The compensatory interaction between motor unit firing behavior and muscle force during fatigue

Throughout the literature, different observations of motor unit firing behavior during muscle fatigue have been reported and explained with varieties of conjectures. The disagreement amongst previous studies has resulted, in part, from the limited number of available motor units and from the mislead...

Full description

Saved in:
Bibliographic Details
Published inJournal of neurophysiology Vol. 116; no. 4; pp. 1579 - 1585
Main Authors Contessa, Paola, De Luca, Carlo J., Kline, Joshua C.
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 01.10.2016
Subjects
Online AccessGet full text
ISSN0022-3077
1522-1598
DOI10.1152/jn.00347.2016

Cover

Abstract Throughout the literature, different observations of motor unit firing behavior during muscle fatigue have been reported and explained with varieties of conjectures. The disagreement amongst previous studies has resulted, in part, from the limited number of available motor units and from the misleading practice of grouping motor unit data across different subjects, contractions, and force levels. To establish a more clear understanding of motor unit control during fatigue, we investigated the firing behavior of motor units from the vastus lateralis muscle of individual subjects during a fatigue protocol of repeated voluntary constant force isometric contractions. Surface electromyographic decomposition technology provided the firings of 1,890 motor unit firing trains. These data revealed that to sustain the contraction force as the muscle fatigued, the following occurred: 1) motor unit firing rates increased; 2) new motor units were recruited; and 3) motor unit recruitment thresholds decreased. Although the degree of these adaptations was subject specific, the behavior was consistent in all subjects. When we compared our empirical observations with those obtained from simulation, we found that the fatigue-induced changes in motor unit firing behavior can be explained by increasing excitation to the motoneuron pool that compensates for the fatigue-induced decrease in muscle force twitch reported in empirical studies. Yet, the fundamental motor unit control scheme remains invariant throughout the development of fatigue. These findings indicate that the central nervous system regulates motor unit firing behavior by adjusting the operating point of the excitation to the motoneuron pool to sustain the contraction force as the muscle fatigues.
AbstractList Throughout the literature, different observations of motor unit firing behavior during muscle fatigue have been reported and explained with varieties of conjectures. The disagreement amongst previous studies has resulted, in part, from the limited number of available motor units and from the misleading practice of grouping motor unit data across different subjects, contractions, and force levels. To establish a more clear understanding of motor unit control during fatigue, we investigated the firing behavior of motor units from the vastus lateralis muscle of individual subjects during a fatigue protocol of repeated voluntary constant force isometric contractions. Surface electromyographic decomposition technology provided the firings of 1,890 motor unit firing trains. These data revealed that to sustain the contraction force as the muscle fatigued, the following occurred: 1) motor unit firing rates increased; 2) new motor units were recruited; and 3) motor unit recruitment thresholds decreased. Although the degree of these adaptations was subject specific, the behavior was consistent in all subjects. When we compared our empirical observations with those obtained from simulation, we found that the fatigue-induced changes in motor unit firing behavior can be explained by increasing excitation to the motoneuron pool that compensates for the fatigue-induced decrease in muscle force twitch reported in empirical studies. Yet, the fundamental motor unit control scheme remains invariant throughout the development of fatigue. These findings indicate that the central nervous system regulates motor unit firing behavior by adjusting the operating point of the excitation to the motoneuron pool to sustain the contraction force as the muscle fatigues.
