3D-Printed Conductive Carbon-Infused Thermoplastic Polyurethane
3D printable, flexible, and conductive composites are prepared by incorporating a thermoplastic elastomer and electrically conductive carbon fillers. The advantageous printability, workability, chemical resistance, electrical conductivity, and biocompatibility components allowed for an enabling of 3...
Saved in:
Published in | Polymers Vol. 12; no. 6; p. 1224 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
27.05.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2073-4360 2073-4360 |
DOI | 10.3390/polym12061224 |
Cover
Abstract | 3D printable, flexible, and conductive composites are prepared by incorporating a thermoplastic elastomer and electrically conductive carbon fillers. The advantageous printability, workability, chemical resistance, electrical conductivity, and biocompatibility components allowed for an enabling of 3D-printed electronics, electromagnetic interference (EMI) shielding, static elimination, and biomedical sensors. Carbon-infused thermoplastic polyurethane (C/TPU) composites have been demonstrated to possess right-strained sensing abilities and are the candidate in fields such as smart textiles and biomedical sensing. Flexible and conductive composites were prepared by a mechanical blending of biocompatible TPU and carbons. 3D structures that exhibit mechanical flexibility and electric conductivity were successfully printed. Three different types of C/TPU composites, carbon nanotube (CNT), carbon black (CCB), and graphite (G) were prepared with differentiating sizes and composition of filaments. The conductivity of TPU/CNT and TPU/CCB composite filaments increased rapidly when the loading amount of carbon fillers exceeded the filtration threshold of 8%–10% weight. Biocompatible G did not form a conductive pathway in the TPU; resistance to indentation deformation of the TPU matrix was maintained by weight by 40%. Adding a carbon material to the TPU improved the mechanical properties of the composites, and carbon fillers could improve electrical conductivity without losing biocompatibility. For the practical use of the manufactured filaments, optimal printing parameters were determined, and an FDM printing condition was adjusted. Through this process, a variety of soft 3D-printed C/TPU structures exhibiting flexible and robust features were built and tested to investigate the performance of the possible application of 3D-printed electronics and medical scaffolds. |
---|---|
AbstractList | 3D printable, flexible, and conductive composites are prepared by incorporating a thermoplastic elastomer and electrically conductive carbon fillers. The advantageous printability, workability, chemical resistance, electrical conductivity, and biocompatibility components allowed for an enabling of 3D-printed electronics, electromagnetic interference (EMI) shielding, static elimination, and biomedical sensors. Carbon-infused thermoplastic polyurethane (C/TPU) composites have been demonstrated to possess right-strained sensing abilities and are the candidate in fields such as smart textiles and biomedical sensing. Flexible and conductive composites were prepared by a mechanical blending of biocompatible TPU and carbons. 3D structures that exhibit mechanical flexibility and electric conductivity were successfully printed. Three different types of C/TPU composites, carbon nanotube (CNT), carbon black (CCB), and graphite (G) were prepared with differentiating sizes and composition of filaments. The conductivity of TPU/CNT and TPU/CCB composite filaments increased rapidly when the loading amount of carbon fillers exceeded the filtration threshold of 8%–10% weight. Biocompatible G did not form a conductive pathway in the TPU; resistance to indentation deformation of the TPU matrix was maintained by weight by 40%. Adding a carbon material to the TPU improved the mechanical properties of the composites, and carbon fillers could improve electrical conductivity without losing biocompatibility. For the practical use of the manufactured filaments, optimal printing parameters were determined, and an FDM printing condition was adjusted. Through this process, a variety of soft 3D-printed C/TPU structures exhibiting flexible and robust features were built and tested to investigate the performance of the possible application of 3D-printed electronics and medical scaffolds. 3D printable, flexible, and conductive composites are prepared by incorporating a thermoplastic elastomer and electrically conductive carbon fillers. The advantageous printability, workability, chemical resistance, electrical conductivity, and biocompatibility components allowed for an enabling of 3D-printed electronics, electromagnetic interference (EMI) shielding, static elimination, and biomedical sensors. Carbon-infused thermoplastic polyurethane (C/TPU) composites have been demonstrated to possess right-strained sensing abilities and are the candidate in fields such as smart textiles and biomedical sensing. Flexible and conductive composites were prepared by a mechanical blending of biocompatible TPU and carbons. 3D structures that exhibit mechanical flexibility and electric conductivity were successfully printed. Three different types of C/TPU composites, carbon nanotube (CNT), carbon black (CCB), and graphite (G) were prepared with differentiating sizes and composition of filaments. The conductivity of TPU/CNT and TPU/CCB composite filaments increased rapidly when the loading amount of carbon fillers exceeded the filtration threshold of 8%-10% weight. Biocompatible G did not form a conductive pathway in the TPU; resistance to indentation deformation of the TPU matrix was maintained by weight by 40%. Adding a carbon material to the TPU improved the mechanical properties of the composites, and carbon fillers could improve electrical conductivity without losing biocompatibility. For the practical use of the manufactured filaments, optimal printing parameters were determined, and an FDM printing condition was adjusted. Through this process, a variety of soft 3D-printed C/TPU structures exhibiting flexible and robust features were built and tested to investigate the performance of the possible application of 3D-printed electronics and medical scaffolds.3D printable, flexible, and conductive composites are prepared by incorporating a thermoplastic elastomer and electrically conductive carbon fillers. The advantageous printability, workability, chemical resistance, electrical conductivity, and biocompatibility components allowed for an enabling of 3D-printed electronics, electromagnetic interference (EMI) shielding, static elimination, and biomedical sensors. Carbon-infused thermoplastic polyurethane (C/TPU) composites have been demonstrated to possess right-strained sensing abilities and are the candidate in fields such as smart textiles and biomedical sensing. Flexible and conductive composites were prepared by a mechanical blending of biocompatible TPU and carbons. 3D structures that exhibit mechanical flexibility and electric conductivity were successfully printed. Three different types of C/TPU composites, carbon nanotube (CNT), carbon black (CCB), and graphite (G) were prepared with differentiating sizes and composition of filaments. The conductivity of TPU/CNT and TPU/CCB composite filaments increased rapidly when the loading amount of carbon fillers exceeded the filtration threshold of 8%-10% weight. Biocompatible G did not form a conductive pathway in the TPU; resistance to indentation deformation of the TPU matrix was maintained by weight by 40%. Adding a carbon material to the TPU improved the mechanical properties of the composites, and carbon fillers could improve electrical conductivity without losing biocompatibility. For the practical use of the manufactured filaments, optimal printing parameters were determined, and an FDM printing condition was adjusted. Through this process, a variety of soft 3D-printed C/TPU structures exhibiting flexible and robust features were built and tested to investigate the performance of the possible application of 3D-printed electronics and medical scaffolds. |
Author | Kim, Namsoo Peter |
AuthorAffiliation | Department of Metallurgical, Materials and Biomedical Engineering (MMBME), Center for Printable Materials Certificate (CPMC), The University of Texas at El Paso, El Paso, TX 79968, USA; nkim@utep.edu ; Tel.: +1-915-747-7996 |
AuthorAffiliation_xml | – name: Department of Metallurgical, Materials and Biomedical Engineering (MMBME), Center for Printable Materials Certificate (CPMC), The University of Texas at El Paso, El Paso, TX 79968, USA; nkim@utep.edu ; Tel.: +1-915-747-7996 |
Author_xml | – sequence: 1 givenname: Namsoo Peter orcidid: 0000-0002-3910-5235 surname: Kim fullname: Kim, Namsoo Peter |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32471243$$D View this record in MEDLINE/PubMed |
BookMark | eNptUU1LAzEQDaL4UXv0Kj16WU0yaXb3okj9BEEPeg7ZdGoju0lNsgX_vSlWseJcZuC9eW8-Dsi28w4JOWL0FKCmZwvffnSMU8k4F1tkn9MSCgGSbv-q98gwxjeaQ4ylZOUu2QMuSsYF7JMLuCqegnUJp6OJd9PeJLvE0USHxrvi3s36mJHnOYbOL1odkzWjp-zaB0xz7fCQ7Mx0G3G4zgPycnP9PLkrHh5v7yeXD4URY0iF1jXkEWsKJasBUdbApJBaNDPKDa85ygqbaa2rCpFrxivKGGsqLpuyEY2BATn_0l30TYdTgy4F3apFsJ0OH8prqzYRZ-fq1S9VCZLJCrLAyVog-PceY1KdjQbbNi_h-6i4oBWnIGueqce_vX5Mvq-WCfBFMMHHGHCmjE06Wb-ytq1iVK3eozbek7uKP13fwv_zPwGk0pH0 |
CitedBy_id | crossref_primary_10_1007_s12541_024_01171_9 crossref_primary_10_1016_j_mtcomm_2024_111099 crossref_primary_10_3390_polym17030426 crossref_primary_10_1021_acsapm_3c02506 crossref_primary_10_3390_c10020029 crossref_primary_10_3390_polym14194066 crossref_primary_10_1063_5_0195103 crossref_primary_10_3390_s20226614 crossref_primary_10_1177_15589250241307016 crossref_primary_10_3390_ma14071791 crossref_primary_10_1007_s13726_024_01397_4 crossref_primary_10_1007_s12221_024_00731_0 crossref_primary_10_1007_s12541_022_00712_4 crossref_primary_10_1021_acsapm_3c02558 crossref_primary_10_1177_00405175231213998 crossref_primary_10_1115_1_4054087 crossref_primary_10_1007_s12221_025_00901_8 crossref_primary_10_1016_j_coco_2022_101087 crossref_primary_10_1021_acsami_2c03351 crossref_primary_10_3390_molecules28083598 crossref_primary_10_1002_adfm_202107662 crossref_primary_10_3390_robotics13070103 crossref_primary_10_1002_adfm_202306453 crossref_primary_10_1007_s10853_020_05661_9 crossref_primary_10_1002_pat_6041 crossref_primary_10_1007_s12541_024_00974_0 crossref_primary_10_1016_j_compositesb_2025_112262 crossref_primary_10_1016_j_mtcomm_2023_105971 crossref_primary_10_1016_j_heliyon_2024_e32794 crossref_primary_10_3390_c9040111 crossref_primary_10_1002_adem_202101476 crossref_primary_10_1177_00219983211037056 crossref_primary_10_3390_polym12091946 |
Cites_doi | 10.1016/j.jpowsour.2010.12.041 10.1615/JLongTermEffMedImplants.2013006556 10.1007/978-1-4020-6829-4 10.5254/1.3542351 10.1016/j.ymeth.2015.12.015 10.1520/JTE103205 10.1016/j.matdes.2011.01.056 10.1108/13552540210441166 10.1016/S0924-0136(02)00953-6 10.1166/jnn.2007.071 10.1109/CSCI46756.2018.00142 10.1108/01445150510626451 10.1115/1.4023809 10.1163/156855499X00161 10.1007/s11664-014-3588-1 10.3390/ijms10125115 10.1016/j.jfoodeng.2018.04.019 10.2106/00004623-197557060-00005 10.1016/j.cirp.2010.03.074 10.1002/adma.201101328 10.1016/B978-0-12-800547-7.00012-6 10.1016/j.jmst.2016.08.011 10.22203/eCM.v009a04 10.1109/CSCI46756.2018.00190 10.1016/j.polymertesting.2013.07.014 10.1016/j.jare.2011.05.001 10.1063/1.3511687 10.1016/j.ceramint.2018.10.152 10.1016/j.matdes.2009.06.016 10.1007/s11664-014-3425-6 10.1007/978-1-4020-6845-4_12 10.1016/j.actbio.2016.06.032 10.1371/journal.pone.0049365 |
ContentType | Journal Article |
Copyright | 2020 by the author. 2020 |
Copyright_xml | – notice: 2020 by the author. 2020 |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.3390/polym12061224 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2073-4360 |
ExternalDocumentID | PMC7361683 32471243 10_3390_polym12061224 |
Genre | Journal Article |
GroupedDBID | 53G 5VS 8FE 8FG A8Z AADQD AAFWJ AAYXX ABDBF ABJCF ACGFO ACIWK ACUHS ADBBV ADMLS AENEX AFKRA AFZYC AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I ESX F5P GX1 HCIFZ HH5 HYE I-F KB. KC. KQ8 ML~ MODMG M~E OK1 PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RNS RPM TR2 TUS GROUPED_DOAJ NPM 7X8 ESTFP PQGLB PUEGO 5PM |
ID | FETCH-LOGICAL-c453t-aa932249037193ee6931646a4bf02c292e68ebd9a88ee2a1280111b826b7b4bc3 |
ISSN | 2073-4360 |
IngestDate | Thu Aug 21 18:14:22 EDT 2025 Mon Sep 08 05:21:13 EDT 2025 Wed Feb 19 02:30:49 EST 2025 Tue Jul 01 02:55:20 EDT 2025 Thu Apr 24 23:13:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | flexible electronics mechanical property conductivity biocompatibility thermoplastic polyurethane (TPU), carbon-infused TPU |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c453t-aa932249037193ee6931646a4bf02c292e68ebd9a88ee2a1280111b826b7b4bc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3910-5235 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7361683 |
PMID | 32471243 |
PQID | 2408203692 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7361683 proquest_miscellaneous_2408203692 pubmed_primary_32471243 crossref_citationtrail_10_3390_polym12061224 crossref_primary_10_3390_polym12061224 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200527 |
PublicationDateYYYYMMDD | 2020-05-27 |
PublicationDate_xml | – month: 5 year: 2020 text: 20200527 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Polymers |
PublicationTitleAlternate | Polymers (Basel) |
PublicationYear | 2020 |
Publisher | MDPI |
Publisher_xml | – name: MDPI |
References | Hwang (ref_17) 2014; 44 Masood (ref_11) 2005; 25 Pandey (ref_6) 2003; 132 Galantucci (ref_4) 2010; 59 Kim (ref_25) 2018; 235 Murr (ref_27) 2016; 32 Kim (ref_9) 2007; 7 Antunes (ref_33) 2011; 196 ref_32 ref_31 ref_30 Sood (ref_12) 2010; 31 ref_18 ref_15 Vlad (ref_26) 2016; 42 Gent (ref_35) 1958; 31 Gan (ref_14) 2009; 10 Hoffman (ref_5) 2013; 135 Kim (ref_2) 2007; 5 Smith (ref_1) 2013; 32 Nagata (ref_34) 1999; 6 Anthony (ref_10) 2010; 108 Ahn (ref_13) 2002; 8 Kim (ref_24) 2019; 45 ref_23 ref_22 Russo (ref_7) 2011; 23 Maquet (ref_21) 1975; 57 Sood (ref_3) 2012; 3 ref_29 Hong (ref_8) 2015; 44 Redman (ref_19) 2005; 9 Nikzad (ref_16) 2011; 32 Pinnock (ref_28) 2016; 99 Olson (ref_20) 2012; 22 Mix (ref_36) 2011; 39 |
References_xml | – volume: 196 start-page: 2945 year: 2011 ident: ref_33 article-title: Carbon materials in composite bipolar plates for polymer electrolyte membrane fuel cells: A review of the main challenges to improve electrical performance publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.12.041 – volume: 22 start-page: 219 year: 2012 ident: ref_20 article-title: Scaffolds for articular cartilage repair publication-title: J. Long. Term. Eff. Med. Implant. doi: 10.1615/JLongTermEffMedImplants.2013006556 – ident: ref_23 doi: 10.1007/978-1-4020-6829-4 – volume: 31 start-page: 896 year: 1958 ident: ref_35 article-title: On the relation between indentation hardness and Young’s modulus publication-title: Rubber Chem. Technol. doi: 10.5254/1.3542351 – volume: 99 start-page: 20 year: 2016 ident: ref_28 article-title: Customizable engineered blood vessels using 3D printed inserts publication-title: Methods doi: 10.1016/j.ymeth.2015.12.015 – ident: ref_32 – volume: 39 start-page: 1 year: 2011 ident: ref_36 article-title: Standardized polymer durometry publication-title: J. Test. Eval. doi: 10.1520/JTE103205 – volume: 32 start-page: 3448 year: 2011 ident: ref_16 article-title: Thermo-mechanical properties of a highly filled polymeric composites for Fused Deposition Modeling publication-title: Mater. Des. doi: 10.1016/j.matdes.2011.01.056 – volume: 8 start-page: 248 year: 2002 ident: ref_13 article-title: Anisotropic material properties of fused deposition modeling ABS publication-title: Rapid Prototyp. doi: 10.1108/13552540210441166 – volume: 132 start-page: 323 year: 2003 ident: ref_6 article-title: Improvement of surface finish by staircase machining in fused deposition modeling publication-title: J. Mater. Process. Technol. doi: 10.1016/S0924-0136(02)00953-6 – volume: 7 start-page: 3902 year: 2007 ident: ref_9 article-title: Effect of Metal Powder Packing on the Conductivity of Nanometal Ink publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2007.071 – ident: ref_30 doi: 10.1109/CSCI46756.2018.00142 – volume: 25 start-page: 309 year: 2005 ident: ref_11 article-title: Thermal characteristics of a new metal-polymer material for FDM rapid prototyping process publication-title: Assem. Autom. doi: 10.1108/01445150510626451 – volume: 135 start-page: 011006-13 year: 2013 ident: ref_5 article-title: The Standardization of printable materials and direct writing systems publication-title: J. Electron. Packag. doi: 10.1115/1.4023809 – volume: 6 start-page: 483 year: 1999 ident: ref_34 article-title: Effect of particle size of graphites on electrical conductivity of graphite/polymer composite publication-title: Compos. Interfaces doi: 10.1163/156855499X00161 – volume: 44 start-page: 823 year: 2015 ident: ref_8 article-title: Synthesis of 3D printable Cu–Ag Core–Shell materials: Kinetics of CuO film removal publication-title: J. Electron. Mater. doi: 10.1007/s11664-014-3588-1 – volume: 5 start-page: 511 year: 2007 ident: ref_2 article-title: Direct Writing Technology for 21st Century Industries—Focus on Micro-Dispensing Deposition Write Technology publication-title: J. KSMTE – volume: 10 start-page: 5115 year: 2009 ident: ref_14 article-title: Effect of interface structure on mechanical properties of Advanced Composite Materials publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms10125115 – volume: 235 start-page: 41 year: 2018 ident: ref_25 article-title: Optimization of piston type extrusion (PTE) techniques for 3D printed food publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2018.04.019 – ident: ref_31 – volume: 57 start-page: 766 year: 1975 ident: ref_21 article-title: Femorotibial weight-bearing areas publication-title: J. Bone. Jt. Surg. doi: 10.2106/00004623-197557060-00005 – volume: 59 start-page: 247 year: 2010 ident: ref_4 article-title: Quantitative analysis of a chemical treatment to reduce roughness of parts fabricated using fused deposition modeling publication-title: Cirp Ann. Manuf. Tech. doi: 10.1016/j.cirp.2010.03.074 – volume: 23 start-page: 3426 year: 2011 ident: ref_7 article-title: Pen-on-Paper Flexible Electronics publication-title: Adv. Mater. doi: 10.1002/adma.201101328 – ident: ref_18 doi: 10.1016/B978-0-12-800547-7.00012-6 – volume: 32 start-page: 987 year: 2016 ident: ref_27 article-title: Frontiers of 3D Printing/Additive Manufacturing: From Human Organs to Aircraft Fabrication publication-title: J. Mater. Sci. Tech. doi: 10.1016/j.jmst.2016.08.011 – volume: 9 start-page: 23 year: 2005 ident: ref_19 article-title: Current strategies for articular cartilage repair publication-title: Eur. Cell. Mater. doi: 10.22203/eCM.v009a04 – ident: ref_29 doi: 10.1109/CSCI46756.2018.00190 – volume: 32 start-page: 1306 year: 2013 ident: ref_1 article-title: Structural characteristics of fused deposition modeling polycarbonate material publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2013.07.014 – volume: 3 start-page: 81 year: 2012 ident: ref_3 article-title: Experimental investigation and empirical modelling of FDM process for compressive strength improvement publication-title: J. Adv. Res. doi: 10.1016/j.jare.2011.05.001 – volume: 108 start-page: 102806 year: 2010 ident: ref_10 article-title: A simulation and experimental study on packing of nanoinks to attain better conductivity publication-title: J. Appl. Phys. doi: 10.1063/1.3511687 – volume: 45 start-page: 2351 year: 2019 ident: ref_24 article-title: Optimization of 3D printing parameters of Screw Type Extrusion (STE) for ceramics using the Taguchi method publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.10.152 – volume: 31 start-page: 287 year: 2010 ident: ref_12 article-title: Parametric appraisal of mechanical property of fused deposition modelling processed parts publication-title: Mater. Des. doi: 10.1016/j.matdes.2009.06.016 – volume: 44 start-page: 771 year: 2014 ident: ref_17 article-title: Thermo-mechanical Characterization of Metal/Polymer Composite Filaments and Printing Parameter Study for Fused Deposition Modeling in the 3D Printing Process publication-title: J. Electron. Mater. doi: 10.1007/s11664-014-3425-6 – ident: ref_22 doi: 10.1007/978-1-4020-6845-4_12 – volume: 42 start-page: 341 year: 2016 ident: ref_26 article-title: Design and Properties of 3D Scaffolds for Bone Tissue Engineering publication-title: Acta Biomater. doi: 10.1016/j.actbio.2016.06.032 – ident: ref_15 doi: 10.1371/journal.pone.0049365 |
SSID | ssj0000456617 |
Score | 2.4035435 |
Snippet | 3D printable, flexible, and conductive composites are prepared by incorporating a thermoplastic elastomer and electrically conductive carbon fillers. The... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1224 |
Title | 3D-Printed Conductive Carbon-Infused Thermoplastic Polyurethane |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32471243 https://www.proquest.com/docview/2408203692 https://pubmed.ncbi.nlm.nih.gov/PMC7361683 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2073-4360 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000456617 issn: 2073-4360 databaseCode: HH5 dateStart: 20090101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2073-4360 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000456617 issn: 2073-4360 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2073-4360 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000456617 issn: 2073-4360 databaseCode: ABDBF dateStart: 20100901 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2073-4360 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000456617 issn: 2073-4360 databaseCode: ADMLS dateStart: 20100901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2073-4360 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000456617 issn: 2073-4360 databaseCode: GX1 dateStart: 20090101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2073-4360 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000456617 issn: 2073-4360 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2073-4360 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000456617 issn: 2073-4360 databaseCode: RPM dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2073-4360 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000456617 issn: 2073-4360 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2073-4360 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000456617 issn: 2073-4360 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbYJsFe0LgXtipIiCcMiZ068ROC7gbSqghtUt-i-FKBtCZV2j7Ar-ecOFc2JNhLFDmO057Pcb5jn_OZkDcR-ATA4g3lRkY0NL6hyviaToBq-FYEwSLGbOSLmTi_Cr_OJ_NOzL_KLtmo9_rXrXkld0EVygBXzJL9D2TbRqEAzgFfOALCcPwnjPkxTUoUfDCYuYfKrRgHNM1KVeT0S77YruEKdIRyWayAJaM2a1Jc_9yWFifMB0FAWL60vaUdt8vyLFuui6IXxVtPELBqbdvl27sgoeOklpWuRhUG7zQNuRPxb4dA1oNa3Dayci4xFHGFPyZgyItc6nPPyqtlZWZgaBGQBt59YNqwv-RiGnERiJjvkD0WCYFbTpzNg3ZSDPklUCqnhYqP_DB44D6537Q-pBE3fIM_Q1x7nOHygDysyb73ySH3iNyz-WPyYNrssfeEfOwQ9DoEvSGC3gBBr4_gU3J1enI5Paf1lhZUhxO-oVkGfBk8XhRKlNxaITkKvGWhWvhMM8msiK0yMotja1kG5AHG30CBD6giFSrNn5HdvMjtC4xJE6ExSloNDENri-vNIXrEesGUL-2IvGsslOpa7x23HblOwe9D26YD247I27b6ygmd_K3i68bcKVgL15fg_xbbdYpqebiuLdmIPHfmb5tqcBuRaABMWwFlzodX8h_fK7nzusu8vPOdr8h-914ckt1NubVHQCU3akx24tOzMdn7fDJLvo2rzvgbBol6dQ |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D-Printed+Conductive+Carbon-Infused+Thermoplastic+Polyurethane&rft.jtitle=Polymers&rft.au=Kim%2C+Namsoo+Peter&rft.date=2020-05-27&rft.pub=MDPI&rft.eissn=2073-4360&rft.volume=12&rft.issue=6&rft_id=info:doi/10.3390%2Fpolym12061224&rft_id=info%3Apmid%2F32471243&rft.externalDocID=PMC7361683 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4360&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4360&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4360&client=summon |