Prediction of geological characteristics from shield operational parameters by integrating grid search and K-fold cross validation into stacking classification algorithm

This study presents a framework for predicting geological characteristics based on integrating a stacking classification algorithm (SCA) with a grid search (GS) and K-fold cross validation (K-CV). The SCA includes two learner layers: a primary learner's layer and meta-classifier layer. The accu...

Full description

Saved in:
Bibliographic Details
Published inJournal of Rock Mechanics and Geotechnical Engineering Vol. 14; no. 4; pp. 1292 - 1303
Main Authors Yan, Tao, Shen, Shui-Long, Zhou, Annan, Chen, Xiangsheng
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2022
MOE Key Laboratory of Intelligent Manufacturing Technology,Department of Civil and Environmental Engineering,College of Engineering,Shantou University,Shantou,Guangdong 515063,China
Discipline of Civil and Infrastructure,School of Engineering,Royal Melbourne Institute of Technology(RMIT),Victoria,3001,Australia%MOE Key Laboratory of Intelligent Manufacturing Technology,Department of Civil and Environmental Engineering,College of Engineering,Shantou University,Shantou,Guangdong 515063,China%Discipline of Civil and Infrastructure,School of Engineering,Royal Melbourne Institute of Technology(RMIT),Victoria,3001,Australia%College of Civil and Transportation Engineering,Shenzhen University,Shenzhen,Guangdong 518060,China
Elsevier
Subjects
Online AccessGet full text
ISSN1674-7755
DOI10.1016/j.jrmge.2022.03.002

Cover

Abstract This study presents a framework for predicting geological characteristics based on integrating a stacking classification algorithm (SCA) with a grid search (GS) and K-fold cross validation (K-CV). The SCA includes two learner layers: a primary learner's layer and meta-classifier layer. The accuracy of the SCA can be improved by using the GS and K-CV. The GS was developed to match the hyper-parameters and optimise complicated problems. The K-CV is commonly applied to changing the validation set in a training set. In general, a GS is usually combined with K-CV to produce a corresponding evaluation index and select the best hyper-parameters. The torque penetration index (TPI) and field penetration index (FPI) are proposed based on shield parameters to express the geological characteristics. The elbow method (EM) and silhouette coefficient (Si) are employed to determine the types of geological characteristics (K) in a K-means++ algorithm. A case study on mixed ground in Guangzhou is adopted to validate the applicability of the developed model. The results show that with the developed framework, the four selected parameters, i.e. thrust, advance rate, cutterhead rotation speed and cutterhead torque, can be used to effectively predict the corresponding geological characteristics. [Display omitted]
AbstractList This study presents a framework for predicting geological characteristics based on integrating a stacking classification algorithm (SCA) with a grid search (GS) and K-fold cross validation (K-CV). The SCA includes two learner layers: a primary learner's layer and meta-classifier layer. The accuracy of the SCA can be improved by using the GS and K-CV. The GS was developed to match the hyper-parameters and optimise complicated problems. The K-CV is commonly applied to changing the validation set in a training set. In general, a GS is usually combined with K-CV to produce a corresponding evaluation index and select the best hyper-parameters. The torque penetration index (TPI) and field penetration index (FPI) are proposed based on shield parameters to express the geological characteristics. The elbow method (EM) and silhouette coefficient (Si) are employed to determine the types of geological characteristics (K) in a K-means++ algorithm. A case study on mixed ground in Guangzhou is adopted to validate the applicability of the developed model. The results show that with the developed framework, the four selected parameters, i.e. thrust, advance rate, cutterhead rotation speed and cutterhead torque, can be used to effectively predict the corresponding geological characteristics. [Display omitted]
This study presents a framework for predicting geological characteristics based on integrating a stacking classification algorithm(SCA)with a grid search(GS)and K-fold cross validation(K-CV).The SCA includes two learner layers:a primary learner's layer and meta-classifier layer.The accuracy of the SCA can be improved by using the GS and K-CV.The GS was developed to match the hyper-parameters and optimise complicated problems.The K-CV is commonly applied to changing the validation set in a training set.In general,a GS is usually combined with K-CV to produce a corresponding evaluation index and select the best hyper-parameters.The torque penetration index(TPI)and field penetration index(FPI)are proposed based on shield parameters to express the geological characteristics.The elbow method(EM)and silhouette coefficient(Si)are employed to determine the types of geological characteristics(K)in a K-means++algorithm.A case study on mixed ground in Guangzhou is adopted to validate the applicability of the developed model.The results show that with the developed framework,the four selected pa-rameters,i.e.thrust,advance rate,cutterhead rotation speed and cutterhead torque,can be used to effectively predict the corresponding geological characteristics.
This study presents a framework for predicting geological characteristics based on integrating a stacking classification algorithm (SCA) with a grid search (GS) and K-fold cross validation (K-CV). The SCA includes two learner layers: a primary learner's layer and meta-classifier layer. The accuracy of the SCA can be improved by using the GS and K-CV. The GS was developed to match the hyper-parameters and optimise complicated problems. The K-CV is commonly applied to changing the validation set in a training set. In general, a GS is usually combined with K-CV to produce a corresponding evaluation index and select the best hyper-parameters. The torque penetration index (TPI) and field penetration index (FPI) are proposed based on shield parameters to express the geological characteristics. The elbow method (EM) and silhouette coefficient (Si) are employed to determine the types of geological characteristics (K) in a K-means++ algorithm. A case study on mixed ground in Guangzhou is adopted to validate the applicability of the developed model. The results show that with the developed framework, the four selected parameters, i.e. thrust, advance rate, cutterhead rotation speed and cutterhead torque, can be used to effectively predict the corresponding geological characteristics.