This work provides a clear understanding of motor unit control during fatigue. It reveals that the excitation to the motoneuron pool adjusts motor unit firing behavior to compensate for the changing muscle force twitch. The degree of motor unit adaptation is subject specific. Yet, across all subjects, the fundamental control scheme governing motor unit firings remains unchanged . Throughout the literature, different observations of motor unit firing behavior during muscle fatigue have been reported and explained with varieties of conjectures. The disagreement amongst previous studies has resulted, in part, from the limited number of available motor units and from the misleading practice of grouping motor unit data across different subjects, contractions, and force levels. To establish a more clear understanding of motor unit control during fatigue, we investigated the firing behavior of motor units from the vastus lateralis muscle of individual subjects during a fatigue protocol of repeated voluntary constant force isometric contractions. Surface electromyographic decomposition technology provided the firings of 1,890 motor unit firing trains. These data revealed that to sustain the contraction force as the muscle fatigued, the following occurred: 1 ) motor unit firing rates increased; 2 ) new motor units were recruited; and 3 ) motor unit recruitment thresholds decreased. Although the degree of these adaptations was subject specific, the behavior was consistent in all subjects. When we compared our empirical observations with those obtained from simulation, we found that the fatigue-induced changes in motor unit firing behavior can be explained by increasing excitation to the motoneuron pool that compensates for the fatigue-induced decrease in muscle force twitch reported in empirical studies. Yet, the fundamental motor unit control scheme remains invariant throughout the development of fatigue. These findings indicate that the central nervous system regulates motor unit firing behavior by adjusting the operating point of the excitation to the motoneuron pool to sustain the contraction force as the muscle fatigues.
Author De Luca, Carlo J.
Contessa, Paola
Kline, Joshua C.
Author_xml – sequence: 1
  givenname: Paola
  surname: Contessa
  fullname: Contessa, Paola
  organization: Delsys Incorporated, Natick, Massachusetts; and
– sequence: 2
  givenname: Carlo J.
  surname: De Luca
  fullname: De Luca, Carlo J.
  organization: Delsys Incorporated, Natick, Massachusetts; and, Department of Biomedical Engineering, Boston University, Boston, Massachusetts
– sequence: 3
  givenname: Joshua C.
  surname: Kline
  fullname: Kline, Joshua C.
  organization: Delsys Incorporated, Natick, Massachusetts; and
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27385798$$D View this record in MEDLINE/PubMed
BookMark eNptkUuLFDEUhYOMOD2jS7eSpZtq86xUbQQZfMGAm3EdUslNd5qqpE1SI_PvTc9DVFwl3PPdc-CeC3QWUwSEXlOypVSyd4e4JYQLtWWE9s_Qps1YR-U4nKENIe3PiVLn6KKUAyFEScJeoHOm-CDVOGyQvtkDtmk5QiympnyHQ6yQja0hRTxB_QkQ8ZKahNcYKvYhh7hryt7chjY00eFlLXYG7FO2gN16D3hTw26Fl-i5N3OBV4_vJfr-6ePN1Zfu-tvnr1cfrjsrJK_dxCkdnJejG7gApwxh0ygodSB83090knb0zg9eSTE4S4X3zLHJAWOEWyb4JXr_4HtcpwWchVizmfUxh8XkO51M0H8rMez1Lt1qSYXoR94M3j4a5PRjhVL1EoqFeTYR0lo0HVivGO1l39A3f2b9Dnm6agP4A2BzKiWD1zZUc7poiw6zpkSfutOHqO-706fu2lb3z9aT8f_5X2c5nbg
CitedBy_id crossref_primary_10_1007_s00421_019_04090_0
crossref_primary_10_1007_s00421_020_04363_z
crossref_primary_10_1139_apnm_2017_0646
crossref_primary_10_3389_fphys_2019_00545
crossref_primary_10_1080_02701367_2020_1734521
crossref_primary_10_3390_jfmk8020053
crossref_primary_10_1007_s00421_019_04273_9
crossref_primary_10_1152_jn_00490_2018
crossref_primary_10_1080_02701367_2023_2201311
crossref_primary_10_1519_JSC_0000000000004762
crossref_primary_10_1002_ar_25079
crossref_primary_10_1016_j_bspc_2024_106769
crossref_primary_10_1016_j_heliyon_2024_e34609
crossref_primary_10_1109_JSEN_2018_2883660
crossref_primary_10_1016_j_humov_2020_102650
crossref_primary_10_1016_j_smhs_2022_12_005
crossref_primary_10_3389_fphys_2022_955912
crossref_primary_10_1007_s40279_024_02110_4
crossref_primary_10_14283_jfa_2020_19
crossref_primary_10_1007_s00394_025_03634_9
crossref_primary_10_1080_02640414_2024_2413721
crossref_primary_10_3390_jfmk8020085
crossref_primary_10_1109_TNSRE_2025_3525517
crossref_primary_10_1152_japplphysiol_00603_2024
crossref_primary_10_1519_JSC_0000000000003694
crossref_primary_10_1007_s00421_021_04790_6
crossref_primary_10_1088_1361_6579_ad7fcd
crossref_primary_10_1177_0031512520926369
crossref_primary_10_1519_JSC_0000000000004379
crossref_primary_10_1007_s00421_023_05201_8
crossref_primary_10_14814_phy2_13675
crossref_primary_10_1519_JSC_0000000000002796
crossref_primary_10_1519_JSC_0000000000003643
crossref_primary_10_1007_s00221_021_06278_3
crossref_primary_10_1123_mc_2020_0050
crossref_primary_10_14814_phy2_13636
crossref_primary_10_1519_JSC_0000000000004812
crossref_primary_10_3390_cells11203299
crossref_primary_10_1139_apnm_2023_0208
crossref_primary_10_1519_JSC_0000000000003529
crossref_primary_10_1186_s12984_020_0645_2
crossref_primary_10_1519_JSC_0000000000004418
crossref_primary_10_1007_s11357_019_00134_7
crossref_primary_10_1088_1361_6579_ab4025
crossref_primary_10_1007_s00421_018_3909_9
crossref_primary_10_1007_s10974_019_09516_y
crossref_primary_10_1016_j_medengphy_2017_08_015
crossref_primary_10_1519_JSC_0000000000004190
crossref_primary_10_1152_jn_00675_2017
crossref_primary_10_14814_phy2_13151
crossref_primary_10_14814_phy2_13590
crossref_primary_10_3390_life12040483
crossref_primary_10_1002_tsm2_187
crossref_primary_10_1080_10255842_2024_2422900
crossref_primary_10_1080_1091367X_2021_2013229
crossref_primary_10_3390_sports6040104
crossref_primary_10_2478_hukin_2022_0027
crossref_primary_10_1113_JP286143
crossref_primary_10_7717_peerj_18163
crossref_primary_10_1152_jn_00071_2019
crossref_primary_10_14814_phy2_14677
crossref_primary_10_1152_jn_00766_2017
crossref_primary_10_1007_s00221_019_05612_0
crossref_primary_10_1016_j_jsams_2025_01_002
crossref_primary_10_1007_s40520_019_01438_6
crossref_primary_10_14814_phy2_13580
crossref_primary_10_3389_fphys_2019_00131
crossref_primary_10_1016_j_brainres_2020_147221
crossref_primary_10_1113_EP091058
crossref_primary_10_1007_s00421_021_04606_7
crossref_primary_10_1007_s00221_020_05906_8
crossref_primary_10_1111_apha_14024
crossref_primary_10_1152_japplphysiol_00675_2023
crossref_primary_10_1080_00222895_2018_1495172
crossref_primary_10_1152_jn_00326_2018
crossref_primary_10_1007_s42978_020_00076_z
crossref_primary_10_1113_EP086262
crossref_primary_10_1016_j_jelekin_2019_03_010
crossref_primary_10_1016_j_exger_2023_112346
crossref_primary_10_1016_j_humov_2019_04_011
crossref_primary_10_1007_s42978_020_00052_7
crossref_primary_10_1111_sms_13256
crossref_primary_10_1016_j_crphys_2020_02_002
crossref_primary_10_1016_j_jelekin_2020_102421
crossref_primary_10_1007_s00221_019_05508_z
Cites_doi 10.1152/jn.00237.2012
10.1152/jn.00961.2010
10.1152/jn.00837.2004
10.1016/0166-2236(94)90064-7
10.1152/japplphysiol.01344.2004
10.1152/jn.00009.2006
10.1016/0014-4886(76)90210-7
10.1016/j.clinph.2009.11.092
10.1016/0014-4886(83)90163-2
10.1152/jn.00179.2003
10.1113/jphysiol.2005.103044
10.1152/jn.1989.62.6.1344
10.1152/jn.00301.2012
10.1152/jappl.1985.58.4.1073
10.1007/s00421-005-1356-x
10.1152/jn.00944.2012
10.1249/MSS.0b013e318235d81d
10.1007/s00221-015-4455-x
10.1126/science.126.3287.1345
10.1152/jn.00146.2015
ContentType Journal Article
Copyright Copyright © 2016 the American Physiological Society.
