Prediction of geological characteristics from shield operational parameters by integrating grid search and K-fold cross validation into stacking classification algorithm
This study presents a framework for predicting geological characteristics based on integrating a stacking classification algorithm (SCA) with a grid search (GS) and K-fold cross validation (K-CV). The SCA includes two learner layers: a primary learner's layer and meta-classifier layer. The accu...
Saved in:
Cover
Abstract | This study presents a framework for predicting geological characteristics based on integrating a stacking classification algorithm (SCA) with a grid search (GS) and K-fold cross validation (K-CV). The SCA includes two learner layers: a primary learner's layer and meta-classifier layer. The accuracy of the SCA can be improved by using the GS and K-CV. The GS was developed to match the hyper-parameters and optimise complicated problems. The K-CV is commonly applied to changing the validation set in a training set. In general, a GS is usually combined with K-CV to produce a corresponding evaluation index and select the best hyper-parameters. The torque penetration index (TPI) and field penetration index (FPI) are proposed based on shield parameters to express the geological characteristics. The elbow method (EM) and silhouette coefficient (Si) are employed to determine the types of geological characteristics (K) in a K-means++ algorithm. A case study on mixed ground in Guangzhou is adopted to validate the applicability of the developed model. The results show that with the developed framework, the four selected parameters, i.e. thrust, advance rate, cutterhead rotation speed and cutterhead torque, can be used to effectively predict the corresponding geological characteristics.
[Display omitted] |
---|---|
AbstractList | This study presents a framework for predicting geological characteristics based on integrating a stacking classification algorithm (SCA) with a grid search (GS) and K-fold cross validation (K-CV). The SCA includes two learner layers: a primary learner's layer and meta-classifier layer. The accuracy of the SCA can be improved by using the GS and K-CV. The GS was developed to match the hyper-parameters and optimise complicated problems. The K-CV is commonly applied to changing the validation set in a training set. In general, a GS is usually combined with K-CV to produce a corresponding evaluation index and select the best hyper-parameters. The torque penetration index (TPI) and field penetration index (FPI) are proposed based on shield parameters to express the geological characteristics. The elbow method (EM) and silhouette coefficient (Si) are employed to determine the types of geological characteristics (K) in a K-means++ algorithm. A case study on mixed ground in Guangzhou is adopted to validate the applicability of the developed model. The results show that with the developed framework, the four selected parameters, i.e. thrust, advance rate, cutterhead rotation speed and cutterhead torque, can be used to effectively predict the corresponding geological characteristics.
[Display omitted] This study presents a framework for predicting geological characteristics based on integrating a stacking classification algorithm(SCA)with a grid search(GS)and K-fold cross validation(K-CV).The SCA includes two learner layers:a primary learner's layer and meta-classifier layer.The accuracy of the SCA can be improved by using the GS and K-CV.The GS was developed to match the hyper-parameters and optimise complicated problems.The K-CV is commonly applied to changing the validation set in a training set.In general,a GS is usually combined with K-CV to produce a corresponding evaluation index and select the best hyper-parameters.The torque penetration index(TPI)and field penetration index(FPI)are proposed based on shield parameters to express the geological characteristics.The elbow method(EM)and silhouette coefficient(Si)are employed to determine the types of geological characteristics(K)in a K-means++algorithm.A case study on mixed ground in Guangzhou is adopted to validate the applicability of the developed model.The results show that with the developed framework,the four selected pa-rameters,i.e.thrust,advance rate,cutterhead rotation speed and cutterhead torque,can be used to effectively predict the corresponding geological characteristics. This study presents a framework for predicting geological characteristics based on integrating a stacking classification algorithm (SCA) with a grid search (GS) and K-fold cross validation (K-CV). The SCA includes two learner layers: a primary learner's layer and meta-classifier layer. The accuracy of the SCA can be improved by using the GS and K-CV. The GS was developed to match the hyper-parameters and optimise complicated problems. The K-CV is commonly applied to changing the validation set in a training set. In general, a GS is usually combined with K-CV to produce a corresponding evaluation index and select the best hyper-parameters. The torque penetration index (TPI) and field penetration index (FPI) are proposed based on shield parameters to express the geological characteristics. The elbow method (EM) and silhouette coefficient (Si) are employed to determine the types of geological characteristics (K) in a K-means++ algorithm. A case study on mixed ground in Guangzhou is adopted to validate the applicability of the developed model. The results show that with the developed framework, the four selected parameters, i.e. thrust, advance rate, cutterhead rotation speed and cutterhead torque, can be used to effectively predict the corresponding geological characteristics. |
