+firing+behavior+and+muscle+force+during+fatigue&rft.jtitle=Journal+of+neurophysiology&rft.au=Contessa%2C+Paola&rft.au=De+Luca%2C+Carlo+J&rft.au=Kline%2C+Joshua+C&rft.date=2016-10-01&rft.eissn=1522-1598&rft.volume=116&rft.issue=4&rft.spage=1579&rft.epage=1585&rft_id=info:doi/10.1152%2Fjn.00347.2016&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon |