Directional visible light scattering by silicon nanoparticles

Directional light scattering by spherical silicon nanoparticles in the visible spectral range is experimentally demonstrated for the first time. These unique optical properties arise because of simultaneous excitation and mutual interference of magnetic and electric dipole resonances inside a single...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 4; no. 1; p. 1527
Main Authors Fu, Yuan Hsing, Kuznetsov, Arseniy I., Miroshnichenko, Andrey E., Yu, Ye Feng, Luk’yanchuk, Boris
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 26.02.2013
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/ncomms2538

Cover

Abstract Directional light scattering by spherical silicon nanoparticles in the visible spectral range is experimentally demonstrated for the first time. These unique optical properties arise because of simultaneous excitation and mutual interference of magnetic and electric dipole resonances inside a single nanosphere. Such behaviour is similar to Kerker’s-type scattering by hypothetic magneto-dielectric particles predicted theoretically three decades ago. Here we show that directivity of the far-field radiation pattern of single silicon spheres can be strongly dependent on the light wavelength and the nanoparticle size. For nanoparticles with sizes ranging from 100 to 200 nm, forward-to-backward scattering ratio above six can be experimentally obtained, making them similar to ‘Huygens’ sources. Unique optical properties of silicon nanoparticles make them promising for design of novel low-loss visible- and telecom-range metamaterials and nanoantenna devices. The scattering of light by nanoparticles could be useful for photonic nanoantenna or other light manipulation schemes. Here Kuznetsov et al . demonstrate directional light scattering from silicon nanoparticles for visible light.
AbstractList Directional light scattering by spherical silicon nanoparticles in the visible spectral range is experimentally demonstrated for the first time. These unique optical properties arise because of simultaneous excitation and mutual interference of magnetic and electric dipole resonances inside a single nanosphere. Such behaviour is similar to Kerker's-type scattering by hypothetic magneto-dielectric particles predicted theoretically three decades ago. Here we show that directivity of the far-field radiation pattern of single silicon spheres can be strongly dependent on the light wavelength and the nanoparticle size. For nanoparticles with sizes ranging from 100 to 200 nm, forward-to-backward scattering ratio above six can be experimentally obtained, making them similar to 'Huygens' sources. Unique optical properties of silicon nanoparticles make them promising for design of novel low-loss visible- and telecom-range metamaterials and nanoantenna devices.
Directional light scattering by spherical silicon nanoparticles in the visible spectral range is experimentally demonstrated for the first time. These unique optical properties arise because of simultaneous excitation and mutual interference of magnetic and electric dipole resonances inside a single nanosphere. Such behaviour is similar to Kerker's-type scattering by hypothetic magneto-dielectric particles predicted theoretically three decades ago. Here we show that directivity of the far-field radiation pattern of single silicon spheres can be strongly dependent on the light wavelength and the nanoparticle size. For nanoparticles with sizes ranging from 100 to 200 nm, forward-to-backward scattering ratio above six can be experimentally obtained, making them similar to 'Huygens' sources. Unique optical properties of silicon nanoparticles make them promising for design of novel low-loss visible- and telecom-range metamaterials and nanoantenna devices.Directional light scattering by spherical silicon nanoparticles in the visible spectral range is experimentally demonstrated for the first time. These unique optical properties arise because of simultaneous excitation and mutual interference of magnetic and electric dipole resonances inside a single nanosphere. Such behaviour is similar to Kerker's-type scattering by hypothetic magneto-dielectric particles predicted theoretically three decades ago. Here we show that directivity of the far-field radiation pattern of single silicon spheres can be strongly dependent on the light wavelength and the nanoparticle size. For nanoparticles with sizes ranging from 100 to 200 nm, forward-to-backward scattering ratio above six can be experimentally obtained, making them similar to 'Huygens' sources. Unique optical properties of silicon nanoparticles make them promising for design of novel low-loss visible- and telecom-range metamaterials and nanoantenna devices.
Directional light scattering by spherical silicon nanoparticles in the visible spectral range is experimentally demonstrated for the first time. These unique optical properties arise because of simultaneous excitation and mutual interference of magnetic and electric dipole resonances inside a single nanosphere. Such behaviour is similar to Kerker’s-type scattering by hypothetic magneto-dielectric particles predicted theoretically three decades ago. Here we show that directivity of the far-field radiation pattern of single silicon spheres can be strongly dependent on the light wavelength and the nanoparticle size. For nanoparticles with sizes ranging from 100 to 200 nm, forward-to-backward scattering ratio above six can be experimentally obtained, making them similar to ‘Huygens’ sources. Unique optical properties of silicon nanoparticles make them promising for design of novel low-loss visible- and telecom-range metamaterials and nanoantenna devices. The scattering of light by nanoparticles could be useful for photonic nanoantenna or other light manipulation schemes. Here Kuznetsov et al . demonstrate directional light scattering from silicon nanoparticles for visible light.
ArticleNumber 1527
Author Fu, Yuan Hsing
Luk’yanchuk, Boris
Miroshnichenko, Andrey E.
Kuznetsov, Arseniy I.
Yu, Ye Feng
Author_xml – sequence: 1
  givenname: Yuan Hsing
  surname: Fu
  fullname: Fu, Yuan Hsing
  email: FU_Yuan_Hsing@dsi.a-star.edu.sg
  organization: Advanced Concepts and Nanotechnology Division, Data Storage Institute
– sequence: 2
  givenname: Arseniy I.
  surname: Kuznetsov
  fullname: Kuznetsov, Arseniy I.
  email: arseniy_k@dsi.a-star.edu.sg
  organization: Advanced Concepts and Nanotechnology Division, Data Storage Institute
– sequence: 3
  givenname: Andrey E.
  surname: Miroshnichenko
  fullname: Miroshnichenko, Andrey E.
  organization: Nonlinear Physics Centre, Research School of Physics and Engineering, The Australian National University
– sequence: 4
  givenname: Ye Feng
  surname: Yu
  fullname: Yu, Ye Feng
  organization: Advanced Concepts and Nanotechnology Division, Data Storage Institute
– sequence: 5
  givenname: Boris
  surname: Luk’yanchuk
  fullname: Luk’yanchuk, Boris
  organization: Advanced Concepts and Nanotechnology Division, Data Storage Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23443555$$D View this record in MEDLINE/PubMed
BookMark eNptkE1LAzEQhoNUbK29-ANkwYsoq_ne3YMHqZ9Q8KLnJZumNSWb1CQr9N-7y7ZY1LnMHJ4Z3nmOwcA6qwA4RfAaQZLfWOnqOmBG8gMwwpCiFGWYDPbmIZiEsIJtkQLllB6BISaUEsbYCNzea69k1M4Kk3zpoCujEqOXHzEJUsSovLbLpNokQRstnU2ssG4tfNTSqHACDhfCBDXZ9jF4f3x4mz6ns9enl-ndLJWUkZgKXklFEavmqiokk5wpCYlos3HKMUHzTOWioIzmFPECL0RecCrbtBkteFVwMgYX_d21d5-NCrGsdZDKGGGVa0KJCCIUcwSzFj3_ha5c49vvegq3b9OOOttSTVWrebn2uhZ-U-7EtADsAeldCF4tSqmj6DxFL7QpESw7_eWP_nbl8tfK7uq_8FUPh3VnWPm9mH_pb7CKk8A
CitedBy_id crossref_primary_10_1021_nn505632b
crossref_primary_10_3390_nano11092410
crossref_primary_10_1007_s40843_020_1402_x
crossref_primary_10_1088_0957_4484_26_16_165303
crossref_primary_10_1080_23746149_2021_2022992
crossref_primary_10_1515_nanoph_2024_0154
crossref_primary_10_1002_adom_201800415
crossref_primary_10_1088_0256_307X_37_4_044205
crossref_primary_10_1002_adom_202000489
crossref_primary_10_1103_PhysRevA_111_033522
crossref_primary_10_1103_PhysRevB_109_115436
crossref_primary_10_1016_j_jnoncrysol_2021_121269
crossref_primary_10_1063_5_0204011
crossref_primary_10_1088_1367_2630_ab9fbf
crossref_primary_10_1021_acs_nanolett_1c01025
crossref_primary_10_1364_JOSAB_33_002414
crossref_primary_10_1063_1_4934757
crossref_primary_10_1364_OE_21_031138
crossref_primary_10_1002_mop_32328
crossref_primary_10_1002_ppap_202200129
crossref_primary_10_1038_lsa_2017_158
crossref_primary_10_1021_acs_nanolett_2c05030
crossref_primary_10_1039_C7NR01527E
crossref_primary_10_1364_OE_26_018320
crossref_primary_10_1002_adom_201800664
crossref_primary_10_1039_C9NR05053A
crossref_primary_10_1364_OE_498461
crossref_primary_10_1088_2040_8986_ac3961
crossref_primary_10_1364_OE_24_015965
crossref_primary_10_1098_rsta_2016_0312
crossref_primary_10_1364_OE_27_030971
crossref_primary_10_1016_j_ijleo_2023_170958
crossref_primary_10_1134_S1063783414030263
crossref_primary_10_1364_OE_22_008640
crossref_primary_10_1038_srep44488
crossref_primary_10_1103_PhysRevResearch_2_043021
crossref_primary_10_1080_08927022_2014_976636
crossref_primary_10_1021_acsphotonics_4c00837
crossref_primary_10_1021_acsphotonics_6b00050
crossref_primary_10_1063_1_5087054
crossref_primary_10_1364_OE_26_031523
crossref_primary_10_1364_JOSAB_356071
crossref_primary_10_3390_nano9060856
crossref_primary_10_1002_adom_202000033
crossref_primary_10_1038_s41467_020_17846_6
crossref_primary_10_1088_1361_6463_ac8084
crossref_primary_10_1021_acs_nanolett_1c04754
crossref_primary_10_1021_acsphotonics_5b00678
crossref_primary_10_1016_j_jcis_2024_07_112
crossref_primary_10_1364_OE_23_003209
crossref_primary_10_1002_lpor_202200472
crossref_primary_10_1002_smll_201500884
crossref_primary_10_1016_j_polymer_2018_06_003
crossref_primary_10_1088_0957_4484_27_12_125202
crossref_primary_10_1088_2040_8986_ad024f
crossref_primary_10_1515_nanoph_2020_0035
crossref_primary_10_1146_annurev_matsci_070616_124220
crossref_primary_10_1039_D1NA00630D
crossref_primary_10_1364_OPTICA_4_000814
crossref_primary_10_1134_S1062873824709899
crossref_primary_10_1021_acsphotonics_5b00697
crossref_primary_10_1364_OE_26_032624
crossref_primary_10_1103_PhysRevB_109_115426
crossref_primary_10_1364_OE_25_013822
crossref_primary_10_3390_nano10061242
crossref_primary_10_1002_adfm_202008246
crossref_primary_10_1039_D0TC00899K
crossref_primary_10_1021_acsami_6b05123
crossref_primary_10_1016_j_nanoms_2024_05_015
crossref_primary_10_1021_acsphotonics_6b00030
crossref_primary_10_1021_acs_nanolett_2c05084
crossref_primary_10_1021_acsphotonics_6b00036
crossref_primary_10_1021_acs_analchem_3c03490
crossref_primary_10_1021_acsphotonics_4c01905
crossref_primary_10_1038_ncomms4250
crossref_primary_10_1103_PhysRevA_97_023836
crossref_primary_10_1103_PhysRevApplied_1_044002
crossref_primary_10_1002_adma_201701352
crossref_primary_10_1002_lpor_201800130
crossref_primary_10_1088_1361_6633_ac45f9
crossref_primary_10_1002_adom_202301204
crossref_primary_10_1002_admt_202100528
crossref_primary_10_1109_TAP_2016_2551261
crossref_primary_10_1063_5_0204694
crossref_primary_10_1103_PhysRevB_106_195302
crossref_primary_10_1002_lpor_202200658
crossref_primary_10_1007_s12200_023_00102_2
crossref_primary_10_1364_OE_24_014451
crossref_primary_10_1038_srep08354
crossref_primary_10_1080_05704928_2018_1467438
crossref_primary_10_1364_OL_398551
crossref_primary_10_3367_UFNe_2017_03_038139
crossref_primary_10_1021_jp508289z
crossref_primary_10_1063_5_0138446
crossref_primary_10_3390_nano7070177
crossref_primary_10_1103_PhysRevLett_128_193901
crossref_primary_10_1002_lpor_201500089
crossref_primary_10_1038_s41565_018_0245_5
crossref_primary_10_1364_OE_26_007235
crossref_primary_10_1016_j_nanoen_2019_05_065
crossref_primary_10_1038_nnano_2015_304
crossref_primary_10_1016_j_jqsrt_2018_01_015
crossref_primary_10_1038_s44287_024_00136_4
crossref_primary_10_1038_s41598_018_27496_w
crossref_primary_10_1088_1674_1056_ac3503
crossref_primary_10_1021_acs_iecr_2c03232
crossref_primary_10_1007_s12274_022_4988_9
crossref_primary_10_1103_PhysRevA_99_041801
crossref_primary_10_1002_adma_202203889
crossref_primary_10_1002_smll_201900546
crossref_primary_10_1364_OL_386781
crossref_primary_10_1039_C6CP03303B
crossref_primary_10_1002_adom_201901570
crossref_primary_10_1002_pssa_201700295
crossref_primary_10_1002_ejic_202200665
crossref_primary_10_1038_srep10400
crossref_primary_10_1364_JOSAB_35_003049
crossref_primary_10_1063_5_0185413
crossref_primary_10_1021_acs_nanolett_5b02926
crossref_primary_10_1007_s00216_023_04512_1
crossref_primary_10_1002_lpor_201700132
crossref_primary_10_1109_JSEN_2018_2872846
crossref_primary_10_1364_OL_41_000033
crossref_primary_10_1016_j_nanoen_2014_11_054
crossref_primary_10_1016_j_vacuum_2024_113976
crossref_primary_10_1021_ph400073w
crossref_primary_10_1209_0295_5075_124_30006
crossref_primary_10_1364_OPTICA_3_001241
crossref_primary_10_1021_acs_jpcc_3c07393
crossref_primary_10_1002_adom_201400584
crossref_primary_10_1109_LPT_2016_2585678
crossref_primary_10_1038_srep04864
crossref_primary_10_1038_srep12491
crossref_primary_10_1088_1742_6596_1461_1_012201
crossref_primary_10_1021_acs_nanolett_5b02953
crossref_primary_10_1103_PhysRevResearch_6_043311
crossref_primary_10_1021_acsnano_6b03207
crossref_primary_10_1142_S0217984917503067
crossref_primary_10_1002_smll_202205057
crossref_primary_10_1088_1361_6528_abdceb
crossref_primary_10_1088_2040_8978_17_10_105612
crossref_primary_10_1007_s10043_018_00491_2
crossref_primary_10_1103_PhysRevA_88_053819
crossref_primary_10_1093_nsr_nwy017
crossref_primary_10_1002_lpor_201500041
crossref_primary_10_1021_acs_nanolett_7b00852
crossref_primary_10_1016_j_mattod_2017_06_007
crossref_primary_10_1039_C6RA27764K
crossref_primary_10_1063_1_4858969
crossref_primary_10_1021_acsphotonics_4c02194
crossref_primary_10_1515_nanoph_2016_0109
crossref_primary_10_1002_adpr_202000111
crossref_primary_10_1021_acsphotonics_7b00320
crossref_primary_10_1364_AO_485449
crossref_primary_10_1021_acsphotonics_7b00546
crossref_primary_10_1073_pnas_1601777113
crossref_primary_10_1021_acsami_5b08560
crossref_primary_10_1002_pssb_201900406
crossref_primary_10_1080_10426914_2014_984199
crossref_primary_10_3390_photonics9090606
crossref_primary_10_1002_adma_202001806
crossref_primary_10_1039_D2RA02008D
crossref_primary_10_1088_1361_6463_aae1eb
crossref_primary_10_3390_app9050958
crossref_primary_10_1364_OE_521725
crossref_primary_10_3390_app9102005
crossref_primary_10_1364_OME_5_000668
crossref_primary_10_1134_S0021364018110140
crossref_primary_10_1016_j_solmat_2023_112459
crossref_primary_10_1021_acsphotonics_8b01619
crossref_primary_10_1364_OPTICA_5_000954
crossref_primary_10_1021_acs_nanolett_7b01724
crossref_primary_10_1109_JPHOT_2016_2577714
crossref_primary_10_1039_C5NR06742A
crossref_primary_10_1103_PhysRevA_94_033825
crossref_primary_10_1021_acsphotonics_6b00436
crossref_primary_10_3390_app8010060
crossref_primary_10_1103_PhysRevE_91_042505
crossref_primary_10_1364_OL_44_002943
crossref_primary_10_1088_1402_4896_adb3e0
crossref_primary_10_1039_C8NR05692G
crossref_primary_10_1364_OE_26_013085
crossref_primary_10_1021_acsami_2c03263
crossref_primary_10_1021_acsnano_9b00019
crossref_primary_10_1364_OE_25_029155
crossref_primary_10_1002_adom_202302133
crossref_primary_10_1038_srep13535
crossref_primary_10_1088_1361_6528_ad6fa3
crossref_primary_10_1021_acsnano_9b04610
crossref_primary_10_1021_acsami_0c14248
crossref_primary_10_1063_5_0024274
crossref_primary_10_1103_PhysRevA_88_043817
crossref_primary_10_1016_j_tsf_2021_138595
crossref_primary_10_1039_C5NR07965A
crossref_primary_10_1016_j_rinp_2020_103094
crossref_primary_10_1002_adom_201500146
crossref_primary_10_1038_srep24847
crossref_primary_10_1070_QEL17318
crossref_primary_10_1364_OE_23_014734
crossref_primary_10_1364_OPTICA_389192
crossref_primary_10_1016_j_ijleo_2022_169822
crossref_primary_10_1039_D1CC01084K
crossref_primary_10_1088_1361_6528_ac7579
crossref_primary_10_1021_acs_nanolett_7b00416
crossref_primary_10_1364_OE_23_009157
crossref_primary_10_1021_acsphotonics_7b00741
crossref_primary_10_3390_nano12234259
crossref_primary_10_1038_s41598_018_38115_z
crossref_primary_10_1364_OE_24_019048
crossref_primary_10_1364_OL_38_002621
crossref_primary_10_1364_BOE_7_002781
crossref_primary_10_1021_acsphotonics_7b00509
crossref_primary_10_3390_photonics10111286
crossref_primary_10_1063_5_0198784
crossref_primary_10_1557_adv_2020_173
crossref_primary_10_1364_JOSAA_496501
crossref_primary_10_1088_1674_1056_24_10_104202
crossref_primary_10_3390_app6090239
crossref_primary_10_1002_adfm_202204328
crossref_primary_10_1021_acs_nanolett_5b02534
crossref_primary_10_1063_1_5132791
crossref_primary_10_1038_ncomms9097
crossref_primary_10_1039_D0MH00311E
crossref_primary_10_1088_2040_8986_ac486f
crossref_primary_10_1039_D0NR05248E
crossref_primary_10_1021_acs_nanolett_6b02759
crossref_primary_10_1039_C8CS00864G
crossref_primary_10_1016_j_jmmm_2017_11_049
crossref_primary_10_1364_AO_444728
crossref_primary_10_1021_acsphotonics_9b00833
crossref_primary_10_1038_ncomms4402
crossref_primary_10_1039_C5NR06964E
crossref_primary_10_1021_nn402736f
crossref_primary_10_1039_C7CP08458G
crossref_primary_10_1364_OL_39_006285
crossref_primary_10_1007_s13404_018_0230_7
crossref_primary_10_1016_j_jqsrt_2015_03_005
crossref_primary_10_1038_s41467_018_05579_6
crossref_primary_10_1364_JOSAB_424442
crossref_primary_10_1021_nl504442v
crossref_primary_10_1021_acsnano_2c04628
crossref_primary_10_1364_OL_44_000323
crossref_primary_10_1002_smtd_202401990
crossref_primary_10_1039_D5CP00012B
crossref_primary_10_1364_OE_503349
crossref_primary_10_1364_OE_25_014134
crossref_primary_10_3389_fphy_2021_691034
crossref_primary_10_1103_PhysRevLett_114_113902
crossref_primary_10_1038_srep18872
crossref_primary_10_1103_PhysRevLett_129_203601
crossref_primary_10_1364_OE_21_017520
crossref_primary_10_1515_nanoph_2017_0117
crossref_primary_10_1002_adem_201600213
crossref_primary_10_1364_AOP_510826
crossref_primary_10_1063_1_4952740
crossref_primary_10_1088_1361_6455_ac7597
crossref_primary_10_1364_OL_39_003142
crossref_primary_10_1002_lpor_202000448
crossref_primary_10_1016_j_optcom_2016_12_052
crossref_primary_10_1364_OE_24_015171
crossref_primary_10_1038_srep28448
crossref_primary_10_1063_5_0085487
crossref_primary_10_1002_adom_201400053
crossref_primary_10_1515_nanoph_2024_0700
crossref_primary_10_1016_j_apsusc_2019_143752
crossref_primary_10_1021_acsphotonics_7b01012
crossref_primary_10_3390_nano14181539
crossref_primary_10_1002_adom_201801167
crossref_primary_10_1364_AO_438659
crossref_primary_10_1038_s41467_020_16845_x
crossref_primary_10_1021_acsnano_7b02951
crossref_primary_10_1364_OL_40_002645
crossref_primary_10_1002_lpor_202100035
crossref_primary_10_1021_acssensors_6b00712
crossref_primary_10_3390_molecules26154421
crossref_primary_10_1126_science_aam8100
crossref_primary_10_1088_2040_8978_18_4_044021
crossref_primary_10_1021_acsphotonics_7b00395
crossref_primary_10_1103_PhysRevB_107_035417
crossref_primary_10_1021_jacs_4c03833
crossref_primary_10_1002_pssr_202200339
crossref_primary_10_1038_s41565_021_00852_0
crossref_primary_10_1021_acsphotonics_8b00809
crossref_primary_10_1016_j_rio_2021_100073
crossref_primary_10_1088_2040_8986_ac23a5
crossref_primary_10_1021_acsnano_1c06065
crossref_primary_10_1021_nl401877w
crossref_primary_10_34133_2022_9758460
crossref_primary_10_1038_s41598_020_72675_3
crossref_primary_10_1088_2040_8978_18_10_103001
crossref_primary_10_1103_PhysRevB_103_035402
crossref_primary_10_1117_1_JNP_10_036013
crossref_primary_10_1117_1_JNP_10_036015
crossref_primary_10_1039_C8NR00210J
crossref_primary_10_1364_OE_434287
crossref_primary_10_3367_UFNe_2017_12_038275
crossref_primary_10_1021_acs_chemmater_3c01200
crossref_primary_10_1021_nl4005018
crossref_primary_10_1364_OE_21_022076
crossref_primary_10_1088_0957_4484_27_23_234002
crossref_primary_10_1038_srep12288
crossref_primary_10_1038_srep14463
crossref_primary_10_1039_C6NR06504J
crossref_primary_10_1002_jrs_5572
crossref_primary_10_1021_acs_nanolett_8b01148
crossref_primary_10_1039_C8NA00328A
crossref_primary_10_1364_OE_27_022363
crossref_primary_10_1021_acsphotonics_7b01461
crossref_primary_10_1103_PhysRevLett_120_253902
crossref_primary_10_1063_1_4896631
crossref_primary_10_1063_5_0257020
crossref_primary_10_1021_acsphotonics_1c00375
crossref_primary_10_1002_adpr_202100326
crossref_primary_10_1515_nanoph_2022_0206
crossref_primary_10_1126_sciadv_1602487
crossref_primary_10_1038_s41524_020_00369_5
crossref_primary_10_1557_mrc_2018_46
crossref_primary_10_26599_NR_2025_94907132
crossref_primary_10_1002_lpor_202300314
crossref_primary_10_1038_s41467_023_38761_6
crossref_primary_10_1364_OPTICA_1_000250
crossref_primary_10_1002_adom_202202348
crossref_primary_10_1364_OE_27_004944
crossref_primary_10_1021_acsnano_4c13327
crossref_primary_10_1021_acsphotonics_7b01455
crossref_primary_10_1002_adma_202419076
crossref_primary_10_1103_PhysRevApplied_13_014003
crossref_primary_10_1038_s41598_023_27839_2
crossref_primary_10_1364_OE_26_013148
crossref_primary_10_1364_OME_414340
crossref_primary_10_1364_OE_385088
crossref_primary_10_1038_s41467_018_08057_1
crossref_primary_10_1016_j_optmat_2024_115450
crossref_primary_10_1088_2040_8986_abe7fa
crossref_primary_10_1103_PhysRevLett_118_173901
crossref_primary_10_3390_polym13234230
crossref_primary_10_1088_2040_8978_17_7_072001
crossref_primary_10_1109_JPROC_2019_2943183
crossref_primary_10_1088_0256_307X_31_8_087302
crossref_primary_10_1016_j_icheatmasstransfer_2018_05_023
crossref_primary_10_1021_acsami_1c01692
crossref_primary_10_1103_PhysRevApplied_13_014008
crossref_primary_10_1038_ncomms8042
crossref_primary_10_1021_jp5111482
crossref_primary_10_1063_5_0064509
crossref_primary_10_1021_acsnano_1c07114
crossref_primary_10_1088_2040_8978_17_12_125104
crossref_primary_10_1038_s41378_024_00666_9
crossref_primary_10_1103_PhysRevApplied_15_054016
crossref_primary_10_1002_nano_70002
crossref_primary_10_1364_AO_57_004771
crossref_primary_10_1038_s41377_021_00599_2
crossref_primary_10_1016_j_jqsrt_2019_106573
crossref_primary_10_1103_PhysRevA_109_033501
crossref_primary_10_1021_acs_chemrev_7b00225
crossref_primary_10_1364_OE_25_022158
crossref_primary_10_1021_acs_nanolett_0c00007
crossref_primary_10_1016_j_jlumin_2020_117713
crossref_primary_10_1063_1_5099533
crossref_primary_10_1364_OL_43_003393
crossref_primary_10_1364_OL_551312
crossref_primary_10_1021_acsphotonics_5b00148
crossref_primary_10_1038_s41377_022_01015_z
crossref_primary_10_1103_PhysRevA_109_033505
crossref_primary_10_1002_adom_201701176
crossref_primary_10_1364_OE_25_012357
crossref_primary_10_1364_OE_26_029074
crossref_primary_10_1002_adpr_202400162
crossref_primary_10_3390_ma7042784
crossref_primary_10_1002_smll_202204890
crossref_primary_10_1088_1402_4896_ac3fd3
crossref_primary_10_1088_2053_1591_aaa280
crossref_primary_10_1002_smll_202204883
crossref_primary_10_1515_nanoph_2020_0539
crossref_primary_10_1063_1_4885766
crossref_primary_10_1364_OE_22_031277
crossref_primary_10_1021_acsphotonics_0c00545
crossref_primary_10_1364_OME_8_000503
crossref_primary_10_1109_LPT_2016_2522409
crossref_primary_10_1364_OL_42_000835
crossref_primary_10_1063_5_0053008
crossref_primary_10_1021_acsaelm_9b00673
crossref_primary_10_1038_s41598_018_27268_6
crossref_primary_10_1016_j_rinp_2023_107102
crossref_primary_10_1364_OE_25_022375
crossref_primary_10_1103_PhysRevA_99_013852
crossref_primary_10_1021_acsanm_3c04689
crossref_primary_10_7498_aps_71_20212212
crossref_primary_10_1002_adom_202202140
crossref_primary_10_3103_S1541308X22040045
crossref_primary_10_1088_1612_202X_aa6c1a
crossref_primary_10_1103_PhysRevB_106_115201
crossref_primary_10_1103_PhysRevLett_125_073205
crossref_primary_10_1103_Physics_12_14
crossref_primary_10_1039_C6NR09702B
crossref_primary_10_1038_srep25113
crossref_primary_10_1088_1742_6596_1092_1_012022
crossref_primary_10_1088_2040_8986_aaa100
crossref_primary_10_1103_PhysRevB_102_155310
crossref_primary_10_1063_1_4907536
crossref_primary_10_1038_ncomms2934
crossref_primary_10_1063_5_0101317
crossref_primary_10_1021_acs_nanolett_4c01976
crossref_primary_10_1021_acssuschemeng_7b04870
crossref_primary_10_1103_PhysRevB_99_195444
crossref_primary_10_1109_JSTQE_2020_3001650
crossref_primary_10_1364_OE_23_022611
crossref_primary_10_1063_1_4873521
crossref_primary_10_1103_PhysRevA_96_043846
crossref_primary_10_1515_nanoph_2021_0295
crossref_primary_10_1364_OE_26_020051
crossref_primary_10_1103_PhysRevB_102_205428
crossref_primary_10_1364_JOSAB_34_000D36
crossref_primary_10_1021_acsphotonics_9b00388
crossref_primary_10_1038_srep38440
crossref_primary_10_29026_oea_2022_210093
crossref_primary_10_1103_PhysRevA_98_053804
crossref_primary_10_1016_j_physrep_2017_07_006
crossref_primary_10_1364_OE_395942
crossref_primary_10_1039_C8NR02259C
crossref_primary_10_1038_ncomms10362
crossref_primary_10_1088_1361_6633_ad8eda
crossref_primary_10_5802_crphys_31
crossref_primary_10_1088_2040_8986_aae3d0
crossref_primary_10_1126_sciadv_1600901
crossref_primary_10_1016_j_photonics_2018_04_001
crossref_primary_10_1364_JOSAB_34_000D18
crossref_primary_10_1039_D4MA00291A
crossref_primary_10_3390_cryst11080920
crossref_primary_10_1021_acsphotonics_7b01038
crossref_primary_10_1021_acsphotonics_3c01874
crossref_primary_10_1103_PhysRevResearch_6_013053
crossref_primary_10_1063_5_0089856
crossref_primary_10_1002_adom_202300526
crossref_primary_10_1109_TAP_2019_2927861
crossref_primary_10_1021_acsphotonics_0c00555
crossref_primary_10_1088_2399_6528_ab4b86
crossref_primary_10_3390_nano12193305
crossref_primary_10_1063_1_4919536
crossref_primary_10_1021_acsphotonics_8b00161
crossref_primary_10_3390_molecules26206106
crossref_primary_10_1103_PhysRevLett_121_193902
crossref_primary_10_1103_PhysRevLett_121_193901
crossref_primary_10_1039_D0NR07010F
crossref_primary_10_1021_acs_nanolett_1c01570
crossref_primary_10_1002_adom_202301850
crossref_primary_10_1515_nanoph_2018_0033
crossref_primary_10_1016_j_optcom_2018_05_075
crossref_primary_10_1021_acsnano_9b07117
crossref_primary_10_3390_nano12020220
crossref_primary_10_1364_OE_25_001495
crossref_primary_10_1021_acs_nanolett_6b02076
crossref_primary_10_1364_OE_24_002047
crossref_primary_10_3390_nano13030596
crossref_primary_10_1364_OL_42_001776
crossref_primary_10_1021_acsomega_6b00105
crossref_primary_10_1002_adom_201901233
crossref_primary_10_1016_j_aeue_2013_07_003
crossref_primary_10_1038_s41467_022_33088_0
crossref_primary_10_1093_nsr_nwaa040
crossref_primary_10_1002_ppsc_202000106
crossref_primary_10_1021_acsphotonics_4c01831
crossref_primary_10_1063_5_0058768
crossref_primary_10_18287_2412_6179_CO_744
crossref_primary_10_1016_j_spmi_2017_07_048
crossref_primary_10_1002_adom_201800783
crossref_primary_10_1002_adom_201800784
crossref_primary_10_1021_acsnano_3c02766
crossref_primary_10_1364_OL_43_005186
crossref_primary_10_1109_LPT_2015_2450495
crossref_primary_10_1002_adma_201505346
crossref_primary_10_1002_adom_201900396
crossref_primary_10_1364_OSAC_2_000507
crossref_primary_10_3762_bjnano_13_73
crossref_primary_10_1088_1361_6528_ac1a44
crossref_primary_10_1002_adma_202211363
crossref_primary_10_1109_JSTQE_2016_2616447
crossref_primary_10_1088_1742_6596_2858_1_012012
crossref_primary_10_1088_2040_8978_17_10_105106
crossref_primary_10_1364_OE_518062
crossref_primary_10_1002_lpor_201800032
crossref_primary_10_1002_lpor_201800037
crossref_primary_10_1557_adv_2018_510
crossref_primary_10_1088_2040_8978_18_9_093005
crossref_primary_10_7567_1882_0786_ab0182
crossref_primary_10_1021_acsphotonics_0c00117
crossref_primary_10_1364_OE_22_016178
crossref_primary_10_1038_srep22546
crossref_primary_10_1364_JOSAB_34_000653
crossref_primary_10_1186_s11671_018_2796_7
crossref_primary_10_7567_1882_0786_ab2137
crossref_primary_10_1103_PhysRevB_92_245419
crossref_primary_10_1039_C6TC01635A
crossref_primary_10_1515_nanoph_2024_0240
crossref_primary_10_1016_j_optcom_2021_127453
crossref_primary_10_1038_nphoton_2017_39
crossref_primary_10_1038_s41598_021_01644_1
crossref_primary_10_1021_acs_nanolett_6b03525
crossref_primary_10_1088_2040_8986_ab490d
crossref_primary_10_3390_nano9010030
crossref_primary_10_1038_ncomms11286
crossref_primary_10_1063_1_5138600
crossref_primary_10_1016_j_jqsrt_2021_107571
crossref_primary_10_1021_acs_chemrev_2c00011
crossref_primary_10_1515_nanoph_2016_0032
crossref_primary_10_1016_j_optcom_2015_05_054
crossref_primary_10_1103_PhysRevApplied_14_014067
crossref_primary_10_1038_s41566_018_0155_y
crossref_primary_10_1021_jp408865p
crossref_primary_10_1088_1361_6633_aa8732
crossref_primary_10_1038_nnano_2016_224
crossref_primary_10_1364_OE_23_002293
crossref_primary_10_1088_1361_6463_ab79dd
crossref_primary_10_1088_2040_8978_15_7_073001
crossref_primary_10_1002_lpor_201800005
crossref_primary_10_1021_acs_nanolett_5b05057
crossref_primary_10_1103_PhysRevResearch_5_023192
crossref_primary_10_1021_acsphotonics_5b00105
crossref_primary_10_1002_adom_201900591
crossref_primary_10_1364_OE_26_030393
crossref_primary_10_1088_0022_3727_47_21_213001
crossref_primary_10_1103_PhysRevE_104_024223
crossref_primary_10_1364_OL_523793
crossref_primary_10_1002_lpor_201400188
crossref_primary_10_1364_AO_435987
crossref_primary_10_1021_acs_nanolett_9b02540
crossref_primary_10_1364_OE_486386
crossref_primary_10_1515_nanoph_2023_0887
crossref_primary_10_1364_OE_21_029365
crossref_primary_10_1021_nl403643v
crossref_primary_10_1021_acsanm_9b00987
crossref_primary_10_1063_1_4977570
crossref_primary_10_1016_j_progsurf_2020_100584
crossref_primary_10_1021_acsphotonics_5b00117
crossref_primary_10_1088_1742_6596_690_1_012020
crossref_primary_10_1088_1742_6596_690_1_012021
crossref_primary_10_1140_epjd_s10053_022_00543_y
crossref_primary_10_1557_adv_2019_357
crossref_primary_10_1364_OE_25_000431
crossref_primary_10_1016_j_colsurfa_2023_131525
crossref_primary_10_1364_OE_27_016143
crossref_primary_10_1021_acsphotonics_5b00132
crossref_primary_10_1088_1361_6463_ac394c
crossref_primary_10_1364_OE_25_015927
crossref_primary_10_1002_adfm_201910259
crossref_primary_10_1364_OL_42_002639
crossref_primary_10_1002_adma_201502298
crossref_primary_10_1088_1674_1056_23_4_047806
crossref_primary_10_1364_PRJ_528976
crossref_primary_10_1109_JSTQE_2014_2345885
crossref_primary_10_1007_s11468_017_0662_6
crossref_primary_10_1016_j_physleta_2020_126696
crossref_primary_10_1021_nl5003526
crossref_primary_10_1021_acsphotonics_7b00688
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122355
crossref_primary_10_1021_acs_nanolett_4c03680
crossref_primary_10_1021_acsphotonics_8b00895
crossref_primary_10_1117_1_AP_1_2_024002
crossref_primary_10_1039_D0NR01178A
crossref_primary_10_1002_adom_201700761
crossref_primary_10_1038_s41598_017_15192_0
crossref_primary_10_1109_JSEN_2023_3347223
crossref_primary_10_1002_lpor_202300584
crossref_primary_10_1364_OE_24_011420
crossref_primary_10_1021_acs_nanolett_7b00966
crossref_primary_10_1364_OSAC_425189
crossref_primary_10_1088_1361_6528_aae4d2
crossref_primary_10_3788_AOS230854
crossref_primary_10_1364_OE_23_028808
crossref_primary_10_1021_acs_jpcc_2c08744
crossref_primary_10_1016_j_photonics_2022_101066
crossref_primary_10_1038_srep02311
crossref_primary_10_1038_s41598_017_11401_y
crossref_primary_10_1063_1_5018783
crossref_primary_10_3389_fphy_2020_586087
crossref_primary_10_1002_adom_201600903
crossref_primary_10_1002_adom_201600902
crossref_primary_10_1364_OE_21_029592
crossref_primary_10_1364_OE_447827
crossref_primary_10_1002_adma_201502917
crossref_primary_10_1364_OE_25_010853
crossref_primary_10_1038_ncomms4104
crossref_primary_10_1016_j_optcom_2017_08_064
crossref_primary_10_1364_JOSAB_424589
crossref_primary_10_3788_LOP220768
crossref_primary_10_1103_PhysRevApplied_8_054024
crossref_primary_10_1016_j_molliq_2021_117116
crossref_primary_10_3390_photonics9040267
crossref_primary_10_1021_acsphotonics_7b00423
crossref_primary_10_1021_acsphotonics_6b00570
crossref_primary_10_1364_OL_38_001857
crossref_primary_10_1002_adma_202007236
crossref_primary_10_1103_PhysRevA_93_043828
crossref_primary_10_35848_1882_0786_ac1b0e
crossref_primary_10_1038_s41598_022_11733_4
crossref_primary_10_1364_OE_22_030833
crossref_primary_10_1209_0295_5075_133_27001
crossref_primary_10_1364_PRJ_503661
crossref_primary_10_1021_jp4027018
crossref_primary_10_1103_PhysRevB_95_165426
crossref_primary_10_1063_1_5082557
crossref_primary_10_1021_acsphotonics_7b01520
crossref_primary_10_1515_nanoph_2019_0321
crossref_primary_10_1016_j_nimb_2020_03_001
crossref_primary_10_1364_OE_22_006519
crossref_primary_10_1364_OE_24_020580
crossref_primary_10_1002_adma_201704338
crossref_primary_10_1021_acsphotonics_2c02005
crossref_primary_10_1021_acsnano_8b09198
crossref_primary_10_1038_ncomms8915
crossref_primary_10_3390_nano11040949
crossref_primary_10_1021_acs_nanolett_0c03295
crossref_primary_10_1364_OE_26_028891
crossref_primary_10_1021_acs_nanolett_5b01752
crossref_primary_10_1038_srep22136
crossref_primary_10_1016_j_physb_2017_10_128
crossref_primary_10_1038_s41467_020_18793_y
crossref_primary_10_1364_OL_44_001972
crossref_primary_10_1103_PhysRevB_103_195419
crossref_primary_10_1021_acs_jpcc_5b10045
crossref_primary_10_1103_PhysRevLett_120_117402
crossref_primary_10_1021_acs_nanolett_6b01519
crossref_primary_10_1088_0034_4885_79_7_076401
crossref_primary_10_1103_PhysRevResearch_5_023116
crossref_primary_10_1002_adma_202103946
crossref_primary_10_1016_j_revip_2021_100051
crossref_primary_10_1021_nl403681g
crossref_primary_10_1007_s11082_016_0875_5
crossref_primary_10_1063_1_5109460
crossref_primary_10_3390_photonics9010006
crossref_primary_10_1002_lpor_201500102
crossref_primary_10_1364_OME_9_001105
crossref_primary_10_3390_mi7110198
crossref_primary_10_1016_j_physleta_2021_127463
crossref_primary_10_1039_D2MA00052K
crossref_primary_10_1038_s41467_019_12899_8
crossref_primary_10_1364_OL_478419
crossref_primary_10_1515_nanoph_2021_0612
crossref_primary_10_1002_lpor_202401093
crossref_primary_10_1021_nn507148z
crossref_primary_10_1364_OE_21_026285
crossref_primary_10_1021_acsnano_3c08270
crossref_primary_10_1002_adom_202001670
crossref_primary_10_1002_adom_201700332
crossref_primary_10_1021_acs_nanolett_7b02952
crossref_primary_10_1364_PRJ_538704
crossref_primary_10_1109_JPHOT_2018_2871839
crossref_primary_10_1088_1361_6528_aa5e3c
crossref_primary_10_1371_journal_pone_0127331
crossref_primary_10_1002_adfm_201801958
crossref_primary_10_1021_acsomega_0c01433
crossref_primary_10_1039_C8NH00198G
crossref_primary_10_1063_1_5070135
crossref_primary_10_1016_j_xcrp_2021_100430
crossref_primary_10_1038_s41467_020_17743_y
crossref_primary_10_1364_OE_21_027587
crossref_primary_10_1021_acsphotonics_9b00722
crossref_primary_10_1038_srep34775
crossref_primary_10_3390_app8020184
crossref_primary_10_1103_PhysRevB_88_241408
crossref_primary_10_1002_lpor_202301210
crossref_primary_10_1155_2017_2361042
crossref_primary_10_1364_OME_7_002299
crossref_primary_10_1002_adom_202302276
crossref_primary_10_1016_j_jqsrt_2021_107514
crossref_primary_10_1021_acsnano_6b06874
crossref_primary_10_1364_OE_378940
crossref_primary_10_1088_2040_8986_ab806f
crossref_primary_10_1016_j_mser_2020_100563
crossref_primary_10_1063_5_0085940
crossref_primary_10_1103_PhysRevB_88_205106
crossref_primary_10_1063_1_4898684
crossref_primary_10_1007_s11801_021_0001_1
crossref_primary_10_1016_j_optmat_2024_114895
crossref_primary_10_1364_OE_434349
crossref_primary_10_1364_AO_54_003986
crossref_primary_10_1002_lpor_202000538
crossref_primary_10_1021_acsaom_4c00187
crossref_primary_10_1016_j_jqsrt_2022_108348
crossref_primary_10_1038_ncomms9069
crossref_primary_10_3390_mi13071025
crossref_primary_10_1109_LPT_2024_3511271
crossref_primary_10_1063_1_4901264
crossref_primary_10_1021_acsnano_0c05656
crossref_primary_10_1088_1402_4896_abf8eb
crossref_primary_10_1109_JSTQE_2019_2902906
crossref_primary_10_1007_s11082_022_03906_2
crossref_primary_10_1007_s11801_021_9200_z
crossref_primary_10_1021_acs_nanolett_1c00979
crossref_primary_10_1063_1_5095467
crossref_primary_10_1134_S0030400X17050125
crossref_primary_10_1364_OE_411110
crossref_primary_10_1002_lpor_202401215
crossref_primary_10_1063_5_0053772
crossref_primary_10_1063_1_5046154
crossref_primary_10_1016_j_nanoen_2015_08_014
crossref_primary_10_1364_OE_26_012344
crossref_primary_10_1021_acs_nanolett_0c04314
crossref_primary_10_1364_OME_397720
crossref_primary_10_1021_acsnano_8b07826
crossref_primary_10_1109_JPHOT_2021_3081100
crossref_primary_10_1002_lpor_201600055
crossref_primary_10_1186_s40580_017_0133_y
crossref_primary_10_1016_j_optcom_2020_126646
crossref_primary_10_1002_adom_201801070
crossref_primary_10_1021_acsphotonics_6b00979
crossref_primary_10_1063_1_4914117
crossref_primary_10_1021_jp512003b
crossref_primary_10_1109_LAWP_2021_3110664
crossref_primary_10_1103_PhysRevE_106_035207
crossref_primary_10_1021_acs_jpcc_6b07902
crossref_primary_10_1063_1_4997301
crossref_primary_10_1364_OL_40_000585
crossref_primary_10_1016_j_optmat_2023_114171
crossref_primary_10_1021_acs_nanolett_7b03613
crossref_primary_10_1039_C5NR07871G
crossref_primary_10_1364_OE_23_021477
crossref_primary_10_1364_JOSAB_512113
crossref_primary_10_1016_j_colsurfa_2020_124430
crossref_primary_10_1364_OE_26_001000
crossref_primary_10_1155_2019_6532967
crossref_primary_10_1021_acsanm_4c04389
crossref_primary_10_1063_1_5129100
crossref_primary_10_1364_OPTICA_4_000139
crossref_primary_10_3390_cryst11111320
crossref_primary_10_1002_lpor_202300850
crossref_primary_10_1002_adom_201900735
crossref_primary_10_1002_lpor_202300855
crossref_primary_10_1063_1_4916997
crossref_primary_10_1103_PhysRevA_103_043703
crossref_primary_10_3390_photonics2030773
crossref_primary_10_1021_acsphotonics_7b01598
crossref_primary_10_1364_OME_396419
crossref_primary_10_1002_adma_201901364
crossref_primary_10_1021_acsphotonics_7b00007
crossref_primary_10_1038_nnano_2013_59
crossref_primary_10_1051_epjconf_201713201003
crossref_primary_10_1021_acsami_6b15726
crossref_primary_10_1021_acs_nanolett_9b05276
crossref_primary_10_1063_1_4949007
crossref_primary_10_1103_PhysRevMaterials_4_125202
crossref_primary_10_1021_acs_chemmater_7b02291
crossref_primary_10_1021_acsphotonics_9b01515
crossref_primary_10_1002_adom_201701253
crossref_primary_10_1098_rsta_2016_0069
crossref_primary_10_1021_acs_nanolett_7b04727
crossref_primary_10_1038_ncomms13910
crossref_primary_10_1051_epjam_2019016
crossref_primary_10_1021_acsphotonics_7b01343
crossref_primary_10_1038_s41467_018_05394_z
crossref_primary_10_1016_j_optcom_2013_12_010
crossref_primary_10_1063_5_0246993
crossref_primary_10_1364_OSAC_2_000032
crossref_primary_10_1021_nn505606x
crossref_primary_10_1021_jacs_4c09274
crossref_primary_10_1364_OL_381431
crossref_primary_10_1515_nanoph_2019_0505
crossref_primary_10_1021_acs_nanolett_5b03679
crossref_primary_10_1016_j_bios_2016_06_002
crossref_primary_10_1364_OE_27_025502
crossref_primary_10_3788_COL202321_073601
crossref_primary_10_1039_C4NR01231C
crossref_primary_10_1021_acsnano_2c04721
crossref_primary_10_1016_j_optcom_2019_07_006
crossref_primary_10_1007_s11082_017_1035_2
crossref_primary_10_1038_s41598_018_35575_1
crossref_primary_10_1016_j_matdes_2019_108407
crossref_primary_10_1364_OL_43_001275
crossref_primary_10_1002_lpor_202100114
crossref_primary_10_1016_j_optcom_2022_128597
crossref_primary_10_1063_1_5087402
crossref_primary_10_1088_2040_8978_16_11_114005
crossref_primary_10_1515_nanoph_2021_0315
crossref_primary_10_1103_PhysRevB_102_165419
crossref_primary_10_1021_acsami_9b16683
crossref_primary_10_1021_acs_chemrev_1c00294
crossref_primary_10_1515_nanoph_2022_0308
crossref_primary_10_1016_j_snb_2017_07_045
crossref_primary_10_1021_acs_chemrev_6b00365
crossref_primary_10_1186_s40486_023_00184_9
crossref_primary_10_1088_1367_2630_aa6a33
crossref_primary_10_1126_sciadv_aav7588
crossref_primary_10_1364_OME_6_000640
crossref_primary_10_3390_nano9040536
crossref_primary_10_1021_acs_nanolett_5b00181
crossref_primary_10_3390_nano8010009
crossref_primary_10_1002_smtd_201600064
crossref_primary_10_1016_j_pmatsci_2017_02_004
crossref_primary_10_1038_lsa_2017_39
crossref_primary_10_1002_lpor_201700168
crossref_primary_10_1515_nanoph_2023_0268
crossref_primary_10_1088_1742_6596_1092_1_012110
crossref_primary_10_1021_acsphotonics_5b00261
crossref_primary_10_1016_j_optcom_2021_127606
crossref_primary_10_1088_2040_8986_abdf34
crossref_primary_10_1002_adom_201701057
crossref_primary_10_1063_1_4968806
crossref_primary_10_1088_1361_6528_aa8c2a
crossref_primary_10_1364_JOSAA_37_000070
crossref_primary_10_1364_OE_24_016309
crossref_primary_10_1364_OE_22_010693
crossref_primary_10_1063_1_5087422
crossref_primary_10_1088_1612_202X_ab17d0
crossref_primary_10_1140_epjp_s13360_022_02427_x
crossref_primary_10_1103_PhysRevResearch_2_013225
crossref_primary_10_1063_1_5047647
crossref_primary_10_1039_C8NR00594J
crossref_primary_10_1002_2017RS006274
crossref_primary_10_1021_acsami_9b22684
crossref_primary_10_1088_1361_6528_ad2f76
crossref_primary_10_1021_acs_jpclett_0c02286
crossref_primary_10_1021_acsami_8b03718
crossref_primary_10_1103_PhysRevLett_121_227403
crossref_primary_10_1021_ph500419a
crossref_primary_10_1038_s41598_019_43545_4
crossref_primary_10_1364_OE_22_023749
crossref_primary_10_1126_sciadv_1501536
crossref_primary_10_1021_nn502469r
crossref_primary_10_1364_OE_21_023007
crossref_primary_10_15407_ujpe61_03_0255
crossref_primary_10_1364_OPTICA_384138
crossref_primary_10_3390_nano12152715
crossref_primary_10_1557_adv_2018_112
crossref_primary_10_1002_adom_202001081
crossref_primary_10_1557_adv_2019_152
crossref_primary_10_1039_D4NR03860F
crossref_primary_10_1063_1_5087204
crossref_primary_10_1088_2040_8986_abb58f
crossref_primary_10_1515_nanoph_2018_0107
crossref_primary_10_1109_TIM_2022_3193171
crossref_primary_10_1038_s41598_018_26359_8
crossref_primary_10_1021_acs_nanolett_5b03026
crossref_primary_10_1103_PhysRevApplied_13_021002
crossref_primary_10_1002_adom_201800366
crossref_primary_10_15541_jim20180440
crossref_primary_10_1364_OE_21_008091
crossref_primary_10_1364_OE_398903
crossref_primary_10_1063_1_4954675
crossref_primary_10_1088_1742_6596_741_1_012156
crossref_primary_10_1515_nanoph_2023_0030
crossref_primary_10_1103_PhysRevApplied_23_014001
crossref_primary_10_1364_OE_525858
crossref_primary_10_1038_s41598_018_30935_3
crossref_primary_10_1063_1_4943785
crossref_primary_10_1002_adom_202002192
crossref_primary_10_1103_PhysRevApplied_6_064016
crossref_primary_10_1088_1361_6641_ab8840
crossref_primary_10_1103_PhysRevB_109_155405
crossref_primary_10_1002_lpor_201900265
crossref_primary_10_1002_adom_201701094
crossref_primary_10_1364_PRJ_7_001296
crossref_primary_10_1126_sciadv_aax0939
crossref_primary_10_1021_acsphotonics_7b01186
crossref_primary_10_1364_JOSAB_34_001524
crossref_primary_10_1364_OE_25_00A824
crossref_primary_10_1038_srep03063
crossref_primary_10_1126_science_aag2472
crossref_primary_10_1002_adfm_201700580
crossref_primary_10_1038_s41598_022_09315_5
crossref_primary_10_1002_adpr_202100286
crossref_primary_10_1016_j_optcom_2018_11_055
crossref_primary_10_1088_1674_1056_23_8_088102
crossref_primary_10_1364_OPTICA_3_000093
crossref_primary_10_1021_acsphotonics_0c01319
crossref_primary_10_1364_OE_537608
crossref_primary_10_1038_s41598_022_25542_2
crossref_primary_10_1002_adom_202100112
crossref_primary_10_1002_lpor_201900250
crossref_primary_10_1016_j_actamat_2016_08_004
crossref_primary_10_1002_aenm_201601122
crossref_primary_10_1038_srep04126
crossref_primary_10_1021_acsphotonics_6b00096
crossref_primary_10_1364_AO_57_003959
crossref_primary_10_1021_acsanm_1c04308
crossref_primary_10_1021_acsanm_3c01249
crossref_primary_10_1063_1_5087248
crossref_primary_10_1515_nanoph_2021_0155
crossref_primary_10_1515_nanoph_2021_0158
crossref_primary_10_1103_PhysRevApplied_17_014008
crossref_primary_10_1038_s41467_017_01614_0
crossref_primary_10_1063_5_0012827
crossref_primary_10_1038_lsa_2016_197
crossref_primary_10_1063_5_0191112
crossref_primary_10_1021_acs_nanolett_0c02313
crossref_primary_10_1088_1361_6633_aa518f
crossref_primary_10_1364_OE_27_028194
crossref_primary_10_1134_S0030400X15100240
crossref_primary_10_1016_j_cpc_2018_06_017
crossref_primary_10_1103_PhysRevA_103_043505
Cites_doi 10.1117/1.3603941
10.1364/OE.20.013636
10.1021/nn301398a
10.1103/PhysRevLett.91.227402
10.1017/CBO9780511813535
10.1063/1.4719209
10.1515/nanoph-2012-0005
10.1364/OE.17.018820
10.1103/PhysRevB.77.115419
10.1038/nphoton.2011.154
10.1021/nl301594s
10.1038/ncomms1490
10.1364/OE.18.021198
10.1103/PhysRevB.62.R16356
10.1103/PhysRevB.82.045404
10.1126/science.1191922
10.1021/cr1002672
10.1002/lpor.201200021
10.1007/978-3-540-45273-7
10.1016/S1369-7021(09)70318-9
10.1364/JOSAA.28.000054
10.1364/OE.20.020376
10.1364/JOSA.73.000765
10.1021/nl900208z
10.1038/ncomms2167
10.1364/JOSAB.26.00B130
10.1038/nphoton.2010.237
10.1134/S0021364011200070
10.1364/OE.20.020599
10.1103/PhysRevA.45.6008
10.1364/OE.19.004815
10.1103/RevModPhys.82.2257
10.1103/PhysRevB.84.235429
10.1038/ncomms1268
10.1007/s00340-011-4727-5
10.1038/srep00492
10.1364/AOP.1.000438
10.1038/nmat852
10.1021/nn2009112
10.1021/nn202086u
10.1038/nmat2810
ContentType Journal Article
Copyright Springer Nature Limited 2013
Copyright Nature Publishing Group Feb 2013
Copyright_xml – notice: Springer Nature Limited 2013
– notice: Copyright Nature Publishing Group Feb 2013
DBID AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
DOI 10.1038/ncomms2538
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest - Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
ExternalDocumentID 2903632411
23443555
10_1038_ncomms2538
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
39C
3V.
4.4
53G
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABAWZ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BAPOH
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EJD
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
5VS
CAG
COF
KQ8
LGEZI
LOTEE
NADUK
NPM
NXXTH
PJZUB
PPXIY
PQGLB
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
RC3
SOI
7X8
PUEGO
ID FETCH-LOGICAL-c453t-a6bce415bdeb9c5c65ec03a723646231d7e8a9454841692fa8964c3917496b963
IEDL.DBID M48
ISSN 2041-1723
IngestDate Fri Sep 05 11:44:48 EDT 2025
Wed Aug 13 06:31:30 EDT 2025
Mon Jul 21 06:04:46 EDT 2025
Tue Jul 01 04:28:07 EDT 2025
Thu Apr 24 23:09:45 EDT 2025
Fri Feb 21 02:39:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c453t-a6bce415bdeb9c5c65ec03a723646231d7e8a9454841692fa8964c3917496b963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.proquest.com/docview/1313235547?pq-origsite=%requestingapplication%
PMID 23443555
PQID 1313235547
PQPubID 546298
ParticipantIDs proquest_miscellaneous_1313426107
proquest_journals_1313235547
pubmed_primary_23443555
crossref_citationtrail_10_1038_ncomms2538
crossref_primary_10_1038_ncomms2538
springer_journals_10_1038_ncomms2538
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20130226
PublicationDateYYYYMMDD 2013-02-26
PublicationDate_xml – month: 2
  year: 2013
  text: 20130226
  day: 26
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2013
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References FilonovDSExperimental verification of the concept of all-dielectric nanoantennasAppl. Phys. Lett.20121002011132012ApPhL.100t1113F10.1063/1.4719209
Rahmani, M., Luk’yanchuk, B. & Hong, M. . Fano resonance in novel plasmonic nanostructures. Las. Photon. Rev. doi:10.1002/lpor.201200021 (2012).
DregelyD3D optical Yagi–Uda nanoantenna arrayNature Comm.2011226710.1038/ncomms1268
KuznetsovAIKiyanRChichkovBNLaser fabrication of 2D and 3D microstructures from metal nanoparticlesOpt. Expr.20101821198212031:CAS:528:DC%2BC3cXht1CktrfO2010OExpr..1821198K10.1364/OE.18.021198
NovotnyLvan HulstNFAntennas for lightNature Photon.2011583901:CAS:528:DC%2BC3MXhtlOjtrs%3D2011NaPho...5...83N10.1038/nphoton.2010.237
KrasnokAEMiroshnichenkoAEBelovPAKivsharYSHuygens optical elements and Yagi–Uda nanoantennas based on dielectric nanoparticlesJETP Lett.2011945935981:CAS:528:DC%2BC3MXhs1OltrbM10.1134/S0021364011200070
EvlyukhinABReinhardtCSeidelALuk’yanchukBSChichkovBNOptical response features of Si-nanoparticle arraysPhys. Rev. B2010820454042010PhRvB..82d5404E10.1103/PhysRevB.82.045404
MirinNAHalasNJLight-bending nanoparticlesNano Lett.20099125512591:CAS:528:DC%2BD1MXitFKisrs%3D2009NanoL...9.1255M10.1021/nl900208z
LiKStockmanMIBergmanDJSelf-similar chain of metal nanospheres as an efficient nanolensPhys. Rev. Lett.2003912274022003PhRvL..91v7402L10.1103/PhysRevLett.91.227402
BrongersmaMLHartmanJWAtwaterHAElectromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limitPhys. Rev. B200062R16356R163591:CAS:528:DC%2BD3MXptVc%3D2000PhRvB..6216356B10.1103/PhysRevB.62.R16356
Gomez-MedinaRElectric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forcesJ. Nanophoton.201150535122011JNano...5.3512G10.1117/1.3603941
KuznetsovAILaser fabrication of large-scale nanoparticle arrays for sensing applicationsACS Nano.20115484348491:CAS:528:DC%2BC3MXlslKhtLs%3D10.1021/nn2009112
RollyBStoutBBonodNBoosting the directivity of optical antennas with magnetic and electric dipolar resonant particlesOpt. Expr.20122020376203862012OExpr..2020376R10.1364/OE.20.020376
KingNSAngle- and spectral-dependent light scattering from plasmonic nanocupsACS Nano.20115725472621:CAS:528:DC%2BC3MXptlemu7s%3D10.1021/nn202086u
ZhaoQZhouJZhangFLippensDMie resonance-based dielectric metamaterialsMater. Today20091260691:CAS:528:DC%2BC3cXlvVGqtLY%3D10.1016/S1369-7021(09)70318-9
CurtoAGUnidirectional emission of a quantum dot coupled to a nanoantennaScience20103299309331:CAS:528:DC%2BC3cXhtVaqur%2FJ2010Sci...329..930C10.1126/science.1191922
EvlyukhinABOptical properties of spherical gold mesoparticlesAppl. Phys. B20121068418481:CAS:528:DC%2BC38XjvVSrt7g%3D2012ApPhB.106..841E10.1007/s00340-011-4727-5
Bohren, C. F. & Huffman, D. R. . Absorption and Scattering of Light by Small Particles Wiley (1983).
KuznetsovAIMiroshnichenkoAEFuYHZhangJBLuk’yanchukBMagnetic lightSci. Rep.201224922012NatSR...2E.492K10.1038/srep00492
BharadwajPDeutschBNovotnyLOptical antennasAdv. Opt. Photon.2009143848310.1364/AOP.1.000438
KerkerMWangDGilesGElectromagnetic scattering by magnetic spheresJ. Opt. Soc. Am.1983737657671983OSAJ...73..765K10.1364/JOSA.73.000765
DaiJCajkoFTsukermanIStockmanMIElectrodynamic effects in plasmonic nanolensesPhys. Rev. B2008771154192008PhRvB..77k5419D10.1103/PhysRevB.77.115419
GianniniVFernandez-DominguezAIHeckSCMaierSAPlasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemittersChem. Rev.2011111388839121:CAS:528:DC%2BC3MXjsleqsLs%3D10.1021/cr1002672
KrasnokAEMiroshnichenkoAEBelovPAKivsharYSAll-dielectric optical nanoantennasOpt. Express20122020599206042012OExpr..2020599K10.1364/OE.20.020599
Nieto-VesperinasMGomez-MedinaRSaenzJJAngle-suppressed scattering and optical forces on submicrometer dielectric particlesJ. Opt. Soc. Am. A20112854601:STN:280:DC%2BC3M%2FosVGmug%3D%3D2011JOSAA..28...54N10.1364/JOSAA.28.000054
MiroshnichenkoAEFlachSKivsharYSFano resonances in nanoscale structuresRev. Mod. Phys.201082225722981:CAS:528:DC%2BC3cXht1Ciur%2FK2010RvMP...82.2257M10.1103/RevModPhys.82.2257
KuznetsovAILaser-induced transfer of metallic nanodroplets for plasmonics and metamaterial applicationsJ. Opt. Soc. Am. B200926B130B1381:CAS:528:DC%2BC3cXhslGhtw%3D%3D10.1364/JOSAB.26.00B130
SoukoulisCMWegenerMPast achievements and future challenges in the development of three-dimensional photonic metamaterialsNature Photon.201155235301:CAS:528:DC%2BC3MXhtV2qurjL2011NaPho...5..523S10.1038/nphoton.2011.154
Garcia-EtxarriAStrong magnetic response of submicron silicon particles in the infraredOpt. Express201119481548261:CAS:528:DC%2BC3MXjvVCksL8%3D2011OExpr..19.4815G10.1364/OE.19.004815
EvlyukhinABReinhardtCChichkovBNMultipole light scattering by nonspherical nanoparticles in the discrete dipole approximationPhys. Rev. B2011842354292011PhRvB..84w5429E10.1103/PhysRevB.84.235429
MaksymovISStaudeIMiroshnichenkoAEKivsharYSOptical Yagi-Uda nanoantennasNanophotonics2012165812012Nanop...1...65M10.1515/nanoph-2012-0005
SchmidtMKDielectric antennas—a suitable platform for controlling magnetic dipolar emissionOpt. Expr.20122013636136501:STN:280:DC%2BC38jjt1alsQ%3D%3D2012OExpr..2013636S10.1364/OE.20.013636
Kawata, S., Ohtsu, M. & Irie, M. . Nano-Optics Springer-Verlag (2002).
VideenGBickelWSLight scattering resonances in small spheresPhys. Rev. A199245600860121:STN:280:DC%2BC2sjpsFWqsg%3D%3D1992PhRvA..45.6008V10.1103/PhysRevA.45.6008
LiuWMiroshnichenkoAENeshevDNKivsharYSBroadband unidirectional scattering by magneto-electric core-shell nanoparticlesACS Nano.20126548954971:CAS:528:DC%2BC38Xmt1ers7w%3D10.1021/nn301398a
GeffrinJMMagnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphereNature Comm.2012311711:STN:280:DC%2BC3s7hsVCjtw%3D%3D10.1038/ncomms2167
KuznetsovAIKochJChichkovBNLaser-induced backward transfer of gold nanodropletsOpt. Expr.20091718820188251:CAS:528:DC%2BD1MXht12lsLjP2009OExpr..1718820K10.1364/OE.17.018820
Person, S. et al. Demonstration of zero optical backscattering from single nanoparticles. Preprint at http://arxiv.org/abs/1212.2793v1 (2012).
MaierSALocal detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguidesNature Mater.200322292321:CAS:528:DC%2BD3sXisFWgsro%3D2003NatMa...2..229M10.1038/nmat852
Luk’yanchukBThe Fano resonance in plasmonic nanostructures and metamaterialsNature Mater.201097077152010NatMa...9..707L10.1038/nmat2810
Novotny, L. & Hecht, B. . Princples of Nano-Optics Cambridge University Press (2006).
EvlyukhinABDemonstration of magnetic dipole resonances of dielectric nanospheres in the visible regionNano Lett.201212374937551:CAS:528:DC%2BC38XosFeltb8%3D2012NanoL..12.3749E10.1021/nl301594s
ShegaiTChenSMiljkovićVDZenginGJohanssonPKällMA bimetallic nanoantenna for directional colour routingNature Comm.201124812011NatCo...2E.481S10.1038/ncomms1490
AE Krasnok (BFncomms2538_CR18) 2012; 20
R Gomez-Medina (BFncomms2538_CR28) 2011; 5
MK Schmidt (BFncomms2538_CR37) 2012; 20
D Dregely (BFncomms2538_CR9) 2011; 2
IS Maksymov (BFncomms2538_CR12) 2012; 1
M Nieto-Vesperinas (BFncomms2538_CR27) 2011; 28
JM Geffrin (BFncomms2538_CR35) 2012; 3
AI Kuznetsov (BFncomms2538_CR41) 2010; 18
AB Evlyukhin (BFncomms2538_CR23) 2012; 106
BFncomms2538_CR43
DS Filonov (BFncomms2538_CR20) 2012; 100
Q Zhao (BFncomms2538_CR15) 2009; 12
P Bharadwaj (BFncomms2538_CR7) 2009; 1
NS King (BFncomms2538_CR14) 2011; 5
W Liu (BFncomms2538_CR19) 2012; 6
AE Miroshnichenko (BFncomms2538_CR32) 2010; 82
AI Kuznetsov (BFncomms2538_CR39) 2009; 17
AI Kuznetsov (BFncomms2538_CR25) 2012; 2
K Li (BFncomms2538_CR3) 2003; 91
AB Evlyukhin (BFncomms2538_CR24) 2011; 84
AB Evlyukhin (BFncomms2538_CR26) 2012; 12
M Kerker (BFncomms2538_CR29) 1983; 73
AI Kuznetsov (BFncomms2538_CR42) 2011; 5
AB Evlyukhin (BFncomms2538_CR21) 2010; 82
SA Maier (BFncomms2538_CR6) 2003; 2
BFncomms2538_CR2
B Rolly (BFncomms2538_CR36) 2012; 20
BFncomms2538_CR1
BFncomms2538_CR38
L Novotny (BFncomms2538_CR10) 2011; 5
V Giannini (BFncomms2538_CR11) 2011; 111
AG Curto (BFncomms2538_CR8) 2010; 329
BFncomms2538_CR33
NA Mirin (BFncomms2538_CR13) 2009; 9
A Garcia-Etxarri (BFncomms2538_CR22) 2011; 19
ML Brongersma (BFncomms2538_CR5) 2000; 62
CM Soukoulis (BFncomms2538_CR16) 2011; 5
T Shegai (BFncomms2538_CR34) 2011; 2
B Luk’yanchuk (BFncomms2538_CR31) 2010; 9
AI Kuznetsov (BFncomms2538_CR40) 2009; 26
AE Krasnok (BFncomms2538_CR17) 2011; 94
G Videen (BFncomms2538_CR30) 1992; 45
J Dai (BFncomms2538_CR4) 2008; 77
21934665 - Nat Commun. 2011 Sep 20;2:481
22768382 - Sci Rep. 2012;2:492
12690394 - Nat Mater. 2003 Apr;2(4):229-32
23037088 - Opt Express. 2012 Aug 27;20(18):20376-86
21761840 - ACS Nano. 2011 Sep 27;5(9):7254-62
21434605 - Chem Rev. 2011 Jun 8;111(6):3888-912
21445117 - Opt Express. 2011 Mar 14;19(6):4815-26
20724630 - Science. 2010 Aug 20;329(5994):930-3
21200411 - J Opt Soc Am A Opt Image Sci Vis. 2011 Jan 1;28(1):54-60
22703443 - Nano Lett. 2012 Jul 11;12(7):3749-55
9907700 - Phys Rev A. 1992 Apr 15;45(8):6008-6012
22545872 - ACS Nano. 2012 Jun 26;6(6):5489-97
23461654 - Nano Lett. 2013 Apr 10;13(4):1806-9
20733610 - Nat Mater. 2010 Sep;9(9):707-15
22714428 - Opt Express. 2012 Jun 18;20(13):13636-50
19227996 - Nano Lett. 2009 Mar;9(3):1255-9
14683271 - Phys Rev Lett. 2003 Nov 28;91(22):227402
21539373 - ACS Nano. 2011 Jun 28;5(6):4843-9
23132021 - Nat Commun. 2012;3:1171
20941016 - Opt Express. 2010 Sep 27;18(20):21198-203
23037107 - Opt Express. 2012 Aug 27;20(18):20599-604
20372615 - Opt Express. 2009 Oct 12;17(21):18820-5
21468019 - Nat Commun. 2011;2:267
References_xml – reference: Gomez-MedinaRElectric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forcesJ. Nanophoton.201150535122011JNano...5.3512G10.1117/1.3603941
– reference: MiroshnichenkoAEFlachSKivsharYSFano resonances in nanoscale structuresRev. Mod. Phys.201082225722981:CAS:528:DC%2BC3cXht1Ciur%2FK2010RvMP...82.2257M10.1103/RevModPhys.82.2257
– reference: BharadwajPDeutschBNovotnyLOptical antennasAdv. Opt. Photon.2009143848310.1364/AOP.1.000438
– reference: Nieto-VesperinasMGomez-MedinaRSaenzJJAngle-suppressed scattering and optical forces on submicrometer dielectric particlesJ. Opt. Soc. Am. A20112854601:STN:280:DC%2BC3M%2FosVGmug%3D%3D2011JOSAA..28...54N10.1364/JOSAA.28.000054
– reference: KingNSAngle- and spectral-dependent light scattering from plasmonic nanocupsACS Nano.20115725472621:CAS:528:DC%2BC3MXptlemu7s%3D10.1021/nn202086u
– reference: Novotny, L. & Hecht, B. . Princples of Nano-Optics Cambridge University Press (2006).
– reference: MirinNAHalasNJLight-bending nanoparticlesNano Lett.20099125512591:CAS:528:DC%2BD1MXitFKisrs%3D2009NanoL...9.1255M10.1021/nl900208z
– reference: CurtoAGUnidirectional emission of a quantum dot coupled to a nanoantennaScience20103299309331:CAS:528:DC%2BC3cXhtVaqur%2FJ2010Sci...329..930C10.1126/science.1191922
– reference: FilonovDSExperimental verification of the concept of all-dielectric nanoantennasAppl. Phys. Lett.20121002011132012ApPhL.100t1113F10.1063/1.4719209
– reference: EvlyukhinABOptical properties of spherical gold mesoparticlesAppl. Phys. B20121068418481:CAS:528:DC%2BC38XjvVSrt7g%3D2012ApPhB.106..841E10.1007/s00340-011-4727-5
– reference: DaiJCajkoFTsukermanIStockmanMIElectrodynamic effects in plasmonic nanolensesPhys. Rev. B2008771154192008PhRvB..77k5419D10.1103/PhysRevB.77.115419
– reference: NovotnyLvan HulstNFAntennas for lightNature Photon.2011583901:CAS:528:DC%2BC3MXhtlOjtrs%3D2011NaPho...5...83N10.1038/nphoton.2010.237
– reference: EvlyukhinABReinhardtCSeidelALuk’yanchukBSChichkovBNOptical response features of Si-nanoparticle arraysPhys. Rev. B2010820454042010PhRvB..82d5404E10.1103/PhysRevB.82.045404
– reference: BrongersmaMLHartmanJWAtwaterHAElectromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limitPhys. Rev. B200062R16356R163591:CAS:528:DC%2BD3MXptVc%3D2000PhRvB..6216356B10.1103/PhysRevB.62.R16356
– reference: KrasnokAEMiroshnichenkoAEBelovPAKivsharYSAll-dielectric optical nanoantennasOpt. Express20122020599206042012OExpr..2020599K10.1364/OE.20.020599
– reference: Luk’yanchukBThe Fano resonance in plasmonic nanostructures and metamaterialsNature Mater.201097077152010NatMa...9..707L10.1038/nmat2810
– reference: Garcia-EtxarriAStrong magnetic response of submicron silicon particles in the infraredOpt. Express201119481548261:CAS:528:DC%2BC3MXjvVCksL8%3D2011OExpr..19.4815G10.1364/OE.19.004815
– reference: ZhaoQZhouJZhangFLippensDMie resonance-based dielectric metamaterialsMater. Today20091260691:CAS:528:DC%2BC3cXlvVGqtLY%3D10.1016/S1369-7021(09)70318-9
– reference: KerkerMWangDGilesGElectromagnetic scattering by magnetic spheresJ. Opt. Soc. Am.1983737657671983OSAJ...73..765K10.1364/JOSA.73.000765
– reference: MaksymovISStaudeIMiroshnichenkoAEKivsharYSOptical Yagi-Uda nanoantennasNanophotonics2012165812012Nanop...1...65M10.1515/nanoph-2012-0005
– reference: KuznetsovAIMiroshnichenkoAEFuYHZhangJBLuk’yanchukBMagnetic lightSci. Rep.201224922012NatSR...2E.492K10.1038/srep00492
– reference: EvlyukhinABDemonstration of magnetic dipole resonances of dielectric nanospheres in the visible regionNano Lett.201212374937551:CAS:528:DC%2BC38XosFeltb8%3D2012NanoL..12.3749E10.1021/nl301594s
– reference: RollyBStoutBBonodNBoosting the directivity of optical antennas with magnetic and electric dipolar resonant particlesOpt. Expr.20122020376203862012OExpr..2020376R10.1364/OE.20.020376
– reference: KuznetsovAIKochJChichkovBNLaser-induced backward transfer of gold nanodropletsOpt. Expr.20091718820188251:CAS:528:DC%2BD1MXht12lsLjP2009OExpr..1718820K10.1364/OE.17.018820
– reference: Kawata, S., Ohtsu, M. & Irie, M. . Nano-Optics Springer-Verlag (2002).
– reference: KuznetsovAILaser-induced transfer of metallic nanodroplets for plasmonics and metamaterial applicationsJ. Opt. Soc. Am. B200926B130B1381:CAS:528:DC%2BC3cXhslGhtw%3D%3D10.1364/JOSAB.26.00B130
– reference: DregelyD3D optical Yagi–Uda nanoantenna arrayNature Comm.2011226710.1038/ncomms1268
– reference: Person, S. et al. Demonstration of zero optical backscattering from single nanoparticles. Preprint at http://arxiv.org/abs/1212.2793v1 (2012).
– reference: Rahmani, M., Luk’yanchuk, B. & Hong, M. . Fano resonance in novel plasmonic nanostructures. Las. Photon. Rev. doi:10.1002/lpor.201200021 (2012).
– reference: LiKStockmanMIBergmanDJSelf-similar chain of metal nanospheres as an efficient nanolensPhys. Rev. Lett.2003912274022003PhRvL..91v7402L10.1103/PhysRevLett.91.227402
– reference: MaierSALocal detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguidesNature Mater.200322292321:CAS:528:DC%2BD3sXisFWgsro%3D2003NatMa...2..229M10.1038/nmat852
– reference: SoukoulisCMWegenerMPast achievements and future challenges in the development of three-dimensional photonic metamaterialsNature Photon.201155235301:CAS:528:DC%2BC3MXhtV2qurjL2011NaPho...5..523S10.1038/nphoton.2011.154
– reference: GeffrinJMMagnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphereNature Comm.2012311711:STN:280:DC%2BC3s7hsVCjtw%3D%3D10.1038/ncomms2167
– reference: SchmidtMKDielectric antennas—a suitable platform for controlling magnetic dipolar emissionOpt. Expr.20122013636136501:STN:280:DC%2BC38jjt1alsQ%3D%3D2012OExpr..2013636S10.1364/OE.20.013636
– reference: KrasnokAEMiroshnichenkoAEBelovPAKivsharYSHuygens optical elements and Yagi–Uda nanoantennas based on dielectric nanoparticlesJETP Lett.2011945935981:CAS:528:DC%2BC3MXhs1OltrbM10.1134/S0021364011200070
– reference: ShegaiTChenSMiljkovićVDZenginGJohanssonPKällMA bimetallic nanoantenna for directional colour routingNature Comm.201124812011NatCo...2E.481S10.1038/ncomms1490
– reference: KuznetsovAIKiyanRChichkovBNLaser fabrication of 2D and 3D microstructures from metal nanoparticlesOpt. Expr.20101821198212031:CAS:528:DC%2BC3cXht1CktrfO2010OExpr..1821198K10.1364/OE.18.021198
– reference: LiuWMiroshnichenkoAENeshevDNKivsharYSBroadband unidirectional scattering by magneto-electric core-shell nanoparticlesACS Nano.20126548954971:CAS:528:DC%2BC38Xmt1ers7w%3D10.1021/nn301398a
– reference: VideenGBickelWSLight scattering resonances in small spheresPhys. Rev. A199245600860121:STN:280:DC%2BC2sjpsFWqsg%3D%3D1992PhRvA..45.6008V10.1103/PhysRevA.45.6008
– reference: EvlyukhinABReinhardtCChichkovBNMultipole light scattering by nonspherical nanoparticles in the discrete dipole approximationPhys. Rev. B2011842354292011PhRvB..84w5429E10.1103/PhysRevB.84.235429
– reference: KuznetsovAILaser fabrication of large-scale nanoparticle arrays for sensing applicationsACS Nano.20115484348491:CAS:528:DC%2BC3MXlslKhtLs%3D10.1021/nn2009112
– reference: GianniniVFernandez-DominguezAIHeckSCMaierSAPlasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemittersChem. Rev.2011111388839121:CAS:528:DC%2BC3MXjsleqsLs%3D10.1021/cr1002672
– reference: Bohren, C. F. & Huffman, D. R. . Absorption and Scattering of Light by Small Particles Wiley (1983).
– volume: 5
  start-page: 053512
  year: 2011
  ident: BFncomms2538_CR28
  publication-title: J. Nanophoton.
  doi: 10.1117/1.3603941
– volume: 20
  start-page: 13636
  year: 2012
  ident: BFncomms2538_CR37
  publication-title: Opt. Expr.
  doi: 10.1364/OE.20.013636
– volume: 6
  start-page: 5489
  year: 2012
  ident: BFncomms2538_CR19
  publication-title: ACS Nano.
  doi: 10.1021/nn301398a
– volume: 91
  start-page: 227402
  year: 2003
  ident: BFncomms2538_CR3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.91.227402
– ident: BFncomms2538_CR1
  doi: 10.1017/CBO9780511813535
– volume: 100
  start-page: 201113
  year: 2012
  ident: BFncomms2538_CR20
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4719209
– volume: 1
  start-page: 65
  year: 2012
  ident: BFncomms2538_CR12
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2012-0005
– volume: 17
  start-page: 18820
  year: 2009
  ident: BFncomms2538_CR39
  publication-title: Opt. Expr.
  doi: 10.1364/OE.17.018820
– volume: 77
  start-page: 115419
  year: 2008
  ident: BFncomms2538_CR4
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.77.115419
– volume: 5
  start-page: 523
  year: 2011
  ident: BFncomms2538_CR16
  publication-title: Nature Photon.
  doi: 10.1038/nphoton.2011.154
– volume: 12
  start-page: 3749
  year: 2012
  ident: BFncomms2538_CR26
  publication-title: Nano Lett.
  doi: 10.1021/nl301594s
– volume: 2
  start-page: 481
  year: 2011
  ident: BFncomms2538_CR34
  publication-title: Nature Comm.
  doi: 10.1038/ncomms1490
– volume: 18
  start-page: 21198
  year: 2010
  ident: BFncomms2538_CR41
  publication-title: Opt. Expr.
  doi: 10.1364/OE.18.021198
– volume: 62
  start-page: R16356
  year: 2000
  ident: BFncomms2538_CR5
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.62.R16356
– volume: 82
  start-page: 045404
  year: 2010
  ident: BFncomms2538_CR21
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.045404
– volume: 329
  start-page: 930
  year: 2010
  ident: BFncomms2538_CR8
  publication-title: Science
  doi: 10.1126/science.1191922
– volume: 111
  start-page: 3888
  year: 2011
  ident: BFncomms2538_CR11
  publication-title: Chem. Rev.
  doi: 10.1021/cr1002672
– ident: BFncomms2538_CR33
  doi: 10.1002/lpor.201200021
– ident: BFncomms2538_CR2
  doi: 10.1007/978-3-540-45273-7
– volume: 12
  start-page: 60
  year: 2009
  ident: BFncomms2538_CR15
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(09)70318-9
– volume: 28
  start-page: 54
  year: 2011
  ident: BFncomms2538_CR27
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.28.000054
– volume: 20
  start-page: 20376
  year: 2012
  ident: BFncomms2538_CR36
  publication-title: Opt. Expr.
  doi: 10.1364/OE.20.020376
– volume: 73
  start-page: 765
  year: 1983
  ident: BFncomms2538_CR29
  publication-title: J. Opt. Soc. Am.
  doi: 10.1364/JOSA.73.000765
– volume: 9
  start-page: 1255
  year: 2009
  ident: BFncomms2538_CR13
  publication-title: Nano Lett.
  doi: 10.1021/nl900208z
– volume: 3
  start-page: 1171
  year: 2012
  ident: BFncomms2538_CR35
  publication-title: Nature Comm.
  doi: 10.1038/ncomms2167
– volume: 26
  start-page: B130
  year: 2009
  ident: BFncomms2538_CR40
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.26.00B130
– volume: 5
  start-page: 83
  year: 2011
  ident: BFncomms2538_CR10
  publication-title: Nature Photon.
  doi: 10.1038/nphoton.2010.237
– volume: 94
  start-page: 593
  year: 2011
  ident: BFncomms2538_CR17
  publication-title: JETP Lett.
  doi: 10.1134/S0021364011200070
– volume: 20
  start-page: 20599
  year: 2012
  ident: BFncomms2538_CR18
  publication-title: Opt. Express
  doi: 10.1364/OE.20.020599
– volume: 45
  start-page: 6008
  year: 1992
  ident: BFncomms2538_CR30
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.45.6008
– volume: 19
  start-page: 4815
  year: 2011
  ident: BFncomms2538_CR22
  publication-title: Opt. Express
  doi: 10.1364/OE.19.004815
– volume: 82
  start-page: 2257
  year: 2010
  ident: BFncomms2538_CR32
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.82.2257
– ident: BFncomms2538_CR43
– volume: 84
  start-page: 235429
  year: 2011
  ident: BFncomms2538_CR24
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.235429
– ident: BFncomms2538_CR38
– volume: 2
  start-page: 267
  year: 2011
  ident: BFncomms2538_CR9
  publication-title: Nature Comm.
  doi: 10.1038/ncomms1268
– volume: 106
  start-page: 841
  year: 2012
  ident: BFncomms2538_CR23
  publication-title: Appl. Phys. B
  doi: 10.1007/s00340-011-4727-5
– volume: 2
  start-page: 492
  year: 2012
  ident: BFncomms2538_CR25
  publication-title: Sci. Rep.
  doi: 10.1038/srep00492
– volume: 1
  start-page: 438
  year: 2009
  ident: BFncomms2538_CR7
  publication-title: Adv. Opt. Photon.
  doi: 10.1364/AOP.1.000438
– volume: 2
  start-page: 229
  year: 2003
  ident: BFncomms2538_CR6
  publication-title: Nature Mater.
  doi: 10.1038/nmat852
– volume: 5
  start-page: 4843
  year: 2011
  ident: BFncomms2538_CR42
  publication-title: ACS Nano.
  doi: 10.1021/nn2009112
– volume: 5
  start-page: 7254
  year: 2011
  ident: BFncomms2538_CR14
  publication-title: ACS Nano.
  doi: 10.1021/nn202086u
– volume: 9
  start-page: 707
  year: 2010
  ident: BFncomms2538_CR31
  publication-title: Nature Mater.
  doi: 10.1038/nmat2810
– reference: 9907700 - Phys Rev A. 1992 Apr 15;45(8):6008-6012
– reference: 21434605 - Chem Rev. 2011 Jun 8;111(6):3888-912
– reference: 21468019 - Nat Commun. 2011;2:267
– reference: 22714428 - Opt Express. 2012 Jun 18;20(13):13636-50
– reference: 12690394 - Nat Mater. 2003 Apr;2(4):229-32
– reference: 22545872 - ACS Nano. 2012 Jun 26;6(6):5489-97
– reference: 21761840 - ACS Nano. 2011 Sep 27;5(9):7254-62
– reference: 20941016 - Opt Express. 2010 Sep 27;18(20):21198-203
– reference: 20372615 - Opt Express. 2009 Oct 12;17(21):18820-5
– reference: 21200411 - J Opt Soc Am A Opt Image Sci Vis. 2011 Jan 1;28(1):54-60
– reference: 20733610 - Nat Mater. 2010 Sep;9(9):707-15
– reference: 21539373 - ACS Nano. 2011 Jun 28;5(6):4843-9
– reference: 20724630 - Science. 2010 Aug 20;329(5994):930-3
– reference: 23132021 - Nat Commun. 2012;3:1171
– reference: 14683271 - Phys Rev Lett. 2003 Nov 28;91(22):227402
– reference: 21934665 - Nat Commun. 2011 Sep 20;2:481
– reference: 19227996 - Nano Lett. 2009 Mar;9(3):1255-9
– reference: 23037088 - Opt Express. 2012 Aug 27;20(18):20376-86
– reference: 22768382 - Sci Rep. 2012;2:492
– reference: 23037107 - Opt Express. 2012 Aug 27;20(18):20599-604
– reference: 23461654 - Nano Lett. 2013 Apr 10;13(4):1806-9
– reference: 21445117 - Opt Express. 2011 Mar 14;19(6):4815-26
– reference: 22703443 - Nano Lett. 2012 Jul 11;12(7):3749-55
SSID ssj0000391844
Score 2.621376
Snippet Directional light scattering by spherical silicon nanoparticles in the visible spectral range is experimentally demonstrated for the first time. These unique...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1527
SubjectTerms 639/624/399/1099
639/766/400
639/925/357/354
Humanities and Social Sciences
Light scattering
multidisciplinary
Nanoparticles
Optical properties
Science
Science (multidisciplinary)
Silicon
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFA46EbyIv61OqbiLh7A2TdPkICLiHIKeHOxW0jQFYWbTbof99760aTeYeO4jSfOSvO_l5X0PoZ7OmOQAjbFQUYEpUQpzLhKcC0tXxWURVCRJb-9sOKKv43jsLtxK96yyOROrgzqfKntH3g8tx6A1jsnD7BvbqlE2uupKaGyjnZCArbWZ4oOX9o7Fsp9zShtW0oj3DTT5VZLYpqOs26ENcLkRGK3szeAA7Tug6D_Wmj1EW9ocod26dOTyGN27s8oCad8miGcT7U-sp-2XquLMhFb9bOmXnxNQtvGNNOAfu2dwJ2g0eP54GmJXCgErGkdzLFmmNNjaLNeZULFisVZBJBNL_w4AJswTzaWg4H4AwBKkkFwwquD3EypYBpvsFHXM1Ohz5BecaqZ1Alghp3mheCgZgJSAFEqERaQ9dNdMTKocT7gtVzFJq3h1xNPVJHrotpWd1ewYf0p1m_lN3Q4p05U-PXTTfoa1bQMW0ujpopaxLl4AMme1XtpuSEQB6cWxh3qNotYa3xjDxf9juER7pKpzQTBhXdSZ_yz0FaCNeXZdLalfgvDVUQ
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT4MwFH7RLSZejL9Fp8G4iwcilFLag4fFuCxL9KJLdiOllMQEmZHtsP_eVyiomQePhEdp3-trv8cr3wMY6pRJjtDYEyrMPUqU8jgXsZcJQ1fFZe7XJElPz2wyo9N5NLc0OZU9VtlQWtbLdHs67K7Eq_eKoHtuQ5_HuOz2oD8aTV-m3RcVw3XOKW05SEP-46Hfu84GlNxIg9a7y3gf9iwsdEdNRw5gS5eHsNMUilwfwb1dmQxsds3v4Gmh3cLE1W6laoZMbNVN1271VqBpS7eUJUbDdljHMBs_vj5MPFv4wFM0CpeeZKnSuLOmmU6FihSLtPJDGRuyd4QrQRZrLgXFYAPhlCC55IJRhcOPqWAputQJ9MpFqc_AzTnVTOsYkUFGs1zxQDKEJD7JlQjyUDtw2yomUZYV3BSnKJI6Ox3y5FuJDtx0sh8NF8afUoNWv4n1hyoJDEOkgTaxA9fdbZzJJj0hS71YNTImoPNR5rSxS_caElLEdVHkwLA11I_GN_pw_j-xC9gldXUL4hE2gN7yc6UvEWMs0ys7ub4AEBfTBQ
  priority: 102
  providerName: Springer Nature
Title Directional visible light scattering by silicon nanoparticles
URI https://link.springer.com/article/10.1038/ncomms2538
https://www.ncbi.nlm.nih.gov/pubmed/23443555
https://www.proquest.com/docview/1313235547
https://www.proquest.com/docview/1313426107
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1bS8MwFD7sguCLeHc6R8W9-FBd2yxNHobMsTkGDlEHeytpmoJQO90F3L_3pJc52XxpoT1Ny_mS5juc5DsAdeVTwZAam1w6oUlsKU3GuGsGXMtVMRE2EpGkpyHtj8hg3BwXIK_fmTlwtjW00_WkRtPo9vtreY8DvpVuGWd3MWLzMbNx6BahnOSJ9BK-jOYnf2SHYyBDcnXSP49oNWCHIGnQm_3Wp6YNvrmRK02moN4-7GXc0WinYB9AQcWHsJNWk1weQSv7fWlubeg9436kjEgH38ZMJjKa2KrhL43Ze4T4x0YsYgyZs5VxxzDqdd86fTOrjmBK0nTmpqC-VDj9-oHyuWxK2lSy4QhXK8Ijp7ECVzHBCUYkyLm4HQrGKZHoCZdw6uO4O4FSPInVGRghI4oq5SJ9CEgQSmYJirylYYeSW6GjKnCTO8aTmXS4rmAReUkK22Herz8rcL2y_UwFM7ZaVXP_ejnmnqVlJDX_cStwtbqN3V3nMESsJovURkd9DbQ5TXFZvSbHsQL1HKi1xje-4fzfBi5g106qXtimTatQmk8X6hK5x9yvQdEdu3hkvccalNvtwesAzw_d4fMLXu3QTi3pej_j1N21
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NTxsxEB0BFYILaguFFEqNgEMPFonX67UPqKqgUSiBE0i5LV6vV0IKG9oNqvKn-I3M7EcSKYgb5x3Z3vHY88ZjvwE48omyGqExNy7IuBTOca1NxFNDdFXaZu2SJOnqWvVu5Z9BOFiC5-YtDF2rbPbEcqNOR47OyE86xDFIzjH6-fiXU9Uoyq42JTQqs7j0k_8YshWnF-c4v8dCdH_fnPV4XVWAOxkGY25V4jy6rST1iXGhU6F37cBGxKSOWKCTRl5bIxHJI1YxIrPaKOkCDGukUQnaK7a7DB8kpRhx_USDaHqmQ2zrWsqGBTXQJzn-wkMhQnr-Mu_3FsDsQiK29G_dj7BRA1P2q7KkT7Dk88-wWpWqnGzCab03EnBn9CA9GXo2pMieFa7k6MRWWTJhxf0QjStnuc0xHq-v3W3B7bso6Qus5KPc7wDLtPTK-wixSSrTzOmOVQiK2iJzppMFvgU_GsXEruYlp_IYw7jMjwc6nimxBYdT2ceKjeNVqb1Gv3G9Iot4Zj8tOJh-xrVECRKb-9FTJUMhZRtltqt5mXYjAonIMgxbcNRM1FzjC2P4-vYYvsNa7-aqH_cvri93YV2UNTYEF2oPVsb_nvw3RDrjZL80LwZ3723PLwO8ELo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9swED51oE28IGAMCh0YAQ97sNo6jmM_VNMGVPxahaYh8RYcx5GQSgqkCPVf5K_inDgFqRNvPOfkOOez77uc7zuAPZsILREaU2WCjHJmDJVSRTRVjq5K6qxTkiT9GYjjS356FV414LmuhXHXKuszsTyo05Fx_8jbXccx6Jxj1M78tYiLw_7Pu3vqOki5TGvdTkP7Ngtpr6Qb80UeZ3byhOFc0Ts5xLXfZ6x_9O_gmPqOA9TwMBhTLRJj0aUlqU2UCY0IrekEOnIs64gTumlkpVYcUT7iGMUyLZXgJsCQhyuRoC3juJ9gPkKvj4Hg_O-jwcXf6R8fx8UuOa85UgPZzvEDbwsWuuKYt15xBurOpGlL79dfgkUPW8mvys6WoWHzFfhcNbKcfIWePzkdrCeuXD0ZWjJ0cT8pTMngiaOSZEKKmyGaXk5ynWO07i_lrcLlh6jpG8zlo9yuA8kkt8LaCJFLytPMyK4WCJk6LDOqmwW2CT9qxcTGs5a75hnDuMyeBzJ-VWITdqeydxVXx3-lWrV-Y79fi_jVupqwM32MO82lT3RuR4-VjAs4OyizVq3L9DUs4Ig7w7AJe_VCvRl8Zg4b789hG76gbcfnJ4OzTVhgZQMORplowdz44dF-Rxg0Tra8fRG4_miTfgH8sxuV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Directional+visible+light+scattering+by+silicon+nanoparticles&rft.jtitle=Nature+communications&rft.au=Fu%2C+Yuan+Hsing&rft.au=Kuznetsov%2C+Arseniy+I&rft.au=Miroshnichenko%2C+Andrey+E&rft.au=Yu%2C+Ye+Feng&rft.date=2013-02-26&rft.eissn=2041-1723&rft.volume=4&rft.spage=1527&rft_id=info:doi/10.1038%2Fncomms2538&rft_id=info%3Apmid%2F23443555&rft.externalDocID=23443555
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon