Response-based methods to measure road surface irregularity: a state-of-the-art review

Purpose With the development of smart technologies, Internet of Things and inexpensive onboard sensors, many response-based methods to evaluate road surface conditions have emerged in the recent decade. Various techniques and systems have been developed to measure road profiles and detect road anoma...

Full description

Saved in:
Bibliographic Details
Published inEuropean transport research review Vol. 11; no. 1; pp. 1 - 18
Main Authors Nguyen, Teron, Lechner, Bernhard, Wong, Yiik Diew
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.12.2019
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN1867-0717
1866-8887
1866-8887
DOI10.1186/s12544-019-0380-6

Cover

Abstract Purpose With the development of smart technologies, Internet of Things and inexpensive onboard sensors, many response-based methods to evaluate road surface conditions have emerged in the recent decade. Various techniques and systems have been developed to measure road profiles and detect road anomalies for multiple purposes such as expedient maintenance of pavements and adaptive control of vehicle dynamics to improve ride comfort and ride handling. A holistic review of studies into modern response-based techniques for road pavement applications is found to be lacking. Herein, the focus of this article is threefold: to provide an overview of the state-of-the-art response-based methods, to highlight key differences between methods and thereby to propose key focus areas for future research. Methods Available articles regarding response-based methods to measure road surface condition were collected mainly from “Scopus” database and partially from “Google Scholar”. The search period is limited to the recent 15 years. Among the 130 reviewed documents, 37% are for road profile reconstruction, 39% for pothole detection and the remaining 24% for roughness index estimation. Results The results show that machine-learning techniques/data-driven methods have been used intensively with promising results but the disadvantages on data dependence have limited its application in some instances as compared to analytical/data processing methods. Recent algorithms to reconstruct/estimate road profiles are based mainly on passive suspension and quarter-vehicle-model, utilise fewer key parameters, being independent on speed variation and less computation for real-time/online applications. On the other hand, algorithms for pothole detection and road roughness index estimation are increasingly focusing on GPS accuracy, data aggregation and crowdsourcing platform for large-scale application. However, a novel and comprehensive system that is comparable to existing International Roughness Index and conventional Pavement Management System is still lacking.
AbstractList Abstract Purpose With the development of smart technologies, Internet of Things and inexpensive onboard sensors, many response-based methods to evaluate road surface conditions have emerged in the recent decade. Various techniques and systems have been developed to measure road profiles and detect road anomalies for multiple purposes such as expedient maintenance of pavements and adaptive control of vehicle dynamics to improve ride comfort and ride handling. A holistic review of studies into modern response-based techniques for road pavement applications is found to be lacking. Herein, the focus of this article is threefold: to provide an overview of the state-of-the-art response-based methods, to highlight key differences between methods and thereby to propose key focus areas for future research. Methods Available articles regarding response-based methods to measure road surface condition were collected mainly from “Scopus” database and partially from “Google Scholar”. The search period is limited to the recent 15 years. Among the 130 reviewed documents, 37% are for road profile reconstruction, 39% for pothole detection and the remaining 24% for roughness index estimation. Results The results show that machine-learning techniques/data-driven methods have been used intensively with promising results but the disadvantages on data dependence have limited its application in some instances as compared to analytical/data processing methods. Recent algorithms to reconstruct/estimate road profiles are based mainly on passive suspension and quarter-vehicle-model, utilise fewer key parameters, being independent on speed variation and less computation for real-time/online applications. On the other hand, algorithms for pothole detection and road roughness index estimation are increasingly focusing on GPS accuracy, data aggregation and crowdsourcing platform for large-scale application. However, a novel and comprehensive system that is comparable to existing International Roughness Index and conventional Pavement Management System is still lacking.
Purpose With the development of smart technologies, Internet of Things and inexpensive onboard sensors, many response-based methods to evaluate road surface conditions have emerged in the recent decade. Various techniques and systems have been developed to measure road profiles and detect road anomalies for multiple purposes such as expedient maintenance of pavements and adaptive control of vehicle dynamics to improve ride comfort and ride handling. A holistic review of studies into modern response-based techniques for road pavement applications is found to be lacking. Herein, the focus of this article is threefold: to provide an overview of the state-of-the-art response-based methods, to highlight key differences between methods and thereby to propose key focus areas for future research. Methods Available articles regarding response-based methods to measure road surface condition were collected mainly from “Scopus” database and partially from “Google Scholar”. The search period is limited to the recent 15 years. Among the 130 reviewed documents, 37% are for road profile reconstruction, 39% for pothole detection and the remaining 24% for roughness index estimation. Results The results show that machine-learning techniques/data-driven methods have been used intensively with promising results but the disadvantages on data dependence have limited its application in some instances as compared to analytical/data processing methods. Recent algorithms to reconstruct/estimate road profiles are based mainly on passive suspension and quarter-vehicle-model, utilise fewer key parameters, being independent on speed variation and less computation for real-time/online applications. On the other hand, algorithms for pothole detection and road roughness index estimation are increasingly focusing on GPS accuracy, data aggregation and crowdsourcing platform for large-scale application. However, a novel and comprehensive system that is comparable to existing International Roughness Index and conventional Pavement Management System is still lacking.
PurposeWith the development of smart technologies, Internet of Things and inexpensive onboard sensors, many response-based methods to evaluate road surface conditions have emerged in the recent decade. Various techniques and systems have been developed to measure road profiles and detect road anomalies for multiple purposes such as expedient maintenance of pavements and adaptive control of vehicle dynamics to improve ride comfort and ride handling. A holistic review of studies into modern response-based techniques for road pavement applications is found to be lacking. Herein, the focus of this article is threefold: to provide an overview of the state-of-the-art response-based methods, to highlight key differences between methods and thereby to propose key focus areas for future research.MethodsAvailable articles regarding response-based methods to measure road surface condition were collected mainly from “Scopus” database and partially from “Google Scholar”. The search period is limited to the recent 15 years. Among the 130 reviewed documents, 37% are for road profile reconstruction, 39% for pothole detection and the remaining 24% for roughness index estimation.ResultsThe results show that machine-learning techniques/data-driven methods have been used intensively with promising results but the disadvantages on data dependence have limited its application in some instances as compared to analytical/data processing methods. Recent algorithms to reconstruct/estimate road profiles are based mainly on passive suspension and quarter-vehicle-model, utilise fewer key parameters, being independent on speed variation and less computation for real-time/online applications. On the other hand, algorithms for pothole detection and road roughness index estimation are increasingly focusing on GPS accuracy, data aggregation and crowdsourcing platform for large-scale application. However, a novel and comprehensive system that is comparable to existing International Roughness Index and conventional Pavement Management System is still lacking.
ArticleNumber 43
Author Nguyen, Teron
Wong, Yiik Diew
Lechner, Bernhard
Author_xml – sequence: 1
  givenname: Teron
  orcidid: 0000-0001-6822-0753
  surname: Nguyen
  fullname: Nguyen, Teron
  email: teron.nguyen@tum.de, teron.nguyen@tum-create.edu.sg
  organization: Institute of Road, Railway and Airfield Construction, Technische Universität München, TUMCREATE Ltd, Centre for Infrastructure System, Nanyang Technological University, Faculty of Road and Bridge Engineering, University of Science and Technology – The University of Danang
– sequence: 2
  givenname: Bernhard
  orcidid: 0000-0002-3014-7463
  surname: Lechner
  fullname: Lechner, Bernhard
  organization: Institute of Road, Railway and Airfield Construction, Technische Universität München
– sequence: 3
  givenname: Yiik Diew
  orcidid: 0000-0001-7419-5777
  surname: Wong
  fullname: Wong, Yiik Diew
  organization: TUMCREATE Ltd, Centre for Infrastructure System, Nanyang Technological University
BookMark eNqNUF1rFTEQDdJCa-0P6NuCz9F8bnJ9k6K1UBBE-xpmk8ntXraba5K13H9v2i0KguK8zGGYc-bMeUmO5jQjIRecveHc9m8LF1opyviGMmkZ7V-Q0zbvqbXWHD1hQ5nh5oScl7JjrSTXVspTcvsFyz7NBekABUN3j_UuhdLV1CCUJWOXE4SuoQgeuzFn3C4T5LEe3nXQlQoVaYq03iGFXLuMP0Z8eEWOI0wFz5_7Gfn28cPXy0_05vPV9eX7G-qVlpWCFQE1Bt3840bhwIJEG-VGBGaDtyHEhqLQiCzaXhgjpOfgtQIzsMHKM3K96oYEO7fP4z3kg0swuqdBylvXTI1-QodiUCzqzSC9VaYfQIReiAgDj72NHJuWWLWWeQ-HB5imX4Kcuceg3Rq0a0G7x6Bd30ivV9I-p-8Llup2aclz-9kJybThXAnVtvi65XMqJWP8L2XzB8ePLewxzTXDOP2T-fxIaVfmLebfnv5O-glrgrB9
CitedBy_id crossref_primary_10_3390_s23125656
crossref_primary_10_3390_app13053014
crossref_primary_10_1186_s10033_021_00555_6
crossref_primary_10_1109_ACCESS_2021_3051619
crossref_primary_10_1016_j_autcon_2022_104409
crossref_primary_10_3390_app13095371
crossref_primary_10_1007_s00158_024_03879_8
crossref_primary_10_26552_com_C_2024_032
crossref_primary_10_1016_j_measurement_2024_114734
crossref_primary_10_3390_s22093414
crossref_primary_10_1088_1361_6501_ad9855
crossref_primary_10_3390_s22093410
crossref_primary_10_1016_j_conengprac_2022_105300
crossref_primary_10_1016_j_measurement_2022_111348
crossref_primary_10_3390_s24186115
crossref_primary_10_3390_su16198336
crossref_primary_10_1016_j_trc_2023_104177
crossref_primary_10_3390_su16010112
crossref_primary_10_1177_03611981211004973
crossref_primary_10_3390_s20020409
crossref_primary_10_1007_s00521_020_05318_3
crossref_primary_10_1016_j_trc_2021_103048
crossref_primary_10_26552_com_C_2024_003
crossref_primary_10_3390_buildings11120579
crossref_primary_10_1088_1742_6596_1933_1_012087
crossref_primary_10_1177_03611981231172968
crossref_primary_10_1109_TIV_2023_3337236
crossref_primary_10_1080_10298436_2020_1830092
crossref_primary_10_1016_j_compstruc_2024_107581
crossref_primary_10_1111_mice_12974
crossref_primary_10_1177_09544070241272869
crossref_primary_10_3390_s21227712
crossref_primary_10_1016_j_measurement_2021_110319
crossref_primary_10_1016_j_cscm_2022_e00889
crossref_primary_10_1016_j_ifacol_2024_08_229
crossref_primary_10_1080_13873954_2021_1887276
crossref_primary_10_1088_1755_1315_982_1_012062
crossref_primary_10_3390_app142210310
crossref_primary_10_1016_j_ifacol_2023_10_837
crossref_primary_10_1109_TITS_2021_3140177
crossref_primary_10_36535_0236_1914_2021_12_6
crossref_primary_10_3390_app13148080
crossref_primary_10_3390_rs15112941
crossref_primary_10_1016_j_jsv_2024_118763
crossref_primary_10_1080_10298436_2023_2188594
crossref_primary_10_1016_j_measurement_2023_112676
crossref_primary_10_1109_TII_2024_3404052
crossref_primary_10_1016_j_techfore_2020_120566
crossref_primary_10_3390_sym13071149
crossref_primary_10_1088_1757_899X_1289_1_012057
crossref_primary_10_1109_TIV_2022_3163588
crossref_primary_10_3390_buildings12111915
crossref_primary_10_3390_vehicles5040101
crossref_primary_10_1080_10298436_2022_2034815
Cites_doi 10.1155/2015/636739
10.1007/s11044-013-9380-9
10.1109/VSS.2006.1644511
10.1061/(ASCE)IS.1943-555X.0000167
10.1109/TCST.2015.2413937
10.1007/978-981-10-5547-8_63
10.1080/00423114.2015.1037313
10.1007/978-3-319-59336-4_24
10.1007/978-3-319-52015-5_33
10.4271/2015-01-0651
10.1109/ECC.2014.6862248
10.1016/j.jterra.2009.08.007
10.1016/j.jterra.2014.03.002
10.1007/978-3-642-39065-4-36
10.3390/s18103344
10.1177/0954406218767470
10.1109/ICSensT.2012.6461796
10.1016/j.sbspro.2014.01.057
10.24425/123905
10.1109/TVT.2014.2373434
10.1016/j.conengprac.2015.12.020
10.1016/j.pmcj.2017.06.002
10.1109/TITS.2014.2378511
10.1016/j.jterra.2018.10.004
10.1177/0361198118758693
10.3390/s18020443
10.1016/j.apacoust.2017.12.007
10.1061/JPEODX.0000093
10.1016/j.jsv.2009.09.035
10.1109/TITS.2017.2773084
10.1109/JSEN.2017.2719865
10.1061/(ASCE)CP
10.3390/s18071984
10.1109/TMC.2016.2597839
10.1016/j.compenvurbsys.2017.12.005
10.1109/TMC.2017.2690995
10.1016/j.ymssp.2018.07.043
10.1061/(ASCE)CP.1943-5487.0000624
10.1109/TITS.2011.2132799
10.1061/(ASCE)IS.1943-555X.0000225
10.1155/2014/928980
10.1007/s12544-016-0200-1
10.3390/s17020305
10.1016/j.procs.2017.11.056
10.3923/jeasci.2017.3090.3097
10.1109/JSEN.2017.2702739
10.23919/ACC.2017.7963079
10.3141/2589-13
10.5220/0006469800830088
10.1109/TITS.2017.2680468
10.1109/ACC.2016.7525160
10.1155/2018/5131434
10.1080/10298436.2016.1162306
10.1007/s12206-010-0113-1
10.1108/14684520510598066
10.1080/00423114.2017.1413197
10.1109/ACC.2011.5991595
10.1186/1742-5581-3-1
10.1016/j.ymssp.2018.07.035
10.1109/MVT.2017.2656949
10.1080/00423110701485050
10.1080/00423114.2016.1267374
10.1117/12.2012026
10.4028/www.scientific.net/AMM.226-228.1614
10.1080/10298436.2017.1316645
10.1186/1687-1499-2014-114
10.3233/JIFS-161860
10.1007/s12205-017-1008-9
10.1080/00423110802450193
10.1080/14680629.2019.1625806
10.1016/j.jtte.2016.09.004
10.1080/00423110500333840
10.1155/2015/869627
10.1177/1077546317693432
10.1109/TPSD.2007.4380331
10.1061/(asce)is.1943-555x.0000218
10.1080/10298436.2017.1366768
10.1080/00423114.2016.1145243
10.1155/2013/283528
10.1080/01441647.2015.1065456
10.1061/JPEODX.0000074
10.1007/s11276-015-0996-y
10.1007/s13349-019-00323-0
10.1016/j.ymssp.2018.07.015
10.1109/DSPWS.2006.265446
10.1088/0957-0233/27/2/025012
10.1109/IoT-SIU.2018.8519861
10.1080/00423114.2012.707801
10.1016/j.jterra.2011.12.001
10.1016/j.sbspro.2012.09.828
10.1016/j.jterra.2014.03.006
10.1007/978-3-319-39207-3_31
ContentType Journal Article
Copyright The Author(s). 2019
European Transport Research Review is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s). 2019
– notice: European Transport Research Review is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7WY
7WZ
7XB
87Z
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
HCIFZ
K60
K6~
L.-
L6V
M0C
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
ADTOC
UNPAY
DOA
DOI 10.1186/s12544-019-0380-6
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Global
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Openly Available Collection - DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1866-8887
EndPage 18
ExternalDocumentID oai_doaj_org_article_e2b40f59b3c8476ba2d622fab1f68f1e
10.1186/s12544-019-0380-6
10_1186_s12544_019_0380_6
GrantInformation_xml – fundername: National Research Foundation Singapore
  funderid: http://dx.doi.org/10.13039/501100001381
GroupedDBID -A0
0R~
29G
2VQ
3V.
4.4
40G
5GY
5VS
6NX
7WY
8FE
8FG
8FL
AAFWJ
AAJSJ
AAKKN
ABDBF
ABEEZ
ABFTD
ABJCF
ABUWG
ACACY
ACGFO
ACGFS
ACIHN
ACIWK
ACUHS
ACULB
ADBBV
ADINQ
ADQRH
AEAQA
AEUYN
AFGXO
AFKRA
AFPKN
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
BAPOH
BCNDV
BENPR
BEZIV
BGLVJ
BPHCQ
C24
C6C
CAG
CCPQU
COF
DWQXO
EBLON
EBS
EJD
ESX
FRNLG
GROUPED_DOAJ
H13
HCIFZ
HZ~
IAO
IPNFZ
K60
K6~
KQ8
L6V
M0C
M7S
M~E
O9-
OK1
P2P
PIMPY
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
RIG
RNS
ROL
RSV
SDH
SEG
SOJ
U2A
AASML
AAYXX
CITATION
PUEGO
7XB
8FK
AZQEC
L.-
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ADTOC
UNPAY
ID FETCH-LOGICAL-c453t-a82de5ed5254e94eb0d3e8f392d08dc8ddf2d0f25ee0f8627723c1ac54a7b0b83
IEDL.DBID C24
ISSN 1867-0717
1866-8887
IngestDate Tue Oct 14 19:03:54 EDT 2025
Sun Oct 26 03:51:28 EDT 2025
Sat Oct 11 13:40:31 EDT 2025
Wed Oct 01 04:19:55 EDT 2025
Thu Apr 24 23:01:53 EDT 2025
Fri Feb 21 02:33:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Accelerometer
Road profile
Road roughness
Pothole detection
Estimation
Classification
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c453t-a82de5ed5254e94eb0d3e8f392d08dc8ddf2d0f25ee0f8627723c1ac54a7b0b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Literature Review-2
ORCID 0000-0001-7419-5777
0000-0001-6822-0753
0000-0002-3014-7463
OpenAccessLink https://link.springer.com/10.1186/s12544-019-0380-6
PQID 2305711424
PQPubID 2034765
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_e2b40f59b3c8476ba2d622fab1f68f1e
unpaywall_primary_10_1186_s12544_019_0380_6
proquest_journals_2305711424
crossref_primary_10_1186_s12544_019_0380_6
crossref_citationtrail_10_1186_s12544_019_0380_6
springer_journals_10_1186_s12544_019_0380_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationSubtitle An Open Access Journal
PublicationTitle European transport research review
PublicationTitleAbbrev Eur. Transp. Res. Rev
PublicationYear 2019
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References McCannRNguyenSSystem identification for a model-based observer of a road roughness profiler2007 IEEE region 5 technical conference, TPS200733634310.1109/TPSD.2007.4380331
DoumiatiMVictorinoAChararaALechnerDEstimation of road profile for vehicle dynamics motion: Experimental validationProceedings of the 2011 American control conference20115237524210.1109/ACC.2011.5991595
WangSKodagodaSShiLWangHRoad-terrain classification for land vehicles: Employing an acceleration-based approachIEEE Vehicular Technology Magazine201712344110.1109/MVT.2017.2656949
YiC-WChuangY-TNianC-SToward crowdsourcing-based road pavement monitoring by mobile sensing technologiesIEEE Transactions on Intelligent Transportation Systems2015161905191710.1109/TITS.2014.2378511
DoumiatiMVictorinoAChararaALechnerDEstimation of road profile for vehicle dynamics motion: Experimental validation2011San FranciscoProceedings of the American control conference52375242
GorgesCÖztürkKLiebichRImpact detection using a machine learning approach and experimental road roughness classificationMechanical Systems and Signal Processing201911773875610.1016/j.ymssp.2018.07.043
SauerweinPMSmithBLInvestigation of the implementation of a probe-vehicle based pavement roughness estimation system2011CharlottesvilleCenter for Transportation Studies
ZengHParkHSmithBLParkanyEFeasibility assessment of a smartphone-based application to estimate road roughnessKSCE Journal of Civil Engineering2018223120312910.1007/s12205-017-1008-9
LinJ-LPengZ-QLaiRKImproving pavement anomaly detection using backward feature eliminationLecture Notes in Business Information Processing201728834134910.1007/978-3-319-59336-4_24
ChenKTanGLuMWuJCRSM: A practical crowdsourcing-based road surface monitoring systemWireless Networks20162276577910.1007/s11276-015-0996-y
Ben HassenDMiladiMAbbesMSBaslamisliSCChaariFHaddarMRoad profile estimation using the dynamic responses of the full vehicle modelApplied Acoustics2019147879910.1016/j.apacoust.2017.12.007
JacsóPGoogle scholar: The pros and the consOnline Information Review20052920821410.1108/14684520510598066
Qin, Y., Langari, R., & Gu, L. (2014). The use of vehicle dynamic response to estimate road profile input in time domain. In ASME 2014 dynamic systems and control conference, DSCC 2014. San Antonio: American Society of Mechanical Engineers.
BadurowiczMCieplakTMontusiewiczJThe cloud computing stream analysis system for road artefacts detectionCommunications in Computer and Information Science201660836036910.1007/978-3-319-39207-3_31
GrabowskiDSzczodrakMCzyzewskiAEconomical methods for measuring road surface roughnessMetrology and Measurement Systems20182553354910.24425/123905
YousefzadehMAzadiSSoltaniARoad profile estimation using neural network algorithmJournal of Mechanical Science and Technology20102474375410.1007/s12206-010-0113-1
Ghadge, M., Pandey, D., & Kalbande, D. (2016). Machine learning approach for predicting bumps on road. In M. Aradhya & S. K. N (Eds.), Proceedings of the 2015 international conference on applied and theoretical computing and communication technology, iCATccT 2015 (pp. 481–485). Davangere: Institute of Electrical and Electronics Engineers Inc.
RishiwalVKhanHAutomatic pothole and speed breaker detection using android system39th international convention on information and communication technology, electronics and microelectronics, MIPRO 2016 - proceedings2016OpatijaInstitute of Electrical and Electronics Engineers Inc.12701273
HeynsTHeynsPSDe VilliersJPA method for real-time condition monitoring of haul roads based on bayesian parameter estimationJournal of Terramechanics20124910311310.1016/j.jterra.2011.12.001
DouangphachanhVOneyamaHA study on the use of smartphones for road roughness condition estimationJournal of the Eastern Asia Society for Transportation Studies20131015511564
Jang, J., Smyth, A. W., Yang, Y., & Cavalcanti, D. (2015). Road surface condition monitoring via multiple sensor-equipped vehicles. In Proceedings - IEEE INFOCOM (pp. 43–44). Hong Kong: Institute of Electrical and Electronics Engineers Inc.
ISO8608:2016(en)Mechanical vibration - road surface profiles - reporting of measured dataInternational Organization for Standardization2016
XueGZhuHHuZYuJZhuYLuoYPothole in the dark: Perceiving pothole profiles with participatory urban vehiclesIEEE Transactions on Mobile Computing2017161408141910.1109/TMC.2016.2597839
Li, J., Zhang, Z., & Wang, W. (2019). New approach for estimating international roughness index based on the inverse pseudo excitation method. Journal of Transportation Engineering Part B: Pavements, 145. https://doi.org/10.1061/JPEODX.0000093.
RenJLiuDPADS: A reliable pothole detection system using machine learningLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10135 LNCS201732733810.1007/978-3-319-52015-5_33
PerttunenMMazhelisOCongFDistributed road surface condition monitoring using mobile phones2011BanffInternational conference on ubiquitous intelligence and computing6478
Bridgelall, R., Huang, Y., Zhang, Z., & Deng, F. (2016). Precision enhancement of pavement roughness localization with connected vehicles. Measurement Science and Technology, 27. https://doi.org/10.1088/0957-0233/27/2/025012.
AllouchAKoubaaAAbbesTAmmarARoadSense: Smartphone application to estimate road conditions using accelerometer and gyroscopeIEEE Sensors Journal2017174231423810.1109/JSEN.2017.2702739
Harris, D. K., Alipour, M., Acton, S. T., Messeri, L. R., Vaccari, A., & Barnes, L. E. (2017). The citizen engineer: Urban infrastructure monitoring via crowd-sourced data analytics. In S. J.G. (Ed.), Structures congress 2017: Business, professional practice, education, research, and disaster management - selected papers from the structures congress 2017 (pp. 495–510). Denver: American Society of Civil Engineers (ASCE).
Astarita, V., Caruso, M. V., Danieli, G., Festa, D. C., Giofrè, V. P., Iuele, T., & Vaiana, R. (2012). A mobile application for road surface quality control: UNIquALroad. Procedia - Social and Behavioral Sciences. https://doi.org/10.1016/j.sbspro.2012.09.828.
WangZDongMQinYDuYZhaoFGuLSuspension system state estimation using adaptive Kalman filtering based on road classificationVehicle System Dynamics20175537139810.1080/00423114.2016.1267374
BridgelallRHoughJTolliverDCharacterising pavement roughness at non-uniform speeds using connected vehiclesInternational Journal of Pavement Engineering201784361710.1080/10298436.2017.1366768
HaddarMBaslamisliSCChaariRChaariFHaddarMRoad profile identification with an algebraic estimatorProceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science20192331139115510.1177/0954406218767470
De ZoysaKA public transport system based sensor network for road surface condition monitoringWorkshop on Networked System for Developing Regions. NSDR’072007New York, KyotoAssociation for Computer Machinery
BridgelallRRahmanMTTolliverDDaleidenJFWavelength sensitivity of roughness measurements using connected vehiclesInternational Journal of Pavement Engineering201784361710.1080/10298436.2017.1316645
Tudon-MartinezJCFerganiSSenameOMorales-MenendezRDugardLOnline road profile estimation in automotive vehicles2014StrasbourgEuropean control conference (ECC)23702375
Fox, A., Kumar, B. V. K. V., Chen, J., & Bai, F. (2015). Crowdsourcing undersampled vehicular sensor data for pothole detection. In 2015 12th annual IEEE international conference on sensing, communication, and networking, SECON 2015 (pp. 515–523). Seattle: Institute of Electrical and Electronics Engineers Inc.
SinghGBansalDSofatSAggarwalNSmart patrolling: An efficient road surface monitoring using smartphone sensors and crowdsourcingPervasive and Mobile Computing201740718810.1016/j.pmcj.2017.06.002
Aleadelat, W., Wright, C. H. G., & Ksaibati, K. (2018). Estimation of gravel roads ride quality through an android-based smartphone. Transportation Research Record. https://doi.org/10.1177/0361198118758693.
Vittorio, A., Rosolino, V., Teresa, I., Vittoria, C. M., & Vincenzo, P. G. (2014). Automated sensing system for monitoring of road surface quality by mobile devices. Procedia-Social and Behavioral Sciences. (pp. 111, 242-251).
Fauriat, W., Mattrand, C., Gayton, N., Beakou, A., & Cembrzynski, T. (2016). Estimation of road profile variability from measured vehicle responses. Vehicle System Dynamics, 3114. https://doi.org/10.1080/00423114.2016.1145243.
Monteserin, A. (2018). Potholes vs. speed bumps: A multivariate time series classification approach. In I. Lykourentzou, M. G. Armentano, & HFTA (Eds.), CEUR workshop proceedings (pp. 36–40). CEUR-WS.
Celaya-Padilla, J. M., Galván-Tejada, C. E., López-Monteagudo, F. E., et al. (2018). Speed bump detection using accelerometric features: A genetic algorithm approach. Sensors (Switzerland), 18. https://doi.org/10.3390/s18020443.
ChenKLuMTanGWuJCRSM: Crowdsourcing based road surface monitoringProceedings - 2013 IEEE international conference on high performance computing and communications, HPCC 2013 and 2013 IEEE international conference on embedded and ubiquitous computing, EUC 20132014Zhangjiajie, HunanIEEE Computer Society21512158
QinYLangariRWangZXiangCDongMRoad excitation classification for semi-active suspension system with deep neural networksJournal of Intelligent Fuzzy Systems2017331907191810.3233/JIFS-161860
AnaissiAKhoaNLDRakotoariveloTAlamdariMMWangYSmart pothole detection system using vehicle-mounted sensors and machine learningJournal of Civil Structural Health Monitoring201999110210.1007/s13349-019-00323-0
AliJDyoVCoverage and mobile sensor placement for vehicles on predetermined routes: A greedy heuristic approachICETE 2017 - proceedings of the 14th international joint conference on e-business and telecommunications2017838810.5220/0006469800830088
Gim, J., & Ahn, C. (2018). Imu-based virtual road profile sensor for vehicle localization. Sensors (Switzerland), 18. https://doi.org/10.3390/s18103344.
ASTM E1364–9
M Hoffmann (380_CR113) 2013
X Li (380_CR60) 2018; 69
Y Qin (380_CR42) 2017; 33
Y Qin (380_CR47) 2019; 117
S Wang (380_CR39) 2017; 12
A Mednis (380_CR62) 2011
W Yu (380_CR17) 2013; 2013
C Gorges (380_CR53) 2018; 56
R Bridgelall (380_CR94) 2014; 20
380_CR37
A González (380_CR50) 2008; 46
A Rabhi (380_CR23) 2006
J Eriksson (380_CR102) 2008
B Van Wee (380_CR12) 2016; 36
Y Qin (380_CR52) 2012; 226–228
F Seraj (380_CR118) 2015
V Rishiwal (380_CR68) 2016
B Syed (380_CR71) 2012
K Chen (380_CR110) 2016; 22
JJ Rath (380_CR24) 2014
K Chen (380_CR109) 2014
A Allouch (380_CR129) 2017; 17
HE Tseng (380_CR15) 2015; 53
G Singh (380_CR80) 2017; 40
N Abulizi (380_CR86) 2016; 3
Y Qin (380_CR43) 2018; 24
ISO8608:2016(en) (380_CR51) 2016
380_CR26
R Bridgelall (380_CR97) 2018; 19
P Aksamit (380_CR135) 2011
G Alessandroni (380_CR91) 2014
Z Wang (380_CR21) 2017; 55
F Seraj (380_CR117) 2014
Y Du (380_CR83) 2014
M Perttunen (380_CR119) 2011
380_CR19
M Rahman (380_CR30) 2012; 50
380_CR18
380_CR105
380_CR104
380_CR107
G Xue (380_CR108) 2017; 16
R Johnsson (380_CR59) 2012
M Ndoye (380_CR93) 2011; 12
K Yagi (380_CR65) 2010
380_CR96
A Mohamed (380_CR116) 2014
PM Harikrishnan (380_CR72) 2017; 17
Daily Mail Online (380_CR1) 2010
HM Ngwangwa (380_CR33) 2010; 47
A Anaissi (380_CR124) 2019; 9
N Silva (380_CR125) 2017; 121
P Jacsó (380_CR14) 2005; 29
C-W Yi (380_CR81) 2015; 16
380_CR92
M Doumiati (380_CR4) 2011
B Bose (380_CR115) 2018
HM Ngwangwa (380_CR34) 2014; 53
380_CR112
JC Tudon-Martinez (380_CR31) 2014
ASTM E1364–95 (380_CR3) 2017
K Laubis (380_CR133) 2016
H Zeng (380_CR85) 2018; 22
S Wang (380_CR38) 2011
K Chen (380_CR82) 2011
380_CR89
R Bridgelall (380_CR98) 2016; 2589
380_CR84
A Fox (380_CR123) 2017; 16
PM Sauerwein (380_CR9) 2011
Y Tai (380_CR114) 2010
R Bhoraskar (380_CR121) 2012
H Imine (380_CR5) 2006; 44
T Heyns (380_CR58) 2012; 49
J Ali (380_CR77) 2017
JF Burnham (380_CR13) 2006; 3
380_CR122
380_CR127
380_CR126
M Ndoye (380_CR90) 2006
J Wahlstrom (380_CR11) 2017; 18
M Badurowicz (380_CR63) 2016; 608
380_CR75
380_CR79
380_CR78
D Grabowski (380_CR76) 2018; 25
S Limkar (380_CR67) 2018; 78
380_CR73
Z Zhang (380_CR8) 2018; 80
380_CR132
380_CR136
V Douangphachanh (380_CR87) 2014; 2014
T Das (380_CR106) 2010
R Kumar (380_CR7) 2017; 31
JJ Rath (380_CR25) 2015; 64
J Jang (380_CR128) 2017; 31
380_CR69
MR Carlos (380_CR130) 2018; 19
JC Tudón-martínez (380_CR28) 2015; 23
R Bridgelall (380_CR99) 2014; 21
HM Ngwangwa (380_CR35) 2014; 53
380_CR61
G Chugh (380_CR10) 2014; 7
M Haddar (380_CR20) 2019; 233
Z Zhang (380_CR134) 2018; 144
Q Wang (380_CR54) 2013
M Doumiati (380_CR16) 2011
T Nomura (380_CR66) 2015; 7
P Mohan (380_CR103) 2008
J Mehta (380_CR70) 2017; 12
CC Ward (380_CR41) 2009; 47
Y Qin (380_CR46) 2015; 2015
380_CR57
R Bridgelall (380_CR95) 2015; 21
M Burger (380_CR56) 2014; 31
M Doumiati (380_CR29) 2017; 61
Y Qin (380_CR22) 2017
NK Harris (380_CR55) 2010; 329
J Ren (380_CR111) 2017
K De Zoysa (380_CR64) 2007
M Yousefzadeh (380_CR36) 2010; 24
D Ben Hassen (380_CR48) 2019; 147
R Bridgelall (380_CR100) 2017; 8436
J-L Lin (380_CR131) 2017; 288
C Gorges (380_CR49) 2019; 117
R Bridgelall (380_CR101) 2017; 8436
A Aljaafreh (380_CR74) 2017; 9
F Cong (380_CR120) 2013; 7951 LNCS
380_CR2
M Doumiati (380_CR27) 2014
S Wang (380_CR40) 2012
R McCann (380_CR6) 2007
Z Li (380_CR32) 2016
380_CR44
V Douangphachanh (380_CR88) 2013; 10
380_CR45
References_xml – reference: ChenKTanGLuMWuJCRSM: A practical crowdsourcing-based road surface monitoring systemWireless Networks20162276577910.1007/s11276-015-0996-y
– reference: Jang, J., Smyth, A. W., Yang, Y., & Cavalcanti, D. (2015). Road surface condition monitoring via multiple sensor-equipped vehicles. In Proceedings - IEEE INFOCOM (pp. 43–44). Hong Kong: Institute of Electrical and Electronics Engineers Inc.
– reference: BurgerMCalculating road input data for vehicle simulationMultibody System Dynamics20143193110314914410.1007/s11044-013-9380-91293.70076
– reference: Bridgelall, R., Huang, Y., Zhang, Z., & Deng, F. (2016). Precision enhancement of pavement roughness localization with connected vehicles. Measurement Science and Technology, 27. https://doi.org/10.1088/0957-0233/27/2/025012.
– reference: LinJ-LPengZ-QLaiRKImproving pavement anomaly detection using backward feature eliminationLecture Notes in Business Information Processing201728834134910.1007/978-3-319-59336-4_24
– reference: RishiwalVKhanHAutomatic pothole and speed breaker detection using android system39th international convention on information and communication technology, electronics and microelectronics, MIPRO 2016 - proceedings2016OpatijaInstitute of Electrical and Electronics Engineers Inc.12701273
– reference: CarlosMRAragonMEGonzalezLCEscalanteHJMartinezFEvaluation of detection approaches for road anomalies based on accelerometer readings-addressing who’s whoIEEE Transactions on Intelligent Transportation Systems2018193334334310.1109/TITS.2017.2773084
– reference: ZengHParkHSmithBLParkanyEFeasibility assessment of a smartphone-based application to estimate road roughnessKSCE Journal of Civil Engineering2018223120312910.1007/s12205-017-1008-9
– reference: GorgesCÖztürkKLiebichRImpact detection using a machine learning approach and experimental road roughness classificationMechanical Systems and Signal Processing201911773875610.1016/j.ymssp.2018.07.043
– reference: MohanPVenkataNPRamachandranRNericell: Using mobile smartphones for rich monitoring of road and traffic conditionsProceedings of the 6th international conference on embedded networked sensor systems2008RaleighSenSys 2008323336
– reference: Gunawan, F. E., Yanfi, & Soewito, B. (2015). A vibratory-based method for road damage classification. In 2015 international seminar on intelligent technology and its applications, ISITIA 2015 - proceeding (pp. 1–4). Surabaya: Institute of Electrical and Electronics Engineers Inc.
– reference: BhoraskarRVankadharaNRamanBKulkarniPWolverine: Traffic and road condition estimation using smartphone sensors2012 fourth international conference on communication systems and networks (COMSNETS 2012)2012BangaloreIEEE
– reference: Tudon-MartinezJCFerganiSSenameOMorales-MenendezRDugardLOnline road profile estimation in automotive vehicles2014StrasbourgEuropean control conference (ECC)23702375
– reference: NgwangwaHMHeynsPSBreytenbachHGAElsPSReconstruction of road defects and road roughness classification using artificial neural networks simulation and vehicle dynamic responses: Application to experimental dataJournal of Terramechanics20145311810.1016/j.jterra.2014.03.002
– reference: Monteserin, A. (2018). Potholes vs. speed bumps: A multivariate time series classification approach. In I. Lykourentzou, M. G. Armentano, & HFTA (Eds.), CEUR workshop proceedings (pp. 36–40). CEUR-WS.
– reference: Li, J., Zhang, Z., & Wang, W. (2019). New approach for estimating international roughness index based on the inverse pseudo excitation method. Journal of Transportation Engineering Part B: Pavements, 145. https://doi.org/10.1061/JPEODX.0000093.
– reference: QinYDongMLangariRGuLGuanJAdaptive hybrid control of vehicle semiactive suspension based on road profile estimationShock and Vibration20152015141710.1155/2015/636739
– reference: BridgelallRRahmanMTTolliverDDaleidenJFWavelength sensitivity of roughness measurements using connected vehiclesInternational Journal of Pavement Engineering201784361710.1080/10298436.2017.1316645
– reference: DouangphachanhVOneyamaHA study on the use of smartphones under realistic settings to estimate road roughness conditionEURASIP Journal on Wireless Communications and Networking2014201411110.1186/1687-1499-2014-114
– reference: MohamedAFouadMMMElhaririERoadMonitor: An intelligent road surface condition monitoring system2014Warsaw7th IEEE International Conference Intelligent Systems IS’2014
– reference: XueGZhuHHuZYuJZhuYLuoYPothole in the dark: Perceiving pothole profiles with participatory urban vehiclesIEEE Transactions on Mobile Computing2017161408141910.1109/TMC.2016.2597839
– reference: Mohan, P., Venkata, N. P., & Ramachandran, R. (2008). TrafficSense: Rich monitoring of road and traffic conditions using mobile smartphones. Tech. Rep. no. MSR-TR-2008–59.
– reference: GonzálezAO’BrienEJLiYYCashellKThe use of vehicle acceleration measurements to estimate road roughnessVehicle System Dynamics20084648349910.1080/00423110701485050
– reference: DoumiatiMVictorinoAChararaALechnerDEstimation of road profile for vehicle dynamics motion: Experimental validationProceedings of the 2011 American control conference20115237524210.1109/ACC.2011.5991595
– reference: GrabowskiDSzczodrakMCzyzewskiAEconomical methods for measuring road surface roughnessMetrology and Measurement Systems20182553354910.24425/123905
– reference: BridgelallRPrecision bounds of pavement deterioration forecasts from connected vehiclesJournal of Infrastructure Systems20142110.1061/(asce)is.1943-555x.0000218
– reference: BridgelallRHoughJTolliverDCharacterising pavement roughness at non-uniform speeds using connected vehiclesInternational Journal of Pavement Engineering201784361710.1080/10298436.2017.1366768
– reference: Fauriat, W., Mattrand, C., Gayton, N., Beakou, A., & Cembrzynski, T. (2016). Estimation of road profile variability from measured vehicle responses. Vehicle System Dynamics, 3114. https://doi.org/10.1080/00423114.2016.1145243.
– reference: NgwangwaHMHeynsPSApplication of an ANN-based methodology for road surface condition identification on mining vehicles and roadsJournal of Terramechanics201453597410.1016/j.jterra.2014.03.006
– reference: WangQMcDanielJGSunNXWangMLRoad profile estimation of city roads using DTPS2013San DiegoProceedings of SPIE - The International Society for Optical Engineering10.1117/12.2012026
– reference: SerajFvan der ZwaagBJDiloALuarasiTHavingaPJMRoADS: A road pavement monitoring system for anomaly detection using smart phones1st international workshop on machine learning for urban sensor data, SenseML 20142014BerlinSpringer116
– reference: SinghGBansalDSofatSAggarwalNSmart patrolling: An efficient road surface monitoring using smartphone sensors and crowdsourcingPervasive and Mobile Computing201740718810.1016/j.pmcj.2017.06.002
– reference: ASTM E1364–95Standard test method for measuring road roughness by static level method2017West ConshohockenAmerican Society for Testing and Materials
– reference: HoffmannMMockMMayMRoad-quality classification and bump detection with bicycle-mouted smartphonesCEUR workshop proceedings20133943
– reference: Qin, Y., Wei, C., Tang, X., Zhang, N., Dong, M., & Hu, C. (2018). A novel nonlinear road profile classification approach for controllable suspension system: Simulation and experimental validation. Mechanical Systems and Signal Processing. https://doi.org/10.1016/j.ymssp.2018.07.015.
– reference: AllouchAKoubaaAAbbesTAmmarARoadSense: Smartphone application to estimate road conditions using accelerometer and gyroscopeIEEE Sensors Journal2017174231423810.1109/JSEN.2017.2702739
– reference: BridgelallRInertial sensor sample rate selection for ride quality measuresJournal of Infrastructure Systems20152110.1061/(ASCE)IS.1943-555X.0000225
– reference: De ZoysaKA public transport system based sensor network for road surface condition monitoringWorkshop on Networked System for Developing Regions. NSDR’072007New York, KyotoAssociation for Computer Machinery
– reference: Gim, J., & Ahn, C. (2018). Imu-based virtual road profile sensor for vehicle localization. Sensors (Switzerland), 18. https://doi.org/10.3390/s18103344.
– reference: FoxAKumarBVKVChenJBaiFMulti-lane pothole detection from crowdsourced undersampled vehicle sensor dataIEEE Transactions on Mobile Computing2017163417343010.1109/TMC.2017.2690995
– reference: DuYLiuCWuDJiangSMeasurement of international roughness index by using Z-axis accelerometers and GPSMathematical Problems in Engineering, 2014201410.1155/2014/928980
– reference: GorgesCÖztürkKLiebichRRoad classification for two-wheeled vehiclesVehicle System Dynamics2018561289131410.1080/00423114.2017.1413197
– reference: AnaissiAKhoaNLDRakotoariveloTAlamdariMMWangYSmart pothole detection system using vehicle-mounted sensors and machine learningJournal of Civil Structural Health Monitoring201999110210.1007/s13349-019-00323-0
– reference: WahlstromJSkogIHandelPSmartphone-based vehicle telematics: A ten-year anniversaryIEEE Transactions on Intelligent Transportation Systems2017182802282510.1109/TITS.2017.2680468
– reference: Qin, Y., Langari, R., & Gu, L. (2014). The use of vehicle dynamic response to estimate road profile input in time domain. In ASME 2014 dynamic systems and control conference, DSCC 2014. San Antonio: American Society of Mechanical Engineers.
– reference: NdoyeMVanjariSVHuhHKrogmeierJVBullockDMHedgesCAAdewunmiASensing and signal processing for a distributed pavement monitoring system2006 IEEE 12th digital signal processing workshop and 4th IEEE signal processing education workshop200616216710.1109/DSPWS.2006.265446
– reference: HeynsTHeynsPSDe VilliersJPA method for real-time condition monitoring of haul roads based on bayesian parameter estimationJournal of Terramechanics20124910311310.1016/j.jterra.2011.12.001
– reference: NdoyeMBarkerAMKrogmeierJVBullockDMA recursive multiscale correlation-averaging algorithm for an automated distributed road-condition-monitoring systemIEEE Transactions on Intelligent Transportation Systems20111279580810.1109/TITS.2011.2132799
– reference: TsengHEHrovatDState of the art survey: Active and semi-active suspension controlVehicle System Dynamics2015531034106210.1080/00423114.2015.1037313
– reference: YousefzadehMAzadiSSoltaniARoad profile estimation using neural network algorithmJournal of Mechanical Science and Technology20102474375410.1007/s12206-010-0113-1
– reference: ISO8608:2016(en)Mechanical vibration - road surface profiles - reporting of measured dataInternational Organization for Standardization2016
– reference: RahmanMRideoutGUsing the lead vehicle as preview sensor in convoy vehicle active suspension controlVehicle System Dynamics2012501923194810.1080/00423114.2012.707801
– reference: CongFHautakangasHNieminenJMazhelisOPerttunenMRiekkiJRistaniemiTApplying wavelet packet decomposition and one-class support vector machine on vehicle acceleration traces for road anomaly detectionLecture Notes in Computer Science20137951 LNCS29129910.1007/978-3-642-39065-4-36
– reference: SyedBPalASrinivasarenganKBalamuralidharPA smart transport application of cyber-physical systems: Road surface monitoring with mobile devicesProceedings of the international conference on sensing technology, ICST201281210.1109/ICSensT.2012.6461796
– reference: SauerweinPMSmithBLInvestigation of the implementation of a probe-vehicle based pavement roughness estimation system2011CharlottesvilleCenter for Transportation Studies
– reference: NgwangwaHMHeynsPSLabuschagneFJJKululangaGKReconstruction of road defects and road roughness classification using vehicle responses with artificial neural networks simulationJournal of Terramechanics2010479711110.1016/j.jterra.2009.08.007
– reference: DouangphachanhVOneyamaHA study on the use of smartphones for road roughness condition estimationJournal of the Eastern Asia Society for Transportation Studies20131015511564
– reference: JohnssonROdeliusJMethods for road texture estimation using vehicle measurementsProceedings of the international conference on noise and vibration engineering (ISMA 2012)201215731582
– reference: DoumiatiMJairoJMolinaMRoad profile estimation using an adaptive Youla- kučera parametric observer: Comparison to real profilersControl Engineering Practice, Elsevier20176127027810.1016/j.conengprac.2015.12.020
– reference: Tudón-martínezJCFerganiSSenameOMartinezJJMorales-menendezRDugardLAdaptive road profile estimation in semiactive car suspensionsIEEE Transactions on Control Systems Technology2015232293230510.1109/TCST.2015.2413937
– reference: McCannRNguyenSSystem identification for a model-based observer of a road roughness profiler2007 IEEE region 5 technical conference, TPS200733634310.1109/TPSD.2007.4380331
– reference: ChughGBansalDSofatSRoad condition detection using smartphone sensors: A surveyInternational Journal of Electronic and Electrical Engineering20147595602
– reference: AksamitPSzmechtaMDistributed, mobile, social system for road surface defects detection2011FlorianaISCIII 2011 - 5th international symposium on computational intelligence and intelligent informatics3740
– reference: Silva, N., Shah, V., Soares, J., & Rodrigues, H. (2018). Road anomalies detection system evaluation. Sensors (Switzerland), 18. https://doi.org/10.3390/s18071984.
– reference: QinYLangariRWangZXiangCDongMRoad excitation classification for semi-active suspension system with deep neural networksJournal of Intelligent Fuzzy Systems2017331907191810.3233/JIFS-161860
– reference: Qin, Y., Dong, M., Zhao, F., Langari, R., & Gu, L. (2015). Road profile classification for vehicle semi-active suspension system based on adaptive neuro-fuzzy inference system. In Proceedings of the IEEE conference on decision and control (pp. 1533–1538). Osaka: Institute of Electrical and Electronics Engineers Inc.
– reference: Astarita, V., Caruso, M. V., Danieli, G., Festa, D. C., Giofrè, V. P., Iuele, T., & Vaiana, R. (2012). A mobile application for road surface quality control: UNIquALroad. Procedia - Social and Behavioral Sciences. https://doi.org/10.1016/j.sbspro.2012.09.828.
– reference: Aleadelat, W., Wright, C. H. G., & Ksaibati, K. (2018). Estimation of gravel roads ride quality through an android-based smartphone. Transportation Research Record. https://doi.org/10.1177/0361198118758693.
– reference: JangJYangYSmythAWCavalcantiDKumarRFramework of data acquisition and integration for the detection of pavement distress via multiple vehiclesJournal of Computing in Civil Engineering20173111510.1061/(ASCE)CP
– reference: DoumiatiMErhartSMartinezJSenameODugardLAdaptive control scheme for road profile estimation: Application to vehicle dynamicsProceedings of the 19th world congress the International Federation of Automatic Control2014Cape TownIFAC84458450
– reference: AljaafrehAAlawasaKAlja’afrehSAbadlehAFuzzy inference system for speed bumps detection using smart phone accelerometer sensorJournal of Telecommunication, Electronic and Computer Engineering20179133136
– reference: HarikrishnanPMVarunPGVehicle vibration signal processing for road surface monitoringIEEE Sensors Journal2017175192519710.1109/JSEN.2017.2719865
– reference: BoseBDuttaJGhoshSPramanickPRoySD&Sense: Detection of driving patterns and road anomaliesProceedings - 2018 3rd International Conference On Internet of Things: Smart Innovation and Usages, IoT-SIU 201820181710.1109/IoT-SIU.2018.8519861
– reference: PerttunenMMazhelisOCongFDistributed road surface condition monitoring using mobile phones2011BanffInternational conference on ubiquitous intelligence and computing6478
– reference: ChenKLuMFanXWeiMWuJRoad condition monitoring using on-board three-axis accelerometer and GPS sensorInternational ICST conference on communications and networking201110321037China
– reference: KumarRMukherjeeASinghVPCommunity sensor network for monitoring road roughness using smartphonesJournal of Computing in Civil Engineering20173111110.1061/(ASCE)CP.1943-5487.0000624
– reference: YagiKExtensional smartphone probe for road bump detection2010Busan17th ITS world congress110
– reference: ZhangZSunCBridgelallRSunMRoad profile reconstruction using connected vehicle responses and wavelet analysisJournal of Terramechanics201880213010.1016/j.jterra.2018.10.004
– reference: ErikssonJGirodLHullBNewtonRMaddenSBalakrishnanHThe pothole patrol: Using a mobile sensor network for road surface monitoring2008BreckenridgeMobiSys’08 - proceedings of the 6th international conference on Mobile systems, applications, and services2939
– reference: Li, Z., Yu, W., & Cui, X. (2018). Online classification of road roughness conditions with vehicle unsprung mass acceleration by sliding time window. Shock and Vibration, 2018. https://doi.org/10.1155/2018/5131434.
– reference: AliJDyoVCoverage and mobile sensor placement for vehicles on predetermined routes: A greedy heuristic approachICETE 2017 - proceedings of the 14th international joint conference on e-business and telecommunications2017838810.5220/0006469800830088
– reference: RathJJMemberSVeluvoluKCMemberSDefoortMSimultaneous estimation of road profile and tire road friction for automotive vehicleIEEE Transactions on Vehicular Technology2015644461447110.1109/TVT.2014.2373434
– reference: Ghadge, M., Pandey, D., & Kalbande, D. (2016). Machine learning approach for predicting bumps on road. In M. Aradhya & S. K. N (Eds.), Proceedings of the 2015 international conference on applied and theoretical computing and communication technology, iCATccT 2015 (pp. 481–485). Davangere: Institute of Electrical and Electronics Engineers Inc.
– reference: SerajFMeratniaNZhangKHavingaPJMTurkesOA smartphone based method to enhance road pavement anomaly detection by analyzing the driver behavior2015OsakaIn proceedings of the UbiComp ‘1511691177
– reference: LaubisKSimkoVSchullerARoad condition measurement and assessment: A crowd based sensing approach2016DublinThirty Seventh International Conference on Information Systems110
– reference: BurnhamJFScopus database: A reviewBiomedical Digital Libraries200631810.1186/1742-5581-3-1
– reference: WangSKhushabaRKodagodaSTowards speed-independent road-type classification2012Guangzhou2012 12th International Conference on Control, Automation, Robotics and Vision, ICARCV 2012614619
– reference: LiXGoldbergDWToward a mobile crowdsensing system for road surface assessmentComputers, Environment and Urban Systems201869516210.1016/j.compenvurbsys.2017.12.005
– reference: LimkarSRajmaneOBhosaleARaneVSmall effort to build Pune as a smart city: Smart real-time road condition detection and efficient management systemSmart Innovation, Systems and Technologies20187860962110.1007/978-981-10-5547-8_63
– reference: Dawkins, J., Bevly, D., Powell, B., & Bishop, R. (2011). Investigation of pavement maintenance applications of Intellidrive. University of Virginia Technical Report: Center for Transportation Studies, University of Virginia.
– reference: AbuliziNKawamuraATomiyamaKShunFMeasuring and evaluating of road roughness conditions with a compact road profiler and ArcGISJournal of Traffic and Transportation Engineering (English Edition)2016339841110.1016/j.jtte.2016.09.004
– reference: DasTPrashanthMVenkataNPRamachandranRAsankhayaSPRISM : Platform for remote sensing using smartphones2010San FranciscoProceedings of the 8th international conference on Mobile systems, applications, and services - MobiSys ‘10
– reference: Vittorio, A., Rosolino, V., Teresa, I., Vittoria, C. M., & Vincenzo, P. G. (2014). Automated sensing system for monitoring of road surface quality by mobile devices. Procedia-Social and Behavioral Sciences. (pp. 111, 242-251).
– reference: Alessandroni, G., Carini, A., Lattanzi, E., Freschi, V., & Bogliolo, A. (2017). A study on the influence of speed on road roughness sensing: The SmartRoadSense case. Sensors (Switzerland), 17. https://doi.org/10.3390/s17020305.
– reference: Nguyen, T., Lechner, B., Wong, Y. D., & Tan, J. Y. (2019). Bus ride index - a refined approach to evaluate road surface irregularities. Road Mater Pavement Des. https://doi.org/10.1080/14680629.2019.1625806.
– reference: WardCCIagnemmaKSpeed-independent vibration-based terrain classification for passenger vehiclesVehicle System Dynamics2009471095111310.1080/00423110802450193
– reference: Mukherjee, A., & Majhi, S. (2016). Characterisation of road bumps using smartphones. European Transport Research Review. https://doi.org/10.1007/s12544-016-0200-1.
– reference: QinYLangariRWangZXiangCDongMRoad profile estimation for semi-active suspension using an adaptive Kalman filter and an adaptive super-twisting observerProceedings of the American control conference201797397810.23919/ACC.2017.7963079
– reference: WangSKodagodaSShiLWangHRoad-terrain classification for land vehicles: Employing an acceleration-based approachIEEE Vehicular Technology Magazine201712344110.1109/MVT.2017.2656949
– reference: BadurowiczMCieplakTMontusiewiczJThe cloud computing stream analysis system for road artefacts detectionCommunications in Computer and Information Science201660836036910.1007/978-3-319-39207-3_31
– reference: ChenKLuMTanGWuJCRSM: Crowdsourcing based road surface monitoringProceedings - 2013 IEEE international conference on high performance computing and communications, HPCC 2013 and 2013 IEEE international conference on embedded and ubiquitous computing, EUC 20132014Zhangjiajie, HunanIEEE Computer Society21512158
– reference: Ben HassenDMiladiMAbbesMSBaslamisliSCChaariFHaddarMRoad profile estimation using the dynamic responses of the full vehicle modelApplied Acoustics2019147879910.1016/j.apacoust.2017.12.007
– reference: BridgelallRConnected vehicle approach for pavement roughness evaluationJournal of Infrastructure Systems20142010.1061/(ASCE)IS.1943-555X.0000167
– reference: MehtaJMathurVAgarwalDSharmaAPrakashaKPothole detection and analysis system (PODAS) for real time data using sensor networksJournal of Engineering and Applied Sciences2017123090309710.3923/jeasci.2017.3090.3097
– reference: DoumiatiMVictorinoAChararaALechnerDEstimation of road profile for vehicle dynamics motion: Experimental validation2011San FranciscoProceedings of the American control conference52375242
– reference: QinYGuanJGuLThe research of road profile estimation based on acceleration measurementApplied Mechanics and Materials2012226–2281614161710.4028/www.scientific.net/AMM.226-228.1614
– reference: WangZDongMQinYDuYZhaoFGuLSuspension system state estimation using adaptive Kalman filtering based on road classificationVehicle System Dynamics20175537139810.1080/00423114.2016.1267374
– reference: Noack, M., Botha, T., Hamersma, H. A., Ivanov, V., Reger, J., & Els, S. (2018). Road profile estimation with modulation function based sensor fusion and series expansion for input reconstruction. In Proceedings - 2018 IEEE 15th international workshop on advanced motion control, AMC 2018 (pp. 547–552). Tokyo: Institute of Electrical and Electronics Engineers Inc.
– reference: ImineHDelanneYM’SirdiNKRoad profile input estimation in vehicle dynamics simulationVehicle System Dynamics20064428530310.1080/00423110500333840
– reference: BridgelallRRahmanMTTolliverDDDaleidenJFUse of connected vehicles to characterize ride qualityTransportation Research Record: Journal of the Transportation Research Board2016258911912610.3141/2589-13
– reference: RabhiAM’sirdiNKFridmanLDelanneYSecond order sliding mode observer for estimation of road profileProceedings of the 2006 international workshop on variable structure systems2006AlgheroVSS’0616116510.1109/VSS.2006.1644511
– reference: JacsóPGoogle scholar: The pros and the consOnline Information Review20052920821410.1108/14684520510598066
– reference: Celaya-Padilla, J. M., Galván-Tejada, C. E., López-Monteagudo, F. E., et al. (2018). Speed bump detection using accelerometric features: A genetic algorithm approach. Sensors (Switzerland), 18. https://doi.org/10.3390/s18020443.
– reference: Wang, H.-W., Chen, C.-H., Cheng, D.-Y., Lin, C.-H., & Lo, C.-C. (2015). A real-time pothole detection approach for intelligent transportation system. Mathematical Problems in Engineering, 2015. https://doi.org/10.1155/2015/869627.
– reference: NomuraTShiraishiYA method for estimating road surface conditions with a smartphoneInternational Journal of Informatics Society201572936
– reference: HarrisNKGonzalezAOBrienEJMcGetrickPCharacterisation of pavement profile heights using accelerometer readings and a combinatorial optimisation techniqueJournal of Sound and Vibration201032949750810.1016/j.jsv.2009.09.035
– reference: AlessandroniGKlopfensteinLCDelprioriSSmartRoadSense: Collaborative road surface condition monitoringUBICOMM 2014 : The Eighth International Conference on Mobile Ubiquitous Computing, systems, services and technologies SmartRoadSense2014210215
– reference: MednisAStrazdinsGZviedrisRKanonirsGSelavoLReal time pothole detection using android smartphones with accelerometers2011 International conference on distributed computing in sensor systems and workshops2011BarcelonaDCOSS’11
– reference: QinYXiangCWangZDongMRoad excitation classification for semi-active suspension system based on system responseJVC/Journal of Vibration and Control2018242732274810.1177/1077546317693432
– reference: HaddarMBaslamisliSCChaariRChaariFHaddarMRoad profile identification with an algebraic estimatorProceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science20192331139115510.1177/0954406218767470
– reference: Arat, M. A., Taheri, S., & Holweg, E. (2015). Road profile estimation for active suspension applications. SAE International Journal of Passenger Cars - Mechanical Systems, 8. https://doi.org/10.4271/2015-01-0651.
– reference: RenJLiuDPADS: A reliable pothole detection system using machine learningLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10135 LNCS201732733810.1007/978-3-319-52015-5_33
– reference: Fox, A., Kumar, B. V. K. V., Chen, J., & Bai, F. (2015). Crowdsourcing undersampled vehicular sensor data for pothole detection. In 2015 12th annual IEEE international conference on sensing, communication, and networking, SECON 2015 (pp. 515–523). Seattle: Institute of Electrical and Electronics Engineers Inc.
– reference: YuWZhangXGuoKKarimiHRMaFZhengFAdaptive real-time estimation on road disturbances properties considering load variation via vehicle vertical dynamicsMathematical Problems in Engineering201320131910.1155/2013/283528
– reference: YiC-WChuangY-TNianC-SToward crowdsourcing-based road pavement monitoring by mobile sensing technologiesIEEE Transactions on Intelligent Transportation Systems2015161905191710.1109/TITS.2014.2378511
– reference: LiZKalabicUVKolmanovskyIVAtkinsEMLuJFilevDPSimultaneous road profile estimation and anomaly detection with an input observer and a jump diffusion process estimatorProceedings of the American Control Conference, 2016-July20161693169810.1109/ACC.2016.7525160
– reference: BridgelallRTolliverDAccuracy enhancement of roadway anomaly localization using connected vehiclesInternational Journal of Pavement Engineering201819758110.1080/10298436.2016.1162306
– reference: Harris, D. K., Alipour, M., Acton, S. T., Messeri, L. R., Vaccari, A., & Barnes, L. E. (2017). The citizen engineer: Urban infrastructure monitoring via crowd-sourced data analytics. In S. J.G. (Ed.), Structures congress 2017: Business, professional practice, education, research, and disaster management - selected papers from the structures congress 2017 (pp. 495–510). Denver: American Society of Civil Engineers (ASCE).
– reference: WangSKodagodaSWangZDissanayakeGMultiple sensor based terrain classification2011MelbourneProceedings of the 2011 Australasian conference on robotics and automation
– reference: QinYWangZXiangCHashemiEKhajepourAHuangYSpeed independent road classification strategy based on vehicle response: Theory and experimental validationMechanical Systems and Signal Processing201911765366610.1016/j.ymssp.2018.07.035
– reference: RathJJVeluvoluKCDefoortMEstimation of road profile for suspension systems using adaptive super-twisting observer2014 European control conference, ECC20141675168010.1109/ECC.2014.6862248
– reference: TaiYChanCHsuJYAutomatic road anomaly detection using smart mobile device2010 15th conference on artificial intelligence and applications (TAAI)201018
– reference: Daily Mail OnlinePotholes causing more than £1m damage to cars every day2010https://www.dailymail.co.uk/news/article-1168103/Potholes-causing-1m-damage-cars-EVERY-day.html. Accessed 26 Mar 2019
– reference: Van WeeBBanisterDHow to write a literature review paper?Transport Reviews20163627828810.1080/01441647.2015.1065456
– reference: SilvaNSoaresJShahVSantosMYRodriguesHAnomaly detection in roads with a data mining approachProcedia Computer Science201712141542210.1016/j.procs.2017.11.056
– reference: ZhangZSunCBridgelallRSunMApplication of a machine learning method to evaluate road roughness from connected vehiclesJournal of Transportation Engineering Part B: Pavements201814411310.1061/JPEODX.0000074
– volume: 2015
  start-page: 14
  year: 2015
  ident: 380_CR46
  publication-title: Shock and Vibration
  doi: 10.1155/2015/636739
– volume: 31
  start-page: 93
  year: 2014
  ident: 380_CR56
  publication-title: Multibody System Dynamics
  doi: 10.1007/s11044-013-9380-9
– start-page: 1270
  volume-title: 39th international convention on information and communication technology, electronics and microelectronics, MIPRO 2016 - proceedings
  year: 2016
  ident: 380_CR68
– start-page: 161
  volume-title: Proceedings of the 2006 international workshop on variable structure systems
  year: 2006
  ident: 380_CR23
  doi: 10.1109/VSS.2006.1644511
– volume: 20
  year: 2014
  ident: 380_CR94
  publication-title: Journal of Infrastructure Systems
  doi: 10.1061/(ASCE)IS.1943-555X.0000167
– volume: 23
  start-page: 2293
  year: 2015
  ident: 380_CR28
  publication-title: IEEE Transactions on Control Systems Technology
  doi: 10.1109/TCST.2015.2413937
– volume: 78
  start-page: 609
  year: 2018
  ident: 380_CR67
  publication-title: Smart Innovation, Systems and Technologies
  doi: 10.1007/978-981-10-5547-8_63
– volume: 53
  start-page: 1034
  year: 2015
  ident: 380_CR15
  publication-title: Vehicle System Dynamics
  doi: 10.1080/00423114.2015.1037313
– volume: 288
  start-page: 341
  year: 2017
  ident: 380_CR131
  publication-title: Lecture Notes in Business Information Processing
  doi: 10.1007/978-3-319-59336-4_24
– start-page: 327
  volume-title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10135 LNCS
  year: 2017
  ident: 380_CR111
  doi: 10.1007/978-3-319-52015-5_33
– ident: 380_CR26
  doi: 10.4271/2015-01-0651
– start-page: 1675
  volume-title: 2014 European control conference, ECC
  year: 2014
  ident: 380_CR24
  doi: 10.1109/ECC.2014.6862248
– start-page: 1
  volume-title: 2010 15th conference on artificial intelligence and applications (TAAI)
  year: 2010
  ident: 380_CR114
– volume: 47
  start-page: 97
  year: 2010
  ident: 380_CR33
  publication-title: Journal of Terramechanics
  doi: 10.1016/j.jterra.2009.08.007
– volume-title: Investigation of the implementation of a probe-vehicle based pavement roughness estimation system
  year: 2011
  ident: 380_CR9
– start-page: 8445
  volume-title: Proceedings of the 19th world congress the International Federation of Automatic Control
  year: 2014
  ident: 380_CR27
– volume: 53
  start-page: 1
  year: 2014
  ident: 380_CR35
  publication-title: Journal of Terramechanics
  doi: 10.1016/j.jterra.2014.03.002
– ident: 380_CR122
– volume: 7951 LNCS
  start-page: 291
  year: 2013
  ident: 380_CR120
  publication-title: Lecture Notes in Computer Science
  doi: 10.1007/978-3-642-39065-4-36
– ident: 380_CR19
  doi: 10.3390/s18103344
– volume: 233
  start-page: 1139
  year: 2019
  ident: 380_CR20
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
  doi: 10.1177/0954406218767470
– start-page: 8
  volume-title: Proceedings of the international conference on sensing technology, ICST
  year: 2012
  ident: 380_CR71
  doi: 10.1109/ICSensT.2012.6461796
– start-page: 1032
  volume-title: International ICST conference on communications and networking
  year: 2011
  ident: 380_CR82
– ident: 380_CR79
  doi: 10.1016/j.sbspro.2014.01.057
– start-page: 5237
  volume-title: Estimation of road profile for vehicle dynamics motion: Experimental validation
  year: 2011
  ident: 380_CR4
– volume: 25
  start-page: 533
  year: 2018
  ident: 380_CR76
  publication-title: Metrology and Measurement Systems
  doi: 10.24425/123905
– ident: 380_CR107
– volume: 64
  start-page: 4461
  year: 2015
  ident: 380_CR25
  publication-title: IEEE Transactions on Vehicular Technology
  doi: 10.1109/TVT.2014.2373434
– volume: 61
  start-page: 270
  year: 2017
  ident: 380_CR29
  publication-title: Control Engineering Practice, Elsevier
  doi: 10.1016/j.conengprac.2015.12.020
– volume: 40
  start-page: 71
  year: 2017
  ident: 380_CR80
  publication-title: Pervasive and Mobile Computing
  doi: 10.1016/j.pmcj.2017.06.002
– volume: 16
  start-page: 1905
  year: 2015
  ident: 380_CR81
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2014.2378511
– start-page: 1
  volume-title: Road condition measurement and assessment: A crowd based sensing approach
  year: 2016
  ident: 380_CR133
– volume: 80
  start-page: 21
  year: 2018
  ident: 380_CR8
  publication-title: Journal of Terramechanics
  doi: 10.1016/j.jterra.2018.10.004
– ident: 380_CR75
  doi: 10.1177/0361198118758693
– volume-title: Standard test method for measuring road roughness by static level method
  year: 2017
  ident: 380_CR3
– ident: 380_CR132
  doi: 10.3390/s18020443
– volume: 147
  start-page: 87
  year: 2019
  ident: 380_CR48
  publication-title: Applied Acoustics
  doi: 10.1016/j.apacoust.2017.12.007
– ident: 380_CR44
– ident: 380_CR89
  doi: 10.1061/JPEODX.0000093
– volume: 329
  start-page: 497
  year: 2010
  ident: 380_CR55
  publication-title: Journal of Sound and Vibration
  doi: 10.1016/j.jsv.2009.09.035
– ident: 380_CR127
– volume: 19
  start-page: 3334
  year: 2018
  ident: 380_CR130
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2017.2773084
– volume: 17
  start-page: 5192
  year: 2017
  ident: 380_CR72
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2017.2719865
– volume: 31
  start-page: 1
  year: 2017
  ident: 380_CR128
  publication-title: Journal of Computing in Civil Engineering
  doi: 10.1061/(ASCE)CP
– start-page: 64
  volume-title: Distributed road surface condition monitoring using mobile phones
  year: 2011
  ident: 380_CR119
– volume-title: Multiple sensor based terrain classification
  year: 2011
  ident: 380_CR38
– ident: 380_CR126
  doi: 10.3390/s18071984
– volume: 16
  start-page: 1408
  year: 2017
  ident: 380_CR108
  publication-title: IEEE Transactions on Mobile Computing
  doi: 10.1109/TMC.2016.2597839
– volume: 69
  start-page: 51
  year: 2018
  ident: 380_CR60
  publication-title: Computers, Environment and Urban Systems
  doi: 10.1016/j.compenvurbsys.2017.12.005
– volume: 16
  start-page: 3417
  year: 2017
  ident: 380_CR123
  publication-title: IEEE Transactions on Mobile Computing
  doi: 10.1109/TMC.2017.2690995
– volume: 117
  start-page: 738
  year: 2019
  ident: 380_CR49
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2018.07.043
– volume: 31
  start-page: 1
  year: 2017
  ident: 380_CR7
  publication-title: Journal of Computing in Civil Engineering
  doi: 10.1061/(ASCE)CP.1943-5487.0000624
– volume: 12
  start-page: 795
  year: 2011
  ident: 380_CR93
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2011.2132799
– volume: 21
  year: 2015
  ident: 380_CR95
  publication-title: Journal of Infrastructure Systems
  doi: 10.1061/(ASCE)IS.1943-555X.0000225
– volume-title: Mathematical Problems in Engineering, 2014
  year: 2014
  ident: 380_CR83
  doi: 10.1155/2014/928980
– ident: 380_CR105
– volume-title: 2011 International conference on distributed computing in sensor systems and workshops
  year: 2011
  ident: 380_CR62
– ident: 380_CR69
  doi: 10.1007/s12544-016-0200-1
– ident: 380_CR92
  doi: 10.3390/s17020305
– volume: 9
  start-page: 133
  year: 2017
  ident: 380_CR74
  publication-title: Journal of Telecommunication, Electronic and Computer Engineering
– ident: 380_CR57
– volume: 121
  start-page: 415
  year: 2017
  ident: 380_CR125
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2017.11.056
– volume: 12
  start-page: 3090
  year: 2017
  ident: 380_CR70
  publication-title: Journal of Engineering and Applied Sciences
  doi: 10.3923/jeasci.2017.3090.3097
– start-page: 1169
  volume-title: A smartphone based method to enhance road pavement anomaly detection by analyzing the driver behavior
  year: 2015
  ident: 380_CR118
– volume: 17
  start-page: 4231
  year: 2017
  ident: 380_CR129
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2017.2702739
– start-page: 973
  volume-title: Proceedings of the American control conference
  year: 2017
  ident: 380_CR22
  doi: 10.23919/ACC.2017.7963079
– volume-title: Potholes causing more than £1m damage to cars every day
  year: 2010
  ident: 380_CR1
– volume-title: Workshop on Networked System for Developing Regions. NSDR’07
  year: 2007
  ident: 380_CR64
– volume: 7
  start-page: 29
  year: 2015
  ident: 380_CR66
  publication-title: International Journal of Informatics Society
– start-page: 210
  volume-title: UBICOMM 2014 : The Eighth International Conference on Mobile Ubiquitous Computing, systems, services and technologies SmartRoadSense
  year: 2014
  ident: 380_CR91
– volume: 2589
  start-page: 119
  year: 2016
  ident: 380_CR98
  publication-title: Transportation Research Record: Journal of the Transportation Research Board
  doi: 10.3141/2589-13
– start-page: 83
  volume-title: ICETE 2017 - proceedings of the 14th international joint conference on e-business and telecommunications
  year: 2017
  ident: 380_CR77
  doi: 10.5220/0006469800830088
– volume: 18
  start-page: 2802
  year: 2017
  ident: 380_CR11
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2017.2680468
– start-page: 1693
  volume-title: Proceedings of the American Control Conference, 2016-July
  year: 2016
  ident: 380_CR32
  doi: 10.1109/ACC.2016.7525160
– ident: 380_CR37
  doi: 10.1155/2018/5131434
– ident: 380_CR112
– volume: 19
  start-page: 75
  year: 2018
  ident: 380_CR97
  publication-title: International Journal of Pavement Engineering
  doi: 10.1080/10298436.2016.1162306
– volume: 24
  start-page: 743
  year: 2010
  ident: 380_CR36
  publication-title: Journal of Mechanical Science and Technology
  doi: 10.1007/s12206-010-0113-1
– volume: 29
  start-page: 208
  year: 2005
  ident: 380_CR14
  publication-title: Online Information Review
  doi: 10.1108/14684520510598066
– start-page: 1
  volume-title: Extensional smartphone probe for road bump detection
  year: 2010
  ident: 380_CR65
– start-page: 1573
  volume-title: Proceedings of the international conference on noise and vibration engineering (ISMA 2012)
  year: 2012
  ident: 380_CR59
– volume: 56
  start-page: 1289
  year: 2018
  ident: 380_CR53
  publication-title: Vehicle System Dynamics
  doi: 10.1080/00423114.2017.1413197
– start-page: 5237
  volume-title: Proceedings of the 2011 American control conference
  year: 2011
  ident: 380_CR16
  doi: 10.1109/ACC.2011.5991595
– start-page: 614
  volume-title: Towards speed-independent road-type classification
  year: 2012
  ident: 380_CR40
– volume: 3
  start-page: 1
  year: 2006
  ident: 380_CR13
  publication-title: Biomedical Digital Libraries
  doi: 10.1186/1742-5581-3-1
– volume: 117
  start-page: 653
  year: 2019
  ident: 380_CR47
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2018.07.035
– volume: 12
  start-page: 34
  year: 2017
  ident: 380_CR39
  publication-title: IEEE Vehicular Technology Magazine
  doi: 10.1109/MVT.2017.2656949
– volume: 46
  start-page: 483
  year: 2008
  ident: 380_CR50
  publication-title: Vehicle System Dynamics
  doi: 10.1080/00423110701485050
– volume: 55
  start-page: 371
  year: 2017
  ident: 380_CR21
  publication-title: Vehicle System Dynamics
  doi: 10.1080/00423114.2016.1267374
– volume-title: Road profile estimation of city roads using DTPS
  year: 2013
  ident: 380_CR54
  doi: 10.1117/12.2012026
– volume: 7
  start-page: 595
  year: 2014
  ident: 380_CR10
  publication-title: International Journal of Electronic and Electrical Engineering
– ident: 380_CR61
– volume: 226–228
  start-page: 1614
  year: 2012
  ident: 380_CR52
  publication-title: Applied Mechanics and Materials
  doi: 10.4028/www.scientific.net/AMM.226-228.1614
– volume: 8436
  start-page: 1
  year: 2017
  ident: 380_CR101
  publication-title: International Journal of Pavement Engineering
  doi: 10.1080/10298436.2017.1316645
– start-page: 323
  volume-title: Proceedings of the 6th international conference on embedded networked sensor systems
  year: 2008
  ident: 380_CR103
– volume: 2014
  start-page: 1
  year: 2014
  ident: 380_CR87
  publication-title: EURASIP Journal on Wireless Communications and Networking
  doi: 10.1186/1687-1499-2014-114
– volume: 33
  start-page: 1907
  year: 2017
  ident: 380_CR42
  publication-title: Journal of Intelligent Fuzzy Systems
  doi: 10.3233/JIFS-161860
– start-page: 1
  volume-title: 1st international workshop on machine learning for urban sensor data, SenseML 2014
  year: 2014
  ident: 380_CR117
– volume: 22
  start-page: 3120
  year: 2018
  ident: 380_CR85
  publication-title: KSCE Journal of Civil Engineering
  doi: 10.1007/s12205-017-1008-9
– volume: 47
  start-page: 1095
  year: 2009
  ident: 380_CR41
  publication-title: Vehicle System Dynamics
  doi: 10.1080/00423110802450193
– ident: 380_CR136
  doi: 10.1080/14680629.2019.1625806
– start-page: 29
  volume-title: The pothole patrol: Using a mobile sensor network for road surface monitoring
  year: 2008
  ident: 380_CR102
– volume: 3
  start-page: 398
  year: 2016
  ident: 380_CR86
  publication-title: Journal of Traffic and Transportation Engineering (English Edition)
  doi: 10.1016/j.jtte.2016.09.004
– volume: 44
  start-page: 285
  year: 2006
  ident: 380_CR5
  publication-title: Vehicle System Dynamics
  doi: 10.1080/00423110500333840
– ident: 380_CR73
  doi: 10.1155/2015/869627
– volume: 24
  start-page: 2732
  year: 2018
  ident: 380_CR43
  publication-title: JVC/Journal of Vibration and Control
  doi: 10.1177/1077546317693432
– ident: 380_CR104
– start-page: 336
  volume-title: 2007 IEEE region 5 technical conference, TPS
  year: 2007
  ident: 380_CR6
  doi: 10.1109/TPSD.2007.4380331
– volume-title: 2012 fourth international conference on communication systems and networks (COMSNETS 2012)
  year: 2012
  ident: 380_CR121
– volume: 21
  year: 2014
  ident: 380_CR99
  publication-title: Journal of Infrastructure Systems
  doi: 10.1061/(asce)is.1943-555x.0000218
– volume: 8436
  start-page: 1
  year: 2017
  ident: 380_CR100
  publication-title: International Journal of Pavement Engineering
  doi: 10.1080/10298436.2017.1366768
– ident: 380_CR18
  doi: 10.1080/00423114.2016.1145243
– volume: 2013
  start-page: 1
  year: 2013
  ident: 380_CR17
  publication-title: Mathematical Problems in Engineering
  doi: 10.1155/2013/283528
– start-page: 2370
  volume-title: Online road profile estimation in automotive vehicles
  year: 2014
  ident: 380_CR31
– volume: 36
  start-page: 278
  year: 2016
  ident: 380_CR12
  publication-title: Transport Reviews
  doi: 10.1080/01441647.2015.1065456
– volume-title: RoadMonitor: An intelligent road surface condition monitoring system
  year: 2014
  ident: 380_CR116
– volume: 144
  start-page: 1
  year: 2018
  ident: 380_CR134
  publication-title: Journal of Transportation Engineering Part B: Pavements
  doi: 10.1061/JPEODX.0000074
– ident: 380_CR45
– volume: 22
  start-page: 765
  year: 2016
  ident: 380_CR110
  publication-title: Wireless Networks
  doi: 10.1007/s11276-015-0996-y
– volume: 9
  start-page: 91
  year: 2019
  ident: 380_CR124
  publication-title: Journal of Civil Structural Health Monitoring
  doi: 10.1007/s13349-019-00323-0
– ident: 380_CR2
  doi: 10.1016/j.ymssp.2018.07.015
– start-page: 162
  volume-title: 2006 IEEE 12th digital signal processing workshop and 4th IEEE signal processing education workshop
  year: 2006
  ident: 380_CR90
  doi: 10.1109/DSPWS.2006.265446
– ident: 380_CR84
– volume-title: International Organization for Standardization
  year: 2016
  ident: 380_CR51
– volume-title: PRISM : Platform for remote sensing using smartphones
  year: 2010
  ident: 380_CR106
– ident: 380_CR96
  doi: 10.1088/0957-0233/27/2/025012
– start-page: 1
  volume-title: Proceedings - 2018 3rd International Conference On Internet of Things: Smart Innovation and Usages, IoT-SIU 2018
  year: 2018
  ident: 380_CR115
  doi: 10.1109/IoT-SIU.2018.8519861
– volume: 50
  start-page: 1923
  year: 2012
  ident: 380_CR30
  publication-title: Vehicle System Dynamics
  doi: 10.1080/00423114.2012.707801
– volume: 49
  start-page: 103
  year: 2012
  ident: 380_CR58
  publication-title: Journal of Terramechanics
  doi: 10.1016/j.jterra.2011.12.001
– start-page: 39
  volume-title: CEUR workshop proceedings
  year: 2013
  ident: 380_CR113
– ident: 380_CR78
  doi: 10.1016/j.sbspro.2012.09.828
– start-page: 2151
  volume-title: Proceedings - 2013 IEEE international conference on high performance computing and communications, HPCC 2013 and 2013 IEEE international conference on embedded and ubiquitous computing, EUC 2013
  year: 2014
  ident: 380_CR109
– volume: 53
  start-page: 59
  year: 2014
  ident: 380_CR34
  publication-title: Journal of Terramechanics
  doi: 10.1016/j.jterra.2014.03.006
– volume: 10
  start-page: 1551
  year: 2013
  ident: 380_CR88
  publication-title: Journal of the Eastern Asia Society for Transportation Studies
– volume: 608
  start-page: 360
  year: 2016
  ident: 380_CR63
  publication-title: Communications in Computer and Information Science
  doi: 10.1007/978-3-319-39207-3_31
– start-page: 37
  volume-title: Distributed, mobile, social system for road surface defects detection
  year: 2011
  ident: 380_CR135
SSID ssj0000315833
ssib044736607
Score 2.449651
SecondaryResourceType review_article
Snippet Purpose With the development of smart technologies, Internet of Things and inexpensive onboard sensors, many response-based methods to evaluate road surface...
PurposeWith the development of smart technologies, Internet of Things and inexpensive onboard sensors, many response-based methods to evaluate road surface...
Abstract Purpose With the development of smart technologies, Internet of Things and inexpensive onboard sensors, many response-based methods to evaluate road...
SourceID doaj
unpaywall
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Accelerometer
Adaptive control
Algorithms
Anomalies
Automotive Engineering
Civil Engineering
Classification
Data base management systems
Data management
Data processing
Dependence
Engineering
Estimation
Machine learning
Measurement methods
Passenger comfort
Pavement management
Pavements
Pothole detection
Regional/Spatial Science
Review
Road conditions
Road maintenance
Road profile
Road roughness
Roads & highways
Roughness
Search engines
State-of-the-art reviews
Transportation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na1QxEA_SS_Ug9QvXVsnBkyU038nzpmIpgh7ESm8hHxMQlt2yu0X8753kvV23l_biLe-9PEhmJpn5JfNByFvgGYyrleViFdPSVRZjUkw6EFqI5Epp8c5fv9mLS_3lylztlfpqPmFjeuCRcGcgk-bVDEll3EhtirJYKWtMolpfBbTdl_thD0yhJGntlLUTsOl7shItvKihL2_b2Zxw0xUnPp-tRUvUhah6YFx5hFO3lFTP5X_LAN3dmT4ihzeL6_jnd5zP99TS-RF5PNmT9MM4jyfkASyeksNtuPH6Gfn5ffSCBdYUVqFjyeg13Syx2c8H6WoZC8VWjRnor9Wql6dvRe3e00h7xBFbVoaWYnOjo2Owy3Nyef75x6cLNhVTYFkbtWHRywIGisGpwqAh8aLAVzSPCvcl-1Iqtqo0ALwizEGrW2URs9HRJZ68ekEOFssFvCQ0eRhyLiqjeYO6TeMaViZWUBIqVy7PCN9SL-Qp03greDEPHXF4G0aCByR4aAQPdkbe7X65HtNs3NX5Y2PJrmPLkN1foNyESW7CfXIzIydbhoZp2a4D4jHjWnSxnpHTLZP_fb5jRKc7Obh__K_-x_iPyUPZBLZ71pyQg83qBl6jfbRJb_pS-As9OgcX
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6V7aFwQDzFQkE-cKKymvgVLxJCFLWqkFihiqLeLD_GFdJqs2S3Qvx7bCfZ0stycxJHceyx5xt7Zj6At1h5lE2M1AfFqWBNpNY6TlmDtahr14SQ452_ztX5pfhyJa_2YD7GwmS3ynFNLAt1aH3eIz9OUFk2OfBTfFz9opk1Kp-ujhQadqBWCB9KirF7sM9yZqwJ7J-czr9djBImRMOVGgyeslbzOocdZatMq7xnVzfD0We6Pl7XOYFXsrZntOI6mVl3lFfJ8X8HmG7PUh_Awc1yZf_8tovFP-rq7BE8HHAm-dQLxmPYw-UTOBjDkNdP4cdF7x2LNCuyQHoq6TXZtKlY9g1J19pAUilaj-Rn1xXa-kx2955YUiKRaBtpQpDZvY70QTDP4PLs9PvnczqQLFAvJN9Qq1lAiUGmX8WZQFcFjjom2BQqHbwOIaZSZBKxisn8SWic-9p6KWzjKqf5c5gs2yW-AOI0zrwP3CfYk3SeSHObSxuRM4wVb_wUqrH3jB8ykGcijIUplohWpu9wkzrc5A43agrvtq-s-vQbuyqf5CHZVsyZs8uNtrs2w0Q0yJyoopw57pNiVs6yoBiL1tVR6VjjFA7HATXDdF6bW-GbwtE4yLePd7ToaCsH_2__y92ffgX3WRbF4ktzCJNNd4OvEyLauDeDmP8FIuMELA
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgeyg98EZsW5APnKi8TezY8XIriKpCokKIRXCy_BhXVVebVTarCn59x3lsKUJFiNsocSI_xp7vs2fGhLyCzIMsY2Q-KMEKXkZmrROMl5AXee7KEFK888dTdTIrPnyTgzdhioWBpq4nw5FkukCqXa2R9PuLw2WI3STX6nCVp9xaSISnLBMaGdBdsqUkwvER2Zqdfjr6noiWVoohwys7OW3J5WV_svnHf9ywTW0K_xu4c3NUukO214ul_XFp5_NfrNHxA-KGdnROKBeTdeMm_udvKR7_q6EPyf0eq9KjTrkekTuweEy2h1Dm1RPy9XPnYQssGcNAu-uoV7SpUGz3Hmld2UBRitYDPa9rOEt-rwj931BL22gmVkWGKDS56NEukOYpmR2___LuhPUXNTBfSNEwq3kACUFiVWFagMuCAB0ReoVMB69DiChFLgGyiBQKEb3wufWysKXLnBbPyGhRLeA5oU7D1PsgPEIntJsFrg9C2giCQ8xE6cckG4bI-D6LebpMY25aNqOV6TrMYIeZ1GFGjcnrzSfLLoXHbYXfpnHfFEzZt9sHVX1m-slsgLsii3LqhEfjrpzlQXEercuj0jGHMdkftMb0S8LKINeTZYpcLsbkYBj469e31Ohgo2x_r__uP5XeI_d40qzWPWefjJp6DS8QZDXuZT-NrgD2eR1f
  priority: 102
  providerName: Unpaywall
Title Response-based methods to measure road surface irregularity: a state-of-the-art review
URI https://link.springer.com/article/10.1186/s12544-019-0380-6
https://www.proquest.com/docview/2305711424
https://etrr.springeropen.com/track/pdf/10.1186/s12544-019-0380-6
https://doaj.org/article/e2b40f59b3c8476ba2d622fab1f68f1e
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1866-8887
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000315833
  issn: 1866-8887
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1866-8887
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000315833
  issn: 1866-8887
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Openly Available Collection - DOAJ
  customDbUrl:
  eissn: 1866-8887
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000315833
  issn: 1866-8887
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1866-8887
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000315833
  issn: 1866-8887
  databaseCode: ABDBF
  dateStart: 20160601
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1866-8887
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044736607
  issn: 1867-0717
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1866-8887
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000315833
  issn: 1866-8887
  databaseCode: 8FG
  dateStart: 20081101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1866-8887
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000315833
  issn: 1866-8887
  databaseCode: AAJSJ
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1866-8887
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000315833
  issn: 1866-8887
  databaseCode: C6C
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Open Access Hybrid - NESLI2 2011-2012
  customDbUrl:
  eissn: 1866-8887
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000315833
  issn: 1866-8887
  databaseCode: 40G
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://link.springer.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1866-8887
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000315833
  issn: 1866-8887
  databaseCode: U2A
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 1866-8887
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000315833
  issn: 1866-8887
  databaseCode: C24
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1daxQxMNjeQ-2DaFW8Wo88-GQJ7uZrc761R88ieJTiSX0K-RThuC27V6T_3kl299qCVHwZwm42ZGcymZlkPhB6HwoXRBUjcV4ywmkViTGWEVqFkpelrbxP8c5fF_J8yb9cias-jrsdvN2HK8m8U2e2VvJjW6ZsWmD6TknBFNg8O2gE6gdN9RpmdynHOa-YlL1Nk7djVqbIomR4KZmO5cqqv93866gP5FNO4_9A99xel-6jvZv1tbn9bVarexJp_hw961VJfNLR_gV6EtYHaG-ING4P0P69ZIMv0ffLzh02kCS5PO5qR7d4U0MzHxTipjYeQysaF_Cvpsl16lN1u0_Y4Bx6ROpIQGVM_nS4i3p5hZbzs2-zc9JXVSCOC7YhRlEfRPACfjxMebCFZ0FF0JN8obxT3kdoRSpCKCLYO6B-M1caJ7ipbGEVe4121_U6vEHYqjB1zjMHeg4IOQ7MzISJgdEQC1a5MSoGXGrXpxxPlS9WOpseSuoO_RrQrxP6tRyjD9tPrrt8G491Pk0E2nZMqbLzg7r5qXvO04FaXkQxtcyBJJbWUC8pjcaWUapYhjE6Gsire_5tNRhmokphxnyMjgeS371-ZEbH21Xx7_kf_tfYb9FTmtZp9qU5Qrub5ia8A41oYydohxefAao5wNHp2eLicpK5IkE5m-STBoBLCnC0XFyc_PgD5B4GVQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKe1g4IJ5ioYAPcKGymtjOY5EqRKHVlrYrVLWoN-PHuEJabZZkq6p_jt_GOHG29LKcenPe1nji-T57HoS8g8RCVnjPrMsFk7zwTGsjGC8glWlqCudCvPPxJB-fyW_n2fka-dPHwgS3yn5ObCdqV9mwRr6NUDkrQuCn_DT_zULVqLC72pfQ0LG0gttpU4zFwI5DuL5CCtfsHHzF8X7P-f7e6Zcxi1UGmJWZWDBdcgcZuAypEowkmMQJKD3iBpeUzpbOeWx5ngEkHvE_wlFhU20zqQuTmFLge--RDSnkCMnfxu7e5PtJr9FSFiLPI8FqbYNIQ5hTYIFlHtYI0yJuteLxdpOGhGHI7kcsESXSulvGsq0pcAsIL_duH5DB5Wyur6_0dPqPedx_RB5GXEs_d4r4mKzB7AkZ9GHPzVPy46TzxgUWDKejXenqhi4qbLbrlLSutKPY8toC_VXXcBF8ZJEmfKSatpFPrPIMEWtw56Nd0M0zcnYn4n5O1mfVDF4QakoYWeuERZiFNlbiXCIy7UFw8Iko7JAkvfSUjRnPQ-GNqWqZT5mrTuAKBa6CwFU-JB-Wj8y7dB-rbt4NQ7K8MWTqbk9U9YWKP74CbmTis5ERFoFAbjR3Oedem9TnpU9hSDb7AVVx-mjUjbIPyVY_yDeXV_Roa6kH_-__y9WffksG49PjI3V0MDl8Re7zoJatH88mWV_Ul_Aa0djCvIkqT8nPu_7L_gJNhEJu
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkSgcEE-xpYAPcKGyNvEj8SIhBJSlpVAhRFFvrh_jCmm12W62qvrX-HWM89jSy3LqzUmcxJoZe76x50HIS8g8qDJG5kMhmORlZNY6wXgJucxzV4aQ4p2_HRS7h_LLkTpaI3_6WJjkVtmvic1CHSqf9siHCJVVmQI_5TB2bhHfd8bvZqcsVZBKJ619OY1WRPbh4hzNt_rt3g7y-hXn408_P-6yrsIA81KJBbOaB1AQFJpJMJLgsiBAR8QMIdPB6xAitiJXAFlE7I9QVPjceiVt6TKnBX73BrlZpizuKUp9_LmXZSnxZtGZVo1WEHkKcEr2ny7S7mBedoeseD2s85QqDO36EcuERoPuippsqglcgcDLU9s7ZONsOrMX53Yy-Ucxju-Rux2ipe9bEbxP1mD6gGz0Ac_1Q_LrR-uHCyypzEDbotU1XVTYbHYo6byygWIrWg_093wOJ8k7Fg2EN9TSJuaJVZEhVk2OfLQNt3lEDq-F2I_J-rSawhNCnYaR90F4BFioXSWuIkLZCIJDzETpByTrqWd8l-s8ldyYmMbm0YVpCW6Q4CYR3BQD8nr5yqxN9LGq84fEkmXHlKO7uVHNT0w35Q1wJ7OoRk54hACFszwUnEfr8ljomMOAbPUMNd3CUZtLMR-Q7Z7Jl49XjGh7KQf_H__m6l-_ILdwbpmvewf7T8ltnqSyceDZIuuL-Rk8Qxi2cM8beafk-Lon2F9luUAI
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgeyg98EZsW5APnKi8TezY8XIriKpCokKIRXCy_BhXVVebVTarCn59x3lsKUJFiNsocSI_xp7vs2fGhLyCzIMsY2Q-KMEKXkZmrROMl5AXee7KEFK888dTdTIrPnyTgzdhioWBpq4nw5FkukCqXa2R9PuLw2WI3STX6nCVp9xaSISnLBMaGdBdsqUkwvER2Zqdfjr6noiWVoohwys7OW3J5WV_svnHf9ywTW0K_xu4c3NUukO214ul_XFp5_NfrNHxA-KGdnROKBeTdeMm_udvKR7_q6EPyf0eq9KjTrkekTuweEy2h1Dm1RPy9XPnYQssGcNAu-uoV7SpUGz3Hmld2UBRitYDPa9rOEt-rwj931BL22gmVkWGKDS56NEukOYpmR2___LuhPUXNTBfSNEwq3kACUFiVWFagMuCAB0ReoVMB69DiChFLgGyiBQKEb3wufWysKXLnBbPyGhRLeA5oU7D1PsgPEIntJsFrg9C2giCQ8xE6cckG4bI-D6LebpMY25aNqOV6TrMYIeZ1GFGjcnrzSfLLoXHbYXfpnHfFEzZt9sHVX1m-slsgLsii3LqhEfjrpzlQXEercuj0jGHMdkftMb0S8LKINeTZYpcLsbkYBj469e31Ohgo2x_r__uP5XeI_d40qzWPWefjJp6DS8QZDXuZT-NrgD2eR1f
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Response-based+methods+to+measure+road+surface+irregularity%3A+a+state-of-the-art+review&rft.jtitle=European+transport+research+review&rft.au=Nguyen%2C+Teron&rft.au=Lechner%2C+Bernhard&rft.au=Wong%2C+Yiik+Diew&rft.date=2019-12-01&rft.pub=Springer+International+Publishing&rft.issn=1867-0717&rft.eissn=1866-8887&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1186%2Fs12544-019-0380-6&rft.externalDocID=10_1186_s12544_019_0380_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-0717&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-0717&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-0717&client=summon