3D-Printed Conductive Carbon-Infused Thermoplastic Polyurethane

3D printable, flexible, and conductive composites are prepared by incorporating a thermoplastic elastomer and electrically conductive carbon fillers. The advantageous printability, workability, chemical resistance, electrical conductivity, and biocompatibility components allowed for an enabling of 3...

Full description

Saved in:
Bibliographic Details
Published inPolymers Vol. 12; no. 6; p. 1224
Main Author Kim, Namsoo Peter
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 27.05.2020
Subjects
Online AccessGet full text
ISSN2073-4360
2073-4360
DOI10.3390/polym12061224

Cover

Abstract 3D printable, flexible, and conductive composites are prepared by incorporating a thermoplastic elastomer and electrically conductive carbon fillers. The advantageous printability, workability, chemical resistance, electrical conductivity, and biocompatibility components allowed for an enabling of 3D-printed electronics, electromagnetic interference (EMI) shielding, static elimination, and biomedical sensors. Carbon-infused thermoplastic polyurethane (C/TPU) composites have been demonstrated to possess right-strained sensing abilities and are the candidate in fields such as smart textiles and biomedical sensing. Flexible and conductive composites were prepared by a mechanical blending of biocompatible TPU and carbons. 3D structures that exhibit mechanical flexibility and electric conductivity were successfully printed. Three different types of C/TPU composites, carbon nanotube (CNT), carbon black (CCB), and graphite (G) were prepared with differentiating sizes and composition of filaments. The conductivity of TPU/CNT and TPU/CCB composite filaments increased rapidly when the loading amount of carbon fillers exceeded the filtration threshold of 8%–10% weight. Biocompatible G did not form a conductive pathway in the TPU; resistance to indentation deformation of the TPU matrix was maintained by weight by 40%. Adding a carbon material to the TPU improved the mechanical properties of the composites, and carbon fillers could improve electrical conductivity without losing biocompatibility. For the practical use of the manufactured filaments, optimal printing parameters were determined, and an FDM printing condition was adjusted. Through this process, a variety of soft 3D-printed C/TPU structures exhibiting flexible and robust features were built and tested to investigate the performance of the possible application of 3D-printed electronics and medical scaffolds.
AbstractList 3D printable, flexible, and conductive composites are prepared by incorporating a thermoplastic elastomer and electrically conductive carbon fillers. The advantageous printability, workability, chemical resistance, electrical conductivity, and biocompatibility components allowed for an enabling of 3D-printed electronics, electromagnetic interference (EMI) shielding, static elimination, and biomedical sensors. Carbon-infused thermoplastic polyurethane (C/TPU) composites have been demonstrated to possess right-strained sensing abilities and are the candidate in fields such as smart textiles and biomedical sensing. Flexible and conductive composites were prepared by a mechanical blending of biocompatible TPU and carbons. 3D structures that exhibit mechanical flexibility and electric conductivity were successfully printed. Three different types of C/TPU composites, carbon nanotube (CNT), carbon black (CCB), and graphite (G) were prepared with differentiating sizes and composition of filaments. The conductivity of TPU/CNT and TPU/CCB composite filaments increased rapidly when the loading amount of carbon fillers exceeded the filtration threshold of 8%–10% weight. Biocompatible G did not form a conductive pathway in the TPU; resistance to indentation deformation of the TPU matrix was maintained by weight by 40%. Adding a carbon material to the TPU improved the mechanical properties of the composites, and carbon fillers could improve electrical conductivity without losing biocompatibility. For the practical use of the manufactured filaments, optimal printing parameters were determined, and an FDM printing condition was adjusted. Through this process, a variety of soft 3D-printed C/TPU structures exhibiting flexible and robust features were built and tested to investigate the performance of the possible application of 3D-printed electronics and medical scaffolds.
3D printable, flexible, and conductive composites are prepared by incorporating a thermoplastic elastomer and electrically conductive carbon fillers. The advantageous printability, workability, chemical resistance, electrical conductivity, and biocompatibility components allowed for an enabling of 3D-printed electronics, electromagnetic interference (EMI) shielding, static elimination, and biomedical sensors. Carbon-infused thermoplastic polyurethane (C/TPU) composites have been demonstrated to possess right-strained sensing abilities and are the candidate in fields such as smart textiles and biomedical sensing. Flexible and conductive composites were prepared by a mechanical blending of biocompatible TPU and carbons. 3D structures that exhibit mechanical flexibility and electric conductivity were successfully printed. Three different types of C/TPU composites, carbon nanotube (CNT), carbon black (CCB), and graphite (G) were prepared with differentiating sizes and composition of filaments. The conductivity of TPU/CNT and TPU/CCB composite filaments increased rapidly when the loading amount of carbon fillers exceeded the filtration threshold of 8%-10% weight. Biocompatible G did not form a conductive pathway in the TPU; resistance to indentation deformation of the TPU matrix was maintained by weight by 40%. Adding a carbon material to the TPU improved the mechanical properties of the composites, and carbon fillers could improve electrical conductivity without losing biocompatibility. For the practical use of the manufactured filaments, optimal printing parameters were determined, and an FDM printing condition was adjusted. Through this process, a variety of soft 3D-printed C/TPU structures exhibiting flexible and robust features were built and tested to investigate the performance of the possible application of 3D-printed electronics and medical scaffolds.3D printable, flexible, and conductive composites are prepared by incorporating a thermoplastic elastomer and electrically conductive carbon fillers. The advantageous printability, workability, chemical resistance, electrical conductivity, and biocompatibility components allowed for an enabling of 3D-printed electronics, electromagnetic interference (EMI) shielding, static elimination, and biomedical sensors. Carbon-infused thermoplastic polyurethane (C/TPU) composites have been demonstrated to possess right-strained sensing abilities and are the candidate in fields such as smart textiles and biomedical sensing. Flexible and conductive composites were prepared by a mechanical blending of biocompatible TPU and carbons. 3D structures that exhibit mechanical flexibility and electric conductivity were successfully printed. Three different types of C/TPU composites, carbon nanotube (CNT), carbon black (CCB), and graphite (G) were prepared with differentiating sizes and composition of filaments. The conductivity of TPU/CNT and TPU/CCB composite filaments increased rapidly when the loading amount of carbon fillers exceeded the filtration threshold of 8%-10% weight. Biocompatible G did not form a conductive pathway in the TPU; resistance to indentation deformation of the TPU matrix was maintained by weight by 40%. Adding a carbon material to the TPU improved the mechanical properties of the composites, and carbon fillers could improve electrical conductivity without losing biocompatibility. For the practical use of the manufactured filaments, optimal printing parameters were determined, and an FDM printing condition was adjusted. Through this process, a variety of soft 3D-printed C/TPU structures exhibiting flexible and robust features were built and tested to investigate the performance of the possible application of 3D-printed electronics and medical scaffolds.
Author Kim, Namsoo Peter