Author Shen, Shui-Long
Zhou, Annan
Yan, Tao
Chen, Xiangsheng
AuthorAffiliation MOE Key Laboratory of Intelligent Manufacturing Technology,Department of Civil and Environmental Engineering,College of Engineering,Shantou University,Shantou,Guangdong 515063,China;Discipline of Civil and Infrastructure,School of Engineering,Royal Melbourne Institute of Technology(RMIT),Victoria,3001,Australia%MOE Key Laboratory of Intelligent Manufacturing Technology,Department of Civil and Environmental Engineering,College of Engineering,Shantou University,Shantou,Guangdong 515063,China%Discipline of Civil and Infrastructure,School of Engineering,Royal Melbourne Institute of Technology(RMIT),Victoria,3001,Australia%College of Civil and Transportation Engineering,Shenzhen University,Shenzhen,Guangdong 518060,China
AuthorAffiliation_xml – name: MOE Key Laboratory of Intelligent Manufacturing Technology,Department of Civil and Environmental Engineering,College of Engineering,Shantou University,Shantou,Guangdong 515063,China;Discipline of Civil and Infrastructure,School of Engineering,Royal Melbourne Institute of Technology(RMIT),Victoria,3001,Australia%MOE Key Laboratory of Intelligent Manufacturing Technology,Department of Civil and Environmental Engineering,College of Engineering,Shantou University,Shantou,Guangdong 515063,China%Discipline of Civil and Infrastructure,School of Engineering,Royal Melbourne Institute of Technology(RMIT),Victoria,3001,Australia%College of Civil and Transportation Engineering,Shenzhen University,Shenzhen,Guangdong 518060,China
Author_xml – sequence: 1
  givenname: Tao
  surname: Yan
  fullname: Yan, Tao
  organization: MOE Key Laboratory of Intelligent Manufacturing Technology, Department of Civil and Environmental Engineering, College of Engineering, Shantou University, Shantou, Guangdong 515063, China
– sequence: 2
  givenname: Shui-Long
  orcidid: 0000-0002-5610-7988
  surname: Shen
  fullname: Shen, Shui-Long
  email: shensl@stu.edu.cn
  organization: MOE Key Laboratory of Intelligent Manufacturing Technology, Department of Civil and Environmental Engineering, College of Engineering, Shantou University, Shantou, Guangdong 515063, China
– sequence: 3
  givenname: Annan
  orcidid: 0000-0001-5209-5169
  surname: Zhou
  fullname: Zhou, Annan
  organization: Discipline of Civil and Infrastructure, School of Engineering, Royal Melbourne Institute of Technology (RMIT), Victoria, 3001, Australia
– sequence: 4
  givenname: Xiangsheng
  orcidid: 0000-0002-0880-579X
  surname: Chen
  fullname: Chen, Xiangsheng
  organization: College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
BookMark eNp9kj1u3DAQhVU4QBzHJ0jDC6zCP0m7RYrAyI8RA3GR1MRwNNRyoxUXJONYR_ItTWmTJoUrApz5Hmfe45vqYgoTVdU7wWvBRfv-UB_icaBacilrrmrO5UV1KdpOb7quaV5X1yl5y0Wnu7ZT7WX1dB-p95h9mFhwbKAwhsEjjAz3EAEzRZ-yx8RcDEeW9p7GnoUTRViY0ncqbUcqfYnZmfkp07DUpoEN0fcsEUTcM5h69m3jQoExhpTYA4y-XzUWJrCUAX8tFI5QZnRlhrUI4xCiz_vj2-qVgzHR9d_zqvr5-dOPm6-bu-9fbm8-3m1QNypvoBPCbS3JlixyyVuhNSggTlvRoGukUgI573ZO95JD31olO2sbardood-qq-r2rNsHOJhT9EeIswngzXoR4mAgFkdGMq6z3Em9E4hWc72FxvXlMdXaHRRpXbTqs9YfmBxMgzmE37GYlsycxsd5zgM-WkNLWlxzuQC7M7CaFMkZ9Hk1IkfwoxHcLDmbg1lzNgtpuDIl58Kq_9h_w79MfThTVDx98BRNQk8Tll8RCXNZ2r_IPwNEKs0y
CitedBy_id crossref_primary_10_1177_09544070241247369
crossref_primary_10_1139_cgj_2023_0168
crossref_primary_10_3390_su14159292
crossref_primary_10_1016_j_jechem_2023_04_001
crossref_primary_10_7454_jessd_v7i2_1258
crossref_primary_10_1016_j_engfailanal_2024_108693
crossref_primary_10_1016_j_tust_2023_105216
crossref_primary_10_1016_j_jrmge_2024_09_042
crossref_primary_10_1109_TIM_2024_3522699
crossref_primary_10_1016_j_enggeo_2024_107490
crossref_primary_10_1109_ACCESS_2023_3262128
crossref_primary_10_1155_2022_8540985
crossref_primary_10_1016_j_jrmge_2024_12_018
crossref_primary_10_1016_j_neunet_2024_106210
crossref_primary_10_1186_s12859_024_05977_2
crossref_primary_10_1631_jzus_A2200297
crossref_primary_10_1007_s00603_024_04235_4
crossref_primary_10_1016_j_micpro_2024_105120
crossref_primary_10_1016_j_geoen_2025_213771
crossref_primary_10_1016_j_jclepro_2023_136450
crossref_primary_10_1039_D3EN00702B
crossref_primary_10_1007_s11709_023_0942_5
crossref_primary_10_1007_s44288_024_00102_5
crossref_primary_10_1016_j_tust_2022_104852
crossref_primary_10_3390_app13085051
crossref_primary_10_1016_j_tust_2024_105585
crossref_primary_10_1016_j_aei_2024_102921
crossref_primary_10_1016_j_aej_2025_01_067
crossref_primary_10_1016_j_asr_2024_08_046
crossref_primary_10_1016_j_autcon_2022_104621
crossref_primary_10_1007_s10064_023_03329_7
crossref_primary_10_1016_j_jrmge_2024_09_059
crossref_primary_10_1016_j_tust_2023_105440
crossref_primary_10_3390_min14040370
crossref_primary_10_1109_ACCESS_2024_3391427
crossref_primary_10_1002_ett_4827
crossref_primary_10_1016_j_eswa_2023_121326
crossref_primary_10_1016_j_dib_2022_108726
crossref_primary_10_1016_j_inffus_2024_102914
crossref_primary_10_1016_j_mex_2023_102017
crossref_primary_10_1007_s11571_023_10010_y
crossref_primary_10_32604_cmes_2024_054766
crossref_primary_10_48084_etasr_7008
crossref_primary_10_3390_app13106050
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125487
crossref_primary_10_1088_2631_8695_adb540
crossref_primary_10_3390_su16198341
crossref_primary_10_1016_j_mlwa_2023_100505
crossref_primary_10_1016_j_ecoinf_2024_102514
crossref_primary_10_3390_machines11020307
crossref_primary_10_3390_safety8030065
crossref_primary_10_1007_s11440_022_01749_5
crossref_primary_10_4018_IJPCH_309951
crossref_primary_10_1109_ACCESS_2024_3495820
crossref_primary_10_1002_mcf2_10317
crossref_primary_10_1021_acsomega_3c00414
crossref_primary_10_1038_s41598_024_79141_4
crossref_primary_10_1007_s00521_024_09804_w
crossref_primary_10_1139_cgj_2022_0699
crossref_primary_10_1038_s41598_023_28243_6
crossref_primary_10_1080_17499518_2024_2422489
crossref_primary_10_1631_2023_A2200297
crossref_primary_10_1016_j_jenvman_2024_123845
crossref_primary_10_1177_10567895241280369
crossref_primary_10_1016_j_psep_2022_12_096
crossref_primary_10_1016_j_tust_2024_105768
crossref_primary_10_1109_TGRS_2023_3325444
crossref_primary_10_1016_j_tust_2025_106398
crossref_primary_10_1016_j_jrmge_2022_07_001
crossref_primary_10_1080_19475705_2023_2282944
crossref_primary_10_1155_2023_6800788
crossref_primary_10_1016_j_enggeo_2024_107632
crossref_primary_10_3233_JIFS_237539
crossref_primary_10_1007_s44268_023_00002_6
crossref_primary_10_1016_j_energy_2023_128336
crossref_primary_10_1016_j_eswa_2023_120576
crossref_primary_10_1016_j_mex_2022_101883
crossref_primary_10_1080_10298436_2022_2136374
crossref_primary_10_1109_JSEN_2023_3321658
crossref_primary_10_3390_wind4040017
crossref_primary_10_1016_j_ress_2022_109051
crossref_primary_10_1680_jgeen_22_00200
crossref_primary_10_4018_IJSSCI_333628
Cites_doi 10.1016/j.tust.2020.103744
10.1016/j.autcon.2018.12.022
10.1190/1.1438246
10.1016/j.tust.2012.04.007
10.3844/jcssp.2008.252.255
10.1016/j.tust.2021.104196
10.1186/1758-2946-6-10
10.1016/j.eswa.2010.10.051
10.1016/j.tust.2014.06.004
10.1016/j.tust.2020.103593
10.1016/j.compgeo.2020.103871
10.1016/j.compeleceng.2021.107387
10.1016/j.tust.2008.01.001
10.1002/0471743135.ch4
10.1007/s10462-021-09967-1
10.1016/j.autcon.2018.05.019
10.1016/j.engappai.2011.02.010
10.1016/j.cma.2021.113858
10.1016/j.tust.2021.104285
10.1016/0377-0427(87)90125-7
10.1016/j.compeleceng.2021.107321
10.1109/TNN.2005.845141
10.1016/j.compeleceng.2021.107383
10.1007/s10596-006-9022-x
10.1016/j.tust.2021.103827
10.1016/j.tust.2019.103002
10.1016/j.eswa.2010.06.061
10.1016/j.tust.2020.103595
10.1016/S0886-7798(03)00030-0
10.1016/j.gsf.2020.02.014
10.1016/j.enggeo.2019.105328
10.1016/j.jrmge.2020.05.011
10.1016/j.autcon.2021.103760
10.1016/j.ijrmms.2012.10.002
10.1007/s00357-010-9049-5
10.1016/j.tust.2021.103946
ContentType Journal Article
Copyright 2022 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2022 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOA
DOI 10.1016/j.jrmge.2022.03.002
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EndPage 1303
ExternalDocumentID oai_doaj_org_article_f7b0f2491ccb4048a5fd4a336b9a0ad4
yslxyytgcxb_e202204024
10_1016_j_jrmge_2022_03_002
S1674775522000713
GroupedDBID 6I.
AAFTH
ALMA_UNASSIGNED_HOLDINGS
CDYEO
AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
GROUPED_DOAJ
ID FETCH-LOGICAL-c453t-a711f8be26ebc0206144a3ae0e815cf52331c0079f4d20ad6b327bb5e68cbad83
IEDL.DBID DOA
ISSN 1674-7755
IngestDate Mon Sep 08 19:52:39 EDT 2025
Thu May 29 03:58:35 EDT 2025
Thu Apr 24 22:53:48 EDT 2025
Tue Jul 01 01:39:52 EDT 2025
Thu Jul 20 20:09:24 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Geological characteristics
K-means
Stacking classification algorithm (SCA)
K-fold cross-validation (K-CV)
K-fold cross-validation(K-CV)
Stacking classification algorithm(SCA)
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c453t-a711f8be26ebc0206144a3ae0e815cf52331c0079f4d20ad6b327bb5e68cbad83
ORCID 0000-0001-5209-5169
0000-0002-0880-579X
0000-0002-5610-7988
OpenAccessLink https://doaj.org/article/f7b0f2491ccb4048a5fd4a336b9a0ad4
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_f7b0f2491ccb4048a5fd4a336b9a0ad4
wanfang_journals_yslxyytgcxb_e202204024
crossref_citationtrail_10_1016_j_jrmge_2022_03_002
crossref_primary_10_1016_j_jrmge_2022_03_002
elsevier_sciencedirect_doi_10_1016_j_jrmge_2022_03_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of Rock Mechanics and Geotechnical Engineering
PublicationTitle_FL Journal of Rock Mechanics and Geotechnical Engineering
PublicationYear 2022
Publisher Elsevier B.V
MOE Key Laboratory of Intelligent Manufacturing Technology,Department of Civil and Environmental Engineering,College of Engineering,Shantou University,Shantou,Guangdong 515063,China
Discipline of Civil and Infrastructure,School of Engineering,Royal Melbourne Institute of Technology(RMIT),Victoria,3001,Australia%MOE Key Laboratory of Intelligent Manufacturing Technology,Department of Civil and Environmental Engineering,College of Engineering,Shantou University,Shantou,Guangdong 515063,China%Discipline of Civil and Infrastructure,School of Engineering,Royal Melbourne Institute of Technology(RMIT),Victoria,3001,Australia%College of Civil and Transportation Engineering,Shenzhen University,Shenzhen,Guangdong 518060,China
Elsevier
Publisher_xml – name: Elsevier B.V
– name: MOE Key Laboratory of Intelligent Manufacturing Technology,Department of Civil and Environmental Engineering,College of Engineering,Shantou University,Shantou,Guangdong 515063,China
– name: Discipline of Civil and Infrastructure,School of Engineering,Royal Melbourne Institute of Technology(RMIT),Victoria,3001,Australia%MOE Key Laboratory of Intelligent Manufacturing Technology,Department of Civil and Environmental Engineering,College of Engineering,Shantou University,Shantou,Guangdong 515063,China%Discipline of Civil and Infrastructure,School of Engineering,Royal Melbourne Institute of Technology(RMIT),Victoria,3001,Australia%College of Civil and Transportation Engineering,Shenzhen University,Shenzhen,Guangdong 518060,China
– name: Elsevier
References Nainggolan, Perangin-angin, Simarmata, Tarigan (bib29) 2019; 1361
Zhang, Liu, Tan (bib46) 2019; 100
Jong, Ong, Oh (bib17) 2021; 113
Leu, Adi (bib23) 2011; 38
Zhang, Li, Li, Liu, Chen, Ding (bib41) 2021; 54
Paparrizos, Gravano (bib32) 2015
Bachem, Lucic, Hassani, Krause (bib4) 2016
Geisser, Johnson (bib10) 2006
Wang, Zhu, Zhu, Zhang, Ju (bib37) 2021; 118
Neyshabur, Bhojanapalli, McAllester, Srebro (bib30) 2017
Al Zoubi, Rawi (bib2) 2008; 4
Delisio, Zhao (bib8) 2014; 43
Liu, Wang, Huang, Yin (bib26) 2020; 106
Zhou, Li, Zhou, Luo (bib48) 2019; 33
Zhao, Gong, Tian, Zhou, Jiang (bib47) 2019; 91
Tarkoy, Marconi (bib36) 1991
Alrubayi, Ahmed, Zaidan (bib3) 2021; 95
Jin, Zhang, Yuan (bib15) 2021; 110
Kumar, Vardhan, Govindaraj, Vijay (bib22) 2013; 58
Liu (bib25) 2011
Chiang, Mirkin (bib7) 2010; 27
Marutho, Handaka, Wijaya, Muljono (bib27) 2018
Zhang, Yin, Jin, Chan, Gao (bib43) 2021; 12
Galende-Hernández, Menéndez, Fuente, Sainz-Palmero (bib9) 2018; 93
Zhang, Yin (bib42) 2021; 382
Zhang, Wu, Chen, Dai, Meng, Wang (bib45) 2020; 106
Cao, Zhou, Shen (bib5) 2021; 129
Mito, Yamamoto, Shirasagi, Aoki (bib28) 2003
Qin, Chen, Xiao, Que (bib33) 2008
Coates, Ng (bib6) 2012
Kardani, Zhou, Nazem, Shen (bib18) 2021; 13
Khallaf, Khallaf (bib19) 2021; 129
Inzaki, Isahai, Kawamura, Kurashami, Hayashi (bib13) 1999; 18
Jin, Yuan, Li, Su (bib16) 2021; 109
Krstajic, Buturovic, Leahy, Thomas (bib21) 2014; 6
Xu, Wunsch (bib38) 2005; 16
Zhang, Yin, Jin, Chan (bib44) 2020; 265
Nur-A-Alam, Ahsan, Based, Haider, Kowalski (bib31) 2021; 95
Yamamoto, Shirasagi, Yamamoto, Mito, Aoki (bib39) 2003; 18
Guan, Deng, Du, Li, Jiang (bib11) 2012; 31
Klose (bib20) 2006; 10
Jiang, Yi, Li, Yang, Hu (bib14) 2010; 37
Leu, Adi (bib24) 2011; 24
Yin, Liu, Huang, Pan (bib40) 2022; 120
Guo, Chen, Wang (bib12) 2021; 94
Raschka (bib34) 2015
Rousseeuw (bib35) 1987; 20
Alimoradi, Moradzadeh, Naderi, Salehi, Etemadi (bib1) 2008; 23
Delisio (10.1016/j.jrmge.2022.03.002_bib8) 2014; 43
Marutho (10.1016/j.jrmge.2022.03.002_bib27) 2018
Alimoradi (10.1016/j.jrmge.2022.03.002_bib1) 2008; 23
Guo (10.1016/j.jrmge.2022.03.002_bib12) 2021; 94
Tarkoy (10.1016/j.jrmge.2022.03.002_bib36) 1991
Coates (10.1016/j.jrmge.2022.03.002_bib6) 2012
Alrubayi (10.1016/j.jrmge.2022.03.002_bib3) 2021; 95
Qin (10.1016/j.jrmge.2022.03.002_bib33) 2008
Wang (10.1016/j.jrmge.2022.03.002_bib37) 2021; 118
Guan (10.1016/j.jrmge.2022.03.002_bib11) 2012; 31
Bachem (10.1016/j.jrmge.2022.03.002_bib4) 2016
Zhang (10.1016/j.jrmge.2022.03.002_bib42) 2021; 382
Al Zoubi (10.1016/j.jrmge.2022.03.002_bib2) 2008; 4
Xu (10.1016/j.jrmge.2022.03.002_bib38) 2005; 16
Mito (10.1016/j.jrmge.2022.03.002_bib28) 2003
Liu (10.1016/j.jrmge.2022.03.002_bib25) 2011
Inzaki (10.1016/j.jrmge.2022.03.002_bib13) 1999; 18
Jin (10.1016/j.jrmge.2022.03.002_bib16) 2021; 109
Jiang (10.1016/j.jrmge.2022.03.002_bib14) 2010; 37
Nainggolan (10.1016/j.jrmge.2022.03.002_bib29) 2019; 1361
Zhang (10.1016/j.jrmge.2022.03.002_bib44) 2020; 265
Galende-Hernández (10.1016/j.jrmge.2022.03.002_bib9) 2018; 93
Yamamoto (10.1016/j.jrmge.2022.03.002_bib39) 2003; 18
Krstajic (10.1016/j.jrmge.2022.03.002_bib21) 2014; 6
Zhou (10.1016/j.jrmge.2022.03.002_bib48) 2019; 33
Neyshabur (10.1016/j.jrmge.2022.03.002_bib30) 2017
Nur-A-Alam (10.1016/j.jrmge.2022.03.002_bib31) 2021; 95
Zhang (10.1016/j.jrmge.2022.03.002_bib41) 2021; 54
Liu (10.1016/j.jrmge.2022.03.002_bib26) 2020; 106
Zhang (10.1016/j.jrmge.2022.03.002_bib45) 2020; 106
Paparrizos (10.1016/j.jrmge.2022.03.002_bib32) 2015
Geisser (10.1016/j.jrmge.2022.03.002_bib10) 2006
Jong (10.1016/j.jrmge.2022.03.002_bib17) 2021; 113
Raschka (10.1016/j.jrmge.2022.03.002_bib34) 2015
Khallaf (10.1016/j.jrmge.2022.03.002_bib19) 2021; 129
Zhao (10.1016/j.jrmge.2022.03.002_bib47) 2019; 91
Chiang (10.1016/j.jrmge.2022.03.002_bib7) 2010; 27
Rousseeuw (10.1016/j.jrmge.2022.03.002_bib35) 1987; 20
Jin (10.1016/j.jrmge.2022.03.002_bib15) 2021; 110
Zhang (10.1016/j.jrmge.2022.03.002_bib46) 2019; 100
Cao (10.1016/j.jrmge.2022.03.002_bib5) 2021; 129
Leu (10.1016/j.jrmge.2022.03.002_bib24) 2011; 24
Leu (10.1016/j.jrmge.2022.03.002_bib23) 2011; 38
Yin (10.1016/j.jrmge.2022.03.002_bib40) 2022; 120
Kardani (10.1016/j.jrmge.2022.03.002_bib18) 2021; 13
Kumar (10.1016/j.jrmge.2022.03.002_bib22) 2013; 58
Zhang (10.1016/j.jrmge.2022.03.002_bib43) 2021; 12
Klose (10.1016/j.jrmge.2022.03.002_bib20) 2006; 10
References_xml – volume: 18
  start-page: 1429
  year: 1999
  end-page: 1431
  ident: bib13
  article-title: Stepwise application of horizontal seismic profiling for tunnel prediction ahead of the face
  publication-title: Lead. Edge
– start-page: 209
  year: 2011
  end-page: 603
  ident: bib25
  publication-title: Web Data Mining
– volume: 106
  year: 2020
  ident: bib45
  article-title: A critical evaluation of machine learning and deep learning in shield-ground interaction prediction
  publication-title: Tunn. Undergr. Space Technol.
– volume: 120
  year: 2022
  ident: bib40
  article-title: Perception model of surrounding rock geological conditions based on TBM operational big data and combined unsupervised-supervised learning
  publication-title: Tunn. Undergr. Space Technol.
– start-page: 5949
  year: 2017
  end-page: 5958
  ident: bib30
  article-title: Exploring generalization in deep learning
  publication-title: Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS 2017)
– volume: 16
  start-page: 645
  year: 2005
  end-page: 678
  ident: bib38
  article-title: Survey of clustering algorithms
  publication-title: IEEE Trans. Neural Network.
– volume: 110
  year: 2021
  ident: bib15
  article-title: Effect of dynamic cutterhead on face stability in EPB shield tunnelling
  publication-title: Tunn. Undergr. Space Technol.
– volume: 54
  start-page: 5633
  year: 2021
  end-page: 5673
  ident: bib41
  article-title: Application of deep learning algorithms in geotechnical engineering: a short critical review
  publication-title: Artif. Intell. Rev.
– volume: 100
  start-page: 73
  year: 2019
  end-page: 83
  ident: bib46
  article-title: Prediction of geological conditions for a tunnel boring machine using big operational data
  publication-title: Autom. ConStruct.
– volume: 113
  year: 2021
  ident: bib17
  article-title: State-of-the-art review of geotechnical-driven artificial intelligence techniques in underground soil-structure interaction
  publication-title: Tunn. Undergr. Space Technol.
– volume: 4
  start-page: 252
  year: 2008
  end-page: 255
  ident: bib2
  article-title: An efficient approach for computing silhouette coefficients
  publication-title: J. Comput. Sci.
– volume: 109
  year: 2021
  ident: bib16
  article-title: Probabilistic analysis of the disc cutter failure during TBM tunneling in hard rock
  publication-title: Tunn. Undergr. Space Technol.
– start-page: 195
  year: 1991
  end-page: 207
  ident: bib36
  article-title: Difficult rock comminution and associated geological conditions
  publication-title: Tunneling 91, Proceedings of the 6th International Symposium
– volume: 18
  start-page: 213
  year: 2003
  end-page: 221
  ident: bib39
  article-title: Evaluation of the geological condition ahead of the tunnel face by geostatistical techniques using TBM driving data
  publication-title: Tunn. Undergr. Space Technol.
– volume: 37
  start-page: 8679
  year: 2010
  end-page: 8684
  ident: bib14
  article-title: Ant clustering algorithm with K-harmonic means clustering
  publication-title: Expert Syst. Appl.
– volume: 24
  start-page: 658
  year: 2011
  end-page: 665
  ident: bib24
  article-title: Probabilistic prediction of tunnel geology using a hybrid neural-HMM
  publication-title: Eng. Appl. Artif. Intell.
– start-page: 363
  year: 2008
  end-page: 366
  ident: bib33
  article-title: Time series analysis of ground surface displacement induced by tunnel excavation
  publication-title: Proceedings of the International Young Scholars Symposium on Rock Mechanics - Boundaries of Rock Mechanics Recent Advances and Challenges for the 21st Century
– volume: 31
  start-page: 61
  year: 2012
  end-page: 67
  ident: bib11
  article-title: Markovian geology prediction approach and its application in mountain tunnels
  publication-title: Tunn. Undergr. Space Technol.
– volume: 6
  start-page: 10
  year: 2014
  ident: bib21
  article-title: Cross-validation pitfalls when selecting and assessing regression and classification models
  publication-title: J. Cheminf.
– volume: 106
  year: 2020
  ident: bib26
  article-title: Prediction model of rock mass class using classification and regression tree integrated AdaBoost algorithm based on TBM driving data
  publication-title: Tunn. Undergr. Space Technol.
– start-page: 1855
  year: 2015
  end-page: 1870
  ident: bib32
  article-title: K-Shape: efficient and accurate clustering of time series
  publication-title: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data (SIGMOD'15)
– volume: 382
  year: 2021
  ident: bib42
  article-title: A novel deep learning-based modelling strategy from image of particles to mechanical properties for granular materials with CNN and BiLSTM
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 12
  start-page: 441
  year: 2021
  end-page: 452
  ident: bib43
  article-title: Intelligent modelling of clay compressibility using hybrid meta-heuristic and machine learning algorithms
  publication-title: Geosci. Front.
– volume: 129
  year: 2021
  ident: bib19
  article-title: Classification and analysis of deep learning applications in construction: a systematic literature review
  publication-title: Autom. ConStruct.
– year: 2015
  ident: bib34
  article-title: Python Machine Learning
– start-page: 55
  year: 2016
  end-page: 63
  ident: bib4
  article-title: Fast and provably good seedings for k-Means
  publication-title: Advances in Neural Information Processing Systems
– start-page: 561
  year: 2012
  end-page: 580
  ident: bib6
  article-title: Learning feature representations with K-Means
  publication-title: Neural Networks: Tricks of the Trade. Lecture Notes in Computer Science
– start-page: 25
  year: 2006
  end-page: 43
  ident: bib10
  article-title: Modes of parametric statistical inference
  publication-title: Wiley Series in Probability and Statistics
– volume: 118
  year: 2021
  ident: bib37
  article-title: An integrated parameter prediction framework for intelligent TBM excavation in hard rock
  publication-title: Tunn. Undergr. Space Technol.
– volume: 95
  year: 2021
  ident: bib31
  article-title: An intelligent system for automatic fingerprint identification using feature fusion by Gabor filter and deep learning
  publication-title: Comput. Electr. Eng.
– volume: 23
  start-page: 711
  year: 2008
  end-page: 717
  ident: bib1
  article-title: Prediction of geological hazardous zones in front of a tunnel face using TSP-203 and artificial neural networks
  publication-title: Tunn. Undergr. Space Technol.
– volume: 27
  start-page: 3
  year: 2010
  end-page: 40
  ident: bib7
  article-title: Intelligent choice of the number of clusters in K-Means clustering: an experimental study with different cluster spreads
  publication-title: J. Classif.
– volume: 43
  start-page: 440
  year: 2014
  end-page: 452
  ident: bib8
  article-title: A new model for TBM performance prediction in blocky rock conditions
  publication-title: Tunn. Undergr. Space Technol.
– volume: 93
  start-page: 325
  year: 2018
  end-page: 338
  ident: bib9
  article-title: Monitor-While-Drilling-based estimation of rock mass rating with computational intelligence: the case of tunnel excavation front
  publication-title: Autom. ConStruct.
– volume: 10
  start-page: 265
  year: 2006
  end-page: 277
  ident: bib20
  article-title: Self-organizing maps for geoscientific data analysis: geological interpretation of multidimensional geophysical data
  publication-title: Comput. Geosci.
– volume: 20
  start-page: 53
  year: 1987
  end-page: 65
  ident: bib35
  article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
  publication-title: J. Comput. Appl. Math.
– volume: 94
  year: 2021
  ident: bib12
  article-title: Hierarchical K-means clustering for registration of multi-view point sets
  publication-title: Comput. Electr. Eng.
– volume: 13
  start-page: 188
  year: 2021
  end-page: 201
  ident: bib18
  article-title: Improved prediction of slope stability using a hybrid stacking ensemble method based on finite element analysis and field data
  publication-title: J. Rock Mech. Geotech. Eng.
– start-page: 533
  year: 2018
  end-page: 538
  ident: bib27
  article-title: The determination of cluster number at k-Mean using elbow method and purity evaluation on headline news
  publication-title: 2018 International Seminar on Application for Technology of Information and Communication (iSemantic)
– start-page: 8
  year: 2003
  end-page: 12
  ident: bib28
  article-title: Prediction of the geological condition ahead of the tunnel face in TBM tunnels by geostatistical simulation technique
  publication-title: Paper Presented at the 10th ISRM Congress
– volume: 265
  year: 2020
  ident: bib44
  article-title: A novel hybrid surrogate intelligent model for creep index prediction based on particle swarm optimization and random forest
  publication-title: Eng. Geol.
– volume: 91
  year: 2019
  ident: bib47
  article-title: Torque fluctuation analysis and penetration prediction of EPB TBM in rock–soil interface mixed ground
  publication-title: Tunn. Undergr. Space Technol.
– volume: 1361
  year: 2019
  ident: bib29
  article-title: Improved the performance of the K-Means cluster using the sum of squared error (SSE) optimized by using the Elbow method
  publication-title: J. Phys.
– volume: 129
  year: 2021
  ident: bib5
  article-title: An analytical method for estimating horizontal transition probability matrix of coupled Markov chain for simulation geological uncertainty
  publication-title: Comput. Geotech.
– volume: 33
  year: 2019
  ident: bib48
  article-title: Intelligent approach based on random forest for safety risk prediction of deep foundation pit in subway stations
  publication-title: J. Comput. Civ. Eng.
– volume: 58
  start-page: 61
  year: 2013
  end-page: 72
  ident: bib22
  article-title: Regression analysis and ANN models to predict rock properties from sound levels produced during drilling
  publication-title: Int. J. Rock Mech. Min. Sci.
– volume: 95
  year: 2021
  ident: bib3
  article-title: A pattern recognition model for static gestures in Malaysian sign language based on machine learning techniques
  publication-title: Comput. Electr. Eng.
– volume: 38
  start-page: 5801
  year: 2011
  end-page: 5808
  ident: bib23
  article-title: Microtunneling decision support system using neural-autoregressive hidden Markov model
  publication-title: Expert Syst. Appl.
– volume: 109
  year: 2021
  ident: 10.1016/j.jrmge.2022.03.002_bib16
  article-title: Probabilistic analysis of the disc cutter failure during TBM tunneling in hard rock
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2020.103744
– volume: 100
  start-page: 73
  year: 2019
  ident: 10.1016/j.jrmge.2022.03.002_bib46
  article-title: Prediction of geological conditions for a tunnel boring machine using big operational data
  publication-title: Autom. ConStruct.
  doi: 10.1016/j.autcon.2018.12.022
– volume: 18
  start-page: 1429
  issue: 12
  year: 1999
  ident: 10.1016/j.jrmge.2022.03.002_bib13
  article-title: Stepwise application of horizontal seismic profiling for tunnel prediction ahead of the face
  publication-title: Lead. Edge
  doi: 10.1190/1.1438246
– start-page: 1855
  year: 2015
  ident: 10.1016/j.jrmge.2022.03.002_bib32
  article-title: K-Shape: efficient and accurate clustering of time series
– volume: 31
  start-page: 61
  year: 2012
  ident: 10.1016/j.jrmge.2022.03.002_bib11
  article-title: Markovian geology prediction approach and its application in mountain tunnels
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2012.04.007
– volume: 4
  start-page: 252
  issue: 3
  year: 2008
  ident: 10.1016/j.jrmge.2022.03.002_bib2
  article-title: An efficient approach for computing silhouette coefficients
  publication-title: J. Comput. Sci.
  doi: 10.3844/jcssp.2008.252.255
– start-page: 533
  year: 2018
  ident: 10.1016/j.jrmge.2022.03.002_bib27
  article-title: The determination of cluster number at k-Mean using elbow method and purity evaluation on headline news
– start-page: 363
  year: 2008
  ident: 10.1016/j.jrmge.2022.03.002_bib33
  article-title: Time series analysis of ground surface displacement induced by tunnel excavation
– volume: 118
  year: 2021
  ident: 10.1016/j.jrmge.2022.03.002_bib37
  article-title: An integrated parameter prediction framework for intelligent TBM excavation in hard rock
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2021.104196
– volume: 6
  start-page: 10
  year: 2014
  ident: 10.1016/j.jrmge.2022.03.002_bib21
  article-title: Cross-validation pitfalls when selecting and assessing regression and classification models
  publication-title: J. Cheminf.
  doi: 10.1186/1758-2946-6-10
– volume: 38
  start-page: 5801
  issue: 5
  year: 2011
  ident: 10.1016/j.jrmge.2022.03.002_bib23
  article-title: Microtunneling decision support system using neural-autoregressive hidden Markov model
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.10.051
– volume: 43
  start-page: 440
  year: 2014
  ident: 10.1016/j.jrmge.2022.03.002_bib8
  article-title: A new model for TBM performance prediction in blocky rock conditions
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2014.06.004
– volume: 106
  year: 2020
  ident: 10.1016/j.jrmge.2022.03.002_bib45
  article-title: A critical evaluation of machine learning and deep learning in shield-ground interaction prediction
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2020.103593
– volume: 129
  year: 2021
  ident: 10.1016/j.jrmge.2022.03.002_bib5
  article-title: An analytical method for estimating horizontal transition probability matrix of coupled Markov chain for simulation geological uncertainty
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2020.103871
– volume: 33
  issue: 1
  year: 2019
  ident: 10.1016/j.jrmge.2022.03.002_bib48
  article-title: Intelligent approach based on random forest for safety risk prediction of deep foundation pit in subway stations
  publication-title: J. Comput. Civ. Eng.
– volume: 95
  year: 2021
  ident: 10.1016/j.jrmge.2022.03.002_bib31
  article-title: An intelligent system for automatic fingerprint identification using feature fusion by Gabor filter and deep learning
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2021.107387
– volume: 23
  start-page: 711
  issue: 6
  year: 2008
  ident: 10.1016/j.jrmge.2022.03.002_bib1
  article-title: Prediction of geological hazardous zones in front of a tunnel face using TSP-203 and artificial neural networks
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2008.01.001
– start-page: 25
  year: 2006
  ident: 10.1016/j.jrmge.2022.03.002_bib10
  article-title: Modes of parametric statistical inference
  doi: 10.1002/0471743135.ch4
– volume: 54
  start-page: 5633
  year: 2021
  ident: 10.1016/j.jrmge.2022.03.002_bib41
  article-title: Application of deep learning algorithms in geotechnical engineering: a short critical review
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-021-09967-1
– volume: 93
  start-page: 325
  year: 2018
  ident: 10.1016/j.jrmge.2022.03.002_bib9
  article-title: Monitor-While-Drilling-based estimation of rock mass rating with computational intelligence: the case of tunnel excavation front
  publication-title: Autom. ConStruct.
  doi: 10.1016/j.autcon.2018.05.019
– volume: 24
  start-page: 658
  issue: 4
  year: 2011
  ident: 10.1016/j.jrmge.2022.03.002_bib24
  article-title: Probabilistic prediction of tunnel geology using a hybrid neural-HMM
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2011.02.010
– start-page: 55
  year: 2016
  ident: 10.1016/j.jrmge.2022.03.002_bib4
  article-title: Fast and provably good seedings for k-Means
– year: 2015
  ident: 10.1016/j.jrmge.2022.03.002_bib34
– volume: 382
  year: 2021
  ident: 10.1016/j.jrmge.2022.03.002_bib42
  article-title: A novel deep learning-based modelling strategy from image of particles to mechanical properties for granular materials with CNN and BiLSTM
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.113858
– start-page: 8
  year: 2003
  ident: 10.1016/j.jrmge.2022.03.002_bib28
  article-title: Prediction of the geological condition ahead of the tunnel face in TBM tunnels by geostatistical simulation technique
– volume: 120
  year: 2022
  ident: 10.1016/j.jrmge.2022.03.002_bib40
  article-title: Perception model of surrounding rock geological conditions based on TBM operational big data and combined unsupervised-supervised learning
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2021.104285
– volume: 20
  start-page: 53
  year: 1987
  ident: 10.1016/j.jrmge.2022.03.002_bib35
  article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(87)90125-7
– volume: 94
  year: 2021
  ident: 10.1016/j.jrmge.2022.03.002_bib12
  article-title: Hierarchical K-means clustering for registration of multi-view point sets
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2021.107321
– start-page: 195
  year: 1991
  ident: 10.1016/j.jrmge.2022.03.002_bib36
  article-title: Difficult rock comminution and associated geological conditions
– volume: 16
  start-page: 645
  issue: 3
  year: 2005
  ident: 10.1016/j.jrmge.2022.03.002_bib38
  article-title: Survey of clustering algorithms
  publication-title: IEEE Trans. Neural Network.
  doi: 10.1109/TNN.2005.845141
– volume: 95
  year: 2021
  ident: 10.1016/j.jrmge.2022.03.002_bib3
  article-title: A pattern recognition model for static gestures in Malaysian sign language based on machine learning techniques
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2021.107383
– volume: 10
  start-page: 265
  issue: 3
  year: 2006
  ident: 10.1016/j.jrmge.2022.03.002_bib20
  article-title: Self-organizing maps for geoscientific data analysis: geological interpretation of multidimensional geophysical data
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-006-9022-x
– volume: 110
  year: 2021
  ident: 10.1016/j.jrmge.2022.03.002_bib15
  article-title: Effect of dynamic cutterhead on face stability in EPB shield tunnelling
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2021.103827
– start-page: 5949
  year: 2017
  ident: 10.1016/j.jrmge.2022.03.002_bib30
  article-title: Exploring generalization in deep learning
– volume: 91
  year: 2019
  ident: 10.1016/j.jrmge.2022.03.002_bib47
  article-title: Torque fluctuation analysis and penetration prediction of EPB TBM in rock–soil interface mixed ground
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2019.103002
– start-page: 561
  year: 2012
  ident: 10.1016/j.jrmge.2022.03.002_bib6
  article-title: Learning feature representations with K-Means
– volume: 37
  start-page: 8679
  issue: 12
  year: 2010
  ident: 10.1016/j.jrmge.2022.03.002_bib14
  article-title: Ant clustering algorithm with K-harmonic means clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.06.061
– start-page: 209
  year: 2011
  ident: 10.1016/j.jrmge.2022.03.002_bib25
– volume: 106
  year: 2020
  ident: 10.1016/j.jrmge.2022.03.002_bib26
  article-title: Prediction model of rock mass class using classification and regression tree integrated AdaBoost algorithm based on TBM driving data
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2020.103595
– volume: 18
  start-page: 213
  issue: 2–3
  year: 2003
  ident: 10.1016/j.jrmge.2022.03.002_bib39
  article-title: Evaluation of the geological condition ahead of the tunnel face by geostatistical techniques using TBM driving data
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/S0886-7798(03)00030-0
– volume: 12
  start-page: 441
  issue: 1
  year: 2021
  ident: 10.1016/j.jrmge.2022.03.002_bib43
  article-title: Intelligent modelling of clay compressibility using hybrid meta-heuristic and machine learning algorithms
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2020.02.014
– volume: 265
  year: 2020
  ident: 10.1016/j.jrmge.2022.03.002_bib44
  article-title: A novel hybrid surrogate intelligent model for creep index prediction based on particle swarm optimization and random forest
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2019.105328
– volume: 13
  start-page: 188
  issue: 1
  year: 2021
  ident: 10.1016/j.jrmge.2022.03.002_bib18
  article-title: Improved prediction of slope stability using a hybrid stacking ensemble method based on finite element analysis and field data
  publication-title: J. Rock Mech. Geotech. Eng.
  doi: 10.1016/j.jrmge.2020.05.011
– volume: 129
  year: 2021
  ident: 10.1016/j.jrmge.2022.03.002_bib19
  article-title: Classification and analysis of deep learning applications in construction: a systematic literature review
  publication-title: Autom. ConStruct.
  doi: 10.1016/j.autcon.2021.103760
– volume: 58
  start-page: 61
  year: 2013
  ident: 10.1016/j.jrmge.2022.03.002_bib22
  article-title: Regression analysis and ANN models to predict rock properties from sound levels produced during drilling
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2012.10.002
– volume: 1361
  issue: 1
  year: 2019
  ident: 10.1016/j.jrmge.2022.03.002_bib29
  article-title: Improved the performance of the K-Means cluster using the sum of squared error (SSE) optimized by using the Elbow method
  publication-title: J. Phys.
– volume: 27
  start-page: 3
  year: 2010
  ident: 10.1016/j.jrmge.2022.03.002_bib7
  article-title: Intelligent choice of the number of clusters in K-Means clustering: an experimental study with different cluster spreads
  publication-title: J. Classif.
  doi: 10.1007/s00357-010-9049-5
– volume: 113
  year: 2021
  ident: 10.1016/j.jrmge.2022.03.002_bib17
  article-title: State-of-the-art review of geotechnical-driven artificial intelligence techniques in underground soil-structure interaction
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2021.103946
SSID ssib017476736
ssib022315938
ssib007891447
ssib051367711
ssib011451244
ssib044745613
ssib038074921
Score 2.5712574
Snippet This study presents a framework for predicting geological characteristics based on integrating a stacking classification algorithm (SCA) with a grid search...
This study presents a framework for predicting geological characteristics based on integrating a stacking classification algorithm(SCA)with a grid...
SourceID doaj
wanfang
crossref
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1292
SubjectTerms Geological characteristics
K-fold cross-validation (K-CV)
K-means
Stacking classification algorithm (SCA)
Title Prediction of geological characteristics from shield operational parameters by integrating grid search and K-fold cross validation into stacking classification algorithm
URI https://dx.doi.org/10.1016/j.jrmge.2022.03.002
https://d.wanfangdata.com.cn/periodical/yslxyytgcxb-e202204024
https://doaj.org/article/f7b0f2491ccb4048a5fd4a336b9a0ad4
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELXQSkhcEAgQhQX5gMSFiDS283EEtKsVaBEHVtqbNXbsbFdtskqD2F74P_xLZuykpJflwqWH1E5Tz4vfm3T6hrE3FlMAZ8keT5gikWBUAhWYxCHbqNyWog4-2-df87ML-flSXc5afVFNWLQHjgv33hcm9ZgjLK01EuEGytcShMhNBSnUwQk0rdJZMkVIKsoKM4U9sS6pH-2MyJATkcb_Io9c1-XMGAynkrDYI1eRsVkRmvlS1T5KUqUmC6NQLHbdbxoy3cyyaJmaHdBc6AZwwHb3f0LroW1mXHb6iD0cRSj_EL_8Y3bPtU_Y7289_WhDgeKd542btkVuD02dOf0lhW-vqPaNdzeuH58ncrIR31B5zZabHZ-MKJAbedOvah5vKg5tzb8kvsPJ4do5Yn0VOzvRnI6jXrX0AJ9bUvZUyhTfhHXT9avhavOUXZyefP90loyNHBIrlRgSwKXzpXFZ7oxFfUpJKAhwqSuXynrMhcXSYtAqL-sMg5obkRXGKJeX1kBdimfsqO1a95xxg0dSb5wB1H5WKCig8hkoVIWyrKxcsGxad21Hl3NqtrHWUznbtQ7B0hQsnQqNwVqwd_tJN9Hk4-7hHymg-6Hk0B0OIG71iFv9L9wuWD7BQY9iJ4oYPNXq7k9_O4JHj9vNVu-269vdbmjsrdGOxuLWnMkX_-M6X7IHdMJY83jMjob-h3uFOmwwr8Mth6_nv07-ANBPLgg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+geological+characteristics+from+shield+operational+parameters+by+integrating+grid+search+and+K-fold+cross+validation+into+stacking+classification+algorithm&rft.jtitle=%E5%B2%A9%E7%9F%B3%E5%8A%9B%E5%AD%A6%E4%B8%8E%E5%B2%A9%E5%9C%9F%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Tao+Yan&rft.au=Shui-Long+Shen&rft.au=Annan+Zhou&rft.au=Xiangsheng+Chen&rft.date=2022-08-01&rft.pub=MOE+Key+Laboratory+of+Intelligent+Manufacturing+Technology%2CDepartment+of+Civil+and+Environmental+Engineering%2CCollege+of+Engineering%2CShantou+University%2CShantou%2CGuangdong+515063%2CChina&rft.issn=1674-7755&rft.volume=14&rft.issue=4&rft.spage=1292&rft.epage=1303&rft_id=info:doi/10.1016%2Fj.jrmge.2022.03.002&rft.externalDocID=yslxyytgcxb_e202204024
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fyslxyytgcxb-e%2Fyslxyytgcxb-e.jpg