Directional visible light scattering by silicon nanoparticles
Directional light scattering by spherical silicon nanoparticles in the visible spectral range is experimentally demonstrated for the first time. These unique optical properties arise because of simultaneous excitation and mutual interference of magnetic and electric dipole resonances inside a single...
Saved in:
Published in | Nature communications Vol. 4; no. 1; p. 1527 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
26.02.2013
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/ncomms2538 |
Cover
Abstract | Directional light scattering by spherical silicon nanoparticles in the visible spectral range is experimentally demonstrated for the first time. These unique optical properties arise because of simultaneous excitation and mutual interference of magnetic and electric dipole resonances inside a single nanosphere. Such behaviour is similar to Kerker’s-type scattering by hypothetic magneto-dielectric particles predicted theoretically three decades ago. Here we show that directivity of the far-field radiation pattern of single silicon spheres can be strongly dependent on the light wavelength and the nanoparticle size. For nanoparticles with sizes ranging from 100 to 200 nm, forward-to-backward scattering ratio above six can be experimentally obtained, making them similar to ‘Huygens’ sources. Unique optical properties of silicon nanoparticles make them promising for design of novel low-loss visible- and telecom-range metamaterials and nanoantenna devices.
The scattering of light by nanoparticles could be useful for photonic nanoantenna or other light manipulation schemes. Here Kuznetsov
et al
. demonstrate directional light scattering from silicon nanoparticles for visible light. |
---|---|
AbstractList | Directional light scattering by spherical silicon nanoparticles in the visible spectral range is experimentally demonstrated for the first time. These unique optical properties arise because of simultaneous excitation and mutual interference of magnetic and electric dipole resonances inside a single nanosphere. Such behaviour is similar to Kerker's-type scattering by hypothetic magneto-dielectric particles predicted theoretically three decades ago. Here we show that directivity of the far-field radiation pattern of single silicon spheres can be strongly dependent on the light wavelength and the nanoparticle size. For nanoparticles with sizes ranging from 100 to 200 nm, forward-to-backward scattering ratio above six can be experimentally obtained, making them similar to 'Huygens' sources. Unique optical properties of silicon nanoparticles make them promising for design of novel low-loss visible- and telecom-range metamaterials and nanoantenna devices. Directional light scattering by spherical silicon nanoparticles in the visible spectral range is experimentally demonstrated for the first time. These unique optical properties arise because of simultaneous excitation and mutual interference of magnetic and electric dipole resonances inside a single nanosphere. Such behaviour is similar to Kerker's-type scattering by hypothetic magneto-dielectric particles predicted theoretically three decades ago. Here we show that directivity of the far-field radiation pattern of single silicon spheres can be strongly dependent on the light wavelength and the nanoparticle size. For nanoparticles with sizes ranging from 100 to 200 nm, forward-to-backward scattering ratio above six can be experimentally obtained, making them similar to 'Huygens' sources. Unique optical properties of silicon nanoparticles make them promising for design of novel low-loss visible- and telecom-range metamaterials and nanoantenna devices.Directional light scattering by spherical silicon nanoparticles in the visible spectral range is experimentally demonstrated for the first time. These unique optical properties arise because of simultaneous excitation and mutual interference of magnetic and electric dipole resonances inside a single nanosphere. Such behaviour is similar to Kerker's-type scattering by hypothetic magneto-dielectric particles predicted theoretically three decades ago. Here we show that directivity of the far-field radiation pattern of single silicon spheres can be strongly dependent on the light wavelength and the nanoparticle size. For nanoparticles with sizes ranging from 100 to 200 nm, forward-to-backward scattering ratio above six can be experimentally obtained, making them similar to 'Huygens' sources. Unique optical properties of silicon nanoparticles make them promising for design of novel low-loss visible- and telecom-range metamaterials and nanoantenna devices. Directional light scattering by spherical silicon nanoparticles in the visible spectral range is experimentally demonstrated for the first time. These unique optical properties arise because of simultaneous excitation and mutual interference of magnetic and electric dipole resonances inside a single nanosphere. Such behaviour is similar to Kerker’s-type scattering by hypothetic magneto-dielectric particles predicted theoretically three decades ago. Here we show that directivity of the far-field radiation pattern of single silicon spheres can be strongly dependent on the light wavelength and the nanoparticle size. For nanoparticles with sizes ranging from 100 to 200 nm, forward-to-backward scattering ratio above six can be experimentally obtained, making them similar to ‘Huygens’ sources. Unique optical properties of silicon nanoparticles make them promising for design of novel low-loss visible- and telecom-range metamaterials and nanoantenna devices. The scattering of light by nanoparticles could be useful for photonic nanoantenna or other light manipulation schemes. Here Kuznetsov et al . demonstrate directional light scattering from silicon nanoparticles for visible light. |
ArticleNumber | 1527 |
Author | Fu, Yuan Hsing Luk’yanchuk, Boris Miroshnichenko, Andrey E. Kuznetsov, Arseniy I. Yu, Ye Feng |
Author_xml | – sequence: 1 givenname: Yuan Hsing surname: Fu fullname: Fu, Yuan Hsing email: FU_Yuan_Hsing@dsi.a-star.edu.sg organization: Advanced Concepts and Nanotechnology Division, Data Storage Institute – sequence: 2 givenname: Arseniy I. surname: Kuznetsov fullname: Kuznetsov, Arseniy I. email: arseniy_k@dsi.a-star.edu.sg organization: Advanced Concepts and Nanotechnology Division, Data Storage Institute – sequence: 3 givenname: Andrey E. surname: Miroshnichenko fullname: Miroshnichenko, Andrey E. organization: Nonlinear Physics Centre, Research School of Physics and Engineering, The Australian National University – sequence: 4 givenname: Ye Feng surname: Yu fullname: Yu, Ye Feng organization: Advanced Concepts and Nanotechnology Division, Data Storage Institute – sequence: 5 givenname: Boris surname: Luk’yanchuk fullname: Luk’yanchuk, Boris organization: Advanced Concepts and Nanotechnology Division, Data Storage Institute |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23443555$$D View this record in MEDLINE/PubMed |
BookMark | eNptkE1LAzEQhoNUbK29-ANkwYsoq_ne3YMHqZ9Q8KLnJZumNSWb1CQr9N-7y7ZY1LnMHJ4Z3nmOwcA6qwA4RfAaQZLfWOnqOmBG8gMwwpCiFGWYDPbmIZiEsIJtkQLllB6BISaUEsbYCNzea69k1M4Kk3zpoCujEqOXHzEJUsSovLbLpNokQRstnU2ssG4tfNTSqHACDhfCBDXZ9jF4f3x4mz6ns9enl-ndLJWUkZgKXklFEavmqiokk5wpCYlos3HKMUHzTOWioIzmFPECL0RecCrbtBkteFVwMgYX_d21d5-NCrGsdZDKGGGVa0KJCCIUcwSzFj3_ha5c49vvegq3b9OOOttSTVWrebn2uhZ-U-7EtADsAeldCF4tSqmj6DxFL7QpESw7_eWP_nbl8tfK7uq_8FUPh3VnWPm9mH_pb7CKk8A |
CitedBy_id | crossref_primary_10_1021_nn505632b crossref_primary_10_3390_nano11092410 crossref_primary_10_1007_s40843_020_1402_x crossref_primary_10_1088_0957_4484_26_16_165303 crossref_primary_10_1080_23746149_2021_2022992 crossref_primary_10_1515_nanoph_2024_0154 crossref_primary_10_1002_adom_201800415 crossref_primary_10_1088_0256_307X_37_4_044205 crossref_primary_10_1002_adom_202000489 crossref_primary_10_1103_PhysRevA_111_033522 crossref_primary_10_1103_PhysRevB_109_115436 crossref_primary_10_1016_j_jnoncrysol_2021_121269 crossref_primary_10_1063_5_0204011 crossref_primary_10_1088_1367_2630_ab9fbf crossref_primary_10_1021_acs_nanolett_1c01025 crossref_primary_10_1364_JOSAB_33_002414 crossref_primary_10_1063_1_4934757 crossref_primary_10_1364_OE_21_031138 crossref_primary_10_1002_mop_32328 crossref_primary_10_1002_ppap_202200129 crossref_primary_10_1038_lsa_2017_158 crossref_primary_10_1021_acs_nanolett_2c05030 crossref_primary_10_1039_C7NR01527E crossref_primary_10_1364_OE_26_018320 crossref_primary_10_1002_adom_201800664 crossref_primary_10_1039_C9NR05053A crossref_primary_10_1364_OE_498461 crossref_primary_10_1088_2040_8986_ac3961 crossref_primary_10_1364_OE_24_015965 crossref_primary_10_1098_rsta_2016_0312 crossref_primary_10_1364_OE_27_030971 crossref_primary_10_1016_j_ijleo_2023_170958 crossref_primary_10_1134_S1063783414030263 crossref_primary_10_1364_OE_22_008640 crossref_primary_10_1038_srep44488 crossref_primary_10_1103_PhysRevResearch_2_043021 crossref_primary_10_1080_08927022_2014_976636 crossref_primary_10_1021_acsphotonics_4c00837 crossref_primary_10_1021_acsphotonics_6b00050 crossref_primary_10_1063_1_5087054 crossref_primary_10_1364_OE_26_031523 crossref_primary_10_1364_JOSAB_356071 crossref_primary_10_3390_nano9060856 crossref_primary_10_1002_adom_202000033 