AuthorAffiliation Department of Metallurgical, Materials and Biomedical Engineering (MMBME), Center for Printable Materials Certificate (CPMC), The University of Texas at El Paso, El Paso, TX 79968, USA; nkim@utep.edu ; Tel.: +1-915-747-7996
AuthorAffiliation_xml – name: Department of Metallurgical, Materials and Biomedical Engineering (MMBME), Center for Printable Materials Certificate (CPMC), The University of Texas at El Paso, El Paso, TX 79968, USA; nkim@utep.edu ; Tel.: +1-915-747-7996
Author_xml – sequence: 1
  givenname: Namsoo Peter
  orcidid: 0000-0002-3910-5235
  surname: Kim
  fullname: Kim, Namsoo Peter
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32471243$$D View this record in MEDLINE/PubMed
BookMark eNptUU1LAzEQDaL4UXv0Kj16WU0yaXb3okj9BEEPeg7ZdGoju0lNsgX_vSlWseJcZuC9eW8-Dsi28w4JOWL0FKCmZwvffnSMU8k4F1tkn9MSCgGSbv-q98gwxjeaQ4ylZOUu2QMuSsYF7JMLuCqegnUJp6OJd9PeJLvE0USHxrvi3s36mJHnOYbOL1odkzWjp-zaB0xz7fCQ7Mx0G3G4zgPycnP9PLkrHh5v7yeXD4URY0iF1jXkEWsKJasBUdbApJBaNDPKDa85ygqbaa2rCpFrxivKGGsqLpuyEY2BATn_0l30TYdTgy4F3apFsJ0OH8prqzYRZ-fq1S9VCZLJCrLAyVog-PceY1KdjQbbNi_h-6i4oBWnIGueqce_vX5Mvq-WCfBFMMHHGHCmjE06Wb-ytq1iVK3eozbek7uKP13fwv_zPwGk0pH0
CitedBy_id crossref_primary_10_1007_s12541_024_01171_9
crossref_primary_10_1016_j_mtcomm_2024_111099
crossref_primary_10_3390_polym17030426
crossref_primary_10_1021_acsapm_3c02506
crossref_primary_10_3390_c10020029
crossref_primary_10_3390_polym14194066
crossref_primary_10_1063_5_0195103
crossref_primary_10_3390_s20226614
crossref_primary_10_1177_15589250241307016
crossref_primary_10_3390_ma14071791
crossref_primary_10_1007_s13726_024_01397_4
crossref_primary_10_1007_s12221_024_00731_0
crossref_primary_10_1007_s12541_022_00712_4
crossref_primary_10_1021_acsapm_3c02558
crossref_primary_10_1177_00405175231213998
crossref_primary_10_1115_1_4054087
crossref_primary_10_1007_s12221_025_00901_8
crossref_primary_10_1016_j_coco_2022_101087
crossref_primary_10_1021_acsami_2c03351
crossref_primary_10_3390_molecules28083598
crossref_primary_10_1002_adfm_202107662
crossref_primary_10_3390_robotics13070103
crossref_primary_10_1002_adfm_202306453
crossref_primary_10_1007_s10853_020_05661_9
crossref_primary_10_1002_pat_6041
crossref_primary_10_1007_s12541_024_00974_0
crossref_primary_10_1016_j_compositesb_2025_112262
crossref_primary_10_1016_j_mtcomm_2023_105971
crossref_primary_10_1016_j_heliyon_2024_e32794
crossref_primary_10_3390_c9040111
crossref_primary_10_1002_adem_202101476
crossref_primary_10_1177_00219983211037056
crossref_primary_10_3390_polym12091946
Cites_doi 10.1016/j.jpowsour.2010.12.041
10.1615/JLongTermEffMedImplants.2013006556
10.1007/978-1-4020-6829-4
10.5254/1.3542351
10.1016/j.ymeth.2015.12.015
10.1520/JTE103205
10.1016/j.matdes.2011.01.056
10.1108/13552540210441166
10.1016/S0924-0136(02)00953-6
10.1166/jnn.2007.071
10.1109/CSCI46756.2018.00142
10.1108/01445150510626451
10.1115/1.4023809
10.1163/156855499X00161
10.1007/s11664-014-3588-1
10.3390/ijms10125115
10.1016/j.jfoodeng.2018.04.019
10.2106/00004623-197557060-00005
10.1016/j.cirp.2010.03.074
10.1002/adma.201101328
10.1016/B978-0-12-800547-7.00012-6
10.1016/j.jmst.2016.08.011
10.22203/eCM.v009a04
10.1109/CSCI46756.2018.00190
10.1016/j.polymertesting.2013.07.014
10.1016/j.jare.2011.05.001
10.1063/1.3511687
10.1016/j.ceramint.2018.10.152
10.1016/j.matdes.2009.06.016
10.1007/s11664-014-3425-6
10.1007/978-1-4020-6845-4_12
10.1016/j.actbio.2016.06.032
10.1371/journal.pone.0049365
ContentType Journal Article
Copyright 2020 by the author. 2020
Copyright_xml – notice: 2020 by the author. 2020
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.3390/polym12061224
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2073-4360
ExternalDocumentID PMC7361683
32471243
10_3390_polym12061224
Genre Journal Article
GroupedDBID 53G
5VS
8FE
8FG
A8Z
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACGFO
ACIWK
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
ESX
F5P
GX1
HCIFZ
HH5
HYE
I-F
KB.
KC.
KQ8
ML~
MODMG
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RNS
RPM
TR2
TUS
GROUPED_DOAJ
NPM
7X8
ESTFP
PQGLB
PUEGO
5PM
ID FETCH-LOGICAL-c453t-aa932249037193ee6931646a4bf02c292e68ebd9a88ee2a1280111b826b7b4bc3
ISSN 2073-4360
IngestDate Thu Aug 21 18:14:22 EDT 2025
Mon Sep 08 05:21:13 EDT 2025
Wed Feb 19 02:30:49 EST 2025
Tue Jul 01 02:55:20 EDT 2025
Thu Apr 24 23:13:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords flexible electronics
mechanical property
conductivity
biocompatibility
thermoplastic polyurethane (TPU), carbon-infused TPU
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c453t-aa932249037193ee6931646a4bf02c292e68ebd9a88ee2a1280111b826b7b4bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3910-5235
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7361683
PMID 32471243
PQID 2408203692
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7361683
proquest_miscellaneous_2408203692
pubmed_primary_32471243
crossref_citationtrail_10_3390_polym12061224
crossref_primary_10_3390_polym12061224
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200527
PublicationDateYYYYMMDD 2020-05-27
PublicationDate_xml – month: 5
  year: 2020
  text: 20200527
  day: 27
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Polymers
PublicationTitleAlternate Polymers (Basel)
PublicationYear 2020
Publisher MDPI
Publisher_xml – name: MDPI
References Hwang (ref_17) 2014; 44
Masood (ref_11) 2005; 25
Pandey (ref_6) 2003; 132
Galantucci (ref_4) 2010; 59
Kim (ref_25) 2018; 235
Murr (ref_27) 2016; 32
Kim (ref_9) 2007; 7
Antunes (ref_33) 2011; 196
ref_32
ref_31
ref_30
Sood (ref_12) 2010; 31
ref_18
ref_15
Vlad (ref_26) 2016; 42
Gent (ref_35) 1958; 31
Gan (ref_14) 2009; 10
Hoffman (ref_5) 2013; 135
Kim (ref_2) 2007; 5
Smith (ref_1) 2013; 32
Nagata (ref_34) 1999; 6
Anthony (ref_10) 2010; 108
Ahn (ref_13) 2002; 8
Kim (ref_24) 2019; 45
ref_23
ref_22
Russo (ref_7) 2011; 23
Maquet (ref_21) 1975; 57
Sood (ref_3) 2012; 3
ref_29
Hong (ref_8) 2015; 44
Redman (ref_19) 2005; 9
Nikzad (ref_16) 2011; 32
Pinnock (ref_28) 2016; 99
Olson (ref_20) 2012; 22
Mix (ref_36) 2011; 39
References_xml – volume: 196
  start-page: 2945
  year: 2011
  ident: ref_33
  article-title: Carbon materials in composite bipolar plates for polymer electrolyte membrane fuel cells: A review of the main challenges to improve electrical performance
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.12.041
– volume: 22
  start-page: 219
  year: 2012
  ident: ref_20
  article-title: Scaffolds for articular cartilage repair
  publication-title: J. Long. Term. Eff. Med. Implant.
  doi: 10.1615/JLongTermEffMedImplants.2013006556
– ident: ref_23
  doi: 10.1007/978-1-4020-6829-4
– volume: 31
  start-page: 896
  year: 1958
  ident: ref_35
  article-title: On the relation between indentation hardness and Young’s modulus
  publication-title: Rubber Chem. Technol.
  doi: 10.5254/1.3542351
– volume: 99
  start-page: 20
  year: 2016
  ident: ref_28
  article-title: Customizable engineered blood vessels using 3D printed inserts
  publication-title: Methods
  doi: 10.1016/j.ymeth.2015.12.015
– ident: ref_32
– volume: 39
  start-page: 1
  year: 2011
  ident: ref_36
  article-title: Standardized polymer durometry
  publication-title: J. Test. Eval.
  doi: 10.1520/JTE103205
– volume: 32
  start-page: 3448
  year: 2011
  ident: ref_16
  article-title: Thermo-mechanical properties of a highly filled polymeric composites for Fused Deposition Modeling
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2011.01.056
– volume: 8
  start-page: 248
  year: 2002
  ident: ref_13
  article-title: Anisotropic material properties of fused deposition modeling ABS
  publication-title: Rapid Prototyp.
  doi: 10.1108/13552540210441166
– volume: 132
  start-page: 323
  year: 2003
  ident: ref_6
  article-title: Improvement of surface finish by staircase machining in fused deposition modeling
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/S0924-0136(02)00953-6
– volume: 7
  start-page: 3902
  year: 2007
  ident: ref_9
  article-title: Effect of Metal Powder Packing on the Conductivity of Nanometal Ink
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2007.071
– ident: ref_30
  doi: 10.1109/CSCI46756.2018.00142
– volume: 25
  start-page: 309
  year: 2005
  ident: ref_11
  article-title: Thermal characteristics of a new metal-polymer material for FDM rapid prototyping process
  publication-title: Assem. Autom.
  doi: 10.1108/01445150510626451
– volume: 135
  start-page: 011006-13
  year: 2013
  ident: ref_5
  article-title: The Standardization of printable materials and direct writing systems
  publication-title: J. Electron. Packag.
  doi: 10.1115/1.4023809
– volume: 6
  start-page: 483
  year: 1999
  ident: ref_34
  article-title: Effect of particle size of graphites on electrical conductivity of graphite/polymer composite
  publication-title: Compos. Interfaces
  doi: 10.1163/156855499X00161
– volume: 44
  start-page: 823
  year: 2015
  ident: ref_8
  article-title: Synthesis of 3D printable Cu–Ag Core–Shell materials: Kinetics of CuO film removal
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-014-3588-1
– volume: 5
  start-page: 511
  year: 2007
  ident: ref_2
  article-title: Direct Writing Technology for 21st Century Industries—Focus on Micro-Dispensing Deposition Write Technology
  publication-title: J. KSMTE
– volume: 10
  start-page: 5115
  year: 2009
  ident: ref_14
  article-title: Effect of interface structure on mechanical properties of Advanced Composite Materials
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms10125115
– volume: 235
  start-page: 41
  year: 2018
  ident: ref_25
  article-title: Optimization of piston type extrusion (PTE) techniques for 3D printed food
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2018.04.019
– ident: ref_31
– volume: 57
  start-page: 766
  year: 1975
  ident: ref_21
  article-title: Femorotibial weight-bearing areas
  publication-title: J. Bone. Jt. Surg.
  doi: 10.2106/00004623-197557060-00005
– volume: 59
  start-page: 247
  year: 2010
  ident: ref_4
  article-title: Quantitative analysis of a chemical treatment to reduce roughness of parts fabricated using fused deposition modeling
  publication-title: Cirp Ann. Manuf. Tech.
  doi: 10.1016/j.cirp.2010.03.074
– volume: 23
  start-page: 3426
  year: 2011
  ident: ref_7
  article-title: Pen-on-Paper Flexible Electronics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201101328
– ident: ref_18
  doi: 10.1016/B978-0-12-800547-7.00012-6
– volume: 32
  start-page: 987
  year: 2016
  ident: ref_27
  article-title: Frontiers of 3D Printing/Additive Manufacturing: From Human Organs to Aircraft Fabrication
  publication-title: J. Mater. Sci. Tech.
  doi: 10.1016/j.jmst.2016.08.011
– volume: 9
  start-page: 23
  year: 2005
  ident: ref_19
  article-title: Current strategies for articular cartilage repair
  publication-title: Eur. Cell. Mater.
  doi: 10.22203/eCM.v009a04
– ident: ref_29
  doi: 10.1109/CSCI46756.2018.00190
– volume: 32
  start-page: 1306
  year: 2013
  ident: ref_1
  article-title: Structural characteristics of fused deposition modeling polycarbonate material
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2013.07.014
– volume: 3
  start-page: 81
  year: 2012
  ident: ref_3
  article-title: Experimental investigation and empirical modelling of FDM process for compressive strength improvement
  publication-title: J. Adv. Res.
  doi: 10.1016/j.jare.2011.05.001
– volume: 108
  start-page: 102806
  year: 2010
  ident: ref_10
  article-title: A simulation and experimental study on packing of nanoinks to attain better conductivity
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3511687
– volume: 45
  start-page: 2351
  year: 2019
  ident: ref_24
  article-title: Optimization of 3D printing parameters of Screw Type Extrusion (STE) for ceramics using the Taguchi method
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2018.10.152
– volume: 31
  start-page: 287
  year: 2010
  ident: ref_12
  article-title: Parametric appraisal of mechanical property of fused deposition modelling processed parts
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2009.06.016
– volume: 44
  start-page: 771
  year: 2014
  ident: ref_17
  article-title: Thermo-mechanical Characterization of Metal/Polymer Composite Filaments and Printing Parameter Study for Fused Deposition Modeling in the 3D Printing Process
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-014-3425-6
– ident: ref_22
  doi: 10.1007/978-1-4020-6845-4_12
– volume: 42
  start-page: 341
  year: 2016
  ident: ref_26
  article-title: Design and Properties of 3D Scaffolds for Bone Tissue Engineering
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2016.06.032
– ident: ref_15
  doi: 10.1371/journal.pone.0049365
SSID ssj0000456617
Score 2.4035435
Snippet 3D printable, flexible, and conductive composites are prepared by incorporating a thermoplastic elastomer and electrically conductive carbon fillers. The...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1224
Title 3D-Printed Conductive Carbon-Infused Thermoplastic Polyurethane
URI https://www.ncbi.nlm.nih.gov/pubmed/32471243
https://www.proquest.com/docview/2408203692
https://pubmed.ncbi.nlm.nih.gov/PMC7361683
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 2073-4360
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000456617
  issn: 2073-4360
  databaseCode: HH5
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2073-4360
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000456617
  issn: 2073-4360
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2073-4360
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000456617
  issn: 2073-4360
  databaseCode: ABDBF
  dateStart: 20100901
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2073-4360
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000456617
  issn: 2073-4360
  databaseCode: ADMLS
  dateStart: 20100901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2073-4360
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000456617
  issn: 2073-4360
  databaseCode: GX1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2073-4360
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000456617
  issn: 2073-4360
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2073-4360
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000456617
  issn: 2073-4360
  databaseCode: RPM
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2073-4360
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000456617
  issn: 2073-4360
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2073-4360
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000456617
  issn: 2073-4360
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbYJsFe0LgXtipIiCcMiZ068ROC7gbSqghtUt-i-FKBtCZV2j7Ar-ecOFc2JNhLFDmO057Pcb5jn_OZkDcR-ATA4g3lRkY0NL6hyviaToBq-FYEwSLGbOSLmTi_Cr_OJ_NOzL_KLtmo9_rXrXkld0EVygBXzJL9D2TbRqEAzgFfOALCcPwnjPkxTUoUfDCYuYfKrRgHNM1KVeT0S77YruEKdIRyWayAJaM2a1Jc_9yWFifMB0FAWL60vaUdt8vyLFuui6IXxVtPELBqbdvl27sgoeOklpWuRhUG7zQNuRPxb4dA1oNa3Dayci4xFHGFPyZgyItc6nPPyqtlZWZgaBGQBt59YNqwv-RiGnERiJjvkD0WCYFbTpzNg3ZSDPklUCqnhYqP_DB44D6537Q-pBE3fIM_Q1x7nOHygDysyb73ySH3iNyz-WPyYNrssfeEfOwQ9DoEvSGC3gBBr4_gU3J1enI5Paf1lhZUhxO-oVkGfBk8XhRKlNxaITkKvGWhWvhMM8msiK0yMotja1kG5AHG30CBD6giFSrNn5HdvMjtC4xJE6ExSloNDENri-vNIXrEesGUL-2IvGsslOpa7x23HblOwe9D26YD247I27b6ygmd_K3i68bcKVgL15fg_xbbdYpqebiuLdmIPHfmb5tqcBuRaABMWwFlzodX8h_fK7nzusu8vPOdr8h-914ckt1NubVHQCU3akx24tOzMdn7fDJLvo2rzvgbBol6dQ
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D-Printed+Conductive+Carbon-Infused+Thermoplastic+Polyurethane&rft.jtitle=Polymers&rft.au=Kim%2C+Namsoo+Peter&rft.date=2020-05-27&rft.pub=MDPI&rft.eissn=2073-4360&rft.volume=12&rft.issue=6&rft_id=info:doi/10.3390%2Fpolym12061224&rft_id=info%3Apmid%2F32471243&rft.externalDocID=PMC7361683
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4360&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4360&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4360&client=summon