Copyright © 2016 the American Physiological Society 2016 American Physiological Society
Copyright_xml – notice: Copyright © 2016 the American Physiological Society.
– notice: Copyright © 2016 the American Physiological Society 2016 American Physiological Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1152/jn.00347.2016
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1522-1598
EndPage 1585
ExternalDocumentID PMC5144693
27385798
10_1152_jn_00347_2016
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R44 NS077526
– fundername: NINDS NIH HHS
  grantid: R43 NS093651
– fundername: HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
  grantid: R43NS093651; R44NS077526
– fundername: Delsys Inc.
GroupedDBID ---
-DZ
-~X
.55
18M
29L
2WC
39C
4.4
53G
5GY
5VS
AAYXX
ABCQX
ABHWK
ABIVO
ABJNI
ABKWE
ACGFO
ACGFS
ACNCT
ADBBV
ADFNX
ADHGD
ADIYS
AENEX
AETEA
AFFNX
AFOSN
AIZAD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
EMOBN
F5P
H13
H~9
ITBOX
KQ8
L7B
OK1
P2P
RAP
RHI
RPL
RPRKH
SJN
TR2
UHB
UPT
W8F
WH7
WOQ
WOW
X7M
XSW
YBH
YQT
YSK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c453t-b3118df59d834ed7a02b9411de4f66b1b5c9fdf8f7548dc14ff2d2bde2203c243
ISSN 0022-3077
IngestDate Thu Aug 21 17:24:50 EDT 2025
Fri Sep 05 05:13:26 EDT 2025
Mon Jul 21 05:42:27 EDT 2025
Tue Jul 01 04:09:06 EDT 2025
Thu Apr 24 23:11:09 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords force twitch
firing rates
muscle fatigue
recruitment threshold
motor units
Language English
License Copyright © 2016 the American Physiological Society.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c453t-b3118df59d834ed7a02b9411de4f66b1b5c9fdf8f7548dc14ff2d2bde2203c243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5144693
PMID 27385798
PQID 1826721656
PQPubID 23479
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5144693
proquest_miscellaneous_1826721656
pubmed_primary_27385798
crossref_citationtrail_10_1152_jn_00347_2016
crossref_primary_10_1152_jn_00347_2016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-10-01
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda, MD
PublicationTitle Journal of neurophysiology
PublicationTitleAlternate J Neurophysiol
PublicationYear 2016
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References B20
B10
B11
B12
B13
B14
B15
B16
B17
B18
B19
B1
B2
B3
B4
B5
B6
B7
B8
B9
25761952 - J Neurophysiol. 2015 May 1;113(9):3186-96
13495469 - Science. 1957 Dec 27;126(3287):1345-7
26449966 - Exp Brain Res. 2016 Jan;234(1):267-76
23699053 - J Neurophysiol. 2013 Sep;110(5):1205-20
16513673 - J Physiol. 2006 May 15;573(Pt 1):161-71
16036904 - J Appl Physiol (1985). 2005 Jul;99(1):268-80
16899649 - J Neurophysiol. 2006 Sep;96(3):1646-57
14615422 - J Neurophysiol. 2003 Nov;90(5):2919-27
2600629 - J Neurophysiol. 1989 Dec;62(6):1344-59
20430694 - Clin Neurophysiol. 2010 Oct;121(10):1602-15
21975447 - J Neurophysiol. 2012 Jan;107(1):178-95
15887021 - Eur J Appl Physiol. 2005 Aug;94(5-6):659-69
23678020 - J Neurophysiol. 2013 Aug;110(4):891-8
23236008 - J Neurophysiol. 2013 Mar;109(6):1548-70
954913 - Exp Neurol. 1976 Sep;52(3):345-55
15483059 - J Neurophysiol. 2005 Mar;93(3):1381-92
21904248 - Med Sci Sports Exerc. 2012 Apr;44(4):616-24
3988664 - J Appl Physiol (1985). 1985 Apr;58(4):1073-9
7524216 - Trends Neurosci. 1994 Jul;17(7):299-305
6861942 - Exp Neurol. 1983 Jul;81(1):141-52
References_xml – ident: B3
  doi: 10.1152/jn.00237.2012
– ident: B5
  doi: 10.1152/jn.00961.2010
– ident: B16
  doi: 10.1152/jn.00837.2004
– ident: B6
  doi: 10.1016/0166-2236(94)90064-7
– ident: B1
  doi: 10.1152/japplphysiol.01344.2004
– ident: B4
  doi: 10.1152/jn.00009.2006
– ident: B9
  doi: 10.1016/0014-4886(76)90210-7
– ident: B17
  doi: 10.1016/j.clinph.2009.11.092
– ident: B19
  doi: 10.1016/0014-4886(83)90163-2
– ident: B2
  doi: 10.1152/jn.00179.2003
– ident: B13
  doi: 10.1113/jphysiol.2005.103044
– ident: B8
  doi: 10.1152/jn.1989.62.6.1344
– ident: B11
  doi: 10.1152/jn.00301.2012
– ident: B18
  doi: 10.1152/jappl.1985.58.4.1073
– ident: B7
  doi: 10.1007/s00421-005-1356-x
– ident: B12
  doi: 10.1152/jn.00944.2012
– ident: B20
  doi: 10.1249/MSS.0b013e318235d81d
– ident: B15
  doi: 10.1007/s00221-015-4455-x
– ident: B10
  doi: 10.1126/science.126.3287.1345
– ident: B14
  doi: 10.1152/jn.00146.2015
– reference: 14615422 - J Neurophysiol. 2003 Nov;90(5):2919-27
– reference: 3988664 - J Appl Physiol (1985). 1985 Apr;58(4):1073-9
– reference: 15887021 - Eur J Appl Physiol. 2005 Aug;94(5-6):659-69
– reference: 15483059 - J Neurophysiol. 2005 Mar;93(3):1381-92
– reference: 26449966 - Exp Brain Res. 2016 Jan;234(1):267-76
– reference: 16899649 - J Neurophysiol. 2006 Sep;96(3):1646-57
– reference: 23699053 - J Neurophysiol. 2013 Sep;110(5):1205-20
– reference: 23678020 - J Neurophysiol. 2013 Aug;110(4):891-8
– reference: 23236008 - J Neurophysiol. 2013 Mar;109(6):1548-70
– reference: 954913 - Exp Neurol. 1976 Sep;52(3):345-55
– reference: 2600629 - J Neurophysiol. 1989 Dec;62(6):1344-59
– reference: 25761952 - J Neurophysiol. 2015 May 1;113(9):3186-96
– reference: 16036904 - J Appl Physiol (1985). 2005 Jul;99(1):268-80
– reference: 21975447 - J Neurophysiol. 2012 Jan;107(1):178-95
– reference: 21904248 - Med Sci Sports Exerc. 2012 Apr;44(4):616-24
– reference: 13495469 - Science. 1957 Dec 27;126(3287):1345-7
– reference: 6861942 - Exp Neurol. 1983 Jul;81(1):141-52
– reference: 16513673 - J Physiol. 2006 May 15;573(Pt 1):161-71
– reference: 7524216 - Trends Neurosci. 1994 Jul;17(7):299-305
– reference: 20430694 - Clin Neurophysiol. 2010 Oct;121(10):1602-15
SSID ssj0007502
Score 2.520364
Snippet Throughout the literature, different observations of motor unit firing behavior during muscle fatigue have been reported and explained with varieties of...
This work provides a clear understanding of motor unit control during fatigue. It reveals that the excitation to the motoneuron pool adjusts motor unit firing...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1579
SubjectTerms Action Potentials - physiology
Adaptation, Physiological - physiology
Adult
Electromyography
Female
Humans
Isometric Contraction - physiology
Male
Models, Biological
Motor Activity - physiology
Motor Neurons - physiology
Muscle Fatigue - physiology
Rapid Reports
Volition
Young Adult
Title The compensatory interaction between motor unit firing behavior and muscle force during fatigue
URI https://www.ncbi.nlm.nih.gov/pubmed/27385798
https://www.proquest.com/docview/1826721656
https://pubmed.ncbi.nlm.nih.gov/PMC5144693
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1522-1598
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007502
  issn: 0022-3077
  databaseCode: KQ8
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1522-1598
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007502
  issn: 0022-3077
  databaseCode: DIK
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BuXBBQHmUlxYJ5RJcsi8_jhW0qmhUQEqk3Cyvd5e2Su2SxAf49cw-bMe0SIWLFTmrtbXzeXZmZ-YbhN4RIwtWMBVJURQR7BAkSknJI0USBdYxVxPtEmRP4-M5_7wQi76EwFWXbOR--evGupL_kSrcA7naKtl_kGw3KdyA3yBfuIKE4XprGduccHBFfbDckj-sQvfvNgMLZFGvxg18umNz7rLt2tJ8Fzi4bNYwq802hC88FC0amP97M0wS6g1XR4HpTkQGR_KO52q9LrxdWi87ff9Jj6dNWYT0kmXdR6JOPM2pi0OcNUU4sQ1nECTustlgCwl6E3xasIzSgWL1VZQBQXxLTRLhO8iELZcI37bnujoXlh72otq3NDqJTcS7gTb79Et-NJ9O89nhYja6-hHZjmI28h7aq9xF92gSx7a7xcm3nkkeLCXacq4K-mHwjKGNcs3x-DN_dssgmT1ED4JA8IGHxSN0R1eP0e5BBUi4_IlH-GsnoV2UA1LwNlLwFlJwQAp2SMEWKdgjBbdIwYAU7JGCHVKwRwoOSHmC5keHs4_HUWitEZVcsE0kGTiWyohMpYxrlRQTKjNOiNLcxLEkUpSZUSY1CXi0qiTcGKqoVJrSCSspZ0_RTlVX-jnCsTFEg91XUpPxGDZAozVjEjwPafVDuofet4uZl4F33rY_WebO_xQ0v6hyt_a5Xfs9NOqGX3nClb8NfNtKJgeVaONcRaXrZp1bl9lyUgkY88xLqpvKsTclGbxVMpBhN8DSrQ__qc7PHO26sEcnGXtxi-e-RPf7z-QV2tmsGv0ajNeNfONQ-BvOhKRf
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+compensatory+interaction+between+motor+unit+firing+behavior+and+muscle+force+during+fatigue&rft.jtitle=Journal+of+neurophysiology&rft.au=Contessa%2C+Paola&rft.au=De+Luca%2C+Carlo+J&rft.au=Kline%2C+Joshua+C&rft.date=2016-10-01&rft.eissn=1522-1598&rft.volume=116&rft.issue=4&rft.spage=1579&rft.epage=1585&rft_id=info:doi/10.1152%2Fjn.00347.2016&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon