Performance analysis of a fuel cells integrated system utilizing Liquified Natural Gas as fuel for a green shipping target
In this study, a system integrating Solid Oxide Fuel Cells (SOFC) fueled by Liquefied Natural Gas (LNG) for marine vessels is proposed and analyzed. The system comprises Proton Exchange Membrane Fuel Cells (PEMFC), Organic Rankine Cycle (ORC), Gas Turbine (GT), Steam Rankine Cycle (SRC), and Waste H...
Saved in:
Published in | International journal of naval architecture and ocean engineering Vol. 15; pp. 100543 - 19 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2023
Elsevier 대한조선학회 |
Subjects | |
Online Access | Get full text |
ISSN | 2092-6782 2092-6790 |
DOI | 10.1016/j.ijnaoe.2023.100543 |
Cover
Abstract | In this study, a system integrating Solid Oxide Fuel Cells (SOFC) fueled by Liquefied Natural Gas (LNG) for marine vessels is proposed and analyzed. The system comprises Proton Exchange Membrane Fuel Cells (PEMFC), Organic Rankine Cycle (ORC), Gas Turbine (GT), Steam Rankine Cycle (SRC), and Waste Heat Boiler (WHB) combined with the SOFC system to enhance power generation and system performance. The PEMFC is particularly important for maritime applications, compensating for the disadvantage of the SOFC in terms of starting and response time according to the vessel's demand. The CO2 capture system designated in this proposal not only helps to comply with international regulations and standards on emission control but also reduces the power consumption requirement for traditional CO2 capture. To simulate and optimize the system's design, the Aspen HYSYS V12.1 process modelling software is employed. The thermodynamic models and equations for this proposed system are based on the first and second laws of thermodynamics. The exergy destruction equations and calculations for the main components are established and estimated to optimize the system's design and operation. The predicted performance of the proposed system is 68.76% for energy efficiency and 33.58% for exergy efficiency. The combined system for cold energy utilization and waste heat recovery generates more than 2100.42 kW equivalent, representing 35.6% of the total system generation. The results of the analysis indicate that when the current density is increased from 930 to 1930 A/m2, performance of system experience a reduction of 33.18% and 16.2% for the energy and exergy efficiencies, respectively. |
---|---|
AbstractList | In this study, a system integrating Solid Oxide Fuel Cells (SOFC) fueled by Liquefied Natural Gas (LNG) for marine vessels is proposed and analyzed. The system comprises Proton Exchange Membrane Fuel Cells (PEMFC), Organic Rankine Cycle (ORC), Gas Turbine (GT), Steam Rankine Cycle (SRC), and Waste Heat Boiler (WHB) combined with the SOFC system to enhance power generation and system performance. The PEMFC is particularly important for maritime applications, compensating for the disadvantage of the SOFC in terms of starting and response time according to the vessel's demand. The CO2 capture system designated in this proposal not only helps to comply with international regulations and standards on emission control but also reduces the power consumption requirement for traditional CO2 capture. To simulate and optimize the system's design, the Aspen HYSYS V12.1 process modelling software is employed. The thermodynamic models and equations for this proposed system are based on the first and second laws of thermodynamics. The exergy destruction equations and calculations for the main components are established and estimated to optimize the system's design and operation. The predicted performance of the proposed system is 68.76% for energy efficiency and 33.58% for exergy efficiency. The combined system for cold energy utilization and waste heat recovery generates more than 2100.42 kW equivalent, representing 35.6% of the total system generation. The results of the analysis indicate that when the current density is increased from 930 to 1930 A/m2, performance of system experience a reduction of 33.18% and 16.2% for the energy and exergy efficiencies, respectively. In this study, a system integrating Solid Oxide Fuel Cells (SOFC) fueled by Liquefied Natural Gas (LNG) for marine vessels is proposed and analyzed. The system comprises Proton Exchange Membrane Fuel Cells (PEMFC), Organic Rankine Cycle (ORC), Gas Turbine (GT), Steam Rankine Cycle (SRC), and Waste Heat Boiler (WHB) combined with the SOFC system to enhance power generation and system performance. The PEMFC is particularly important for maritime applications, compensating for the disadvantage of the SOFC in terms of starting and response time according to the vessel's demand. The CO2 capture system designated in this proposal not only helps to comply with international regulations and standards on emission control but also reduces the power consumption requirement for traditional CO2 capture. To simulate and optimize the system's design, the Aspen HYSYS V12.1 process modelling software is employed. The thermodynamic models and equations for this proposed system are based on the first and second laws of thermodynamics. The exergy destruction equations and calculations for the main components are established and estimated to optimize the system's design and operation. The predicted performance of the proposed system is 68.76% for energy efficiency and 33.58% for exergy efficiency. The combined system for cold energy utilization and waste heat recovery generates more than 2100.42 kW equivalent, representing 35.6% of the total system generation. The results of the analysis indicate that when the current density is increased from 930 to 1930 A/m2, performance of system experience a reduction of 33.18% and 16.2% for the energy and exergy efficiencies, respectively. KCI Citation Count: 0 |
ArticleNumber | 100543 |
Author | Ryu, Bo Rim Kyu, So Soon Jeon, Hyeonmin Kang, Hokeun Duong, Phan Anh |
Author_xml | – sequence: 1 givenname: Phan Anh surname: Duong fullname: Duong, Phan Anh email: anhdp@g.kmou.ac.kr organization: Department of Marine System Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea – sequence: 2 givenname: Bo Rim surname: Ryu fullname: Ryu, Bo Rim email: ryuborim@g.kmou.ac.kr organization: Department of Marine System Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea – sequence: 3 givenname: So Soon surname: Kyu fullname: Kyu, So Soon email: soonkyu.so@khnp.co.kr organization: NPP(II) Maintenance & Engineering Office, Wolsong Nuclear Power Site, Republic of Korea – sequence: 4 givenname: Hyeonmin surname: Jeon fullname: Jeon, Hyeonmin email: jhm861104@kmou.ac.kr organization: Department of Marine System Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea – sequence: 5 givenname: Hokeun surname: Kang fullname: Kang, Hokeun email: hkkang@kmou.ac.kr organization: Division of Coast Guard Studies, Korea Maritime and Ocean University, Busan, Republic of Korea |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003025131$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNqFkU1v1DAQhiNUJErpP-DgM9Iu_som4YBUVVBWWgFCe7cmzjhMmnUW21tp--vxbiiHHsAaaazxPK_Hfl8XF37yWBRvBV8KLlbvhyUNHiZcSi5VLvFSqxfFpeSNXKyqhl_83dfyVXEd48Dz0lxqLS6Lx-8Y3BR24C0y8DAeI0U2OQbMHXBkFscxMvIJ-wAJOxaPMeGOHRKN9Ei-Zxv6dSBH-egrpEOAkd1BZDnOfNbOUn1A9Cz-pP3-hCQIPaY3xUsHY8TrP_mq2H7-tL39sth8u1vf3mwWVpcqLWonlXYKLe-qSgsrVhWWotRt3bROSgcKJApRNQ1wpaFspW26WlW8klI3jboq3s2yPjhzb8lMQOfcT-Y-mJsf27URXKmyrEVuXs_N3QSD2QfaQTieiXNhCr2BkMiOaFBLKcC5GrTQaBuAtmm503LV8crWmLU-zFo2TDEGdMZSgkSTTwFozJeak4FmMLOB5mSgmQ3MsH4GPw3zH-zjjGH-0AfCYKIlzN52FNCm_Ar6t8BvlkO5Eg |
CitedBy_id | crossref_primary_10_3390_en18020288 crossref_primary_10_1016_j_ijnaoe_2025_100649 crossref_primary_10_1155_2024_2119169 crossref_primary_10_1002_ceat_202400118 crossref_primary_10_1080_20464177_2024_2418663 crossref_primary_10_1016_j_ijnaoe_2024_100620 |
Cites_doi | 10.1016/j.enconman.2019.03.015 10.1016/j.ijhydene.2019.02.201 10.1016/j.enconman.2016.08.026 10.1016/j.apenergy.2012.11.034 10.1016/j.ijrefrig.2019.03.022 10.1016/j.desal.2017.04.002 10.1016/j.jngse.2017.07.018 10.1016/j.enconman.2021.114532 10.1016/j.jpowsour.2015.11.103 10.1016/j.ijhydene.2020.05.012 10.1016/j.elecom.2006.08.012 10.1016/j.energy.2019.116201 10.1016/j.energy.2015.07.101 10.1016/j.renene.2022.12.021 10.1016/j.ijhydene.2018.05.008 10.1016/j.energy.2021.121972 10.1016/j.ijhydene.2009.11.012 10.1016/j.jclepro.2021.130149 10.1016/j.ijhydene.2021.11.049 10.1016/j.jpowsour.2021.229948 10.3390/app12126287 10.1016/j.energy.2013.05.002 10.1016/j.apenergy.2015.04.126 10.1016/j.enconman.2020.112468 10.3390/en13236173 10.1149/2.0331810jes 10.1016/j.rser.2022.112549 10.1016/j.pecs.2010.06.002 10.1016/j.enconman.2022.115770 10.1016/j.enconman.2016.03.011 10.1016/j.solener.2016.01.029 10.1016/j.energy.2020.117162 10.1016/j.ijhydene.2019.01.252 10.1016/j.enconman.2019.112320 10.1016/j.energy.2011.05.034 10.1016/j.ijhydene.2022.06.102 10.1016/j.jpowsour.2006.05.034 10.3390/pr11020517 10.1016/j.ijhydene.2008.05.036 10.1016/j.ijhydene.2012.12.101 10.1016/j.applthermaleng.2019.113937 10.1016/j.ijhydene.2014.06.101 10.1016/j.apenergy.2020.115570 10.1016/j.energy.2015.12.019 10.1016/j.jclepro.2021.126651 10.1016/j.energy.2021.121949 10.1016/j.enconman.2015.05.004 10.1016/j.enconman.2020.113770 10.1016/j.marpol.2022.105125 10.1126/science.1172246 10.3390/en15217843 10.1016/j.jpowsour.2006.04.091 10.1016/j.energy.2019.116750 10.1016/j.egypro.2017.03.1385 10.1016/j.enconman.2022.116587 10.1016/j.energy.2021.119771 10.1016/j.apenergy.2021.116869 10.1016/j.ijhydene.2018.01.174 10.1016/j.enconman.2015.12.073 10.1016/j.apenergy.2015.07.019 10.1016/j.jpowsour.2008.11.037 10.1016/j.apenergy.2018.09.138 10.1016/j.ijnaoe.2023.100524 |
ContentType | Journal Article |
Copyright | 2023 Society of Naval Architects of Korea |
Copyright_xml | – notice: 2023 Society of Naval Architects of Korea |
DBID | 6I. AAFTH AAYXX CITATION DOA ACYCR |
DOI | 10.1016/j.ijnaoe.2023.100543 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Military & Naval Science |
EISSN | 2092-6790 |
EndPage | 19 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10335581 oai_doaj_org_article_e4221aff8a414ec9aab9b0f426d07c8e 10_1016_j_ijnaoe_2023_100543 S2092678223000328 |
GroupedDBID | .UV 0R~ 0SF 4.4 5VS 6I. 9ZL AACTN AAEDW AAFTH AAFWJ AALRI AAXUO ABFKT ABMAC ACGFS ACYCR ADBBV AENEX AEXQZ AFPKN AFTJW AIKXB AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV DBRKI EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ JDI KQ8 KVFHK M41 NCXOZ O9- OK1 P2P QD8 RIG ROL SSZ TDB AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c453t-8f234f3ec0d7741c167e5154b89bf22fa3a2e11799a034a5b2c9d83707224993 |
IEDL.DBID | DOA |
ISSN | 2092-6782 |
IngestDate | Sat Dec 23 03:14:37 EST 2023 Wed Aug 27 01:28:27 EDT 2025 Thu Apr 24 22:59:16 EDT 2025 Tue Jul 01 04:04:30 EDT 2025 Fri Feb 23 02:38:50 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | CO2 cryogenic capture Cold energy utilization LNG Waste heat recovery SOFC |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c453t-8f234f3ec0d7741c167e5154b89bf22fa3a2e11799a034a5b2c9d83707224993 |
OpenAccessLink | https://doaj.org/article/e4221aff8a414ec9aab9b0f426d07c8e |
PageCount | 19 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10335581 doaj_primary_oai_doaj_org_article_e4221aff8a414ec9aab9b0f426d07c8e crossref_citationtrail_10_1016_j_ijnaoe_2023_100543 crossref_primary_10_1016_j_ijnaoe_2023_100543 elsevier_sciencedirect_doi_10_1016_j_ijnaoe_2023_100543 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | International journal of naval architecture and ocean engineering |
PublicationYear | 2023 |
Publisher | Elsevier B.V Elsevier 대한조선학회 |
Publisher_xml | – name: Elsevier B.V – name: Elsevier – name: 대한조선학회 |
References | Eveloy, Rodgers, Qiu (bib15) 2016; 126 Zis, Psaraftis, Tillig, Ringsberg (bib77) 2020; 37 Giménez-Prades, Navarro-Esbrí, Arpagaus, Fernández-Moreno, Mota-Babiloni (bib20) 2022; 167 Lim (bib36) 2008; 33 Zhang, Liu, Zhang, Chan, Wang (bib74) 2016; 95 (bib27) 2021 Meng, Cui, Ji, Cheng, Tu (bib46) 2022 Li, Liu, Zheng, Chen, Li, Zeng (bib34) 2019; 159 (bib28) 2018; 304 Liu, Han, You (bib40) 2020; 190 Duong, Ryu, Jung, Kang (bib14) 2022; 12 Marandi, Sarabchi, Yari (bib43) 2021; 244 Fuerte, Valenzuela, Escudero, Daza (bib18) 2009; 192 Gholamian, Zare (bib19) 2016; 117 Domingues, Matos, Pereira (bib12) 2022; 238 Mehrpooya, Sharifzadeh, Rosen (bib44) 2015; 90 Singapore, Shipping Association (bib60) 2020 Singh, Pedersen (bib61) 2016; 111 Riboldi, Bolland (bib56) 2017; 114 Yoon-Ho (bib72) 2019; 101 Liu, Han, You (bib39) 2019; 44 He, Lv, Shao, Zhang, Xing, Ma (bib24) 2020; 277 Zheng, Duan, Wang, Lu, Zhang (bib75) 2022; 265 Mehrpooya, Dehghani, Ali Moosavian (bib45) 2016; 306 Nalbant, Colpan, Devrim (bib48) 2020; 45 Milewski, Szczęśniak, Szabłowski (bib47) 2021; 502 Perna, Minutillo, Jannelli, Cigolotti, Nam, Han (bib54) 2018; 231 Das, Kashyap, Bora, Kalita, Kulkarni (bib10) 2021; 24 Ryu, Duong, Kang (bib58) 2023; 15 Zhou, Wang, Han, Sun, Sun (bib76) 2022; 47 Chen, Liu, Ye, Yi, Xu, Zhang (bib7) 2022; 238 Razmi, Janbaz (bib55) 2020; 204 Rosli (bib57) 2019; 44 Hansson, Brynolf, Fridell, Lehtveer (bib22) 2020; 12 Haseli, Dincer, Naterer (bib23) 2008; 33 Xie, Zhang, Liu, Lv, Ruan, Hosseini (bib68) 2018; 435 Shamardina, Chertovich, Kulikovsky, Khokhlov (bib59) 2010; 35 Tan, Xie, Wu, Qin, Ouyang (bib66) 2022; 334 Oh, Jeong, Cho, Kim, Ju (bib50) 2014; 39 Song, wei Gu (bib63) 2015; 156 Stuart Haszeldine (bib65) 2009; 325 Hedin, Andersson, Bergström, Yan (bib25) 2013; 104 Lu, Cai, Souamy, Song, Zhang, Wang (bib41) 2018; 43 Pan, Li, Zhu, Li, Tang, Bai (bib53) 2023; 202 Faungnawakij, Kikuchi, Eguchi (bib17) 2006; 161 Ouyang, Tan, Xie, Wu, Su (bib51) 2021; 229 Duong, Ryu, Kim, Lee, Kang (bib13) 2022 Noor Akashah, Mohammad Rozali, Mahadzir, Liew (bib49) 2023; 11 Song, Zhuang, Zhang, Li, Du, Shen (bib64) 2021; 245 Zhang (bib73) 2006; 160 Cinti, Desideri (bib9) 2015; 154 Jiao, Li (bib30) 2011; 37 Dimitrovar, Nader (bib11) 2022; 239 Budiyanto, Nasruddin, Nawara (bib4) 2020; 205 Burel, Taccani, Zuliani (bib5) 2013; 57 Kochunni, Chowdhury (bib31) 2022; 123 Li, Liu, Wang (bib35) 2022; 143 Liu, Karimi, He (bib38) 2019; 187 Barelli, Bidini, Cinti (bib3) 2020; 13 Han, Han, Yu (bib21) 2020; 27 Chen, Kim (bib6) 2022; 15 Smith, Novy (bib62) 2019 Wang, Han, Jiang, Yu, Ji, Cai (bib67) 2021; 26 Ezzat, Dincer (bib16) 2020; 194 Amiri (bib2) 2018; 165 Lim, Kim, Cho, Lee, Kim (bib37) 2023; 277 Chitgar, Moghimi (bib8) 2020; 197 Pan, Zhang, Zhang, Shang, Chen (bib52) 2017; 46 Li, Li, Pei, Ji (bib33) 2016; 127 Jang, Jeong, Zhou, Ha, Nam (bib29) 2021; 292 Herdem, Farhad, Hamdullahpur (bib26) 2015; 101 Yang, Zhao, Hou (bib71) 2020; 45 La Rocca (bib32) 2011; 36 Al-Hamed, Dincer (bib1) 2021; 220 Ma, Peng, Tian, Meng (bib42) 2006; 8 Yan, Zhao, Wang, Dai (bib70) 2013; 38 Xing, Stuart, Spence, Chen (bib69) 2021; 297 Smith (10.1016/j.ijnaoe.2023.100543_bib62) 2019 Yan (10.1016/j.ijnaoe.2023.100543_bib70) 2013; 38 Oh (10.1016/j.ijnaoe.2023.100543_bib50) 2014; 39 Han (10.1016/j.ijnaoe.2023.100543_bib21) 2020; 27 Kochunni (10.1016/j.ijnaoe.2023.100543_bib31) 2022; 123 Mehrpooya (10.1016/j.ijnaoe.2023.100543_bib44) 2015; 90 Zhang (10.1016/j.ijnaoe.2023.100543_bib73) 2006; 160 Lim (10.1016/j.ijnaoe.2023.100543_bib37) 2023; 277 Ouyang (10.1016/j.ijnaoe.2023.100543_bib51) 2021; 229 Amiri (10.1016/j.ijnaoe.2023.100543_bib2) 2018; 165 Chen (10.1016/j.ijnaoe.2023.100543_bib6) 2022; 15 Haseli (10.1016/j.ijnaoe.2023.100543_bib23) 2008; 33 Mehrpooya (10.1016/j.ijnaoe.2023.100543_bib45) 2016; 306 Zheng (10.1016/j.ijnaoe.2023.100543_bib75) 2022; 265 Zis (10.1016/j.ijnaoe.2023.100543_bib77) 2020; 37 Cinti (10.1016/j.ijnaoe.2023.100543_bib9) 2015; 154 La Rocca (10.1016/j.ijnaoe.2023.100543_bib32) 2011; 36 Jiao (10.1016/j.ijnaoe.2023.100543_bib30) 2011; 37 Nalbant (10.1016/j.ijnaoe.2023.100543_bib48) 2020; 45 Song (10.1016/j.ijnaoe.2023.100543_bib64) 2021; 245 Das (10.1016/j.ijnaoe.2023.100543_bib10) 2021; 24 Li (10.1016/j.ijnaoe.2023.100543_bib34) 2019; 159 Duong (10.1016/j.ijnaoe.2023.100543_bib14) 2022; 12 Li (10.1016/j.ijnaoe.2023.100543_bib33) 2016; 127 Barelli (10.1016/j.ijnaoe.2023.100543_bib3) 2020; 13 Faungnawakij (10.1016/j.ijnaoe.2023.100543_bib17) 2006; 161 Riboldi (10.1016/j.ijnaoe.2023.100543_bib56) 2017; 114 Razmi (10.1016/j.ijnaoe.2023.100543_bib55) 2020; 204 Stuart Haszeldine (10.1016/j.ijnaoe.2023.100543_bib65) 2009; 325 (10.1016/j.ijnaoe.2023.100543_bib28) 2018; 304 Xing (10.1016/j.ijnaoe.2023.100543_bib69) 2021; 297 Dimitrovar (10.1016/j.ijnaoe.2023.100543_bib11) 2022; 239 Burel (10.1016/j.ijnaoe.2023.100543_bib5) 2013; 57 Meng (10.1016/j.ijnaoe.2023.100543_bib46) 2022 Pan (10.1016/j.ijnaoe.2023.100543_bib53) 2023; 202 Wang (10.1016/j.ijnaoe.2023.100543_bib67) 2021; 26 Zhang (10.1016/j.ijnaoe.2023.100543_bib74) 2016; 95 Chen (10.1016/j.ijnaoe.2023.100543_bib7) 2022; 238 Pan (10.1016/j.ijnaoe.2023.100543_bib52) 2017; 46 Budiyanto (10.1016/j.ijnaoe.2023.100543_bib4) 2020; 205 Liu (10.1016/j.ijnaoe.2023.100543_bib40) 2020; 190 Marandi (10.1016/j.ijnaoe.2023.100543_bib43) 2021; 244 Eveloy (10.1016/j.ijnaoe.2023.100543_bib15) 2016; 126 Lim (10.1016/j.ijnaoe.2023.100543_bib36) 2008; 33 Yoon-Ho (10.1016/j.ijnaoe.2023.100543_bib72) 2019; 101 Fuerte (10.1016/j.ijnaoe.2023.100543_bib18) 2009; 192 Chitgar (10.1016/j.ijnaoe.2023.100543_bib8) 2020; 197 Jang (10.1016/j.ijnaoe.2023.100543_bib29) 2021; 292 Liu (10.1016/j.ijnaoe.2023.100543_bib38) 2019; 187 Shamardina (10.1016/j.ijnaoe.2023.100543_bib59) 2010; 35 Noor Akashah (10.1016/j.ijnaoe.2023.100543_bib49) 2023; 11 Perna (10.1016/j.ijnaoe.2023.100543_bib54) 2018; 231 Ma (10.1016/j.ijnaoe.2023.100543_bib42) 2006; 8 Hedin (10.1016/j.ijnaoe.2023.100543_bib25) 2013; 104 Singh (10.1016/j.ijnaoe.2023.100543_bib61) 2016; 111 Singapore (10.1016/j.ijnaoe.2023.100543_bib60) 2020 (10.1016/j.ijnaoe.2023.100543_bib27) 2021 Rosli (10.1016/j.ijnaoe.2023.100543_bib57) 2019; 44 Xie (10.1016/j.ijnaoe.2023.100543_bib68) 2018; 435 Duong (10.1016/j.ijnaoe.2023.100543_bib13) 2022 Yang (10.1016/j.ijnaoe.2023.100543_bib71) 2020; 45 Milewski (10.1016/j.ijnaoe.2023.100543_bib47) 2021; 502 Tan (10.1016/j.ijnaoe.2023.100543_bib66) 2022; 334 Gholamian (10.1016/j.ijnaoe.2023.100543_bib19) 2016; 117 Li (10.1016/j.ijnaoe.2023.100543_bib35) 2022; 143 Liu (10.1016/j.ijnaoe.2023.100543_bib39) 2019; 44 Song (10.1016/j.ijnaoe.2023.100543_bib63) 2015; 156 Ezzat (10.1016/j.ijnaoe.2023.100543_bib16) 2020; 194 Hansson (10.1016/j.ijnaoe.2023.100543_bib22) 2020; 12 Lu (10.1016/j.ijnaoe.2023.100543_bib41) 2018; 43 Giménez-Prades (10.1016/j.ijnaoe.2023.100543_bib20) 2022; 167 Herdem (10.1016/j.ijnaoe.2023.100543_bib26) 2015; 101 Zhou (10.1016/j.ijnaoe.2023.100543_bib76) 2022; 47 Al-Hamed (10.1016/j.ijnaoe.2023.100543_bib1) 2021; 220 Domingues (10.1016/j.ijnaoe.2023.100543_bib12) 2022; 238 He (10.1016/j.ijnaoe.2023.100543_bib24) 2020; 277 Ryu (10.1016/j.ijnaoe.2023.100543_bib58) 2023; 15 |
References_xml | – volume: 36 start-page: 4897 year: 2011 end-page: 4908 ident: bib32 article-title: Cold recovery during regasification of LNG part two: applications in an agro food industry and a hypermarket publication-title: Energy – volume: 204 year: 2020 ident: bib55 article-title: Exergoeconomic assessment with reliability consideration of a green cogeneration system based on compressed air energy storage (CAES) publication-title: Energy Convers. Manag. – volume: 238 year: 2022 ident: bib7 article-title: Air flow and pressure optimization for air supply in proton exchange membrane fuel cell system publication-title: Energy – volume: 239 year: 2022 ident: bib11 article-title: PEM fuel cell as an auxiliary power unit for range extended hybrid electric vehicles publication-title: Energy – volume: 194 year: 2020 ident: bib16 article-title: Energy and exergy analyses of a novel ammonia combined power plant operating with gas turbine and solid oxide fuel cell systems publication-title: Energy – volume: 90 start-page: 2047 year: 2015 end-page: 2069 ident: bib44 article-title: Optimum design and exergy analysis of a novel cryogenic air separation process with LNG (liquefied natural gas) cold energy utilization publication-title: Energy – volume: 12 start-page: 10 year: 2020 end-page: 14 ident: bib22 article-title: The potential role of ammonia as marine fuel-based on energy systems modeling and multi-criteria decision analysis publication-title: Sustain. Times – volume: 220 year: 2021 ident: bib1 article-title: A novel ammonia solid oxide fuel cell-based powering system with on-board hydrogen production for clean locomotives publication-title: Energy – volume: 24 year: 2021 ident: bib10 article-title: Thermo-economic optimization of a biogas-diesel dual fuel engine as remote power generating unit using response surface methodology publication-title: Therm. Sci. Eng. Prog. – start-page: 1 year: 2022 end-page: 22 ident: bib13 article-title: Energy and exergy analysis of an ammonia fuel cell integrated system for marine vessels publication-title: Energies – volume: 187 start-page: 41 year: 2019 end-page: 52 ident: bib38 article-title: A novel inlet air cooling system based on liquefied natural gas cold energy utilization for improving power plant performance publication-title: Energy Convers. Manag. – volume: 15 year: 2023 ident: bib58 article-title: Comparative analysis of the thermodynamic performances of solid oxide fuel cell–gas turbine integrated systems for marine vessels using ammonia and hydrogen as fuels publication-title: Int. J. Nav. Archit. Ocean Eng. – volume: 15 year: 2022 ident: bib6 article-title: Thermodynamic analysis and working fluid selection of a novel cogeneration system based on a regenerative organic flash cycle publication-title: Energies – volume: 325 start-page: 1647 year: 2009 end-page: 1652 ident: bib65 article-title: Carbon capture and storage: how green can black be? publication-title: Science – volume: 245 year: 2021 ident: bib64 article-title: Thermodynamic performance assessment of SOFC-RC-KC system for multiple waste heat recovery publication-title: Energy Convers. Manag. – volume: 154 start-page: 242 year: 2015 end-page: 253 ident: bib9 article-title: SOFC fuelled with reformed urea publication-title: Appl. Energy – volume: 277 year: 2023 ident: bib37 article-title: Novel process design for waste energy recovery of LNG power plants for CO publication-title: Energy Convers. Manag. – volume: 197 year: 2020 ident: bib8 article-title: Design and evaluation of a novel multi-generation system based on SOFC-GT for electricity, fresh water and hydrogen production publication-title: Energy – volume: 101 start-page: 218 year: 2019 end-page: 229 ident: bib72 article-title: Thermo-economic analysis of a novel regasification system with liquefied-natural-gas cold-energy publication-title: Int. J. Refrig. – volume: 502 year: 2021 ident: bib47 article-title: A proton conducting solid oxide fuel cell—implementation of the reduced order model in available software and verification based on experimental data publication-title: J. Power Sources – volume: 57 start-page: 412 year: 2013 end-page: 420 ident: bib5 article-title: Improving sustainability of maritime transport through utilization of Liquefied Natural Gas (LNG) for propulsion publication-title: Energy – volume: 265 year: 2022 ident: bib75 article-title: Thermodynamic performance analysis of a novel PEMEC-SOFC-based poly-generation system integrated mechanical compression and thermal energy storage publication-title: Energy Convers. Manag. – volume: 37 start-page: 221 year: 2011 end-page: 291 ident: bib30 article-title: Water transport in polymer electrolyte membrane fuel cells publication-title: Prog. Energy Combust. Sci. – volume: 117 start-page: 150 year: 2016 end-page: 161 ident: bib19 article-title: A comparative thermodynamic investigation with environmental analysis of SOFC waste heat to power conversion employing Kalina and Organic Rankine Cycles publication-title: Energy Convers. Manag. – volume: 156 start-page: 280 year: 2015 end-page: 289 ident: bib63 article-title: Performance analysis of a dual-loop organic Rankine cycle (ORC) system with wet steam expansion for engine waste heat recovery publication-title: Appl. Energy – volume: 229 year: 2021 ident: bib51 article-title: A new scheme for large marine vessels LNG cold energy utilization from thermodynamic and thermoeconomic viewpoints publication-title: Energy Convers. Manag. – volume: 111 start-page: 315 year: 2016 end-page: 328 ident: bib61 article-title: A review of waste heat recovery technologies for maritime applications publication-title: Energy Convers. Manag. – volume: 297 year: 2021 ident: bib69 article-title: Alternative fuel options for low carbon maritime transportation: pathways to 2050 publication-title: J. Clean. Prod. – volume: 13 year: 2020 ident: bib3 article-title: Operation of a solid oxide fuel cell based power system with ammonia as a fuel: experimental test and system design publication-title: Energies – volume: 26 year: 2021 ident: bib67 article-title: Conceptual design and assessment of a novel energy management system for LNG fueled ships with air separation publication-title: Therm. Sci. Eng. Prog. – volume: 159 year: 2019 ident: bib34 article-title: Performance analysis of an improved power generation system utilizing the cold energy of LNG and solar energy publication-title: Appl. Therm. Eng. – volume: 104 start-page: 418 year: 2013 end-page: 433 ident: bib25 article-title: Adsorbents for the post-combustion capture of CO2 using rapid temperature swing or vacuum swing adsorption publication-title: Appl. Energy – volume: 205 year: 2020 ident: bib4 article-title: The optimization of exergoenvironmental factors in the combined gas turbine cycle and carbon dioxide cascade to generate power in LNG tanker ship publication-title: Energy Convers. Manag. – volume: 167 year: 2022 ident: bib20 article-title: Novel molecules as working fluids for refrigeration, heat pump and organic Rankine cycle systems publication-title: Renew. Sustain. Energy Rev. – volume: 95 start-page: 425 year: 2016 end-page: 432 ident: bib74 article-title: Dynamic performance of a high-temperature PEM (proton exchange membrane) fuel cell - modelling and fuzzy control of purging process publication-title: Energy – volume: 127 start-page: 136 year: 2016 end-page: 146 ident: bib33 article-title: A cascade organic Rankine cycle power generation system using hybrid solar energy and liquefied natural gas publication-title: Sol. Energy – volume: 33 start-page: 1076 year: 2008 end-page: 1083 ident: bib36 article-title: Operating characteristics of a 5 kW class anode-supported planar SOFC stack for a fuel cell/gas turbine hybrid system publication-title: Int. J. Hydrogen Energy – volume: 47 start-page: 4109 year: 2022 end-page: 4119 ident: bib76 article-title: Optimization of a 30 kW SOFC combined heat and power system with different cycles and hydrocarbon fuels publication-title: Int. J. Hydrogen Energy – volume: 292 year: 2021 ident: bib29 article-title: Demystifying the lifecycle environmental benefits and harms of LNG as marine fuel publication-title: Appl. Energy – volume: 192 start-page: 170 year: 2009 end-page: 174 ident: bib18 article-title: Ammonia as efficient fuel for SOFC publication-title: J. Power Sources – volume: 244 year: 2021 ident: bib43 article-title: Exergy and exergoeconomic comparison between multiple novel combined systems based on proton exchange membrane fuel cells integrated with organic Rankine cycles, and hydrogen boil-off gas subsystem publication-title: Energy Convers. Manag. – volume: 35 start-page: 9954 year: 2010 end-page: 9962 ident: bib59 article-title: A simple model of a high temperature PEM fuel cell publication-title: Int. J. Hydrogen Energy – year: 2019 ident: bib62 article-title: Design of a modern proton-exchange membrane fuel cell module for engineering education publication-title: 2018 IEEE Conf. Technol. Sustain. SusTech – volume: 126 start-page: 944 year: 2016 end-page: 959 ident: bib15 article-title: Integration of an atmospheric solid oxide fuel cell - gas turbine system with reverse osmosis for distributed seawater desalination in a process facility publication-title: Energy Convers. Manag. – volume: 304 start-page: 13 year: 2018 ident: bib28 article-title: Adoption of the initial IMO Strategy on reduction of GHG emissions from ships publication-title: Resolution MEPC – volume: 39 start-page: 21915 year: 2014 end-page: 21926 ident: bib50 article-title: A CO poisoning model for high-temperature proton exchange membrane fuel cells comprising phosphoric acid-doped polybenzimidazole membranes publication-title: Int. J. Hydrogen Energy – volume: 123 year: 2022 ident: bib31 article-title: Concept and evaluation of energy-efficient boil-off gas reliquefiers in LNG carrier ships propelled by dual-fuel engines publication-title: Cryogenics (Guildf) – volume: 44 start-page: 29700 year: 2019 end-page: 29710 ident: bib39 article-title: Performance analysis of a CCHP system based on SOFC/GT/CO publication-title: Int. J. Hydrogen Energy – volume: 160 start-page: 872 year: 2006 end-page: 891 ident: bib73 article-title: High temperature PEM fuel cells publication-title: J. Power Sources – volume: 38 start-page: 3352 year: 2013 end-page: 3363 ident: bib70 article-title: Thermodynamic analysis of an SOFC-GT-ORC integrated power system with liquefied natural gas as heat sink publication-title: Int. J. Hydrogen Energy – volume: 202 start-page: 1054 year: 2023 end-page: 1070 ident: bib53 article-title: Energy, exergy and economic analysis of different integrated systems for power generation using LNG cold energy and geothermal energy publication-title: Renew. Energy – volume: 190 year: 2020 ident: bib40 article-title: Exergoeconomic analysis and multi-objective optimization of a CCHP system based on LNG cold energy utilization and flue gas waste heat recovery with CO publication-title: Energy – volume: 46 start-page: 188 year: 2017 end-page: 198 ident: bib52 article-title: Thermodynamic analysis of KCS/ORC integrated power generation system with LNG cold energy exploitation and CO publication-title: J. Nat. Gas Sci. Eng. – volume: 277 year: 2020 ident: bib24 article-title: Cascade utilization of LNG cold energy by integrating cryogenic energy storage, organic Rankine cycle and direct cooling publication-title: Appl. Energy – start-page: 37 year: 2021 end-page: 72 ident: bib27 article-title: Resolution MPEC.328(76) – volume: 238 year: 2022 ident: bib12 article-title: Novel integrated system of LNG regasification/electricity generation based on a cascaded two-stage Rankine cycle, with ternary mixtures as working fluids and seawater as hot utility publication-title: Energy – volume: 44 start-page: 30763 year: 2019 end-page: 30771 ident: bib57 article-title: The design and development of an HT-PEMFC test cell and test station publication-title: Int. J. Hydrogen Energy – volume: 45 start-page: 3584 year: 2020 end-page: 3594 ident: bib48 article-title: Energy and exergy performance assessments of a high temperature-proton exchange membrane fuel cell based integrated cogeneration system publication-title: Int. J. Hydrogen Energy – volume: 161 start-page: 87 year: 2006 end-page: 94 ident: bib17 article-title: Thermodynamic evaluation of methanol steam reforming for hydrogen production publication-title: J. Power Sources – volume: 165 start-page: F764 year: 2018 end-page: F769 ident: bib2 article-title: “ high performance tubular solid oxide fuel cell based on Ba 0.5 Sr 0.5 Ce 0.6 Zr 0.2 Gd 0.1 Y 0.1 O 3-δ proton conducting electrolyte ,” publication-title: J. Electrochem. Soc. – volume: 11 year: 2023 ident: bib49 article-title: Utilization of cold energy from LNG regasification process: a review of current trends publication-title: Processes – volume: 231 start-page: 1216 year: 2018 end-page: 1229 ident: bib54 article-title: Design and performance assessment of a combined heat, hydrogen and power (CHHP) system based on ammonia-fueled SOFC publication-title: Appl. Energy – year: 2022 ident: bib46 article-title: ScienceDirect Optimization and efficiency analysis of methanol SOFC-PEMFC hybrid system publication-title: Int. J. Hydrogen Energy – volume: 334 year: 2022 ident: bib66 article-title: Evaluating and optimizing the cold energy efficiency of power generation and wastewater treatment in LNG-fired power plant based on data-driven approach publication-title: J. Clean. Prod. – volume: 306 start-page: 107 year: 2016 end-page: 123 ident: bib45 article-title: Optimal design of solid oxide fuel cell, ammonia-water single effect absorption cycle and Rankine steam cycle hybrid system publication-title: J. Power Sources – volume: 12 start-page: 6287 year: 2022 ident: bib14 article-title: Thermal evaluation of a novel integrated system based on solid oxide fuel cells and combined heat and power production using ammonia as fuel publication-title: Appl. Sci. – volume: 143 year: 2022 ident: bib35 article-title: Emissions in maritime transport: a decomposition analysis from the perspective of production-based and consumption-based emissions publication-title: Mar. Pol. – volume: 8 start-page: 1791 year: 2006 end-page: 1795 ident: bib42 article-title: Direct utilization of ammonia in intermediate-temperature solid oxide fuel cells publication-title: Electrochem. Commun. – year: 2020 ident: bib60 article-title: A Guide for Bunkering Industry - Moving towards IMO 2020 Sulfure Limit – volume: 45 start-page: 19691 year: 2020 end-page: 19706 ident: bib71 article-title: Proposal and thermodynamic performance study of a novel LNG-fueled SOFC-HAT-CCHP system with near-zero CO publication-title: Int. J. Hydrogen Energy – volume: 37 year: 2020 ident: bib77 article-title: Decarbonizing maritime transport: a Ro-Pax case study publication-title: Res. Transp. Bus. Manag. – volume: 101 start-page: 19 year: 2015 end-page: 29 ident: bib26 article-title: Modeling and parametric study of a methanol reformate gas-fueled HT-PEMFC system for portable power generation applications publication-title: Energy Convers. Manag. – volume: 43 start-page: 12870 year: 2018 end-page: 12891 ident: bib41 article-title: Solid oxide fuel cell technology for sustainable development in China: an over-view publication-title: Int. J. Hydrogen Energy – volume: 114 start-page: 2390 year: 2017 end-page: 2400 ident: bib56 article-title: Overview on pressure swing adsorption (PSA) as CO publication-title: Energy Proc. – volume: 435 start-page: 293 year: 2018 end-page: 300 ident: bib68 article-title: A direct contact type ice generator for seawater freezing desalination using LNG cold energy publication-title: Desalination – volume: 33 start-page: 5811 year: 2008 end-page: 5822 ident: bib23 article-title: Thermodynamic modeling of a gas turbine cycle combined with a solid oxide fuel cell publication-title: Int. J. Hydrogen Energy – volume: 27 year: 2020 ident: bib21 article-title: Investigation of FCVs durability under driving cycles using a model-based approach publication-title: J. Energy Storage – volume: 187 start-page: 41 year: 2019 ident: 10.1016/j.ijnaoe.2023.100543_bib38 article-title: A novel inlet air cooling system based on liquefied natural gas cold energy utilization for improving power plant performance publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2019.03.015 – volume: 44 start-page: 29700 issue: 56 year: 2019 ident: 10.1016/j.ijnaoe.2023.100543_bib39 article-title: Performance analysis of a CCHP system based on SOFC/GT/CO2 cycle and ORC with LNG cold energy utilization publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.02.201 – volume: 27 year: 2020 ident: 10.1016/j.ijnaoe.2023.100543_bib21 article-title: Investigation of FCVs durability under driving cycles using a model-based approach publication-title: J. Energy Storage – volume: 126 start-page: 944 year: 2016 ident: 10.1016/j.ijnaoe.2023.100543_bib15 article-title: Integration of an atmospheric solid oxide fuel cell - gas turbine system with reverse osmosis for distributed seawater desalination in a process facility publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2016.08.026 – volume: 104 start-page: 418 year: 2013 ident: 10.1016/j.ijnaoe.2023.100543_bib25 article-title: Adsorbents for the post-combustion capture of CO2 using rapid temperature swing or vacuum swing adsorption publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.11.034 – volume: 101 start-page: 218 year: 2019 ident: 10.1016/j.ijnaoe.2023.100543_bib72 article-title: Thermo-economic analysis of a novel regasification system with liquefied-natural-gas cold-energy publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2019.03.022 – volume: 239 year: 2022 ident: 10.1016/j.ijnaoe.2023.100543_bib11 article-title: PEM fuel cell as an auxiliary power unit for range extended hybrid electric vehicles publication-title: Energy – volume: 435 start-page: 293 year: 2018 ident: 10.1016/j.ijnaoe.2023.100543_bib68 article-title: A direct contact type ice generator for seawater freezing desalination using LNG cold energy publication-title: Desalination doi: 10.1016/j.desal.2017.04.002 – volume: 24 year: 2021 ident: 10.1016/j.ijnaoe.2023.100543_bib10 article-title: Thermo-economic optimization of a biogas-diesel dual fuel engine as remote power generating unit using response surface methodology publication-title: Therm. Sci. Eng. Prog. – volume: 46 start-page: 188 year: 2017 ident: 10.1016/j.ijnaoe.2023.100543_bib52 article-title: Thermodynamic analysis of KCS/ORC integrated power generation system with LNG cold energy exploitation and CO2 capture publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2017.07.018 – volume: 244 year: 2021 ident: 10.1016/j.ijnaoe.2023.100543_bib43 article-title: Exergy and exergoeconomic comparison between multiple novel combined systems based on proton exchange membrane fuel cells integrated with organic Rankine cycles, and hydrogen boil-off gas subsystem publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2021.114532 – volume: 306 start-page: 107 year: 2016 ident: 10.1016/j.ijnaoe.2023.100543_bib45 article-title: Optimal design of solid oxide fuel cell, ammonia-water single effect absorption cycle and Rankine steam cycle hybrid system publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.11.103 – start-page: 1 year: 2022 ident: 10.1016/j.ijnaoe.2023.100543_bib13 article-title: Energy and exergy analysis of an ammonia fuel cell integrated system for marine vessels publication-title: Energies – volume: 45 start-page: 19691 issue: 38 year: 2020 ident: 10.1016/j.ijnaoe.2023.100543_bib71 article-title: Proposal and thermodynamic performance study of a novel LNG-fueled SOFC-HAT-CCHP system with near-zero CO2 emissions publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.05.012 – volume: 8 start-page: 1791 issue: 11 year: 2006 ident: 10.1016/j.ijnaoe.2023.100543_bib42 article-title: Direct utilization of ammonia in intermediate-temperature solid oxide fuel cells publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2006.08.012 – volume: 190 year: 2020 ident: 10.1016/j.ijnaoe.2023.100543_bib40 article-title: Exergoeconomic analysis and multi-objective optimization of a CCHP system based on LNG cold energy utilization and flue gas waste heat recovery with CO2 capture publication-title: Energy doi: 10.1016/j.energy.2019.116201 – volume: 90 start-page: 2047 year: 2015 ident: 10.1016/j.ijnaoe.2023.100543_bib44 article-title: Optimum design and exergy analysis of a novel cryogenic air separation process with LNG (liquefied natural gas) cold energy utilization publication-title: Energy doi: 10.1016/j.energy.2015.07.101 – volume: 202 start-page: 1054 year: 2023 ident: 10.1016/j.ijnaoe.2023.100543_bib53 article-title: Energy, exergy and economic analysis of different integrated systems for power generation using LNG cold energy and geothermal energy publication-title: Renew. Energy doi: 10.1016/j.renene.2022.12.021 – start-page: 37 year: 2021 ident: 10.1016/j.ijnaoe.2023.100543_bib27 – volume: 304 start-page: 13 issue: 72 year: 2018 ident: 10.1016/j.ijnaoe.2023.100543_bib28 article-title: Adoption of the initial IMO Strategy on reduction of GHG emissions from ships publication-title: Resolution MEPC – volume: 43 start-page: 12870 issue: 28 year: 2018 ident: 10.1016/j.ijnaoe.2023.100543_bib41 article-title: Solid oxide fuel cell technology for sustainable development in China: an over-view publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.05.008 – volume: 33 start-page: 1076 issue: 3 year: 2008 ident: 10.1016/j.ijnaoe.2023.100543_bib36 article-title: Operating characteristics of a 5 kW class anode-supported planar SOFC stack for a fuel cell/gas turbine hybrid system publication-title: Int. J. Hydrogen Energy – volume: 238 year: 2022 ident: 10.1016/j.ijnaoe.2023.100543_bib12 article-title: Novel integrated system of LNG regasification/electricity generation based on a cascaded two-stage Rankine cycle, with ternary mixtures as working fluids and seawater as hot utility publication-title: Energy doi: 10.1016/j.energy.2021.121972 – volume: 35 start-page: 9954 issue: 18 year: 2010 ident: 10.1016/j.ijnaoe.2023.100543_bib59 article-title: A simple model of a high temperature PEM fuel cell publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2009.11.012 – volume: 334 year: 2022 ident: 10.1016/j.ijnaoe.2023.100543_bib66 article-title: Evaluating and optimizing the cold energy efficiency of power generation and wastewater treatment in LNG-fired power plant based on data-driven approach publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.130149 – volume: 26 year: 2021 ident: 10.1016/j.ijnaoe.2023.100543_bib67 article-title: Conceptual design and assessment of a novel energy management system for LNG fueled ships with air separation publication-title: Therm. Sci. Eng. Prog. – volume: 47 start-page: 4109 issue: 6 year: 2022 ident: 10.1016/j.ijnaoe.2023.100543_bib76 article-title: Optimization of a 30 kW SOFC combined heat and power system with different cycles and hydrocarbon fuels publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.11.049 – volume: 502 year: 2021 ident: 10.1016/j.ijnaoe.2023.100543_bib47 article-title: A proton conducting solid oxide fuel cell—implementation of the reduced order model in available software and verification based on experimental data publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2021.229948 – volume: 12 start-page: 10 issue: 8 year: 2020 ident: 10.1016/j.ijnaoe.2023.100543_bib22 article-title: The potential role of ammonia as marine fuel-based on energy systems modeling and multi-criteria decision analysis publication-title: Sustain. Times – volume: 12 start-page: 6287 issue: 12 year: 2022 ident: 10.1016/j.ijnaoe.2023.100543_bib14 article-title: Thermal evaluation of a novel integrated system based on solid oxide fuel cells and combined heat and power production using ammonia as fuel publication-title: Appl. Sci. doi: 10.3390/app12126287 – volume: 57 start-page: 412 year: 2013 ident: 10.1016/j.ijnaoe.2023.100543_bib5 article-title: Improving sustainability of maritime transport through utilization of Liquefied Natural Gas (LNG) for propulsion publication-title: Energy doi: 10.1016/j.energy.2013.05.002 – volume: 154 start-page: 242 year: 2015 ident: 10.1016/j.ijnaoe.2023.100543_bib9 article-title: SOFC fuelled with reformed urea publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.04.126 – year: 2020 ident: 10.1016/j.ijnaoe.2023.100543_bib60 – volume: 205 year: 2020 ident: 10.1016/j.ijnaoe.2023.100543_bib4 article-title: The optimization of exergoenvironmental factors in the combined gas turbine cycle and carbon dioxide cascade to generate power in LNG tanker ship publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2020.112468 – volume: 37 year: 2020 ident: 10.1016/j.ijnaoe.2023.100543_bib77 article-title: Decarbonizing maritime transport: a Ro-Pax case study publication-title: Res. Transp. Bus. Manag. – volume: 13 issue: 23 year: 2020 ident: 10.1016/j.ijnaoe.2023.100543_bib3 article-title: Operation of a solid oxide fuel cell based power system with ammonia as a fuel: experimental test and system design publication-title: Energies doi: 10.3390/en13236173 – volume: 165 start-page: F764 issue: 10 year: 2018 ident: 10.1016/j.ijnaoe.2023.100543_bib2 article-title: “ high performance tubular solid oxide fuel cell based on Ba 0.5 Sr 0.5 Ce 0.6 Zr 0.2 Gd 0.1 Y 0.1 O 3-δ proton conducting electrolyte ,” publication-title: J. Electrochem. Soc. doi: 10.1149/2.0331810jes – volume: 167 year: 2022 ident: 10.1016/j.ijnaoe.2023.100543_bib20 article-title: Novel molecules as working fluids for refrigeration, heat pump and organic Rankine cycle systems publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2022.112549 – volume: 37 start-page: 221 issue: 3 year: 2011 ident: 10.1016/j.ijnaoe.2023.100543_bib30 article-title: Water transport in polymer electrolyte membrane fuel cells publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2010.06.002 – volume: 265 year: 2022 ident: 10.1016/j.ijnaoe.2023.100543_bib75 article-title: Thermodynamic performance analysis of a novel PEMEC-SOFC-based poly-generation system integrated mechanical compression and thermal energy storage publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2022.115770 – volume: 117 start-page: 150 year: 2016 ident: 10.1016/j.ijnaoe.2023.100543_bib19 article-title: A comparative thermodynamic investigation with environmental analysis of SOFC waste heat to power conversion employing Kalina and Organic Rankine Cycles publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2016.03.011 – volume: 127 start-page: 136 year: 2016 ident: 10.1016/j.ijnaoe.2023.100543_bib33 article-title: A cascade organic Rankine cycle power generation system using hybrid solar energy and liquefied natural gas publication-title: Sol. Energy doi: 10.1016/j.solener.2016.01.029 – year: 2019 ident: 10.1016/j.ijnaoe.2023.100543_bib62 article-title: Design of a modern proton-exchange membrane fuel cell module for engineering education publication-title: 2018 IEEE Conf. Technol. Sustain. SusTech – volume: 197 year: 2020 ident: 10.1016/j.ijnaoe.2023.100543_bib8 article-title: Design and evaluation of a novel multi-generation system based on SOFC-GT for electricity, fresh water and hydrogen production publication-title: Energy doi: 10.1016/j.energy.2020.117162 – volume: 45 start-page: 3584 issue: 5 year: 2020 ident: 10.1016/j.ijnaoe.2023.100543_bib48 article-title: Energy and exergy performance assessments of a high temperature-proton exchange membrane fuel cell based integrated cogeneration system publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.01.252 – volume: 204 year: 2020 ident: 10.1016/j.ijnaoe.2023.100543_bib55 article-title: Exergoeconomic assessment with reliability consideration of a green cogeneration system based on compressed air energy storage (CAES) publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2019.112320 – volume: 36 start-page: 4897 issue: 8 year: 2011 ident: 10.1016/j.ijnaoe.2023.100543_bib32 article-title: Cold recovery during regasification of LNG part two: applications in an agro food industry and a hypermarket publication-title: Energy doi: 10.1016/j.energy.2011.05.034 – year: 2022 ident: 10.1016/j.ijnaoe.2023.100543_bib46 article-title: ScienceDirect Optimization and efficiency analysis of methanol SOFC-PEMFC hybrid system publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2022.06.102 – volume: 160 start-page: 872 issue: 2 SPEC year: 2006 ident: 10.1016/j.ijnaoe.2023.100543_bib73 article-title: High temperature PEM fuel cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2006.05.034 – volume: 11 issue: 2 year: 2023 ident: 10.1016/j.ijnaoe.2023.100543_bib49 article-title: Utilization of cold energy from LNG regasification process: a review of current trends publication-title: Processes doi: 10.3390/pr11020517 – volume: 33 start-page: 5811 issue: 20 year: 2008 ident: 10.1016/j.ijnaoe.2023.100543_bib23 article-title: Thermodynamic modeling of a gas turbine cycle combined with a solid oxide fuel cell publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2008.05.036 – volume: 38 start-page: 3352 issue: 8 year: 2013 ident: 10.1016/j.ijnaoe.2023.100543_bib70 article-title: Thermodynamic analysis of an SOFC-GT-ORC integrated power system with liquefied natural gas as heat sink publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2012.12.101 – volume: 159 year: 2019 ident: 10.1016/j.ijnaoe.2023.100543_bib34 article-title: Performance analysis of an improved power generation system utilizing the cold energy of LNG and solar energy publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.113937 – volume: 39 start-page: 21915 issue: 36 year: 2014 ident: 10.1016/j.ijnaoe.2023.100543_bib50 article-title: A CO poisoning model for high-temperature proton exchange membrane fuel cells comprising phosphoric acid-doped polybenzimidazole membranes publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2014.06.101 – volume: 277 year: 2020 ident: 10.1016/j.ijnaoe.2023.100543_bib24 article-title: Cascade utilization of LNG cold energy by integrating cryogenic energy storage, organic Rankine cycle and direct cooling publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.115570 – volume: 95 start-page: 425 year: 2016 ident: 10.1016/j.ijnaoe.2023.100543_bib74 article-title: Dynamic performance of a high-temperature PEM (proton exchange membrane) fuel cell - modelling and fuzzy control of purging process publication-title: Energy doi: 10.1016/j.energy.2015.12.019 – volume: 297 year: 2021 ident: 10.1016/j.ijnaoe.2023.100543_bib69 article-title: Alternative fuel options for low carbon maritime transportation: pathways to 2050 publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.126651 – volume: 238 year: 2022 ident: 10.1016/j.ijnaoe.2023.100543_bib7 article-title: Air flow and pressure optimization for air supply in proton exchange membrane fuel cell system publication-title: Energy doi: 10.1016/j.energy.2021.121949 – volume: 101 start-page: 19 year: 2015 ident: 10.1016/j.ijnaoe.2023.100543_bib26 article-title: Modeling and parametric study of a methanol reformate gas-fueled HT-PEMFC system for portable power generation applications publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2015.05.004 – volume: 229 year: 2021 ident: 10.1016/j.ijnaoe.2023.100543_bib51 article-title: A new scheme for large marine vessels LNG cold energy utilization from thermodynamic and thermoeconomic viewpoints publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2020.113770 – volume: 123 year: 2022 ident: 10.1016/j.ijnaoe.2023.100543_bib31 article-title: Concept and evaluation of energy-efficient boil-off gas reliquefiers in LNG carrier ships propelled by dual-fuel engines publication-title: Cryogenics (Guildf) – volume: 143 year: 2022 ident: 10.1016/j.ijnaoe.2023.100543_bib35 article-title: Emissions in maritime transport: a decomposition analysis from the perspective of production-based and consumption-based emissions publication-title: Mar. Pol. doi: 10.1016/j.marpol.2022.105125 – volume: 325 start-page: 1647 issue: 80 year: 2009 ident: 10.1016/j.ijnaoe.2023.100543_bib65 article-title: Carbon capture and storage: how green can black be? publication-title: Science doi: 10.1126/science.1172246 – volume: 15 issue: 21 year: 2022 ident: 10.1016/j.ijnaoe.2023.100543_bib6 article-title: Thermodynamic analysis and working fluid selection of a novel cogeneration system based on a regenerative organic flash cycle publication-title: Energies doi: 10.3390/en15217843 – volume: 161 start-page: 87 issue: 1 year: 2006 ident: 10.1016/j.ijnaoe.2023.100543_bib17 article-title: Thermodynamic evaluation of methanol steam reforming for hydrogen production publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2006.04.091 – volume: 194 year: 2020 ident: 10.1016/j.ijnaoe.2023.100543_bib16 article-title: Energy and exergy analyses of a novel ammonia combined power plant operating with gas turbine and solid oxide fuel cell systems publication-title: Energy doi: 10.1016/j.energy.2019.116750 – volume: 114 start-page: 2390 year: 2017 ident: 10.1016/j.ijnaoe.2023.100543_bib56 article-title: Overview on pressure swing adsorption (PSA) as CO2 capture technology: state-of-the-art, limits and potentials publication-title: Energy Proc. doi: 10.1016/j.egypro.2017.03.1385 – volume: 277 year: 2023 ident: 10.1016/j.ijnaoe.2023.100543_bib37 article-title: Novel process design for waste energy recovery of LNG power plants for CO2 capture and storage publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2022.116587 – volume: 220 year: 2021 ident: 10.1016/j.ijnaoe.2023.100543_bib1 article-title: A novel ammonia solid oxide fuel cell-based powering system with on-board hydrogen production for clean locomotives publication-title: Energy doi: 10.1016/j.energy.2021.119771 – volume: 292 year: 2021 ident: 10.1016/j.ijnaoe.2023.100543_bib29 article-title: Demystifying the lifecycle environmental benefits and harms of LNG as marine fuel publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.116869 – volume: 44 start-page: 30763 issue: 58 year: 2019 ident: 10.1016/j.ijnaoe.2023.100543_bib57 article-title: The design and development of an HT-PEMFC test cell and test station publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.01.174 – volume: 111 start-page: 315 year: 2016 ident: 10.1016/j.ijnaoe.2023.100543_bib61 article-title: A review of waste heat recovery technologies for maritime applications publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2015.12.073 – volume: 156 start-page: 280 year: 2015 ident: 10.1016/j.ijnaoe.2023.100543_bib63 article-title: Performance analysis of a dual-loop organic Rankine cycle (ORC) system with wet steam expansion for engine waste heat recovery publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.07.019 – volume: 245 issue: 2 year: 2021 ident: 10.1016/j.ijnaoe.2023.100543_bib64 article-title: Thermodynamic performance assessment of SOFC-RC-KC system for multiple waste heat recovery publication-title: Energy Convers. Manag. – volume: 192 start-page: 170 issue: 1 year: 2009 ident: 10.1016/j.ijnaoe.2023.100543_bib18 article-title: Ammonia as efficient fuel for SOFC publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2008.11.037 – volume: 231 start-page: 1216 year: 2018 ident: 10.1016/j.ijnaoe.2023.100543_bib54 article-title: Design and performance assessment of a combined heat, hydrogen and power (CHHP) system based on ammonia-fueled SOFC publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.09.138 – volume: 15 year: 2023 ident: 10.1016/j.ijnaoe.2023.100543_bib58 article-title: Comparative analysis of the thermodynamic performances of solid oxide fuel cell–gas turbine integrated systems for marine vessels using ammonia and hydrogen as fuels publication-title: Int. J. Nav. Archit. Ocean Eng. doi: 10.1016/j.ijnaoe.2023.100524 |
SSID | ssj0000402441 |
Score | 2.3197956 |
Snippet | In this study, a system integrating Solid Oxide Fuel Cells (SOFC) fueled by Liquefied Natural Gas (LNG) for marine vessels is proposed and analyzed. The system... |
SourceID | nrf doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 100543 |
SubjectTerms | CO2 cryogenic capture Cold energy utilization LNG SOFC Waste heat recovery 조선공학 |
Title | Performance analysis of a fuel cells integrated system utilizing Liquified Natural Gas as fuel for a green shipping target |
URI | https://dx.doi.org/10.1016/j.ijnaoe.2023.100543 https://doaj.org/article/e4221aff8a414ec9aab9b0f426d07c8e https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003025131 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | International Journal of Naval Architecture and Ocean Engineering, 2023, 15(0), , pp.1-19 |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Colorado Digital library customDbUrl: eissn: 2092-6790 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000402441 issn: 2092-6782 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Colorado Digital library customDbUrl: eissn: 2092-6790 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000402441 issn: 2092-6782 databaseCode: KQ8 dateStart: 20090320 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Colorado Digital library customDbUrl: eissn: 2092-6790 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000402441 issn: 2092-6782 databaseCode: KQ8 dateStart: 20090901 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2092-6790 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000402441 issn: 2092-6782 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2092-6790 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000402441 issn: 2092-6782 databaseCode: AKRWK dateStart: 20090901 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgXLiglg91oa1GAnGLSGxnkxxLRSmUVggV0Zs1ju0q7SoL290D_fWdsbPL9rQXpEiRIntseSaeZ2vmjRDvZIvS2arK0Oc20y6UGXKCT60dYuXysY8MfGfn45Of-utleblW6otjwhI9cFq4D15LWWAINepC-7ZBtI3NAzkWl1dt7Xn3JTe2dpiKezAdi3QsWynzRma0I8tl3lwM7uque5wyS6ZUHCdQavXAL0X6_gfu6XE_C2uO53hbPBsQIxymme6IR75_LnbPIrv27C-8h3Mka4HhJ30h7r7_ywUAHDhHYBoAISz8BPiq_hZWNBEOEpkzkAVOujvyZPCt-7PoAmFTEh1pOeAz3gI9sT_JJlFXHK8DHOrFCVeQAspfiovjTxdHJ9lQYSFrdanmWR2k0kH5NncEA4u2GFeeAI62dWODlAEVSh9J4zBXGksr28YxXU5Fnp-QzSux1U97vysg8NYRHOY2lNqPCdhZS8pSBSKBkuBGQi2X17QD-zgXwZiYZZjZtUlKMawUk5QyEtmq1-_EvrGh_UfW3Kotc2fHD2RRZrAos8miRqJa6t0MMCTBCxLVbRj-LZmJuWm7ODK_r6bmZmbobPKF2ijmsi9e_49JvhFPeeB0GbQntuazhd8neDS3B-LJ4emPX6cH8Y-4B0T7Ds4 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+analysis+of+a+fuel+cells+integrated+system+utilizing+Liquified+Natural+Gas+as+fuel+for+a+green+shipping+target&rft.jtitle=International+journal+of+naval+architecture+and+ocean+engineering&rft.au=Duong+Phan+Anh&rft.au=%EB%A5%98%EB%B3%B4%EB%A6%BC&rft.au=Kyu+So+Soon&rft.au=%EC%A0%84%ED%98%9C%EB%AF%BC&rft.date=2023-01-01&rft.pub=%EB%8C%80%ED%95%9C%EC%A1%B0%EC%84%A0%ED%95%99%ED%9A%8C&rft.issn=2092-6782&rft.eissn=2092-6790&rft.spage=1&rft.epage=19&rft_id=info:doi/10.1016%2Fj.ijnaoe.2023.100543&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10335581 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2092-6782&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2092-6782&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2092-6782&client=summon |