Author | Shen, Shui-Long Zhou, Annan Yan, Tao Chen, Xiangsheng |
AuthorAffiliation | MOE Key Laboratory of Intelligent Manufacturing Technology,Department of Civil and Environmental Engineering,College of Engineering,Shantou University,Shantou,Guangdong 515063,China;Discipline of Civil and Infrastructure,School of Engineering,Royal Melbourne Institute of Technology(RMIT),Victoria,3001,Australia%MOE Key Laboratory of Intelligent Manufacturing Technology,Department of Civil and Environmental Engineering,College of Engineering,Shantou University,Shantou,Guangdong 515063,China%Discipline of Civil and Infrastructure,School of Engineering,Royal Melbourne Institute of Technology(RMIT),Victoria,3001,Australia%College of Civil and Transportation Engineering,Shenzhen University,Shenzhen,Guangdong 518060,China |
AuthorAffiliation_xml | – name: MOE Key Laboratory of Intelligent Manufacturing Technology,Department of Civil and Environmental Engineering,College of Engineering,Shantou University,Shantou,Guangdong 515063,China;Discipline of Civil and Infrastructure,School of Engineering,Royal Melbourne Institute of Technology(RMIT),Victoria,3001,Australia%MOE Key Laboratory of Intelligent Manufacturing Technology,Department of Civil and Environmental Engineering,College of Engineering,Shantou University,Shantou,Guangdong 515063,China%Discipline of Civil and Infrastructure,School of Engineering,Royal Melbourne Institute of Technology(RMIT),Victoria,3001,Australia%College of Civil and Transportation Engineering,Shenzhen University,Shenzhen,Guangdong 518060,China |
Author_xml | – sequence: 1 givenname: Tao surname: Yan fullname: Yan, Tao organization: MOE Key Laboratory of Intelligent Manufacturing Technology, Department of Civil and Environmental Engineering, College of Engineering, Shantou University, Shantou, Guangdong 515063, China – sequence: 2 givenname: Shui-Long orcidid: 0000-0002-5610-7988 surname: Shen fullname: Shen, Shui-Long email: shensl@stu.edu.cn organization: MOE Key Laboratory of Intelligent Manufacturing Technology, Department of Civil and Environmental Engineering, College of Engineering, Shantou University, Shantou, Guangdong 515063, China – sequence: 3 givenname: Annan orcidid: 0000-0001-5209-5169 surname: Zhou fullname: Zhou, Annan organization: Discipline of Civil and Infrastructure, School of Engineering, Royal Melbourne Institute of Technology (RMIT), Victoria, 3001, Australia – sequence: 4 givenname: Xiangsheng orcidid: 0000-0002-0880-579X surname: Chen fullname: Chen, Xiangsheng organization: College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China |
BookMark | eNp9kj1u3DAQhVU4QBzHJ0jDC6zCP0m7RYrAyI8RA3GR1MRwNNRyoxUXJONYR_ItTWmTJoUrApz5Hmfe45vqYgoTVdU7wWvBRfv-UB_icaBacilrrmrO5UV1KdpOb7quaV5X1yl5y0Wnu7ZT7WX1dB-p95h9mFhwbKAwhsEjjAz3EAEzRZ-yx8RcDEeW9p7GnoUTRViY0ncqbUcqfYnZmfkp07DUpoEN0fcsEUTcM5h69m3jQoExhpTYA4y-XzUWJrCUAX8tFI5QZnRlhrUI4xCiz_vj2-qVgzHR9d_zqvr5-dOPm6-bu-9fbm8-3m1QNypvoBPCbS3JlixyyVuhNSggTlvRoGukUgI573ZO95JD31olO2sbardood-qq-r2rNsHOJhT9EeIswngzXoR4mAgFkdGMq6z3Em9E4hWc72FxvXlMdXaHRRpXbTqs9YfmBxMgzmE37GYlsycxsd5zgM-WkNLWlxzuQC7M7CaFMkZ9Hk1IkfwoxHcLDmbg1lzNgtpuDIl58Kq_9h_w79MfThTVDx98BRNQk8Tll8RCXNZ2r_IPwNEKs0y |
CitedBy_id | crossref_primary_10_1177_09544070241247369 crossref_primary_10_1139_cgj_2023_0168 crossref_primary_10_3390_su14159292 crossref_primary_10_1016_j_jechem_2023_04_001 crossref_primary_10_7454_jessd_v7i2_1258 crossref_primary_10_1016_j_engfailanal_2024_108693 crossref_primary_10_1016_j_tust_2023_105216 crossref_primary_10_1016_j_jrmge_2024_09_042 crossref_primary_10_1109_TIM_2024_3522699 crossref_primary_10_1016_j_enggeo_2024_107490 crossref_primary_10_1109_ACCESS_2023_3262128 crossref_primary_10_1155_2022_8540985 crossref_primary_10_1016_j_jrmge_2024_12_018 crossref_primary_10_1016_j_neunet_2024_106210 crossref_primary_10_1186_s12859_024_05977_2 crossref_primary_10_1631_jzus_A2200297 crossref_primary_10_1007_s00603_024_04235_4 crossref_primary_10_1016_j_micpro_2024_105120 crossref_primary_10_1016_j_geoen_2025_213771 crossref_primary_10_1016_j_jclepro_2023_136450 crossref_primary_10_1039_D3EN00702B crossref_primary_10_1007_s11709_023_0942_5 crossref_primary_10_1007_s44288_024_00102_5 crossref_primary_10_1016_j_tust_2022_104852 crossref_primary_10_3390_app13085051 crossref_primary_10_1016_j_tust_2024_105585 crossref_primary_10_1016_j_aei_2024_102921 crossref_primary_10_1016_j_aej_2025_01_067 crossref_primary_10_1016_j_asr_2024_08_046 crossref_primary_10_1016_j_autcon_2022_104621 crossref_primary_10_1007_s10064_023_03329_7 crossref_primary_10_1016_j_jrmge_2024_09_059 crossref_primary_10_1016_j_tust_2023_105440 crossref_primary_10_3390_min14040370 crossref_primary_10_1109_ACCESS_2024_3391427 crossref_primary_10_1002_ett_4827 crossref_primary_10_1016_j_eswa_2023_121326 crossref_primary_10_1016_j_dib_2022_108726 crossref_primary_10_1016_j_inffus_2024_102914 crossref_primary_10_1016_j_mex_2023_102017 crossref_primary_10_1007_s11571_023_10010_y crossref_primary_10_32604_cmes_2024_054766 crossref_primary_10_48084_etasr_7008 crossref_primary_10_3390_app13106050 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125487 crossref_primary_10_1088_2631_8695_adb540 crossref_primary_10_3390_su16198341 crossref_primary_10_1016_j_mlwa_2023_100505 crossref_primary_10_1016_j_ecoinf_2024_102514 crossref_primary_10_3390_machines11020307 crossref_primary_10_3390_safety8030065 crossref_primary_10_1007_s11440_022_01749_5 crossref_primary_10_4018_IJPCH_309951 crossref_primary_10_1109_ACCESS_2024_3495820 crossref_primary_10_1002_mcf2_10317 crossref_primary_10_1021_acsomega_3c00414 crossref_primary_10_1038_s41598_024_79141_4 crossref_primary_10_1007_s00521_024_09804_w crossref_primary_10_1139_cgj_2022_0699 crossref_primary_10_1038_s41598_023_28243_6 crossref_primary_10_1080_17499518_2024_2422489 crossref_primary_10_1631_2023_A2200297 crossref_primary_10_1016_j_jenvman_2024_123845 crossref_primary_10_1177_10567895241280369 crossref_primary_10_1016_j_psep_2022_12_096 crossref_primary_10_1016_j_tust_2024_105768 crossref_primary_10_1109_TGRS_2023_3325444 crossref_primary_10_1016_j_tust_2025_106398 crossref_primary_10_1016_j_jrmge_2022_07_001 crossref_primary_10_1080_19475705_2023_2282944 crossref_primary_10_1155_2023_6800788 crossref_primary_10_1016_j_enggeo_2024_107632 crossref_primary_10_3233_JIFS_237539 crossref_primary_10_1007_s44268_023_00002_6 crossref_primary_10_1016_j_energy_2023_128336 crossref_primary_10_1016_j_eswa_2023_120576 crossref_primary_10_1016_j_mex_2022_101883 crossref_primary_10_1080_10298436_2022_2136374 crossref_primary_10_1109_JSEN_2023_3321658 crossref_primary_10_3390_wind4040017 crossref_primary_10_1016_j_ress_2022_109051 crossref_primary_10_1680_jgeen_22_00200 crossref_primary_10_4018_IJSSCI_333628 |
Cites_doi | 10.1016/j.tust.2020.103744 10.1016/j.autcon.2018.12.022 10.1190/1.1438246 10.1016/j.tust.2012.04.007 10.3844/jcssp.2008.252.255 10.1016/j.tust.2021.104196 10.1186/1758-2946-6-10 10.1016/j.eswa.2010.10.051 10.1016/j.tust.2014.06.004 10.1016/j.tust.2020.103593 10.1016/j.compgeo.2020.103871 10.1016/j.compeleceng.2021.107387 10.1016/j.tust.2008.01.001 10.1002/0471743135.ch4 10.1007/s10462-021-09967-1 10.1016/j.autcon.2018.05.019 10.1016/j.engappai.2011.02.010 10.1016/j.cma.2021.113858 10.1016/j.tust.2021.104285 10.1016/0377-0427(87)90125-7 10.1016/j.compeleceng.2021.107321 10.1109/TNN.2005.845141 10.1016/j.compeleceng.2021.107383 10.1007/s10596-006-9022-x 10.1016/j.tust.2021.103827 10.1016/j.tust.2019.103002 10.1016/j.eswa.2010.06.061 10.1016/j.tust.2020.103595 10.1016/S0886-7798(03)00030-0 10.1016/j.gsf.2020.02.014 10.1016/j.enggeo.2019.105328 10.1016/j.jrmge.2020.05.011 10.1016/j.autcon.2021.103760 10.1016/j.ijrmms.2012.10.002 10.1007/s00357-010-9049-5 10.1016/j.tust.2021.103946 |
ContentType | Journal Article |
Copyright | 2022 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2022 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 6I. AAFTH AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ DOA |
DOI | 10.1016/j.jrmge.2022.03.002 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EndPage | 1303 |
ExternalDocumentID | oai_doaj_org_article_f7b0f2491ccb4048a5fd4a336b9a0ad4 yslxyytgcxb_e202204024 10_1016_j_jrmge_2022_03_002 S1674775522000713 |
GroupedDBID | 6I. AAFTH ALMA_UNASSIGNED_HOLDINGS CDYEO AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ GROUPED_DOAJ |
ID | FETCH-LOGICAL-c453t-a711f8be26ebc0206144a3ae0e815cf52331c0079f4d20ad6b327bb5e68cbad83 |
IEDL.DBID | DOA |
ISSN | 1674-7755 |
IngestDate | Mon Sep 08 19:52:39 EDT 2025 Thu May 29 03:58:35 EDT 2025 Thu Apr 24 22:53:48 EDT 2025 Tue Jul 01 01:39:52 EDT 2025 Thu Jul 20 20:09:24 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Geological characteristics K-means Stacking classification algorithm (SCA) K-fold cross-validation (K-CV) K-fold cross-validation(K-CV) Stacking classification algorithm(SCA) |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c453t-a711f8be26ebc0206144a3ae0e815cf52331c0079f4d20ad6b327bb5e68cbad83 |
ORCID | 0000-0001-5209-5169 0000-0002-0880-579X 0000-0002-5610-7988 |
OpenAccessLink | https://doaj.org/article/f7b0f2491ccb4048a5fd4a336b9a0ad4 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f7b0f2491ccb4048a5fd4a336b9a0ad4 wanfang_journals_yslxyytgcxb_e202204024 crossref_citationtrail_10_1016_j_jrmge_2022_03_002 crossref_primary_10_1016_j_jrmge_2022_03_002 elsevier_sciencedirect_doi_10_1016_j_jrmge_2022_03_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of Rock Mechanics and Geotechnical Engineering |
PublicationTitle_FL | Journal of Rock Mechanics and Geotechnical Engineering |
PublicationYear | 2022 |
Publisher | Elsevier B.V MOE Key Laboratory of Intelligent Manufacturing Technology,Department of Civil and Environmental Engineering,College of Engineering,Shantou University,Shantou,Guangdong 515063,China Discipline of Civil and Infrastructure,School of Engineering,Royal Melbourne Institute of Technology(RMIT),Victoria,3001,Australia%MOE Key Laboratory of Intelligent Manufacturing Technology,Department of Civil and Environmental Engineering,College of Engineering,Shantou University,Shantou,Guangdong 515063,China%Discipline of Civil and Infrastructure,School of Engineering,Royal Melbourne Institute of Technology(RMIT),Victoria,3001,Australia%College of Civil and Transportation Engineering,Shenzhen University,Shenzhen,Guangdong 518060,China Elsevier |
Publisher_xml | – name: Elsevier B.V – name: MOE Key Laboratory of Intelligent Manufacturing Technology,Department of Civil and Environmental Engineering,College of Engineering,Shantou University,Shantou,Guangdong 515063,China – name: Discipline of Civil and Infrastructure,School of Engineering,Royal Melbourne Institute of Technology(RMIT),Victoria,3001,Australia%MOE Key Laboratory of Intelligent Manufacturing Technology,Department of Civil and Environmental Engineering,College of Engineering,Shantou University,Shantou,Guangdong 515063,China%Discipline of Civil and Infrastructure,School of Engineering,Royal Melbourne Institute of Technology(RMIT),Victoria,3001,Australia%College of Civil and Transportation Engineering,Shenzhen University,Shenzhen,Guangdong 518060,China – name: Elsevier |
References | Nainggolan, Perangin-angin, Simarmata, Tarigan (bib29) 2019; 1361 Zhang, Liu, Tan (bib46) 2019; 100 Jong, Ong, Oh (bib17) 2021; 113 Leu, Adi (bib23) 2011; 38 Zhang, Li, Li, Liu, Chen, Ding (bib41) 2021; 54 Paparrizos, Gravano (bib32) 2015 Bachem, Lucic, Hassani, Krause (bib4) 2016 Geisser, Johnson (bib10) 2006 Wang, Zhu, Zhu, Zhang, Ju (bib37) 2021; 118 Neyshabur, Bhojanapalli, McAllester, Srebro (bib30) 2017 Al Zoubi, Rawi (bib2) 2008; 4 Delisio, Zhao (bib8) 2014; 43 Liu, Wang, Huang, Yin (bib26) 2020; 106 Zhou, Li, Zhou, Luo (bib48) 2019; 33 Zhao, Gong, Tian, Zhou, Jiang (bib47) 2019; 91 Tarkoy, Marconi (bib36) 1991 Alrubayi, Ahmed, Zaidan (bib3) 2021; 95 Jin, Zhang, Yuan (bib15) 2021; 110 Kumar, Vardhan, Govindaraj, Vijay (bib22) 2013; 58 Liu (bib25) 2011 Chiang, Mirkin (bib7) 2010; 27 Marutho, Handaka, Wijaya, Muljono (bib27) 2018 Zhang, Yin, Jin, Chan, Gao (bib43) 2021; 12 Galende-Hernández, Menéndez, Fuente, Sainz-Palmero (bib9) 2018; 93 Zhang, Yin (bib42) 2021; 382 Zhang, Wu, Chen, Dai, Meng, Wang (bib45) 2020; 106 Cao, Zhou, Shen (bib5) 2021; 129 Mito, Yamamoto, Shirasagi, Aoki (bib28) 2003 Qin, Chen, Xiao, Que (bib33) 2008 Coates, Ng (bib6) 2012 Kardani, Zhou, Nazem, Shen (bib18) 2021; 13 Khallaf, Khallaf (bib19) 2021; 129 Inzaki, Isahai, Kawamura, Kurashami, Hayashi (bib13) 1999; 18 Jin, Yuan, Li, Su (bib16) 2021; 109 Krstajic, Buturovic, Leahy, Thomas (bib21) 2014; 6 Xu, Wunsch (bib38) 2005; 16 Zhang, Yin, Jin, Chan (bib44) 2020; 265 Nur-A-Alam, Ahsan, Based, Haider, Kowalski (bib31) 2021; 95 Yamamoto, Shirasagi, Yamamoto, Mito, Aoki (bib39) 2003; 18 Guan, Deng, Du, Li, Jiang (bib11) 2012; 31 Klose (bib20) 2006; 10 Jiang, Yi, Li, Yang, Hu (bib14) 2010; 37 Leu, Adi (bib24) 2011; 24 Yin, Liu, Huang, Pan (bib40) 2022; 120 Guo, Chen, Wang (bib12) 2021; 94 Raschka (bib34) 2015 Rousseeuw (bib35) 1987; 20 Alimoradi, Moradzadeh, Naderi, Salehi, Etemadi (bib1) 2008; 23 Delisio (10.1016/j.jrmge.2022.03.002_bib8) 2014; 43 Marutho (10.1016/j.jrmge.2022.03.002_bib27) 2018 Alimoradi (10.1016/j.jrmge.2022.03.002_bib1) 2008; 23 Guo (10.1016/j.jrmge.2022.03.002_bib12) 2021; 94 Tarkoy (10.1016/j.jrmge.2022.03.002_bib36) 1991 Coates (10.1016/j.jrmge.2022.03.002_bib6) 2012 Alrubayi (10.1016/j.jrmge.2022.03.002_bib3) 2021; 95 Qin (10.1016/j.jrmge.2022.03.002_bib33) 2008 Wang (10.1016/j.jrmge.2022.03.002_bib37) 2021; 118 Guan (10.1016/j.jrmge.2022.03.002_bib11) 2012; 31 Bachem (10.1016/j.jrmge.2022.03.002_bib4) 2016 Zhang (10.1016/j.jrmge.2022.03.002_bib42) 2021; 382 Al Zoubi (10.1016/j.jrmge.2022.03.002_bib2) 2008; 4 Xu (10.1016/j.jrmge.2022.03.002_bib38) 2005; 16 Mito (10.1016/j.jrmge.2022.03.002_bib28) 2003 Liu (10.1016/j.jrmge.2022.03.002_bib25) 2011 Inzaki (10.1016/j.jrmge.2022.03.002_bib13) 1999; 18 Jin (10.1016/j.jrmge.2022.03.002_bib16) 2021; 109 Jiang (10.1016/j.jrmge.2022.03.002_bib14) 2010; 37 Nainggolan (10.1016/j.jrmge.2022.03.002_bib29) 2019; 1361 Zhang (10.1016/j.jrmge.2022.03.002_bib44) 2020; 265 Galende-Hernández (10.1016/j.jrmge.2022.03.002_bib9) 2018; 93 Yamamoto (10.1016/j.jrmge.2022.03.002_bib39) 2003; 18 Krstajic (10.1016/j.jrmge.2022.03.002_bib21) 2014; 6 Zhou (10.1016/j.jrmge.2022.03.002_bib48) 2019; 33 Neyshabur (10.1016/j.jrmge.2022.03.002_bib30) 2017 Nur-A-Alam (10.1016/j.jrmge.2022.03.002_bib31) 2021; 95 Zhang (10.1016/j.jrmge.2022.03.002_bib41) 2021; 54 Liu (10.1016/j.jrmge.2022.03.002_bib26) 2020; 106 Zhang (10.1016/j.jrmge.2022.03.002_bib45) 2020; 106 Paparrizos (10.1016/j.jrmge.2022.03.002_bib32) 2015 Geisser (10.1016/j.jrmge.2022.03.002_bib10) 2006 Jong (10.1016/j.jrmge.2022.03.002_bib17) 2021; 113 Raschka (10.1016/j.jrmge.2022.03.002_bib34) 2015 Khallaf (10.1016/j.jrmge.2022.03.002_bib19) 2021; 129 Zhao (10.1016/j.jrmge.2022.03.002_bib47) 2019; 91 Chiang (10.1016/j.jrmge.2022.03.002_bib7) 2010; 27 Rousseeuw (10.1016/j.jrmge.2022.03.002_bib35) 1987; 20 Jin (10.1016/j.jrmge.2022.03.002_bib15) 2021; 110 Zhang (10.1016/j.jrmge.2022.03.002_bib46) 2019; 100 Cao (10.1016/j.jrmge.2022.03.002_bib5) 2021; 129 Leu (10.1016/j.jrmge.2022.03.002_bib24) 2011; 24 Leu (10.1016/j.jrmge.2022.03.002_bib23) 2011; 38 Yin (10.1016/j.jrmge.2022.03.002_bib40) 2022; 120 Kardani (10.1016/j.jrmge.2022.03.002_bib18) 2021; 13 Kumar (10.1016/j.jrmge.2022.03.002_bib22) 2013; 58 Zhang (10.1016/j.jrmge.2022.03.002_bib43) 2021; 12 Klose (10.1016/j.jrmge.2022.03.002_bib20) 2006; 10 |
References_xml | – volume: 18 start-page: 1429 year: 1999 end-page: 1431 ident: bib13 article-title: Stepwise application of horizontal seismic profiling for tunnel prediction ahead of the face publication-title: Lead. Edge – start-page: 209 year: 2011 end-page: 603 ident: bib25 publication-title: Web Data Mining – volume: 106 year: 2020 ident: bib45 article-title: A critical evaluation of machine learning and deep learning in shield-ground interaction prediction publication-title: Tunn. Undergr. Space Technol. – volume: 120 year: 2022 ident: bib40 article-title: Perception model of surrounding rock geological conditions based on TBM operational big data and combined unsupervised-supervised learning publication-title: Tunn. Undergr. Space Technol. – start-page: 5949 year: 2017 end-page: 5958 ident: bib30 article-title: Exploring generalization in deep learning publication-title: Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS 2017) – volume: 16 start-page: 645 year: 2005 end-page: 678 ident: bib38 article-title: Survey of clustering algorithms publication-title: IEEE Trans. Neural Network. – volume: 110 year: 2021 ident: bib15 article-title: Effect of dynamic cutterhead on face stability in EPB shield tunnelling publication-title: Tunn. Undergr. Space Technol. – volume: 54 start-page: 5633 year: 2021 end-page: 5673 ident: bib41 article-title: Application of deep learning algorithms in geotechnical engineering: a short critical review publication-title: Artif. Intell. Rev. – volume: 100 start-page: 73 year: 2019 end-page: 83 ident: bib46 article-title: Prediction of geological conditions for a tunnel boring machine using big operational data publication-title: Autom. ConStruct. – volume: 113 year: 2021 ident: bib17 article-title: State-of-the-art review of geotechnical-driven artificial intelligence techniques in underground soil-structure interaction publication-title: Tunn. Undergr. Space Technol. – volume: 4 start-page: 252 year: 2008 end-page: 255 ident: bib2 article-title: An efficient approach for computing silhouette coefficients publication-title: J. Comput. Sci. – volume: 109 year: 2021 ident: bib16 article-title: Probabilistic analysis of the disc cutter failure during TBM tunneling in hard rock publication-title: Tunn. Undergr. Space Technol. – start-page: 195 year: 1991 end-page: 207 ident: bib36 article-title: Difficult rock comminution and associated geological conditions publication-title: Tunneling 91, Proceedings of the 6th International Symposium – volume: 18 start-page: 213 year: 2003 end-page: 221 ident: bib39 article-title: Evaluation of the geological condition ahead of the tunnel face by geostatistical techniques using TBM driving data publication-title: Tunn. Undergr. Space Technol. – volume: 37 start-page: 8679 year: 2010 end-page: 8684 ident: bib14 article-title: Ant clustering algorithm with K-harmonic means clustering publication-title: Expert Syst. Appl. – volume: 24 start-page: 658 year: 2011 end-page: 665 ident: bib24 article-title: Probabilistic prediction of tunnel geology using a hybrid neural-HMM publication-title: Eng. Appl. Artif. Intell. – start-page: 363 year: 2008 end-page: 366 ident: bib33 article-title: Time series analysis of ground surface displacement induced by tunnel excavation publication-title: Proceedings of the International Young Scholars Symposium on Rock Mechanics - Boundaries of Rock Mechanics Recent Advances and Challenges for the 21st Century – volume: 31 start-page: 61 year: 2012 end-page: 67 ident: bib11 article-title: Markovian geology prediction approach and its application in mountain tunnels publication-title: Tunn. Undergr. Space Technol. – volume: 6 start-page: 10 year: 2014 ident: bib21 article-title: Cross-validation pitfalls when selecting and assessing regression and classification models publication-title: J. Cheminf. – volume: 106 year: 2020 ident: bib26 article-title: Prediction model of rock mass class using classification and regression tree integrated AdaBoost algorithm based on TBM driving data publication-title: Tunn. Undergr. Space Technol. – start-page: 1855 year: 2015 end-page: 1870 ident: bib32 article-title: K-Shape: efficient and accurate clustering of time series publication-title: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data (SIGMOD'15) – volume: 382 year: 2021 ident: bib42 article-title: A novel deep learning-based modelling strategy from image of particles to mechanical properties for granular materials with CNN and BiLSTM publication-title: Comput. Methods Appl. Mech. Eng. – volume: 12 start-page: 441 year: 2021 end-page: 452 ident: bib43 article-title: Intelligent modelling of clay compressibility using hybrid meta-heuristic and machine learning algorithms publication-title: Geosci. Front. – volume: 129 year: 2021 ident: bib19 article-title: Classification and analysis of deep learning applications in construction: a systematic literature review publication-title: Autom. ConStruct. – year: 2015 ident: bib34 article-title: Python Machine Learning – start-page: 55 year: 2016 end-page: 63 ident: bib4 article-title: Fast and provably good seedings for k-Means publication-title: Advances in Neural Information Processing Systems – start-page: 561 year: 2012 end-page: 580 ident: bib6 article-title: Learning feature representations with K-Means publication-title: Neural Networks: Tricks of the Trade. Lecture Notes in Computer Science – start-page: 25 year: 2006 end-page: 43 ident: bib10 article-title: Modes of parametric statistical inference publication-title: Wiley Series in Probability and Statistics – volume: 118 year: 2021 ident: bib37 article-title: An integrated parameter prediction framework for intelligent TBM excavation in hard rock publication-title: Tunn. Undergr. Space Technol. – volume: 95 year: 2021 ident: bib31 article-title: An intelligent system for automatic fingerprint identification using feature fusion by Gabor filter and deep learning publication-title: Comput. Electr. Eng. – volume: 23 start-page: 711 year: 2008 end-page: 717 ident: bib1 article-title: Prediction of geological hazardous zones in front of a tunnel face using TSP-203 and artificial neural networks publication-title: Tunn. Undergr. Space Technol. – volume: 27 start-page: 3 year: 2010 end-page: 40 ident: bib7 article-title: Intelligent choice of the number of clusters in K-Means clustering: an experimental study with different cluster spreads publication-title: J. Classif. – volume: 43 start-page: 440 year: 2014 end-page: 452 ident: bib8 article-title: A new model for TBM performance prediction in blocky rock conditions publication-title: Tunn. Undergr. Space Technol. – volume: 93 start-page: 325 year: 2018 end-page: 338 ident: bib9 article-title: Monitor-While-Drilling-based estimation of rock mass rating with computational intelligence: the case of tunnel excavation front publication-title: Autom. ConStruct. – volume: 10 start-page: 265 year: 2006 end-page: 277 ident: bib20 article-title: Self-organizing maps for geoscientific data analysis: geological interpretation of multidimensional geophysical data publication-title: Comput. Geosci. – volume: 20 start-page: 53 year: 1987 end-page: 65 ident: bib35 article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis publication-title: J. Comput. Appl. Math. – volume: 94 year: 2021 ident: bib12 article-title: Hierarchical K-means clustering for registration of multi-view point sets publication-title: Comput. Electr. Eng. – volume: 13 start-page: 188 year: 2021 end-page: 201 ident: bib18 article-title: Improved prediction of slope stability using a hybrid stacking ensemble method based on finite element analysis and field data publication-title: J. Rock Mech. Geotech. Eng. – start-page: 533 year: 2018 end-page: 538 ident: bib27 article-title: The determination of cluster number at k-Mean using elbow method and purity evaluation on headline news publication-title: 2018 International Seminar on Application for Technology of Information and Communication (iSemantic) – start-page: 8 year: 2003 end-page: 12 ident: bib28 article-title: Prediction of the geological condition ahead of the tunnel face in TBM tunnels by geostatistical simulation technique publication-title: Paper Presented at the 10th ISRM Congress – volume: 265 year: 2020 ident: bib44 article-title: A novel hybrid surrogate intelligent model for creep index prediction based on particle swarm optimization and random forest publication-title: Eng. Geol. – volume: 91 year: 2019 ident: bib47 article-title: Torque fluctuation analysis and penetration prediction of EPB TBM in rock–soil interface mixed ground publication-title: Tunn. Undergr. Space Technol. – volume: 1361 year: 2019 ident: bib29 article-title: Improved the performance of the K-Means cluster using the sum of squared error (SSE) optimized by using the Elbow method publication-title: J. Phys. – volume: 129 year: 2021 ident: bib5 article-title: An analytical method for estimating horizontal transition probability matrix of coupled Markov chain for simulation geological uncertainty publication-title: Comput. Geotech. – volume: 33 year: 2019 ident: bib48 article-title: Intelligent approach based on random forest for safety risk prediction of deep foundation pit in subway stations publication-title: J. Comput. Civ. Eng. – volume: 58 start-page: 61 year: 2013 end-page: 72 ident: bib22 article-title: Regression analysis and ANN models to predict rock properties from sound levels produced during drilling publication-title: Int. J. Rock Mech. Min. Sci. – volume: 95 year: 2021 ident: bib3 article-title: A pattern recognition model for static gestures in Malaysian sign language based on machine learning techniques publication-title: Comput. Electr. Eng. – volume: 38 start-page: 5801 year: 2011 end-page: 5808 ident: bib23 article-title: Microtunneling decision support system using neural-autoregressive hidden Markov model publication-title: Expert Syst. Appl. – volume: 109 year: 2021 ident: 10.1016/j.jrmge.2022.03.002_bib16 article-title: Probabilistic analysis of the disc cutter failure during TBM tunneling in hard rock publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2020.103744 – volume: 100 start-page: 73 year: 2019 ident: 10.1016/j.jrmge.2022.03.002_bib46 article-title: Prediction of geological conditions for a tunnel boring machine using big operational data publication-title: Autom. ConStruct. doi: 10.1016/j.autcon.2018.12.022 – volume: 18 start-page: 1429 issue: 12 year: 1999 ident: 10.1016/j.jrmge.2022.03.002_bib13 article-title: Stepwise application of horizontal seismic profiling for tunnel prediction ahead of the face publication-title: Lead. Edge doi: 10.1190/1.1438246 – start-page: 1855 year: 2015 ident: 10.1016/j.jrmge.2022.03.002_bib32 article-title: K-Shape: efficient and accurate clustering of time series – volume: 31 start-page: 61 year: 2012 ident: 10.1016/j.jrmge.2022.03.002_bib11 article-title: Markovian geology prediction approach and its application in mountain tunnels publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2012.04.007 – volume: 4 start-page: 252 issue: 3 year: 2008 ident: 10.1016/j.jrmge.2022.03.002_bib2 article-title: An efficient approach for computing silhouette coefficients publication-title: J. Comput. Sci. doi: 10.3844/jcssp.2008.252.255 – start-page: 533 year: 2018 ident: 10.1016/j.jrmge.2022.03.002_bib27 article-title: The determination of cluster number at k-Mean using elbow method and purity evaluation on headline news – start-page: 363 year: 2008 ident: 10.1016/j.jrmge.2022.03.002_bib33 article-title: Time series analysis of ground surface displacement induced by tunnel excavation – volume: 118 year: 2021 ident: 10.1016/j.jrmge.2022.03.002_bib37 article-title: An integrated parameter prediction framework for intelligent TBM excavation in hard rock publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2021.104196 – volume: 6 start-page: 10 year: 2014 ident: 10.1016/j.jrmge.2022.03.002_bib21 article-title: Cross-validation pitfalls when selecting and assessing regression and classification models publication-title: J. Cheminf. doi: 10.1186/1758-2946-6-10 – volume: 38 start-page: 5801 issue: 5 year: 2011 ident: 10.1016/j.jrmge.2022.03.002_bib23 article-title: Microtunneling decision support system using neural-autoregressive hidden Markov model publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.10.051 – volume: 43 start-page: 440 year: 2014 ident: 10.1016/j.jrmge.2022.03.002_bib8 article-title: A new model for TBM performance prediction in blocky rock conditions publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2014.06.004 – volume: 106 year: 2020 ident: 10.1016/j.jrmge.2022.03.002_bib45 article-title: A critical evaluation of machine learning and deep learning in shield-ground interaction prediction publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2020.103593 – volume: 129 year: 2021 ident: 10.1016/j.jrmge.2022.03.002_bib5 article-title: An analytical method for estimating horizontal transition probability matrix of coupled Markov chain for simulation geological uncertainty publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2020.103871 – volume: 33 issue: 1 year: 2019 ident: 10.1016/j.jrmge.2022.03.002_bib48 article-title: Intelligent approach based on random forest for safety risk prediction of deep foundation pit in subway stations publication-title: J. Comput. Civ. Eng. – volume: 95 year: 2021 ident: 10.1016/j.jrmge.2022.03.002_bib31 article-title: An intelligent system for automatic fingerprint identification using feature fusion by Gabor filter and deep learning publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2021.107387 – volume: 23 start-page: 711 issue: 6 year: 2008 ident: 10.1016/j.jrmge.2022.03.002_bib1 article-title: Prediction of geological hazardous zones in front of a tunnel face using TSP-203 and artificial neural networks publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2008.01.001 – start-page: 25 year: 2006 ident: 10.1016/j.jrmge.2022.03.002_bib10 article-title: Modes of parametric statistical inference doi: 10.1002/0471743135.ch4 – volume: 54 start-page: 5633 year: 2021 ident: 10.1016/j.jrmge.2022.03.002_bib41 article-title: Application of deep learning algorithms in geotechnical engineering: a short critical review publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-021-09967-1 – volume: 93 start-page: 325 year: 2018 ident: 10.1016/j.jrmge.2022.03.002_bib9 article-title: Monitor-While-Drilling-based estimation of rock mass rating with computational intelligence: the case of tunnel excavation front publication-title: Autom. ConStruct. doi: 10.1016/j.autcon.2018.05.019 – volume: 24 start-page: 658 issue: 4 year: 2011 ident: 10.1016/j.jrmge.2022.03.002_bib24 article-title: Probabilistic prediction of tunnel geology using a hybrid neural-HMM publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2011.02.010 – start-page: 55 year: 2016 ident: 10.1016/j.jrmge.2022.03.002_bib4 article-title: Fast and provably good seedings for k-Means – year: 2015 ident: 10.1016/j.jrmge.2022.03.002_bib34 – volume: 382 year: 2021 ident: 10.1016/j.jrmge.2022.03.002_bib42 article-title: A novel deep learning-based modelling strategy from image of particles to mechanical properties for granular materials with CNN and BiLSTM publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2021.113858 – start-page: 8 year: 2003 ident: 10.1016/j.jrmge.2022.03.002_bib28 article-title: Prediction of the geological condition ahead of the tunnel face in TBM tunnels by geostatistical simulation technique – volume: 120 year: 2022 ident: 10.1016/j.jrmge.2022.03.002_bib40 article-title: Perception model of surrounding rock geological conditions based on TBM operational big data and combined unsupervised-supervised learning publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2021.104285 – volume: 20 start-page: 53 year: 1987 ident: 10.1016/j.jrmge.2022.03.002_bib35 article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis publication-title: J. Comput. Appl. Math. doi: 10.1016/0377-0427(87)90125-7 – volume: 94 year: 2021 ident: 10.1016/j.jrmge.2022.03.002_bib12 article-title: Hierarchical K-means clustering for registration of multi-view point sets publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2021.107321 – start-page: 195 year: 1991 ident: 10.1016/j.jrmge.2022.03.002_bib36 article-title: Difficult rock comminution and associated geological conditions – volume: 16 start-page: 645 issue: 3 year: 2005 ident: 10.1016/j.jrmge.2022.03.002_bib38 article-title: Survey of clustering algorithms publication-title: IEEE Trans. Neural Network. doi: 10.1109/TNN.2005.845141 – volume: 95 year: 2021 ident: 10.1016/j.jrmge.2022.03.002_bib3 article-title: A pattern recognition model for static gestures in Malaysian sign language based on machine learning techniques publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2021.107383 – volume: 10 start-page: 265 issue: 3 year: 2006 ident: 10.1016/j.jrmge.2022.03.002_bib20 article-title: Self-organizing maps for geoscientific data analysis: geological interpretation of multidimensional geophysical data publication-title: Comput. Geosci. doi: 10.1007/s10596-006-9022-x – volume: 110 year: 2021 ident: 10.1016/j.jrmge.2022.03.002_bib15 article-title: Effect of dynamic cutterhead on face stability in EPB shield tunnelling publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2021.103827 – start-page: 5949 year: 2017 ident: 10.1016/j.jrmge.2022.03.002_bib30 article-title: Exploring generalization in deep learning – volume: 91 year: 2019 ident: 10.1016/j.jrmge.2022.03.002_bib47 article-title: Torque fluctuation analysis and penetration prediction of EPB TBM in rock–soil interface mixed ground publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2019.103002 – start-page: 561 year: 2012 ident: 10.1016/j.jrmge.2022.03.002_bib6 article-title: Learning feature representations with K-Means – volume: 37 start-page: 8679 issue: 12 year: 2010 ident: 10.1016/j.jrmge.2022.03.002_bib14 article-title: Ant clustering algorithm with K-harmonic means clustering publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.06.061 – start-page: 209 year: 2011 ident: 10.1016/j.jrmge.2022.03.002_bib25 – volume: 106 year: 2020 ident: 10.1016/j.jrmge.2022.03.002_bib26 article-title: Prediction model of rock mass class using classification and regression tree integrated AdaBoost algorithm based on TBM driving data publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2020.103595 – volume: 18 start-page: 213 issue: 2–3 year: 2003 ident: 10.1016/j.jrmge.2022.03.002_bib39 article-title: Evaluation of the geological condition ahead of the tunnel face by geostatistical techniques using TBM driving data publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/S0886-7798(03)00030-0 – volume: 12 start-page: 441 issue: 1 year: 2021 ident: 10.1016/j.jrmge.2022.03.002_bib43 article-title: Intelligent modelling of clay compressibility using hybrid meta-heuristic and machine learning algorithms publication-title: Geosci. Front. doi: 10.1016/j.gsf.2020.02.014 – volume: 265 year: 2020 ident: 10.1016/j.jrmge.2022.03.002_bib44 article-title: A novel hybrid surrogate intelligent model for creep index prediction based on particle swarm optimization and random forest publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2019.105328 – volume: 13 start-page: 188 issue: 1 year: 2021 ident: 10.1016/j.jrmge.2022.03.002_bib18 article-title: Improved prediction of slope stability using a hybrid stacking ensemble method based on finite element analysis and field data publication-title: J. Rock Mech. Geotech. Eng. doi: 10.1016/j.jrmge.2020.05.011 – volume: 129 year: 2021 ident: 10.1016/j.jrmge.2022.03.002_bib19 article-title: Classification and analysis of deep learning applications in construction: a systematic literature review publication-title: Autom. ConStruct. doi: 10.1016/j.autcon.2021.103760 – volume: 58 start-page: 61 year: 2013 ident: 10.1016/j.jrmge.2022.03.002_bib22 article-title: Regression analysis and ANN models to predict rock properties from sound levels produced during drilling publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2012.10.002 – volume: 1361 issue: 1 year: 2019 ident: 10.1016/j.jrmge.2022.03.002_bib29 article-title: Improved the performance of the K-Means cluster using the sum of squared error (SSE) optimized by using the Elbow method publication-title: J. Phys. – volume: 27 start-page: 3 year: 2010 ident: 10.1016/j.jrmge.2022.03.002_bib7 article-title: Intelligent choice of the number of clusters in K-Means clustering: an experimental study with different cluster spreads publication-title: J. Classif. doi: 10.1007/s00357-010-9049-5 – volume: 113 year: 2021 ident: 10.1016/j.jrmge.2022.03.002_bib17 article-title: State-of-the-art review of geotechnical-driven artificial intelligence techniques in underground soil-structure interaction publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2021.103946 |
SSID | ssib017476736 ssib022315938 ssib007891447 ssib051367711 ssib011451244 ssib044745613 ssib038074921 |
Score | 2.5712574 |
Snippet | This study presents a framework for predicting geological characteristics based on integrating a stacking classification algorithm (SCA) with a grid search... This study presents a framework for predicting geological characteristics based on integrating a stacking classification algorithm(SCA)with a grid... |
SourceID | doaj wanfang crossref elsevier |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1292 |
SubjectTerms | Geological characteristics K-fold cross-validation (K-CV) K-means Stacking classification algorithm (SCA) |
Title | Prediction of geological characteristics from shield operational parameters by integrating grid search and K-fold cross validation into stacking classification algorithm |
URI | https://dx.doi.org/10.1016/j.jrmge.2022.03.002 https://d.wanfangdata.com.cn/periodical/yslxyytgcxb-e202204024 https://doaj.org/article/f7b0f2491ccb4048a5fd4a336b9a0ad4 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELXQSkhcEAgQhQX5gMSFiDS283EEtKsVaBEHVtqbNXbsbFdtskqD2F74P_xLZuykpJflwqWH1E5Tz4vfm3T6hrE3FlMAZ8keT5gikWBUAhWYxCHbqNyWog4-2-df87ML-flSXc5afVFNWLQHjgv33hcm9ZgjLK01EuEGytcShMhNBSnUwQk0rdJZMkVIKsoKM4U9sS6pH-2MyJATkcb_Io9c1-XMGAynkrDYI1eRsVkRmvlS1T5KUqUmC6NQLHbdbxoy3cyyaJmaHdBc6AZwwHb3f0LroW1mXHb6iD0cRSj_EL_8Y3bPtU_Y7289_WhDgeKd542btkVuD02dOf0lhW-vqPaNdzeuH58ncrIR31B5zZabHZ-MKJAbedOvah5vKg5tzb8kvsPJ4do5Yn0VOzvRnI6jXrX0AJ9bUvZUyhTfhHXT9avhavOUXZyefP90loyNHBIrlRgSwKXzpXFZ7oxFfUpJKAhwqSuXynrMhcXSYtAqL-sMg5obkRXGKJeX1kBdimfsqO1a95xxg0dSb5wB1H5WKCig8hkoVIWyrKxcsGxad21Hl3NqtrHWUznbtQ7B0hQsnQqNwVqwd_tJN9Hk4-7hHymg-6Hk0B0OIG71iFv9L9wuWD7BQY9iJ4oYPNXq7k9_O4JHj9vNVu-269vdbmjsrdGOxuLWnMkX_-M6X7IHdMJY83jMjob-h3uFOmwwr8Mth6_nv07-ANBPLgg |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+geological+characteristics+from+shield+operational+parameters+by+integrating+grid+search+and+K-fold+cross+validation+into+stacking+classification+algorithm&rft.jtitle=%E5%B2%A9%E7%9F%B3%E5%8A%9B%E5%AD%A6%E4%B8%8E%E5%B2%A9%E5%9C%9F%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Tao+Yan&rft.au=Shui-Long+Shen&rft.au=Annan+Zhou&rft.au=Xiangsheng+Chen&rft.date=2022-08-01&rft.pub=MOE+Key+Laboratory+of+Intelligent+Manufacturing+Technology%2CDepartment+of+Civil+and+Environmental+Engineering%2CCollege+of+Engineering%2CShantou+University%2CShantou%2CGuangdong+515063%2CChina&rft.issn=1674-7755&rft.volume=14&rft.issue=4&rft.spage=1292&rft.epage=1303&rft_id=info:doi/10.1016%2Fj.jrmge.2022.03.002&rft.externalDocID=yslxyytgcxb_e202204024 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fyslxyytgcxb-e%2Fyslxyytgcxb-e.jpg |