crossref_primary_10_1038_s41467_020_17846_6 crossref_primary_10_1088_1361_6463_ac8084 crossref_primary_10_1021_acs_nanolett_1c04754 crossref_primary_10_1021_acsphotonics_5b00678 crossref_primary_10_1016_j_jcis_2024_07_112 crossref_primary_10_1364_OE_23_003209 crossref_primary_10_1002_lpor_202200472 crossref_primary_10_1002_smll_201500884 crossref_primary_10_1016_j_polymer_2018_06_003 crossref_primary_10_1088_0957_4484_27_12_125202 crossref_primary_10_1088_2040_8986_ad024f crossref_primary_10_1515_nanoph_2020_0035 crossref_primary_10_1146_annurev_matsci_070616_124220 crossref_primary_10_1039_D1NA00630D crossref_primary_10_1364_OPTICA_4_000814 crossref_primary_10_1134_S1062873824709899 crossref_primary_10_1021_acsphotonics_5b00697 crossref_primary_10_1364_OE_26_032624 crossref_primary_10_1103_PhysRevB_109_115426 crossref_primary_10_1364_OE_25_013822 crossref_primary_10_3390_nano10061242 crossref_primary_10_1002_adfm_202008246 crossref_primary_10_1039_D0TC00899K crossref_primary_10_1021_acsami_6b05123 crossref_primary_10_1016_j_nanoms_2024_05_015 crossref_primary_10_1021_acsphotonics_6b00030 crossref_primary_10_1021_acs_nanolett_2c05084 crossref_primary_10_1021_acsphotonics_6b00036 crossref_primary_10_1021_acs_analchem_3c03490 crossref_primary_10_1021_acsphotonics_4c01905 crossref_primary_10_1038_ncomms4250 crossref_primary_10_1103_PhysRevA_97_023836 crossref_primary_10_1103_PhysRevApplied_1_044002 crossref_primary_10_1002_adma_201701352 crossref_primary_10_1002_lpor_201800130 crossref_primary_10_1088_1361_6633_ac45f9 crossref_primary_10_1002_adom_202301204 crossref_primary_10_1002_admt_202100528 crossref_primary_10_1109_TAP_2016_2551261 crossref_primary_10_1063_5_0204694 crossref_primary_10_1103_PhysRevB_106_195302 crossref_primary_10_1002_lpor_202200658 crossref_primary_10_1007_s12200_023_00102_2 crossref_primary_10_1364_OE_24_014451 crossref_primary_10_1038_srep08354 crossref_primary_10_1080_05704928_2018_1467438 crossref_primary_10_1364_OL_398551 crossref_primary_10_3367_UFNe_2017_03_038139 crossref_primary_10_1021_jp508289z crossref_primary_10_1063_5_0138446 crossref_primary_10_3390_nano7070177 crossref_primary_10_1103_PhysRevLett_128_193901 crossref_primary_10_1002_lpor_201500089 crossref_primary_10_1038_s41565_018_0245_5 crossref_primary_10_1364_OE_26_007235 crossref_primary_10_1016_j_nanoen_2019_05_065 crossref_primary_10_1038_nnano_2015_304 crossref_primary_10_1016_j_jqsrt_2018_01_015 crossref_primary_10_1038_s44287_024_00136_4 crossref_primary_10_1038_s41598_018_27496_w crossref_primary_10_1088_1674_1056_ac3503 crossref_primary_10_1021_acs_iecr_2c03232 crossref_primary_10_1007_s12274_022_4988_9 crossref_primary_10_1103_PhysRevA_99_041801 crossref_primary_10_1002_adma_202203889 crossref_primary_10_1002_smll_201900546 crossref_primary_10_1364_OL_386781 crossref_primary_10_1039_C6CP03303B crossref_primary_10_1002_adom_201901570 crossref_primary_10_1002_pssa_201700295 crossref_primary_10_1002_ejic_202200665 crossref_primary_10_1038_srep10400 crossref_primary_10_1364_JOSAB_35_003049 crossref_primary_10_1063_5_0185413 crossref_primary_10_1021_acs_nanolett_5b02926 crossref_primary_10_1007_s00216_023_04512_1 crossref_primary_10_1002_lpor_201700132 crossref_primary_10_1109_JSEN_2018_2872846 crossref_primary_10_1364_OL_41_000033 crossref_primary_10_1016_j_nanoen_2014_11_054 crossref_primary_10_1016_j_vacuum_2024_113976 crossref_primary_10_1021_ph400073w crossref_primary_10_1209_0295_5075_124_30006 crossref_primary_10_1364_OPTICA_3_001241 crossref_primary_10_1021_acs_jpcc_3c07393 crossref_primary_10_1002_adom_201400584 crossref_primary_10_1109_LPT_2016_2585678 crossref_primary_10_1038_srep04864 crossref_primary_10_1038_srep12491 crossref_primary_10_1088_1742_6596_1461_1_012201 crossref_primary_10_1021_acs_nanolett_5b02953 crossref_primary_10_1103_PhysRevResearch_6_043311 crossref_primary_10_1021_acsnano_6b03207 crossref_primary_10_1142_S0217984917503067 crossref_primary_10_1002_smll_202205057 crossref_primary_10_1088_1361_6528_abdceb crossref_primary_10_1088_2040_8978_17_10_105612 crossref_primary_10_1007_s10043_018_00491_2 crossref_primary_10_1103_PhysRevA_88_053819 crossref_primary_10_1093_nsr_nwy017 crossref_primary_10_1002_lpor_201500041 crossref_primary_10_1021_acs_nanolett_7b00852 crossref_primary_10_1016_j_mattod_2017_06_007 crossref_primary_10_1039_C6RA27764K crossref_primary_10_1063_1_4858969 crossref_primary_10_1021_acsphotonics_4c02194 crossref_primary_10_1515_nanoph_2016_0109 crossref_primary_10_1002_adpr_202000111 crossref_primary_10_1021_acsphotonics_7b00320 crossref_primary_10_1364_AO_485449 crossref_primary_10_1021_acsphotonics_7b00546 crossref_primary_10_1073_pnas_1601777113 crossref_primary_10_1021_acsami_5b08560 crossref_primary_10_1002_pssb_201900406 crossref_primary_10_1080_10426914_2014_984199 crossref_primary_10_3390_photonics9090606 crossref_primary_10_1002_adma_202001806 crossref_primary_10_1039_D2RA02008D crossref_primary_10_1088_1361_6463_aae1eb crossref_primary_10_3390_app9050958 crossref_primary_10_1364_OE_521725 crossref_primary_10_3390_app9102005 crossref_primary_10_1364_OME_5_000668 crossref_primary_10_1134_S0021364018110140 crossref_primary_10_1016_j_solmat_2023_112459 crossref_primary_10_1021_acsphotonics_8b01619 crossref_primary_10_1364_OPTICA_5_000954 crossref_primary_10_1021_acs_nanolett_7b01724 crossref_primary_10_1109_JPHOT_2016_2577714 crossref_primary_10_1039_C5NR06742A crossref_primary_10_1103_PhysRevA_94_033825 crossref_primary_10_1021_acsphotonics_6b00436 crossref_primary_10_3390_app8010060 crossref_primary_10_1103_PhysRevE_91_042505 crossref_primary_10_1364_OL_44_002943 crossref_primary_10_1088_1402_4896_adb3e0 crossref_primary_10_1039_C8NR05692G crossref_primary_10_1364_OE_26_013085 crossref_primary_10_1021_acsami_2c03263 crossref_primary_10_1021_acsnano_9b00019 crossref_primary_10_1364_OE_25_029155 crossref_primary_10_1002_adom_202302133 crossref_primary_10_1038_srep13535 crossref_primary_10_1088_1361_6528_ad6fa3 crossref_primary_10_1021_acsnano_9b04610 crossref_primary_10_1021_acsami_0c14248 crossref_primary_10_1063_5_0024274 crossref_primary_10_1103_PhysRevA_88_043817 crossref_primary_10_1016_j_tsf_2021_138595 crossref_primary_10_1039_C5NR07965A crossref_primary_10_1016_j_rinp_2020_103094 crossref_primary_10_1002_adom_201500146 crossref_primary_10_1038_srep24847 crossref_primary_10_1070_QEL17318 crossref_primary_10_1364_OE_23_014734 crossref_primary_10_1364_OPTICA_389192 crossref_primary_10_1016_j_ijleo_2022_169822 crossref_primary_10_1039_D1CC01084K crossref_primary_10_1088_1361_6528_ac7579 crossref_primary_10_1021_acs_nanolett_7b00416 crossref_primary_10_1364_OE_23_009157 crossref_primary_10_1021_acsphotonics_7b00741 crossref_primary_10_3390_nano12234259 crossref_primary_10_1038_s41598_018_38115_z crossref_primary_10_1364_OE_24_019048 crossref_primary_10_1364_OL_38_002621 crossref_primary_10_1364_BOE_7_002781 crossref_primary_10_1021_acsphotonics_7b00509 crossref_primary_10_3390_photonics10111286 crossref_primary_10_1063_5_0198784 crossref_primary_10_1557_adv_2020_173 crossref_primary_10_1364_JOSAA_496501 crossref_primary_10_1088_1674_1056_24_10_104202 crossref_primary_10_3390_app6090239 crossref_primary_10_1002_adfm_202204328 crossref_primary_10_1021_acs_nanolett_5b02534 crossref_primary_10_1063_1_5132791 crossref_primary_10_1038_ncomms9097 crossref_primary_10_1039_D0MH00311E crossref_primary_10_1088_2040_8986_ac486f crossref_primary_10_1039_D0NR05248E crossref_primary_10_1021_acs_nanolett_6b02759 crossref_primary_10_1039_C8CS00864G crossref_primary_10_1016_j_jmmm_2017_11_049 crossref_primary_10_1364_AO_444728 crossref_primary_10_1021_acsphotonics_9b00833 crossref_primary_10_1038_ncomms4402 crossref_primary_10_1039_C5NR06964E crossref_primary_10_1021_nn402736f crossref_primary_10_1039_C7CP08458G crossref_primary_10_1364_OL_39_006285 crossref_primary_10_1007_s13404_018_0230_7 crossref_primary_10_1016_j_jqsrt_2015_03_005 crossref_primary_10_1038_s41467_018_05579_6 crossref_primary_10_1364_JOSAB_424442 crossref_primary_10_1021_nl504442v crossref_primary_10_1021_acsnano_2c04628 crossref_primary_10_1364_OL_44_000323 crossref_primary_10_1002_smtd_202401990 crossref_primary_10_1039_D5CP00012B crossref_primary_10_1364_OE_503349 crossref_primary_10_1364_OE_25_014134 crossref_primary_10_3389_fphy_2021_691034 crossref_primary_10_1103_PhysRevLett_114_113902 crossref_primary_10_1038_srep18872 crossref_primary_10_1103_PhysRevLett_129_203601 crossref_primary_10_1364_OE_21_017520 crossref_primary_10_1515_nanoph_2017_0117 crossref_primary_10_1002_adem_201600213 crossref_primary_10_1364_AOP_510826 crossref_primary_10_1063_1_4952740 crossref_primary_10_1088_1361_6455_ac7597 crossref_primary_10_1364_OL_39_003142 crossref_primary_10_1002_lpor_202000448 crossref_primary_10_1016_j_optcom_2016_12_052 crossref_primary_10_1364_OE_24_015171 crossref_primary_10_1038_srep28448 crossref_primary_10_1063_5_0085487 crossref_primary_10_1002_adom_201400053 crossref_primary_10_1515_nanoph_2024_0700 crossref_primary_10_1016_j_apsusc_2019_143752 crossref_primary_10_1021_acsphotonics_7b01012 crossref_primary_10_3390_nano14181539 crossref_primary_10_1002_adom_201801167 crossref_primary_10_1364_AO_438659 crossref_primary_10_1038_s41467_020_16845_x crossref_primary_10_1021_acsnano_7b02951 crossref_primary_10_1364_OL_40_002645 crossref_primary_10_1002_lpor_202100035 crossref_primary_10_1021_acssensors_6b00712 crossref_primary_10_3390_molecules26154421 crossref_primary_10_1126_science_aam8100 crossref_primary_10_1088_2040_8978_18_4_044021 crossref_primary_10_1021_acsphotonics_7b00395 crossref_primary_10_1103_PhysRevB_107_035417 crossref_primary_10_1021_jacs_4c03833 crossref_primary_10_1002_pssr_202200339 crossref_primary_10_1038_s41565_021_00852_0 crossref_primary_10_1021_acsphotonics_8b00809 crossref_primary_10_1016_j_rio_2021_100073 crossref_primary_10_1088_2040_8986_ac23a5 crossref_primary_10_1021_acsnano_1c06065 crossref_primary_10_1021_nl401877w crossref_primary_10_34133_2022_9758460 crossref_primary_10_1038_s41598_020_72675_3 crossref_primary_10_1088_2040_8978_18_10_103001 crossref_primary_10_1103_PhysRevB_103_035402 crossref_primary_10_1117_1_JNP_10_036013 crossref_primary_10_1117_1_JNP_10_036015 crossref_primary_10_1039_C8NR00210J crossref_primary_10_1364_OE_434287 crossref_primary_10_3367_UFNe_2017_12_038275 crossref_primary_10_1021_acs_chemmater_3c01200 crossref_primary_10_1021_nl4005018 crossref_primary_10_1364_OE_21_022076 crossref_primary_10_1088_0957_4484_27_23_234002 crossref_primary_10_1038_srep12288 crossref_primary_10_1038_srep14463 crossref_primary_10_1039_C6NR06504J crossref_primary_10_1002_jrs_5572 crossref_primary_10_1021_acs_nanolett_8b01148 crossref_primary_10_1039_C8NA00328A crossref_primary_10_1364_OE_27_022363 crossref_primary_10_1021_acsphotonics_7b01461 crossref_primary_10_1103_PhysRevLett_120_253902 crossref_primary_10_1063_1_4896631 crossref_primary_10_1063_5_0257020 crossref_primary_10_1021_acsphotonics_1c00375 crossref_primary_10_1002_adpr_202100326 crossref_primary_10_1515_nanoph_2022_0206 crossref_primary_10_1126_sciadv_1602487 crossref_primary_10_1038_s41524_020_00369_5 crossref_primary_10_1557_mrc_2018_46 crossref_primary_10_26599_NR_2025_94907132 crossref_primary_10_1002_lpor_202300314 crossref_primary_10_1038_s41467_023_38761_6 crossref_primary_10_1364_OPTICA_1_000250 crossref_primary_10_1002_adom_202202348 crossref_primary_10_1364_OE_27_004944 crossref_primary_10_1021_acsnano_4c13327 crossref_primary_10_1021_acsphotonics_7b01455 crossref_primary_10_1002_adma_202419076 crossref_primary_10_1103_PhysRevApplied_13_014003 crossref_primary_10_1038_s41598_023_27839_2 crossref_primary_10_1364_OE_26_013148 crossref_primary_10_1364_OME_414340 crossref_primary_10_1364_OE_385088 crossref_primary_10_1038_s41467_018_08057_1 crossref_primary_10_1016_j_optmat_2024_115450 crossref_primary_10_1088_2040_8986_abe7fa crossref_primary_10_1103_PhysRevLett_118_173901 crossref_primary_10_3390_polym13234230 crossref_primary_10_1088_2040_8978_17_7_072001 crossref_primary_10_1109_JPROC_2019_2943183 crossref_primary_10_1088_0256_307X_31_8_087302 crossref_primary_10_1016_j_icheatmasstransfer_2018_05_023 crossref_primary_10_1021_acsami_1c01692 crossref_primary_10_1103_PhysRevApplied_13_014008 crossref_primary_10_1038_ncomms8042 crossref_primary_10_1021_jp5111482 crossref_primary_10_1063_5_0064509 crossref_primary_10_1021_acsnano_1c07114 crossref_primary_10_1088_2040_8978_17_12_125104 crossref_primary_10_1038_s41378_024_00666_9 crossref_primary_10_1103_PhysRevApplied_15_054016 crossref_primary_10_1002_nano_70002 crossref_primary_10_1364_AO_57_004771 crossref_primary_10_1038_s41377_021_00599_2 crossref_primary_10_1016_j_jqsrt_2019_106573 crossref_primary_10_1103_PhysRevA_109_033501 crossref_primary_10_1021_acs_chemrev_7b00225 crossref_primary_10_1364_OE_25_022158 crossref_primary_10_1021_acs_nanolett_0c00007 crossref_primary_10_1016_j_jlumin_2020_117713 crossref_primary_10_1063_1_5099533 crossref_primary_10_1364_OL_43_003393 crossref_primary_10_1364_OL_551312 crossref_primary_10_1021_acsphotonics_5b00148 crossref_primary_10_1038_s41377_022_01015_z crossref_primary_10_1103_PhysRevA_109_033505 crossref_primary_10_1002_adom_201701176 crossref_primary_10_1364_OE_25_012357 crossref_primary_10_1364_OE_26_029074 crossref_primary_10_1002_adpr_202400162 crossref_primary_10_3390_ma7042784 crossref_primary_10_1002_smll_202204890 crossref_primary_10_1088_1402_4896_ac3fd3 crossref_primary_10_1088_2053_1591_aaa280 crossref_primary_10_1002_smll_202204883 crossref_primary_10_1515_nanoph_2020_0539 crossref_primary_10_1063_1_4885766 crossref_primary_10_1364_OE_22_031277 crossref_primary_10_1021_acsphotonics_0c00545 crossref_primary_10_1364_OME_8_000503 crossref_primary_10_1109_LPT_2016_2522409 crossref_primary_10_1364_OL_42_000835 crossref_primary_10_1063_5_0053008 crossref_primary_10_1021_acsaelm_9b00673 crossref_primary_10_1038_s41598_018_27268_6 crossref_primary_10_1016_j_rinp_2023_107102 crossref_primary_10_1364_OE_25_022375 crossref_primary_10_1103_PhysRevA_99_013852 crossref_primary_10_1021_acsanm_3c04689 crossref_primary_10_7498_aps_71_20212212 crossref_primary_10_1002_adom_202202140 crossref_primary_10_3103_S1541308X22040045 crossref_primary_10_1088_1612_202X_aa6c1a crossref_primary_10_1103_PhysRevB_106_115201 crossref_primary_10_1103_PhysRevLett_125_073205 crossref_primary_10_1103_Physics_12_14 crossref_primary_10_1039_C6NR09702B crossref_primary_10_1038_srep25113 crossref_primary_10_1088_1742_6596_1092_1_012022 crossref_primary_10_1088_2040_8986_aaa100 crossref_primary_10_1103_PhysRevB_102_155310 crossref_primary_10_1063_1_4907536 crossref_primary_10_1038_ncomms2934 crossref_primary_10_1063_5_0101317 crossref_primary_10_1021_acs_nanolett_4c01976 crossref_primary_10_1021_acssuschemeng_7b04870 crossref_primary_10_1103_PhysRevB_99_195444 crossref_primary_10_1109_JSTQE_2020_3001650 crossref_primary_10_1364_OE_23_022611 crossref_primary_10_1063_1_4873521 crossref_primary_10_1103_PhysRevA_96_043846 crossref_primary_10_1515_nanoph_2021_0295 crossref_primary_10_1364_OE_26_020051 crossref_primary_10_1103_PhysRevB_102_205428 crossref_primary_10_1364_JOSAB_34_000D36 crossref_primary_10_1021_acsphotonics_9b00388 crossref_primary_10_1038_srep38440 crossref_primary_10_29026_oea_2022_210093 crossref_primary_10_1103_PhysRevA_98_053804 crossref_primary_10_1016_j_physrep_2017_07_006 crossref_primary_10_1364_OE_395942 crossref_primary_10_1039_C8NR02259C crossref_primary_10_1038_ncomms10362 crossref_primary_10_1088_1361_6633_ad8eda crossref_primary_10_5802_crphys_31 crossref_primary_10_1088_2040_8986_aae3d0 crossref_primary_10_1126_sciadv_1600901 crossref_primary_10_1016_j_photonics_2018_04_001 crossref_primary_10_1364_JOSAB_34_000D18 crossref_primary_10_1039_D4MA00291A crossref_primary_10_3390_cryst11080920 crossref_primary_10_1021_acsphotonics_7b01038 crossref_primary_10_1021_acsphotonics_3c01874 crossref_primary_10_1103_PhysRevResearch_6_013053 crossref_primary_10_1063_5_0089856 crossref_primary_10_1002_adom_202300526 crossref_primary_10_1109_TAP_2019_2927861 crossref_primary_10_1021_acsphotonics_0c00555 crossref_primary_10_1088_2399_6528_ab4b86 crossref_primary_10_3390_nano12193305 crossref_primary_10_1063_1_4919536 crossref_primary_10_1021_acsphotonics_8b00161 crossref_primary_10_3390_molecules26206106 crossref_primary_10_1103_PhysRevLett_121_193902 crossref_primary_10_1103_PhysRevLett_121_193901 crossref_primary_10_1039_D0NR07010F crossref_primary_10_1021_acs_nanolett_1c01570 crossref_primary_10_1002_adom_202301850 crossref_primary_10_1515_nanoph_2018_0033 crossref_primary_10_1016_j_optcom_2018_05_075 crossref_primary_10_1021_acsnano_9b07117 crossref_primary_10_3390_nano12020220 crossref_primary_10_1364_OE_25_001495 crossref_primary_10_1021_acs_nanolett_6b02076 crossref_primary_10_1364_OE_24_002047 crossref_primary_10_3390_nano13030596 crossref_primary_10_1364_OL_42_001776 crossref_primary_10_1021_acsomega_6b00105 crossref_primary_10_1002_adom_201901233 crossref_primary_10_1016_j_aeue_2013_07_003 crossref_primary_10_1038_s41467_022_33088_0 crossref_primary_10_1093_nsr_nwaa040 crossref_primary_10_1002_ppsc_202000106 crossref_primary_10_1021_acsphotonics_4c01831 crossref_primary_10_1063_5_0058768 crossref_primary_10_18287_2412_6179_CO_744 crossref_primary_10_1016_j_spmi_2017_07_048 crossref_primary_10_1002_adom_201800783 crossref_primary_10_1002_adom_201800784 crossref_primary_10_1021_acsnano_3c02766 crossref_primary_10_1364_OL_43_005186 crossref_primary_10_1109_LPT_2015_2450495 crossref_primary_10_1002_adma_201505346 crossref_primary_10_1002_adom_201900396 crossref_primary_10_1364_OSAC_2_000507 crossref_primary_10_3762_bjnano_13_73 crossref_primary_10_1088_1361_6528_ac1a44 crossref_primary_10_1002_adma_202211363 crossref_primary_10_1109_JSTQE_2016_2616447 crossref_primary_10_1088_1742_6596_2858_1_012012 crossref_primary_10_1088_2040_8978_17_10_105106 crossref_primary_10_1364_OE_518062 crossref_primary_10_1002_lpor_201800032 crossref_primary_10_1002_lpor_201800037 crossref_primary_10_1557_adv_2018_510 crossref_primary_10_1088_2040_8978_18_9_093005 crossref_primary_10_7567_1882_0786_ab0182 crossref_primary_10_1021_acsphotonics_0c00117 crossref_primary_10_1364_OE_22_016178 crossref_primary_10_1038_srep22546 crossref_primary_10_1364_JOSAB_34_000653 crossref_primary_10_1186_s11671_018_2796_7 crossref_primary_10_7567_1882_0786_ab2137 crossref_primary_10_1103_PhysRevB_92_245419 crossref_primary_10_1039_C6TC01635A crossref_primary_10_1515_nanoph_2024_0240 crossref_primary_10_1016_j_optcom_2021_127453 crossref_primary_10_1038_nphoton_2017_39 crossref_primary_10_1038_s41598_021_01644_1 crossref_primary_10_1021_acs_nanolett_6b03525 crossref_primary_10_1088_2040_8986_ab490d crossref_primary_10_3390_nano9010030 crossref_primary_10_1038_ncomms11286 crossref_primary_10_1063_1_5138600 crossref_primary_10_1016_j_jqsrt_2021_107571 crossref_primary_10_1021_acs_chemrev_2c00011 crossref_primary_10_1515_nanoph_2016_0032 crossref_primary_10_1016_j_optcom_2015_05_054 crossref_primary_10_1103_PhysRevApplied_14_014067 crossref_primary_10_1038_s41566_018_0155_y crossref_primary_10_1021_jp408865p crossref_primary_10_1088_1361_6633_aa8732 crossref_primary_10_1038_nnano_2016_224 crossref_primary_10_1364_OE_23_002293 crossref_primary_10_1088_1361_6463_ab79dd crossref_primary_10_1088_2040_8978_15_7_073001 crossref_primary_10_1002_lpor_201800005 crossref_primary_10_1021_acs_nanolett_5b05057 crossref_primary_10_1103_PhysRevResearch_5_023192 crossref_primary_10_1021_acsphotonics_5b00105 crossref_primary_10_1002_adom_201900591 crossref_primary_10_1364_OE_26_030393 crossref_primary_10_1088_0022_3727_47_21_213001 crossref_primary_10_1103_PhysRevE_104_024223 crossref_primary_10_1364_OL_523793 crossref_primary_10_1002_lpor_201400188 crossref_primary_10_1364_AO_435987 crossref_primary_10_1021_acs_nanolett_9b02540 crossref_primary_10_1364_OE_486386 crossref_primary_10_1515_nanoph_2023_0887 crossref_primary_10_1364_OE_21_029365 crossref_primary_10_1021_nl403643v crossref_primary_10_1021_acsanm_9b00987 crossref_primary_10_1063_1_4977570 crossref_primary_10_1016_j_progsurf_2020_100584 crossref_primary_10_1021_acsphotonics_5b00117 crossref_primary_10_1088_1742_6596_690_1_012020 crossref_primary_10_1088_1742_6596_690_1_012021 crossref_primary_10_1140_epjd_s10053_022_00543_y crossref_primary_10_1557_adv_2019_357 crossref_primary_10_1364_OE_25_000431 crossref_primary_10_1016_j_colsurfa_2023_131525 crossref_primary_10_1364_OE_27_016143 crossref_primary_10_1021_acsphotonics_5b00132 crossref_primary_10_1088_1361_6463_ac394c crossref_primary_10_1364_OE_25_015927 crossref_primary_10_1002_adfm_201910259 crossref_primary_10_1364_OL_42_002639 crossref_primary_10_1002_adma_201502298 crossref_primary_10_1088_1674_1056_23_4_047806 crossref_primary_10_1364_PRJ_528976 crossref_primary_10_1109_JSTQE_2014_2345885 crossref_primary_10_1007_s11468_017_0662_6 crossref_primary_10_1016_j_physleta_2020_126696 crossref_primary_10_1021_nl5003526 crossref_primary_10_1021_acsphotonics_7b00688 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122355 crossref_primary_10_1021_acs_nanolett_4c03680 crossref_primary_10_1021_acsphotonics_8b00895 crossref_primary_10_1117_1_AP_1_2_024002 crossref_primary_10_1039_D0NR01178A crossref_primary_10_1002_adom_201700761 crossref_primary_10_1038_s41598_017_15192_0 crossref_primary_10_1109_JSEN_2023_3347223 crossref_primary_10_1002_lpor_202300584 crossref_primary_10_1364_OE_24_011420 crossref_primary_10_1021_acs_nanolett_7b00966 crossref_primary_10_1364_OSAC_425189 crossref_primary_10_1088_1361_6528_aae4d2 crossref_primary_10_3788_AOS230854 crossref_primary_10_1364_OE_23_028808 crossref_primary_10_1021_acs_jpcc_2c08744 crossref_primary_10_1016_j_photonics_2022_101066 crossref_primary_10_1038_srep02311 crossref_primary_10_1038_s41598_017_11401_y crossref_primary_10_1063_1_5018783 crossref_primary_10_3389_fphy_2020_586087 crossref_primary_10_1002_adom_201600903 crossref_primary_10_1002_adom_201600902 crossref_primary_10_1364_OE_21_029592 crossref_primary_10_1364_OE_447827 crossref_primary_10_1002_adma_201502917 crossref_primary_10_1364_OE_25_010853 crossref_primary_10_1038_ncomms4104 crossref_primary_10_1016_j_optcom_2017_08_064 crossref_primary_10_1364_JOSAB_424589 crossref_primary_10_3788_LOP220768 crossref_primary_10_1103_PhysRevApplied_8_054024 crossref_primary_10_1016_j_molliq_2021_117116 crossref_primary_10_3390_photonics9040267 crossref_primary_10_1021_acsphotonics_7b00423 crossref_primary_10_1021_acsphotonics_6b00570 crossref_primary_10_1364_OL_38_001857 crossref_primary_10_1002_adma_202007236 crossref_primary_10_1103_PhysRevA_93_043828 crossref_primary_10_35848_1882_0786_ac1b0e crossref_primary_10_1038_s41598_022_11733_4 crossref_primary_10_1364_OE_22_030833 crossref_primary_10_1209_0295_5075_133_27001 crossref_primary_10_1364_PRJ_503661 crossref_primary_10_1021_jp4027018 crossref_primary_10_1103_PhysRevB_95_165426 crossref_primary_10_1063_1_5082557 crossref_primary_10_1021_acsphotonics_7b01520 crossref_primary_10_1515_nanoph_2019_0321 crossref_primary_10_1016_j_nimb_2020_03_001 crossref_primary_10_1364_OE_22_006519 crossref_primary_10_1364_OE_24_020580 crossref_primary_10_1002_adma_201704338 crossref_primary_10_1021_acsphotonics_2c02005 crossref_primary_10_1021_acsnano_8b09198 crossref_primary_10_1038_ncomms8915 crossref_primary_10_3390_nano11040949 crossref_primary_10_1021_acs_nanolett_0c03295 crossref_primary_10_1364_OE_26_028891 crossref_primary_10_1021_acs_nanolett_5b01752 crossref_primary_10_1038_srep22136 crossref_primary_10_1016_j_physb_2017_10_128 crossref_primary_10_1038_s41467_020_18793_y crossref_primary_10_1364_OL_44_001972 crossref_primary_10_1103_PhysRevB_103_195419 crossref_primary_10_1021_acs_jpcc_5b10045 crossref_primary_10_1103_PhysRevLett_120_117402 crossref_primary_10_1021_acs_nanolett_6b01519 crossref_primary_10_1088_0034_4885_79_7_076401 crossref_primary_10_1103_PhysRevResearch_5_023116 crossref_primary_10_1002_adma_202103946 crossref_primary_10_1016_j_revip_2021_100051 crossref_primary_10_1021_nl403681g crossref_primary_10_1007_s11082_016_0875_5 crossref_primary_10_1063_1_5109460 crossref_primary_10_3390_photonics9010006 crossref_primary_10_1002_lpor_201500102 crossref_primary_10_1364_OME_9_001105 crossref_primary_10_3390_mi7110198 crossref_primary_10_1016_j_physleta_2021_127463 crossref_primary_10_1039_D2MA00052K crossref_primary_10_1038_s41467_019_12899_8 crossref_primary_10_1364_OL_478419 crossref_primary_10_1515_nanoph_2021_0612 crossref_primary_10_1002_lpor_202401093 crossref_primary_10_1021_nn507148z crossref_primary_10_1364_OE_21_026285 crossref_primary_10_1021_acsnano_3c08270 crossref_primary_10_1002_adom_202001670 crossref_primary_10_1002_adom_201700332 crossref_primary_10_1021_acs_nanolett_7b02952 crossref_primary_10_1364_PRJ_538704 crossref_primary_10_1109_JPHOT_2018_2871839 crossref_primary_10_1088_1361_6528_aa5e3c crossref_primary_10_1371_journal_pone_0127331 crossref_primary_10_1002_adfm_201801958 crossref_primary_10_1021_acsomega_0c01433 crossref_primary_10_1039_C8NH00198G crossref_primary_10_1063_1_5070135 crossref_primary_10_1016_j_xcrp_2021_100430 crossref_primary_10_1038_s41467_020_17743_y crossref_primary_10_1364_OE_21_027587 crossref_primary_10_1021_acsphotonics_9b00722 crossref_primary_10_1038_srep34775 crossref_primary_10_3390_app8020184 crossref_primary_10_1103_PhysRevB_88_241408 crossref_primary_10_1002_lpor_202301210 crossref_primary_10_1155_2017_2361042 crossref_primary_10_1364_OME_7_002299 crossref_primary_10_1002_adom_202302276 crossref_primary_10_1016_j_jqsrt_2021_107514 crossref_primary_10_1021_acsnano_6b06874 crossref_primary_10_1364_OE_378940 crossref_primary_10_1088_2040_8986_ab806f crossref_primary_10_1016_j_mser_2020_100563 crossref_primary_10_1063_5_0085940 crossref_primary_10_1103_PhysRevB_88_205106 crossref_primary_10_1063_1_4898684 crossref_primary_10_1007_s11801_021_0001_1 crossref_primary_10_1016_j_optmat_2024_114895 crossref_primary_10_1364_OE_434349 crossref_primary_10_1364_AO_54_003986 crossref_primary_10_1002_lpor_202000538 crossref_primary_10_1021_acsaom_4c00187 crossref_primary_10_1016_j_jqsrt_2022_108348 crossref_primary_10_1038_ncomms9069 crossref_primary_10_3390_mi13071025 crossref_primary_10_1109_LPT_2024_3511271 crossref_primary_10_1063_1_4901264 crossref_primary_10_1021_acsnano_0c05656 crossref_primary_10_1088_1402_4896_abf8eb crossref_primary_10_1109_JSTQE_2019_2902906 crossref_primary_10_1007_s11082_022_03906_2 crossref_primary_10_1007_s11801_021_9200_z crossref_primary_10_1021_acs_nanolett_1c00979 crossref_primary_10_1063_1_5095467 crossref_primary_10_1134_S0030400X17050125 crossref_primary_10_1364_OE_411110 crossref_primary_10_1002_lpor_202401215 crossref_primary_10_1063_5_0053772 crossref_primary_10_1063_1_5046154 crossref_primary_10_1016_j_nanoen_2015_08_014 crossref_primary_10_1364_OE_26_012344 crossref_primary_10_1021_acs_nanolett_0c04314 crossref_primary_10_1364_OME_397720 crossref_primary_10_1021_acsnano_8b07826 crossref_primary_10_1109_JPHOT_2021_3081100 crossref_primary_10_1002_lpor_201600055 crossref_primary_10_1186_s40580_017_0133_y crossref_primary_10_1016_j_optcom_2020_126646 crossref_primary_10_1002_adom_201801070 crossref_primary_10_1021_acsphotonics_6b00979 crossref_primary_10_1063_1_4914117 crossref_primary_10_1021_jp512003b crossref_primary_10_1109_LAWP_2021_3110664 crossref_primary_10_1103_PhysRevE_106_035207 crossref_primary_10_1021_acs_jpcc_6b07902 crossref_primary_10_1063_1_4997301 crossref_primary_10_1364_OL_40_000585 crossref_primary_10_1016_j_optmat_2023_114171 crossref_primary_10_1021_acs_nanolett_7b03613 crossref_primary_10_1039_C5NR07871G crossref_primary_10_1364_OE_23_021477 crossref_primary_10_1364_JOSAB_512113 crossref_primary_10_1016_j_colsurfa_2020_124430 crossref_primary_10_1364_OE_26_001000 crossref_primary_10_1155_2019_6532967 crossref_primary_10_1021_acsanm_4c04389 crossref_primary_10_1063_1_5129100 crossref_primary_10_1364_OPTICA_4_000139 crossref_primary_10_3390_cryst11111320 crossref_primary_10_1002_lpor_202300850 crossref_primary_10_1002_adom_201900735 crossref_primary_10_1002_lpor_202300855 crossref_primary_10_1063_1_4916997 crossref_primary_10_1103_PhysRevA_103_043703 crossref_primary_10_3390_photonics2030773 crossref_primary_10_1021_acsphotonics_7b01598 crossref_primary_10_1364_OME_396419 crossref_primary_10_1002_adma_201901364 crossref_primary_10_1021_acsphotonics_7b00007 crossref_primary_10_1038_nnano_2013_59 crossref_primary_10_1051_epjconf_201713201003 crossref_primary_10_1021_acsami_6b15726 crossref_primary_10_1021_acs_nanolett_9b05276 crossref_primary_10_1063_1_4949007 crossref_primary_10_1103_PhysRevMaterials_4_125202 crossref_primary_10_1021_acs_chemmater_7b02291 crossref_primary_10_1021_acsphotonics_9b01515 crossref_primary_10_1002_adom_201701253 crossref_primary_10_1098_rsta_2016_0069 crossref_primary_10_1021_acs_nanolett_7b04727 crossref_primary_10_1038_ncomms13910 crossref_primary_10_1051_epjam_2019016 crossref_primary_10_1021_acsphotonics_7b01343 crossref_primary_10_1038_s41467_018_05394_z crossref_primary_10_1016_j_optcom_2013_12_010 crossref_primary_10_1063_5_0246993 crossref_primary_10_1364_OSAC_2_000032 crossref_primary_10_1021_nn505606x crossref_primary_10_1021_jacs_4c09274 crossref_primary_10_1364_OL_381431 crossref_primary_10_1515_nanoph_2019_0505 crossref_primary_10_1021_acs_nanolett_5b03679 crossref_primary_10_1016_j_bios_2016_06_002 crossref_primary_10_1364_OE_27_025502 crossref_primary_10_3788_COL202321_073601 crossref_primary_10_1039_C4NR01231C crossref_primary_10_1021_acsnano_2c04721 crossref_primary_10_1016_j_optcom_2019_07_006 crossref_primary_10_1007_s11082_017_1035_2 crossref_primary_10_1038_s41598_018_35575_1 crossref_primary_10_1016_j_matdes_2019_108407 crossref_primary_10_1364_OL_43_001275 crossref_primary_10_1002_lpor_202100114 crossref_primary_10_1016_j_optcom_2022_128597 crossref_primary_10_1063_1_5087402 crossref_primary_10_1088_2040_8978_16_11_114005 crossref_primary_10_1515_nanoph_2021_0315 crossref_primary_10_1103_PhysRevB_102_165419 crossref_primary_10_1021_acsami_9b16683 crossref_primary_10_1021_acs_chemrev_1c00294 crossref_primary_10_1515_nanoph_2022_0308 crossref_primary_10_1016_j_snb_2017_07_045 crossref_primary_10_1021_acs_chemrev_6b00365 crossref_primary_10_1186_s40486_023_00184_9 crossref_primary_10_1088_1367_2630_aa6a33 crossref_primary_10_1126_sciadv_aav7588 crossref_primary_10_1364_OME_6_000640 crossref_primary_10_3390_nano9040536 crossref_primary_10_1021_acs_nanolett_5b00181 crossref_primary_10_3390_nano8010009 crossref_primary_10_1002_smtd_201600064 crossref_primary_10_1016_j_pmatsci_2017_02_004 crossref_primary_10_1038_lsa_2017_39 crossref_primary_10_1002_lpor_201700168 crossref_primary_10_1515_nanoph_2023_0268 crossref_primary_10_1088_1742_6596_1092_1_012110 crossref_primary_10_1021_acsphotonics_5b00261 crossref_primary_10_1016_j_optcom_2021_127606 crossref_primary_10_1088_2040_8986_abdf34 crossref_primary_10_1002_adom_201701057 crossref_primary_10_1063_1_4968806 crossref_primary_10_1088_1361_6528_aa8c2a crossref_primary_10_1364_JOSAA_37_000070 crossref_primary_10_1364_OE_24_016309 crossref_primary_10_1364_OE_22_010693 crossref_primary_10_1063_1_5087422 crossref_primary_10_1088_1612_202X_ab17d0 crossref_primary_10_1140_epjp_s13360_022_02427_x crossref_primary_10_1103_PhysRevResearch_2_013225 crossref_primary_10_1063_1_5047647 crossref_primary_10_1039_C8NR00594J crossref_primary_10_1002_2017RS006274 crossref_primary_10_1021_acsami_9b22684 crossref_primary_10_1088_1361_6528_ad2f76 crossref_primary_10_1021_acs_jpclett_0c02286 crossref_primary_10_1021_acsami_8b03718 crossref_primary_10_1103_PhysRevLett_121_227403 crossref_primary_10_1021_ph500419a crossref_primary_10_1038_s41598_019_43545_4 crossref_primary_10_1364_OE_22_023749 crossref_primary_10_1126_sciadv_1501536 crossref_primary_10_1021_nn502469r crossref_primary_10_1364_OE_21_023007 crossref_primary_10_15407_ujpe61_03_0255 crossref_primary_10_1364_OPTICA_384138 crossref_primary_10_3390_nano12152715 crossref_primary_10_1557_adv_2018_112 crossref_primary_10_1002_adom_202001081 crossref_primary_10_1557_adv_2019_152 crossref_primary_10_1039_D4NR03860F crossref_primary_10_1063_1_5087204 crossref_primary_10_1088_2040_8986_abb58f crossref_primary_10_1515_nanoph_2018_0107 crossref_primary_10_1109_TIM_2022_3193171 crossref_primary_10_1038_s41598_018_26359_8 crossref_primary_10_1021_acs_nanolett_5b03026 crossref_primary_10_1103_PhysRevApplied_13_021002 crossref_primary_10_1002_adom_201800366 crossref_primary_10_15541_jim20180440 crossref_primary_10_1364_OE_21_008091 crossref_primary_10_1364_OE_398903 crossref_primary_10_1063_1_4954675 crossref_primary_10_1088_1742_6596_741_1_012156 crossref_primary_10_1515_nanoph_2023_0030 crossref_primary_10_1103_PhysRevApplied_23_014001 crossref_primary_10_1364_OE_525858 crossref_primary_10_1038_s41598_018_30935_3 crossref_primary_10_1063_1_4943785 crossref_primary_10_1002_adom_202002192 crossref_primary_10_1103_PhysRevApplied_6_064016 crossref_primary_10_1088_1361_6641_ab8840 crossref_primary_10_1103_PhysRevB_109_155405 crossref_primary_10_1002_lpor_201900265 crossref_primary_10_1002_adom_201701094 crossref_primary_10_1364_PRJ_7_001296 crossref_primary_10_1126_sciadv_aax0939 crossref_primary_10_1021_acsphotonics_7b01186 crossref_primary_10_1364_JOSAB_34_001524 crossref_primary_10_1364_OE_25_00A824 crossref_primary_10_1038_srep03063 crossref_primary_10_1126_science_aag2472 crossref_primary_10_1002_adfm_201700580 crossref_primary_10_1038_s41598_022_09315_5 crossref_primary_10_1002_adpr_202100286 crossref_primary_10_1016_j_optcom_2018_11_055 crossref_primary_10_1088_1674_1056_23_8_088102 crossref_primary_10_1364_OPTICA_3_000093 crossref_primary_10_1021_acsphotonics_0c01319 crossref_primary_10_1364_OE_537608 crossref_primary_10_1038_s41598_022_25542_2 crossref_primary_10_1002_adom_202100112 crossref_primary_10_1002_lpor_201900250 crossref_primary_10_1016_j_actamat_2016_08_004 crossref_primary_10_1002_aenm_201601122 crossref_primary_10_1038_srep04126 crossref_primary_10_1021_acsphotonics_6b00096 crossref_primary_10_1364_AO_57_003959 crossref_primary_10_1021_acsanm_1c04308 crossref_primary_10_1021_acsanm_3c01249 crossref_primary_10_1063_1_5087248 crossref_primary_10_1515_nanoph_2021_0155 crossref_primary_10_1515_nanoph_2021_0158 crossref_primary_10_1103_PhysRevApplied_17_014008 crossref_primary_10_1038_s41467_017_01614_0 crossref_primary_10_1063_5_0012827 crossref_primary_10_1038_lsa_2016_197 crossref_primary_10_1063_5_0191112 crossref_primary_10_1021_acs_nanolett_0c02313 crossref_primary_10_1088_1361_6633_aa518f crossref_primary_10_1364_OE_27_028194 crossref_primary_10_1134_S0030400X15100240 crossref_primary_10_1016_j_cpc_2018_06_017 crossref_primary_10_1103_PhysRevA_103_043505 |
Cites_doi | 10.1117/1.3603941 10.1364/OE.20.013636 10.1021/nn301398a 10.1103/PhysRevLett.91.227402 10.1017/CBO9780511813535 10.1063/1.4719209 10.1515/nanoph-2012-0005 10.1364/OE.17.018820 10.1103/PhysRevB.77.115419 10.1038/nphoton.2011.154 10.1021/nl301594s 10.1038/ncomms1490 10.1364/OE.18.021198 10.1103/PhysRevB.62.R16356 10.1103/PhysRevB.82.045404 10.1126/science.1191922 10.1021/cr1002672 10.1002/lpor.201200021 10.1007/978-3-540-45273-7 10.1016/S1369-7021(09)70318-9 10.1364/JOSAA.28.000054 10.1364/OE.20.020376 10.1364/JOSA.73.000765 10.1021/nl900208z 10.1038/ncomms2167 10.1364/JOSAB.26.00B130 10.1038/nphoton.2010.237 10.1134/S0021364011200070 10.1364/OE.20.020599 10.1103/PhysRevA.45.6008 10.1364/OE.19.004815 10.1103/RevModPhys.82.2257 10.1103/PhysRevB.84.235429 10.1038/ncomms1268 10.1007/s00340-011-4727-5 10.1038/srep00492 10.1364/AOP.1.000438 10.1038/nmat852 10.1021/nn2009112 10.1021/nn202086u 10.1038/nmat2810 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2013 Copyright Nature Publishing Group Feb 2013 |
Copyright_xml | – notice: Springer Nature Limited 2013 – notice: Copyright Nature Publishing Group Feb 2013 |
DBID | AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 |
DOI | 10.1038/ncomms2538 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest - Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
ExternalDocumentID | 2903632411 23443555 10_1038_ncomms2538 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 4.4 53G 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABAWZ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BAPOH BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EJD EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 5VS CAG COF KQ8 LGEZI LOTEE NADUK NPM NXXTH PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI RC3 SOI 7X8 PUEGO |
ID | FETCH-LOGICAL-c453t-a6bce415bdeb9c5c65ec03a723646231d7e8a9454841692fa8964c3917496b963 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Fri Sep 05 11:44:48 EDT 2025 Wed Aug 13 06:31:30 EDT 2025 Mon Jul 21 06:04:46 EDT 2025 Tue Jul 01 04:28:07 EDT 2025 Thu Apr 24 23:09:45 EDT 2025 Fri Feb 21 02:39:45 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c453t-a6bce415bdeb9c5c65ec03a723646231d7e8a9454841692fa8964c3917496b963 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/1313235547?pq-origsite=%requestingapplication% |
PMID | 23443555 |
PQID | 1313235547 |
PQPubID | 546298 |
ParticipantIDs | proquest_miscellaneous_1313426107 proquest_journals_1313235547 pubmed_primary_23443555 crossref_citationtrail_10_1038_ncomms2538 crossref_primary_10_1038_ncomms2538 springer_journals_10_1038_ncomms2538 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20130226 |
PublicationDateYYYYMMDD | 2013-02-26 |
PublicationDate_xml | – month: 2 year: 2013 text: 20130226 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2013 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | FilonovDSExperimental verification of the concept of all-dielectric nanoantennasAppl. Phys. Lett.20121002011132012ApPhL.100t1113F10.1063/1.4719209 Rahmani, M., Luk’yanchuk, B. & Hong, M. . Fano resonance in novel plasmonic nanostructures. Las. Photon. Rev. doi:10.1002/lpor.201200021 (2012). DregelyD3D optical Yagi–Uda nanoantenna arrayNature Comm.2011226710.1038/ncomms1268 KuznetsovAIKiyanRChichkovBNLaser fabrication of 2D and 3D microstructures from metal nanoparticlesOpt. Expr.20101821198212031:CAS:528:DC%2BC3cXht1CktrfO2010OExpr..1821198K10.1364/OE.18.021198 NovotnyLvan HulstNFAntennas for lightNature Photon.2011583901:CAS:528:DC%2BC3MXhtlOjtrs%3D2011NaPho...5...83N10.1038/nphoton.2010.237 KrasnokAEMiroshnichenkoAEBelovPAKivsharYSHuygens optical elements and Yagi–Uda nanoantennas based on dielectric nanoparticlesJETP Lett.2011945935981:CAS:528:DC%2BC3MXhs1OltrbM10.1134/S0021364011200070 EvlyukhinABReinhardtCSeidelALuk’yanchukBSChichkovBNOptical response features of Si-nanoparticle arraysPhys. Rev. B2010820454042010PhRvB..82d5404E10.1103/PhysRevB.82.045404 MirinNAHalasNJLight-bending nanoparticlesNano Lett.20099125512591:CAS:528:DC%2BD1MXitFKisrs%3D2009NanoL...9.1255M10.1021/nl900208z LiKStockmanMIBergmanDJSelf-similar chain of metal nanospheres as an efficient nanolensPhys. Rev. Lett.2003912274022003PhRvL..91v7402L10.1103/PhysRevLett.91.227402 BrongersmaMLHartmanJWAtwaterHAElectromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limitPhys. Rev. B200062R16356R163591:CAS:528:DC%2BD3MXptVc%3D2000PhRvB..6216356B10.1103/PhysRevB.62.R16356 Gomez-MedinaRElectric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forcesJ. Nanophoton.201150535122011JNano...5.3512G10.1117/1.3603941 KuznetsovAILaser fabrication of large-scale nanoparticle arrays for sensing applicationsACS Nano.20115484348491:CAS:528:DC%2BC3MXlslKhtLs%3D10.1021/nn2009112 RollyBStoutBBonodNBoosting the directivity of optical antennas with magnetic and electric dipolar resonant particlesOpt. Expr.20122020376203862012OExpr..2020376R10.1364/OE.20.020376 KingNSAngle- and spectral-dependent light scattering from plasmonic nanocupsACS Nano.20115725472621:CAS:528:DC%2BC3MXptlemu7s%3D10.1021/nn202086u ZhaoQZhouJZhangFLippensDMie resonance-based dielectric metamaterialsMater. Today20091260691:CAS:528:DC%2BC3cXlvVGqtLY%3D10.1016/S1369-7021(09)70318-9 CurtoAGUnidirectional emission of a quantum dot coupled to a nanoantennaScience20103299309331:CAS:528:DC%2BC3cXhtVaqur%2FJ2010Sci...329..930C10.1126/science.1191922 EvlyukhinABOptical properties of spherical gold mesoparticlesAppl. Phys. B20121068418481:CAS:528:DC%2BC38XjvVSrt7g%3D2012ApPhB.106..841E10.1007/s00340-011-4727-5 Bohren, C. F. & Huffman, D. R. . Absorption and Scattering of Light by Small Particles Wiley (1983). KuznetsovAIMiroshnichenkoAEFuYHZhangJBLuk’yanchukBMagnetic lightSci. Rep.201224922012NatSR...2E.492K10.1038/srep00492 BharadwajPDeutschBNovotnyLOptical antennasAdv. Opt. Photon.2009143848310.1364/AOP.1.000438 KerkerMWangDGilesGElectromagnetic scattering by magnetic spheresJ. Opt. Soc. Am.1983737657671983OSAJ...73..765K10.1364/JOSA.73.000765 DaiJCajkoFTsukermanIStockmanMIElectrodynamic effects in plasmonic nanolensesPhys. Rev. B2008771154192008PhRvB..77k5419D10.1103/PhysRevB.77.115419 GianniniVFernandez-DominguezAIHeckSCMaierSAPlasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemittersChem. Rev.2011111388839121:CAS:528:DC%2BC3MXjsleqsLs%3D10.1021/cr1002672 KrasnokAEMiroshnichenkoAEBelovPAKivsharYSAll-dielectric optical nanoantennasOpt. Express20122020599206042012OExpr..2020599K10.1364/OE.20.020599 Nieto-VesperinasMGomez-MedinaRSaenzJJAngle-suppressed scattering and optical forces on submicrometer dielectric particlesJ. Opt. Soc. Am. A20112854601:STN:280:DC%2BC3M%2FosVGmug%3D%3D2011JOSAA..28...54N10.1364/JOSAA.28.000054 MiroshnichenkoAEFlachSKivsharYSFano resonances in nanoscale structuresRev. Mod. Phys.201082225722981:CAS:528:DC%2BC3cXht1Ciur%2FK2010RvMP...82.2257M10.1103/RevModPhys.82.2257 KuznetsovAILaser-induced transfer of metallic nanodroplets for plasmonics and metamaterial applicationsJ. Opt. Soc. Am. B200926B130B1381:CAS:528:DC%2BC3cXhslGhtw%3D%3D10.1364/JOSAB.26.00B130 SoukoulisCMWegenerMPast achievements and future challenges in the development of three-dimensional photonic metamaterialsNature Photon.201155235301:CAS:528:DC%2BC3MXhtV2qurjL2011NaPho...5..523S10.1038/nphoton.2011.154 Garcia-EtxarriAStrong magnetic response of submicron silicon particles in the infraredOpt. Express201119481548261:CAS:528:DC%2BC3MXjvVCksL8%3D2011OExpr..19.4815G10.1364/OE.19.004815 EvlyukhinABReinhardtCChichkovBNMultipole light scattering by nonspherical nanoparticles in the discrete dipole approximationPhys. Rev. B2011842354292011PhRvB..84w5429E10.1103/PhysRevB.84.235429 MaksymovISStaudeIMiroshnichenkoAEKivsharYSOptical Yagi-Uda nanoantennasNanophotonics2012165812012Nanop...1...65M10.1515/nanoph-2012-0005 SchmidtMKDielectric antennas—a suitable platform for controlling magnetic dipolar emissionOpt. Expr.20122013636136501:STN:280:DC%2BC38jjt1alsQ%3D%3D2012OExpr..2013636S10.1364/OE.20.013636 Kawata, S., Ohtsu, M. & Irie, M. . Nano-Optics Springer-Verlag (2002). VideenGBickelWSLight scattering resonances in small spheresPhys. Rev. A199245600860121:STN:280:DC%2BC2sjpsFWqsg%3D%3D1992PhRvA..45.6008V10.1103/PhysRevA.45.6008 LiuWMiroshnichenkoAENeshevDNKivsharYSBroadband unidirectional scattering by magneto-electric core-shell nanoparticlesACS Nano.20126548954971:CAS:528:DC%2BC38Xmt1ers7w%3D10.1021/nn301398a GeffrinJMMagnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphereNature Comm.2012311711:STN:280:DC%2BC3s7hsVCjtw%3D%3D10.1038/ncomms2167 KuznetsovAIKochJChichkovBNLaser-induced backward transfer of gold nanodropletsOpt. Expr.20091718820188251:CAS:528:DC%2BD1MXht12lsLjP2009OExpr..1718820K10.1364/OE.17.018820 Person, S. et al. Demonstration of zero optical backscattering from single nanoparticles. Preprint at http://arxiv.org/abs/1212.2793v1 (2012). MaierSALocal detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguidesNature Mater.200322292321:CAS:528:DC%2BD3sXisFWgsro%3D2003NatMa...2..229M10.1038/nmat852 Luk’yanchukBThe Fano resonance in plasmonic nanostructures and metamaterialsNature Mater.201097077152010NatMa...9..707L10.1038/nmat2810 Novotny, L. & Hecht, B. . Princples of Nano-Optics Cambridge University Press (2006). EvlyukhinABDemonstration of magnetic dipole resonances of dielectric nanospheres in the visible regionNano Lett.201212374937551:CAS:528:DC%2BC38XosFeltb8%3D2012NanoL..12.3749E10.1021/nl301594s ShegaiTChenSMiljkovićVDZenginGJohanssonPKällMA bimetallic nanoantenna for directional colour routingNature Comm.201124812011NatCo...2E.481S10.1038/ncomms1490 AE Krasnok (BFncomms2538_CR18) 2012; 20 R Gomez-Medina (BFncomms2538_CR28) 2011; 5 MK Schmidt (BFncomms2538_CR37) 2012; 20 D Dregely (BFncomms2538_CR9) 2011; 2 IS Maksymov (BFncomms2538_CR12) 2012; 1 M Nieto-Vesperinas (BFncomms2538_CR27) 2011; 28 JM Geffrin (BFncomms2538_CR35) 2012; 3 AI Kuznetsov (BFncomms2538_CR41) 2010; 18 AB Evlyukhin (BFncomms2538_CR23) 2012; 106 BFncomms2538_CR43 DS Filonov (BFncomms2538_CR20) 2012; 100 Q Zhao (BFncomms2538_CR15) 2009; 12 P Bharadwaj (BFncomms2538_CR7) 2009; 1 NS King (BFncomms2538_CR14) 2011; 5 W Liu (BFncomms2538_CR19) 2012; 6 AE Miroshnichenko (BFncomms2538_CR32) 2010; 82 AI Kuznetsov (BFncomms2538_CR39) 2009; 17 AI Kuznetsov (BFncomms2538_CR25) 2012; 2 K Li (BFncomms2538_CR3) 2003; 91 AB Evlyukhin (BFncomms2538_CR24) 2011; 84 AB Evlyukhin (BFncomms2538_CR26) 2012; 12 M Kerker (BFncomms2538_CR29) 1983; 73 AI Kuznetsov (BFncomms2538_CR42) 2011; 5 AB Evlyukhin (BFncomms2538_CR21) 2010; 82 SA Maier (BFncomms2538_CR6) 2003; 2 BFncomms2538_CR2 B Rolly (BFncomms2538_CR36) 2012; 20 BFncomms2538_CR1 BFncomms2538_CR38 L Novotny (BFncomms2538_CR10) 2011; 5 V Giannini (BFncomms2538_CR11) 2011; 111 AG Curto (BFncomms2538_CR8) 2010; 329 BFncomms2538_CR33 NA Mirin (BFncomms2538_CR13) 2009; 9 A Garcia-Etxarri (BFncomms2538_CR22) 2011; 19 ML Brongersma (BFncomms2538_CR5) 2000; 62 CM Soukoulis (BFncomms2538_CR16) 2011; 5 T Shegai (BFncomms2538_CR34) 2011; 2 B Luk’yanchuk (BFncomms2538_CR31) 2010; 9 AI Kuznetsov (BFncomms2538_CR40) 2009; 26 AE Krasnok (BFncomms2538_CR17) 2011; 94 G Videen (BFncomms2538_CR30) 1992; 45 J Dai (BFncomms2538_CR4) 2008; 77 21934665 - Nat Commun. 2011 Sep 20;2:481 22768382 - Sci Rep. 2012;2:492 12690394 - Nat Mater. 2003 Apr;2(4):229-32 23037088 - Opt Express. 2012 Aug 27;20(18):20376-86 21761840 - ACS Nano. 2011 Sep 27;5(9):7254-62 21434605 - Chem Rev. 2011 Jun 8;111(6):3888-912 21445117 - Opt Express. 2011 Mar 14;19(6):4815-26 20724630 - Science. 2010 Aug 20;329(5994):930-3 21200411 - J Opt Soc Am A Opt Image Sci Vis. 2011 Jan 1;28(1):54-60 22703443 - Nano Lett. 2012 Jul 11;12(7):3749-55 9907700 - Phys Rev A. 1992 Apr 15;45(8):6008-6012 22545872 - ACS Nano. 2012 Jun 26;6(6):5489-97 23461654 - Nano Lett. 2013 Apr 10;13(4):1806-9 20733610 - Nat Mater. 2010 Sep;9(9):707-15 22714428 - Opt Express. 2012 Jun 18;20(13):13636-50 19227996 - Nano Lett. 2009 Mar;9(3):1255-9 14683271 - Phys Rev Lett. 2003 Nov 28;91(22):227402 21539373 - ACS Nano. 2011 Jun 28;5(6):4843-9 23132021 - Nat Commun. 2012;3:1171 20941016 - Opt Express. 2010 Sep 27;18(20):21198-203 23037107 - Opt Express. 2012 Aug 27;20(18):20599-604 20372615 - Opt Express. 2009 Oct 12;17(21):18820-5 21468019 - Nat Commun. 2011;2:267 |
References_xml | – reference: Gomez-MedinaRElectric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forcesJ. Nanophoton.201150535122011JNano...5.3512G10.1117/1.3603941 – reference: MiroshnichenkoAEFlachSKivsharYSFano resonances in nanoscale structuresRev. Mod. Phys.201082225722981:CAS:528:DC%2BC3cXht1Ciur%2FK2010RvMP...82.2257M10.1103/RevModPhys.82.2257 – reference: BharadwajPDeutschBNovotnyLOptical antennasAdv. Opt. Photon.2009143848310.1364/AOP.1.000438 – reference: Nieto-VesperinasMGomez-MedinaRSaenzJJAngle-suppressed scattering and optical forces on submicrometer dielectric particlesJ. Opt. Soc. Am. A20112854601:STN:280:DC%2BC3M%2FosVGmug%3D%3D2011JOSAA..28...54N10.1364/JOSAA.28.000054 – reference: KingNSAngle- and spectral-dependent light scattering from plasmonic nanocupsACS Nano.20115725472621:CAS:528:DC%2BC3MXptlemu7s%3D10.1021/nn202086u – reference: Novotny, L. & Hecht, B. . Princples of Nano-Optics Cambridge University Press (2006). – reference: MirinNAHalasNJLight-bending nanoparticlesNano Lett.20099125512591:CAS:528:DC%2BD1MXitFKisrs%3D2009NanoL...9.1255M10.1021/nl900208z – reference: CurtoAGUnidirectional emission of a quantum dot coupled to a nanoantennaScience20103299309331:CAS:528:DC%2BC3cXhtVaqur%2FJ2010Sci...329..930C10.1126/science.1191922 – reference: FilonovDSExperimental verification of the concept of all-dielectric nanoantennasAppl. Phys. Lett.20121002011132012ApPhL.100t1113F10.1063/1.4719209 – reference: EvlyukhinABOptical properties of spherical gold mesoparticlesAppl. Phys. B20121068418481:CAS:528:DC%2BC38XjvVSrt7g%3D2012ApPhB.106..841E10.1007/s00340-011-4727-5 – reference: DaiJCajkoFTsukermanIStockmanMIElectrodynamic effects in plasmonic nanolensesPhys. Rev. B2008771154192008PhRvB..77k5419D10.1103/PhysRevB.77.115419 – reference: NovotnyLvan HulstNFAntennas for lightNature Photon.2011583901:CAS:528:DC%2BC3MXhtlOjtrs%3D2011NaPho...5...83N10.1038/nphoton.2010.237 – reference: EvlyukhinABReinhardtCSeidelALuk’yanchukBSChichkovBNOptical response features of Si-nanoparticle arraysPhys. Rev. B2010820454042010PhRvB..82d5404E10.1103/PhysRevB.82.045404 – reference: BrongersmaMLHartmanJWAtwaterHAElectromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limitPhys. Rev. B200062R16356R163591:CAS:528:DC%2BD3MXptVc%3D2000PhRvB..6216356B10.1103/PhysRevB.62.R16356 – reference: KrasnokAEMiroshnichenkoAEBelovPAKivsharYSAll-dielectric optical nanoantennasOpt. Express20122020599206042012OExpr..2020599K10.1364/OE.20.020599 – reference: Luk’yanchukBThe Fano resonance in plasmonic nanostructures and metamaterialsNature Mater.201097077152010NatMa...9..707L10.1038/nmat2810 – reference: Garcia-EtxarriAStrong magnetic response of submicron silicon particles in the infraredOpt. Express201119481548261:CAS:528:DC%2BC3MXjvVCksL8%3D2011OExpr..19.4815G10.1364/OE.19.004815 – reference: ZhaoQZhouJZhangFLippensDMie resonance-based dielectric metamaterialsMater. Today20091260691:CAS:528:DC%2BC3cXlvVGqtLY%3D10.1016/S1369-7021(09)70318-9 – reference: KerkerMWangDGilesGElectromagnetic scattering by magnetic spheresJ. Opt. Soc. Am.1983737657671983OSAJ...73..765K10.1364/JOSA.73.000765 – reference: MaksymovISStaudeIMiroshnichenkoAEKivsharYSOptical Yagi-Uda nanoantennasNanophotonics2012165812012Nanop...1...65M10.1515/nanoph-2012-0005 – reference: KuznetsovAIMiroshnichenkoAEFuYHZhangJBLuk’yanchukBMagnetic lightSci. Rep.201224922012NatSR...2E.492K10.1038/srep00492 – reference: EvlyukhinABDemonstration of magnetic dipole resonances of dielectric nanospheres in the visible regionNano Lett.201212374937551:CAS:528:DC%2BC38XosFeltb8%3D2012NanoL..12.3749E10.1021/nl301594s – reference: RollyBStoutBBonodNBoosting the directivity of optical antennas with magnetic and electric dipolar resonant particlesOpt. Expr.20122020376203862012OExpr..2020376R10.1364/OE.20.020376 – reference: KuznetsovAIKochJChichkovBNLaser-induced backward transfer of gold nanodropletsOpt. Expr.20091718820188251:CAS:528:DC%2BD1MXht12lsLjP2009OExpr..1718820K10.1364/OE.17.018820 – reference: Kawata, S., Ohtsu, M. & Irie, M. . Nano-Optics Springer-Verlag (2002). – reference: KuznetsovAILaser-induced transfer of metallic nanodroplets for plasmonics and metamaterial applicationsJ. Opt. Soc. Am. B200926B130B1381:CAS:528:DC%2BC3cXhslGhtw%3D%3D10.1364/JOSAB.26.00B130 – reference: DregelyD3D optical Yagi–Uda nanoantenna arrayNature Comm.2011226710.1038/ncomms1268 – reference: Person, S. et al. Demonstration of zero optical backscattering from single nanoparticles. Preprint at http://arxiv.org/abs/1212.2793v1 (2012). – reference: Rahmani, M., Luk’yanchuk, B. & Hong, M. . Fano resonance in novel plasmonic nanostructures. Las. Photon. Rev. doi:10.1002/lpor.201200021 (2012). – reference: LiKStockmanMIBergmanDJSelf-similar chain of metal nanospheres as an efficient nanolensPhys. Rev. Lett.2003912274022003PhRvL..91v7402L10.1103/PhysRevLett.91.227402 – reference: MaierSALocal detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguidesNature Mater.200322292321:CAS:528:DC%2BD3sXisFWgsro%3D2003NatMa...2..229M10.1038/nmat852 – reference: SoukoulisCMWegenerMPast achievements and future challenges in the development of three-dimensional photonic metamaterialsNature Photon.201155235301:CAS:528:DC%2BC3MXhtV2qurjL2011NaPho...5..523S10.1038/nphoton.2011.154 – reference: GeffrinJMMagnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphereNature Comm.2012311711:STN:280:DC%2BC3s7hsVCjtw%3D%3D10.1038/ncomms2167 – reference: SchmidtMKDielectric antennas—a suitable platform for controlling magnetic dipolar emissionOpt. Expr.20122013636136501:STN:280:DC%2BC38jjt1alsQ%3D%3D2012OExpr..2013636S10.1364/OE.20.013636 – reference: KrasnokAEMiroshnichenkoAEBelovPAKivsharYSHuygens optical elements and Yagi–Uda nanoantennas based on dielectric nanoparticlesJETP Lett.2011945935981:CAS:528:DC%2BC3MXhs1OltrbM10.1134/S0021364011200070 – reference: ShegaiTChenSMiljkovićVDZenginGJohanssonPKällMA bimetallic nanoantenna for directional colour routingNature Comm.201124812011NatCo...2E.481S10.1038/ncomms1490 – reference: KuznetsovAIKiyanRChichkovBNLaser fabrication of 2D and 3D microstructures from metal nanoparticlesOpt. Expr.20101821198212031:CAS:528:DC%2BC3cXht1CktrfO2010OExpr..1821198K10.1364/OE.18.021198 – reference: LiuWMiroshnichenkoAENeshevDNKivsharYSBroadband unidirectional scattering by magneto-electric core-shell nanoparticlesACS Nano.20126548954971:CAS:528:DC%2BC38Xmt1ers7w%3D10.1021/nn301398a – reference: VideenGBickelWSLight scattering resonances in small spheresPhys. Rev. A199245600860121:STN:280:DC%2BC2sjpsFWqsg%3D%3D1992PhRvA..45.6008V10.1103/PhysRevA.45.6008 – reference: EvlyukhinABReinhardtCChichkovBNMultipole light scattering by nonspherical nanoparticles in the discrete dipole approximationPhys. Rev. B2011842354292011PhRvB..84w5429E10.1103/PhysRevB.84.235429 – reference: KuznetsovAILaser fabrication of large-scale nanoparticle arrays for sensing applicationsACS Nano.20115484348491:CAS:528:DC%2BC3MXlslKhtLs%3D10.1021/nn2009112 – reference: GianniniVFernandez-DominguezAIHeckSCMaierSAPlasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemittersChem. Rev.2011111388839121:CAS:528:DC%2BC3MXjsleqsLs%3D10.1021/cr1002672 – reference: Bohren, C. F. & Huffman, D. R. . Absorption and Scattering of Light by Small Particles Wiley (1983). – volume: 5 start-page: 053512 year: 2011 ident: BFncomms2538_CR28 publication-title: J. Nanophoton. doi: 10.1117/1.3603941 – volume: 20 start-page: 13636 year: 2012 ident: BFncomms2538_CR37 publication-title: Opt. Expr. doi: 10.1364/OE.20.013636 – volume: 6 start-page: 5489 year: 2012 ident: BFncomms2538_CR19 publication-title: ACS Nano. doi: 10.1021/nn301398a – volume: 91 start-page: 227402 year: 2003 ident: BFncomms2538_CR3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.91.227402 – ident: BFncomms2538_CR1 doi: 10.1017/CBO9780511813535 – volume: 100 start-page: 201113 year: 2012 ident: BFncomms2538_CR20 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4719209 – volume: 1 start-page: 65 year: 2012 ident: BFncomms2538_CR12 publication-title: Nanophotonics doi: 10.1515/nanoph-2012-0005 – volume: 17 start-page: 18820 year: 2009 ident: BFncomms2538_CR39 publication-title: Opt. Expr. doi: 10.1364/OE.17.018820 – volume: 77 start-page: 115419 year: 2008 ident: BFncomms2538_CR4 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.77.115419 – volume: 5 start-page: 523 year: 2011 ident: BFncomms2538_CR16 publication-title: Nature Photon. doi: 10.1038/nphoton.2011.154 – volume: 12 start-page: 3749 year: 2012 ident: BFncomms2538_CR26 publication-title: Nano Lett. doi: 10.1021/nl301594s – volume: 2 start-page: 481 year: 2011 ident: BFncomms2538_CR34 publication-title: Nature Comm. doi: 10.1038/ncomms1490 – volume: 18 start-page: 21198 year: 2010 ident: BFncomms2538_CR41 publication-title: Opt. Expr. doi: 10.1364/OE.18.021198 – volume: 62 start-page: R16356 year: 2000 ident: BFncomms2538_CR5 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.62.R16356 – volume: 82 start-page: 045404 year: 2010 ident: BFncomms2538_CR21 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.045404 – volume: 329 start-page: 930 year: 2010 ident: BFncomms2538_CR8 publication-title: Science doi: 10.1126/science.1191922 – volume: 111 start-page: 3888 year: 2011 ident: BFncomms2538_CR11 publication-title: Chem. Rev. doi: 10.1021/cr1002672 – ident: BFncomms2538_CR33 doi: 10.1002/lpor.201200021 – ident: BFncomms2538_CR2 doi: 10.1007/978-3-540-45273-7 – volume: 12 start-page: 60 year: 2009 ident: BFncomms2538_CR15 publication-title: Mater. Today doi: 10.1016/S1369-7021(09)70318-9 – volume: 28 start-page: 54 year: 2011 ident: BFncomms2538_CR27 publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.28.000054 – volume: 20 start-page: 20376 year: 2012 ident: BFncomms2538_CR36 publication-title: Opt. Expr. doi: 10.1364/OE.20.020376 – volume: 73 start-page: 765 year: 1983 ident: BFncomms2538_CR29 publication-title: J. Opt. Soc. Am. doi: 10.1364/JOSA.73.000765 – volume: 9 start-page: 1255 year: 2009 ident: BFncomms2538_CR13 publication-title: Nano Lett. doi: 10.1021/nl900208z – volume: 3 start-page: 1171 year: 2012 ident: BFncomms2538_CR35 publication-title: Nature Comm. doi: 10.1038/ncomms2167 – volume: 26 start-page: B130 year: 2009 ident: BFncomms2538_CR40 publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.26.00B130 – volume: 5 start-page: 83 year: 2011 ident: BFncomms2538_CR10 publication-title: Nature Photon. doi: 10.1038/nphoton.2010.237 – volume: 94 start-page: 593 year: 2011 ident: BFncomms2538_CR17 publication-title: JETP Lett. doi: 10.1134/S0021364011200070 – volume: 20 start-page: 20599 year: 2012 ident: BFncomms2538_CR18 publication-title: Opt. Express doi: 10.1364/OE.20.020599 – volume: 45 start-page: 6008 year: 1992 ident: BFncomms2538_CR30 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.45.6008 – volume: 19 start-page: 4815 year: 2011 ident: BFncomms2538_CR22 publication-title: Opt. Express doi: 10.1364/OE.19.004815 – volume: 82 start-page: 2257 year: 2010 ident: BFncomms2538_CR32 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.82.2257 – ident: BFncomms2538_CR43 – volume: 84 start-page: 235429 year: 2011 ident: BFncomms2538_CR24 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.235429 – ident: BFncomms2538_CR38 – volume: 2 start-page: 267 year: 2011 ident: BFncomms2538_CR9 publication-title: Nature Comm. doi: 10.1038/ncomms1268 – volume: 106 start-page: 841 year: 2012 ident: BFncomms2538_CR23 publication-title: Appl. Phys. B doi: 10.1007/s00340-011-4727-5 – volume: 2 start-page: 492 year: 2012 ident: BFncomms2538_CR25 publication-title: Sci. Rep. doi: 10.1038/srep00492 – volume: 1 start-page: 438 year: 2009 ident: BFncomms2538_CR7 publication-title: Adv. Opt. Photon. doi: 10.1364/AOP.1.000438 – volume: 2 start-page: 229 year: 2003 ident: BFncomms2538_CR6 publication-title: Nature Mater. doi: 10.1038/nmat852 – volume: 5 start-page: 4843 year: 2011 ident: BFncomms2538_CR42 publication-title: ACS Nano. doi: 10.1021/nn2009112 – volume: 5 start-page: 7254 year: 2011 ident: BFncomms2538_CR14 publication-title: ACS Nano. doi: 10.1021/nn202086u – volume: 9 start-page: 707 year: 2010 ident: BFncomms2538_CR31 publication-title: Nature Mater. doi: 10.1038/nmat2810 – reference: 9907700 - Phys Rev A. 1992 Apr 15;45(8):6008-6012 – reference: 21434605 - Chem Rev. 2011 Jun 8;111(6):3888-912 – reference: 21468019 - Nat Commun. 2011;2:267 – reference: 22714428 - Opt Express. 2012 Jun 18;20(13):13636-50 – reference: 12690394 - Nat Mater. 2003 Apr;2(4):229-32 – reference: 22545872 - ACS Nano. 2012 Jun 26;6(6):5489-97 – reference: 21761840 - ACS Nano. 2011 Sep 27;5(9):7254-62 – reference: 20941016 - Opt Express. 2010 Sep 27;18(20):21198-203 – reference: 20372615 - Opt Express. 2009 Oct 12;17(21):18820-5 – reference: 21200411 - J Opt Soc Am A Opt Image Sci Vis. 2011 Jan 1;28(1):54-60 – reference: 20733610 - Nat Mater. 2010 Sep;9(9):707-15 – reference: 21539373 - ACS Nano. 2011 Jun 28;5(6):4843-9 – reference: 20724630 - Science. 2010 Aug 20;329(5994):930-3 – reference: 23132021 - Nat Commun. 2012;3:1171 – reference: 14683271 - Phys Rev Lett. 2003 Nov 28;91(22):227402 – reference: 21934665 - Nat Commun. 2011 Sep 20;2:481 – reference: 19227996 - Nano Lett. 2009 Mar;9(3):1255-9 – reference: 23037088 - Opt Express. 2012 Aug 27;20(18):20376-86 – reference: 22768382 - Sci Rep. 2012;2:492 – reference: 23037107 - Opt Express. 2012 Aug 27;20(18):20599-604 – reference: 23461654 - Nano Lett. 2013 Apr 10;13(4):1806-9 – reference: 21445117 - Opt Express. 2011 Mar 14;19(6):4815-26 – reference: 22703443 - Nano Lett. 2012 Jul 11;12(7):3749-55 |
SSID | ssj0000391844 |
Score | 2.621376 |
Snippet | Directional light scattering by spherical silicon nanoparticles in the visible spectral range is experimentally demonstrated for the first time. These unique... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1527 |
SubjectTerms | 639/624/399/1099 639/766/400 639/925/357/354 Humanities and Social Sciences Light scattering multidisciplinary Nanoparticles Optical properties Science Science (multidisciplinary) Silicon |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFA46EbyIv61OqbiLh7A2TdPkICLiHIKeHOxW0jQFYWbTbof99760aTeYeO4jSfOSvO_l5X0PoZ7OmOQAjbFQUYEpUQpzLhKcC0tXxWURVCRJb-9sOKKv43jsLtxK96yyOROrgzqfKntH3g8tx6A1jsnD7BvbqlE2uupKaGyjnZCArbWZ4oOX9o7Fsp9zShtW0oj3DTT5VZLYpqOs26ENcLkRGK3szeAA7Tug6D_Wmj1EW9ocod26dOTyGN27s8oCad8miGcT7U-sp-2XquLMhFb9bOmXnxNQtvGNNOAfu2dwJ2g0eP54GmJXCgErGkdzLFmmNNjaLNeZULFisVZBJBNL_w4AJswTzaWg4H4AwBKkkFwwquD3EypYBpvsFHXM1Ohz5BecaqZ1Alghp3mheCgZgJSAFEqERaQ9dNdMTKocT7gtVzFJq3h1xNPVJHrotpWd1ewYf0p1m_lN3Q4p05U-PXTTfoa1bQMW0ujpopaxLl4AMme1XtpuSEQB6cWxh3qNotYa3xjDxf9juER7pKpzQTBhXdSZ_yz0FaCNeXZdLalfgvDVUQ priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT4MwFH7RLSZejL9Fp8G4iwcilFLag4fFuCxL9KJLdiOllMQEmZHtsP_eVyiomQePhEdp3-trv8cr3wMY6pRJjtDYEyrMPUqU8jgXsZcJQ1fFZe7XJElPz2wyo9N5NLc0OZU9VtlQWtbLdHs67K7Eq_eKoHtuQ5_HuOz2oD8aTV-m3RcVw3XOKW05SEP-46Hfu84GlNxIg9a7y3gf9iwsdEdNRw5gS5eHsNMUilwfwb1dmQxsds3v4Gmh3cLE1W6laoZMbNVN1271VqBpS7eUJUbDdljHMBs_vj5MPFv4wFM0CpeeZKnSuLOmmU6FihSLtPJDGRuyd4QrQRZrLgXFYAPhlCC55IJRhcOPqWAputQJ9MpFqc_AzTnVTOsYkUFGs1zxQDKEJD7JlQjyUDtw2yomUZYV3BSnKJI6Ox3y5FuJDtx0sh8NF8afUoNWv4n1hyoJDEOkgTaxA9fdbZzJJj0hS71YNTImoPNR5rSxS_caElLEdVHkwLA11I_GN_pw_j-xC9gldXUL4hE2gN7yc6UvEWMs0ys7ub4AEBfTBQ priority: 102 providerName: Springer Nature |
Title | Directional visible light scattering by silicon nanoparticles |
URI | https://link.springer.com/article/10.1038/ncomms2538 https://www.ncbi.nlm.nih.gov/pubmed/23443555 https://www.proquest.com/docview/1313235547 https://www.proquest.com/docview/1313426107 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1bS8MwFD7sguCLeHc6R8W9-FBd2yxNHobMsTkGDlEHeytpmoJQO90F3L_3pJc52XxpoT1Ny_mS5juc5DsAdeVTwZAam1w6oUlsKU3GuGsGXMtVMRE2EpGkpyHtj8hg3BwXIK_fmTlwtjW00_WkRtPo9vtreY8DvpVuGWd3MWLzMbNx6BahnOSJ9BK-jOYnf2SHYyBDcnXSP49oNWCHIGnQm_3Wp6YNvrmRK02moN4-7GXc0WinYB9AQcWHsJNWk1weQSv7fWlubeg9436kjEgH38ZMJjKa2KrhL43Ze4T4x0YsYgyZs5VxxzDqdd86fTOrjmBK0nTmpqC-VDj9-oHyuWxK2lSy4QhXK8Ijp7ECVzHBCUYkyLm4HQrGKZHoCZdw6uO4O4FSPInVGRghI4oq5SJ9CEgQSmYJirylYYeSW6GjKnCTO8aTmXS4rmAReUkK22Herz8rcL2y_UwFM7ZaVXP_ejnmnqVlJDX_cStwtbqN3V3nMESsJovURkd9DbQ5TXFZvSbHsQL1HKi1xje-4fzfBi5g106qXtimTatQmk8X6hK5x9yvQdEdu3hkvccalNvtwesAzw_d4fMLXu3QTi3pej_j1N21 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NTxsxEB0BFYILaguFFEqNgEMPFonX67UPqKqgUSiBE0i5LV6vV0IKG9oNqvKn-I3M7EcSKYgb5x3Z3vHY88ZjvwE48omyGqExNy7IuBTOca1NxFNDdFXaZu2SJOnqWvVu5Z9BOFiC5-YtDF2rbPbEcqNOR47OyE86xDFIzjH6-fiXU9Uoyq42JTQqs7j0k_8YshWnF-c4v8dCdH_fnPV4XVWAOxkGY25V4jy6rST1iXGhU6F37cBGxKSOWKCTRl5bIxHJI1YxIrPaKOkCDGukUQnaK7a7DB8kpRhx_USDaHqmQ2zrWsqGBTXQJzn-wkMhQnr-Mu_3FsDsQiK29G_dj7BRA1P2q7KkT7Dk88-wWpWqnGzCab03EnBn9CA9GXo2pMieFa7k6MRWWTJhxf0QjStnuc0xHq-v3W3B7bso6Qus5KPc7wDLtPTK-wixSSrTzOmOVQiK2iJzppMFvgU_GsXEruYlp_IYw7jMjwc6nimxBYdT2ceKjeNVqb1Gv3G9Iot4Zj8tOJh-xrVECRKb-9FTJUMhZRtltqt5mXYjAonIMgxbcNRM1FzjC2P4-vYYvsNa7-aqH_cvri93YV2UNTYEF2oPVsb_nvw3RDrjZL80LwZ3723PLwO8ELo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9swED51oE28IGAMCh0YAQ97sNo6jmM_VNMGVPxahaYh8RYcx5GQSgqkCPVf5K_inDgFqRNvPOfkOOez77uc7zuAPZsILREaU2WCjHJmDJVSRTRVjq5K6qxTkiT9GYjjS356FV414LmuhXHXKuszsTyo05Fx_8jbXccx6Jxj1M78tYiLw_7Pu3vqOki5TGvdTkP7Ngtpr6Qb80UeZ3byhOFc0Ts5xLXfZ6x_9O_gmPqOA9TwMBhTLRJj0aUlqU2UCY0IrekEOnIs64gTumlkpVYcUT7iGMUyLZXgJsCQhyuRoC3juJ9gPkKvj4Hg_O-jwcXf6R8fx8UuOa85UgPZzvEDbwsWuuKYt15xBurOpGlL79dfgkUPW8mvys6WoWHzFfhcNbKcfIWePzkdrCeuXD0ZWjJ0cT8pTMngiaOSZEKKmyGaXk5ynWO07i_lrcLlh6jpG8zlo9yuA8kkt8LaCJFLytPMyK4WCJk6LDOqmwW2CT9qxcTGs5a75hnDuMyeBzJ-VWITdqeydxVXx3-lWrV-Y79fi_jVupqwM32MO82lT3RuR4-VjAs4OyizVq3L9DUs4Ig7w7AJe_VCvRl8Zg4b789hG76gbcfnJ4OzTVhgZQMORplowdz44dF-Rxg0Tra8fRG4_miTfgH8sxuV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Directional+visible+light+scattering+by+silicon+nanoparticles&rft.jtitle=Nature+communications&rft.au=Fu%2C+Yuan+Hsing&rft.au=Kuznetsov%2C+Arseniy+I&rft.au=Miroshnichenko%2C+Andrey+E&rft.au=Yu%2C+Ye+Feng&rft.date=2013-02-26&rft.eissn=2041-1723&rft.volume=4&rft.spage=1527&rft_id=info:doi/10.1038%2Fncomms2538&rft_id=info%3Apmid%2F23443555&rft.externalDocID=23443555 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |