Escape from homeostasis: spinal microcircuits and progression of amyotrophic lateral sclerosis

In amyotrophic lateral sclerosis (ALS), loss of motoneuron function leads to weakness and, ultimately, respiratory failure and death. Regardless of the initial pathogenic factors, motoneuron loss follows a specific pattern: the largest α-motoneurons die before smaller α-motoneurons, and γ-motoneuron...

Full description

Saved in:
Bibliographic Details
Published inJournal of neurophysiology Vol. 119; no. 5; pp. 1782 - 1794
Main Authors Brownstone, Robert M., Lancelin, Camille
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 01.05.2018
SeriesSpinal Control of Motor Outputs
Subjects
Online AccessGet full text
ISSN0022-3077
1522-1598
1522-1598
DOI10.1152/jn.00331.2017

Cover

Abstract In amyotrophic lateral sclerosis (ALS), loss of motoneuron function leads to weakness and, ultimately, respiratory failure and death. Regardless of the initial pathogenic factors, motoneuron loss follows a specific pattern: the largest α-motoneurons die before smaller α-motoneurons, and γ-motoneurons are spared. In this article, we examine how homeostatic responses to this orderly progression could lead to local microcircuit dysfunction that in turn propagates motoneuron dysfunction and death. We first review motoneuron diversity and the principle of α-γ coactivation and then discuss two specific spinal motoneuron microcircuits: those involving proprioceptive afferents and those involving Renshaw cells. Next, we propose that the overall homeostatic response of the nervous system is aimed at maintaining force output. Thus motoneuron degeneration would lead to an increase in inputs to motoneurons, and, because of the pattern of neuronal degeneration, would result in an imbalance in local microcircuit activity that would overwhelm initial homeostatic responses. We suggest that this activity would ultimately lead to excitotoxicity of motoneurons, which would hasten the progression of disease. Finally, we propose that should this be the case, new therapies targeted toward microcircuit dysfunction could slow the course of ALS.
AbstractList In amyotrophic lateral sclerosis (ALS), loss of motoneuron function leads to weakness and, ultimately, respiratory failure and death. Regardless of the initial pathogenic factors, motoneuron loss follows a specific pattern: the largest α-motoneurons die before smaller α-motoneurons, and γ-motoneurons are spared. In this article, we examine how homeostatic responses to this orderly progression could lead to local microcircuit dysfunction that in turn propagates motoneuron dysfunction and death. We first review motoneuron diversity and the principle of α-γ coactivation and then discuss two specific spinal motoneuron microcircuits: those involving proprioceptive afferents and those involving Renshaw cells. Next, we propose that the overall homeostatic response of the nervous system is aimed at maintaining force output. Thus motoneuron degeneration would lead to an increase in inputs to motoneurons, and, because of the pattern of neuronal degeneration, would result in an imbalance in local microcircuit activity that would overwhelm initial homeostatic responses. We suggest that this activity would ultimately lead to excitotoxicity of motoneurons, which would hasten the progression of disease. Finally, we propose that should this be the case, new therapies targeted toward microcircuit dysfunction could slow the course of ALS.
In amyotrophic lateral sclerosis (ALS), loss of motoneuron function leads to weakness and, ultimately, respiratory failure and death. Regardless of the initial pathogenic factors, motoneuron loss follows a specific pattern: the largest α-motoneurons die before smaller α-motoneurons, and γ-motoneurons are spared. In this article, we examine how homeostatic responses to this orderly progression could lead to local microcircuit dysfunction that in turn propagates motoneuron dysfunction and death. We first review motoneuron diversity and the principle of α-γ coactivation and then discuss two specific spinal motoneuron microcircuits: those involving proprioceptive afferents and those involving Renshaw cells. Next, we propose that the overall homeostatic response of the nervous system is aimed at maintaining force output. Thus motoneuron degeneration would lead to an increase in inputs to motoneurons, and, because of the pattern of neuronal degeneration, would result in an imbalance in local microcircuit activity that would overwhelm initial homeostatic responses. We suggest that this activity would ultimately lead to excitotoxicity of motoneurons, which would hasten the progression of disease. Finally, we propose that should this be the case, new therapies targeted toward microcircuit dysfunction could slow the course of ALS.In amyotrophic lateral sclerosis (ALS), loss of motoneuron function leads to weakness and, ultimately, respiratory failure and death. Regardless of the initial pathogenic factors, motoneuron loss follows a specific pattern: the largest α-motoneurons die before smaller α-motoneurons, and γ-motoneurons are spared. In this article, we examine how homeostatic responses to this orderly progression could lead to local microcircuit dysfunction that in turn propagates motoneuron dysfunction and death. We first review motoneuron diversity and the principle of α-γ coactivation and then discuss two specific spinal motoneuron microcircuits: those involving proprioceptive afferents and those involving Renshaw cells. Next, we propose that the overall homeostatic response of the nervous system is aimed at maintaining force output. Thus motoneuron degeneration would lead to an increase in inputs to motoneurons, and, because of the pattern of neuronal degeneration, would result in an imbalance in local microcircuit activity that would overwhelm initial homeostatic responses. We suggest that this activity would ultimately lead to excitotoxicity of motoneurons, which would hasten the progression of disease. Finally, we propose that should this be the case, new therapies targeted toward microcircuit dysfunction could slow the course of ALS.
Author Lancelin, Camille
Brownstone, Robert M.
Author_xml – sequence: 1
  givenname: Robert M.
  orcidid: 0000-0001-5135-2725
  surname: Brownstone
  fullname: Brownstone, Robert M.
  organization: Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
– sequence: 2
  givenname: Camille
  surname: Lancelin
  fullname: Lancelin, Camille
  organization: Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29384454$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1rHSEUxaUkNC8fy26Ly27m9TqOo5NFoIQkLQSySbYRx7mT52NGp-or5L-v-WhoC1kp-rvnXM45JHs-eCTkE4M1Y6L-uvVrAM7ZugYmP5BVeasrJjq1R1YA5c5BygNymNIWAKSA-iM5qDuumkY0K3J_kaxZkI4xzHQTZgwpm-TSKU2L82ais7MxWBftzuVEjR_oEsNDxJRc8DSM1MyPIcewbJylk8kYy1CyE8ZQZI7J_mimhCev5xG5u7y4Pf9eXd9c_Tj_dl3ZRvBcCVSybW3LayaZEbbniAN0Siouh77vhRgMDB204wBCSRw7VIVgXSftIKDjR-TsRXfZ9TMOFn0ue-glutnERx2M0__-eLfRD-GXbgEUKFkEvrwKxPBzhynr2SWL02Q8hl3SxYoDY82z1-e_vd5M_oRagOoFKMmlFHF8Qxjop9L01uvn0vRTaYXn__HWZZNLvmVVN70z9RvBPZ1o
CitedBy_id crossref_primary_10_1007_s12640_019_00121_y
crossref_primary_10_1113_JP281310
crossref_primary_10_46518_kjnmd_2023_15_1_18
crossref_primary_10_3390_life13030657
crossref_primary_10_31083_j_jin2206167
crossref_primary_10_1016_j_clinph_2020_09_021
crossref_primary_10_1016_j_neuroscience_2020_08_011
crossref_primary_10_3389_fncel_2018_00491
crossref_primary_10_3389_fnmol_2020_00074
crossref_primary_10_3389_fnins_2024_1434404
crossref_primary_10_3390_biomedicines11030933
crossref_primary_10_2174_1570159X21666230824091601
crossref_primary_10_3390_cells13060492
crossref_primary_10_1021_acschemneuro_0c00055
crossref_primary_10_1523_JNEUROSCI_1214_19_2019
crossref_primary_10_1093_brain_awad342
crossref_primary_10_3390_antiox9030212
crossref_primary_10_1002_mus_28035
crossref_primary_10_3390_brainsci11010108
crossref_primary_10_1016_j_brainresbull_2018_05_023
crossref_primary_10_1016_j_clinph_2020_08_009
crossref_primary_10_3390_biomedicines11112967
crossref_primary_10_3389_fncel_2024_1435619
crossref_primary_10_1038_s41467_024_48925_7
crossref_primary_10_1152_jn_00144_2024
crossref_primary_10_1111_apha_13758
crossref_primary_10_1515_med_2022_0444
crossref_primary_10_1016_j_celrep_2024_115046
crossref_primary_10_1523_ENEURO_0378_20_2021
crossref_primary_10_1016_j_neuroscience_2020_07_047
Cites_doi 10.1523/JNEUROSCI.05-06-01545.1985
10.1113/jphysiol.1993.sp019596
10.1212/01.wnl.0000286948.99150.16
10.1016/0006-8993(81)90819-2
10.1113/jphysiol.1982.sp014137
10.1152/jn.1985.53.5.1323
10.1016/j.expneurol.2015.09.019
10.1152/jn.1971.34.5.908
10.1016/j.conb.2015.04.007
10.1016/j.mbs.2014.08.015
10.1007/s00401-017-1708-8
10.3389/fncel.2015.00507
10.1007/s00422-012-0519-1
10.1152/jn.1981.46.6.1349
10.1002/(SICI)1096-9861(20000103)416:1<112::AID-CNE9>3.0.CO;2-K
10.1093/brain/98.4.531
10.1007/BF00340493
10.1152/jn.1946.9.6.439
10.1113/jphysiol.2007.136200
10.1111/j.1469-7793.1999.787ab.x
10.1007/BF00687343
10.1523/JNEUROSCI.2611-14.2014
10.1038/263244a0
10.1016/j.apmr.2016.09.124
10.1212/WNL.44.11.2148
10.1016/0006-8993(93)91250-V
10.1152/jn.1982.48.5.1164
10.1038/263517a0
10.1523/JNEUROSCI.2541-15.2015
10.1016/0006-8993(82)90738-7
10.1002/jmor.1051430404
10.1113/jphysiol.1987.sp016410
10.1212/WNL.25.8.781
10.1016/0006-8993(81)90938-0
10.1093/brain/114.5.2283
10.1113/jphysiol.1971.sp009487
10.1523/JNEUROSCI.1594-13.2013
10.1212/WNL.0b013e3181a8269b
10.1113/jphysiol.1965.sp007621
10.1113/jphysiol.1978.sp012423
10.1111/j.1748-1716.1975.tb05869.x
10.1006/exnr.1998.6758
10.1152/physrev.00031.2010
10.1152/jn.1977.40.3.667
10.1126/science.126.3287.1345
10.1007/BF00234796
10.1038/nm.2160
10.1152/jn.1943.6.4.293
10.1152/jn.1990.63.6.1307
10.1038/nrn1327
10.1002/mus.21602
10.1016/0006-8993(85)90632-8
10.1142/S0219635211002786
10.1146/annurev.neuro.051508.135722
10.1113/jphysiol.1981.sp013895
10.1016/j.expneurol.2011.11.004
10.1152/jn.00358.2014
10.1113/jphysiol.1957.sp005794
10.1007/BF00691860
10.1523/JNEUROSCI.19-17-07557.1999
10.1073/pnas.1704328114
10.1093/brain/61.3.311
10.1002/mus.880160702
10.1152/jn.1990.64.3.767
10.1113/jphysiol.1981.sp013731
10.1111/j.1469-7793.1998.507be.x
10.1111/joa.12299
10.1007/BF00236206
10.1016/j.neuropharm.2013.10.003
10.1007/978-1-4757-0964-3_18
10.1038/252243a0
10.1113/jphysiol.1965.sp007722
10.1016/j.nbd.2007.07.003
10.55782/ane-1994-997
10.1016/0301-0082(96)00023-8
10.1016/j.expneurol.2014.07.021
10.1523/JNEUROSCI.0572-07.2007
10.1017/CBO9780511545047.005
10.1007/BF00230851
10.1098/rstb.2000.0732
10.1016/j.tins.2014.05.006
10.1152/jn.1976.39.3.447
10.2353/ajpath.2009.080557
10.1113/jphysiol.1982.sp014436
10.1113/jphysiol.1951.sp004681
10.1113/jphysiol.1961.sp006822
10.1016/0006-8993(89)90119-4
10.1152/physrev.1980.60.1.90
10.1523/JNEUROSCI.3090-16.2017
10.1152/jn.1964.27.6.1063
10.1002/cne.23848
10.1152/jn.1951.14.1.29
10.1111/j.1748-1716.1965.tb04079.x
10.1002/(SICI)1096-9861(19960826)372:3<465::AID-CNE9>3.0.CO;2-0
10.1113/jphysiol.2003.050971
10.1152/jn.1946.9.6.421
10.1152/physrev.1979.59.4.919
10.1111/j.1748-1716.1988.tb08502.x
10.1126/science.160.3823.96
10.1002/(SICI)1096-9861(19960930)373:4<619::AID-CNE9>3.0.CO;2-4
10.1152/jn.1943.6.4.317
10.1111/j.1748-1716.1976.tb10265.x
10.1152/jn.01157.2007
10.1152/jn.1985.53.5.1303
10.7554/eLife.04046
10.1016/S0006-8993(00)03048-1
10.1002/cne.903490209
10.1152/jn.1991.65.2.168
10.1002/jcb.24234
10.1007/BF02979882
10.1001/archneur.63.4.584
10.1007/s00401-017-1698-6
10.1136/jnnp.40.5.464
10.1113/jphysiol.1983.sp014531
10.1073/pnas.0906809106
10.1152/jn.1980.44.4.696
10.1002/cphy.c100086
10.1038/aps.2009.24
10.1002/cne.20620
10.1113/jphysiol.1958.sp006015
10.1002/cne.902550106
10.1113/jphysiol.1968.sp008527
10.1152/jn.00368.2011
10.1007/s002210050812
10.1113/jphysiol.1954.sp005226
10.1016/0166-2236(93)90181-K
10.1172/JCI71601
10.1007/s00018-003-3319-x
10.1016/0006-8993(79)90270-1
10.1152/jn.1998.80.2.572
10.1136/jnnp.31.5.424
10.1098/rspb.1925.0016
10.1152/jn.1946.9.2.87
10.1016/S0140-6736(10)61156-7
10.1152/jn.1971.34.4.700
10.1007/s00221-006-0774-2
10.1152/jn.1992.68.2.397
10.1016/j.neuron.2014.04.002
10.1002/cne.23266
10.1113/jphysiol.1973.sp010369
10.1113/jphysiol.1978.sp012137
10.1113/jphysiol.1973.sp010323
10.1113/jphysiol.1979.sp012918
10.3389/fncel.2014.00293
10.1073/pnas.1605210113
10.1113/jphysiol.1981.sp013654
10.1016/S0079-6123(05)51003-3
10.1152/jn.1993.69.4.1160
10.1038/070460a0
10.1152/jn.00718.2007
10.1016/S0079-6123(08)60743-8
10.1113/jphysiol.1968.sp008526
10.1113/jphysiol.1965.sp007592
10.1113/jphysiol.1961.sp006821
10.2170/jjphysiol.13.287
10.1113/jphysiol.1957.sp005857
10.1016/0006-8993(95)00063-V
10.1371/journal.pone.0034640
10.1002/jnr.20379
10.1038/179866b0
10.1007/BF00237722
10.1113/jphysiol.1981.sp013624
10.1152/jn.1988.60.6.1946
10.1016/j.tins.2003.10.002
10.1093/brain/awq167
10.1016/0301-0082(90)90020-H
10.1523/JNEUROSCI.20-07-02534.2000
10.1002/phy2.161
10.1016/0006-8993(82)90192-5
10.1016/j.neuron.2015.05.045
10.1523/JNEUROSCI.0574-09.2009
10.1113/jphysiol.2007.149286
10.1097/00005072-198111000-00008
10.3791/4312
10.1111/j.1748-1716.1973.tb05447.x
10.1038/nature20413
10.1152/jn.1946.9.3.191
10.7554/eLife.21715
10.1016/0006-8993(79)90612-7
10.1113/jphysiol.1982.sp014038
10.1038/nrneurol.2014.184
10.1016/0006-8993(81)90756-3
10.1038/nn1653
10.1152/jn.1970.33.2.257
10.1016/0006-8993(80)91319-0
10.1038/nm.2107
10.1111/j.1748-1716.1960.tb02070.x
10.1038/nrn1949
10.1111/j.1748-1716.1962.tb02451.x
10.1186/1749-8104-4-42
10.1016/S0022-510X(97)00100-7
10.1113/jphysiol.1971.sp009533
10.1016/j.nbd.2005.02.006
ContentType Journal Article
Copyright Copyright © 2018 the American Physiological Society 2018 American Physiological Society
Copyright_xml – notice: Copyright © 2018 the American Physiological Society 2018 American Physiological Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1152/jn.00331.2017
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
DocumentTitleAlternate SPINAL MICROCIRCUITS AND ALS
EISSN 1522-1598
EndPage 1794
ExternalDocumentID PMC6008087
29384454
10_1152_jn_00331_2017
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Wellcome Trust
  grantid: 110193/Z/15/Z
– fundername: ; ;
  grantid: 110193/Z/15/Z
– fundername: ; ;
GroupedDBID ---
-DZ
-~X
.55
18M
29L
2WC
39C
4.4
53G
5GY
5VS
AAYXX
ABCQX
ABHWK
ABIVO
ABJNI
ABKWE
ACGFO
ACGFS
ACNCT
ADBBV
ADFNX
ADHGD
ADIYS
AENEX
AETEA
AFFNX
AFOSN
AIZAD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
EMOBN
F5P
H13
H~9
ITBOX
KQ8
L7B
OK1
P2P
RAP
RHI
RPL
RPRKH
SJN
TR2
UHB
UPT
W8F
WH7
WOQ
WOW
X7M
XSW
YBH
YQT
YSK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c453t-5e8766c632171a5cb3eed0987837dbbb55da0d906fd0587ef9e8eed1997cd5093
ISSN 0022-3077
1522-1598
IngestDate Thu Aug 21 14:04:10 EDT 2025
Fri Sep 05 12:16:09 EDT 2025
Thu Apr 03 07:01:49 EDT 2025
Thu Apr 24 23:02:56 EDT 2025
Tue Jul 01 00:33:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords α-motoneurons
muscle spindles
Renshaw cells
excitotoxicity
γ-motoneurons
proprioceptive afferents
Language English
License Licensed under Creative Commons Attribution CC-BY 4.0: © the American Physiological Society.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c453t-5e8766c632171a5cb3eed0987837dbbb55da0d906fd0587ef9e8eed1997cd5093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0001-5135-2725
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6008087
PMID 29384454
PQID 1993011409
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6008087
proquest_miscellaneous_1993011409
pubmed_primary_29384454
crossref_primary_10_1152_jn_00331_2017
crossref_citationtrail_10_1152_jn_00331_2017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-01
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda, MD
PublicationSeriesTitle Spinal Control of Motor Outputs
PublicationTitle Journal of neurophysiology
PublicationTitleAlternate J Neurophysiol
PublicationYear 2018
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References B20
B21
B22
B23
B24
Severin FV (B175) 1966; 52
B25
B26
B27
B28
Iwata M (B93) 1979
Todd JK (B185) 1964; 49
B31
B32
B33
B34
B35
B36
B37
B38
B39
B206
B207
B204
B205
B202
B203
B200
B1
B201
B2
B3
B4
B5
B6
B7
B8
B9
B40
B41
B42
B43
B44
B45
B46
B47
B48
B49
Romaniuk JR (B164) 1994; 54
B50
B51
B52
B53
B54
B55
Fyffe RE (B65) 1979; 296
B56
B57
B58
B59
B109
B107
B108
B105
B106
B103
B104
B101
Hongo T (B84) 1992
B102
B100
B60
Charcot JM (B29) 1869; 2
B61
B62
B63
B64
B66
B68
B69
B118
B119
B116
B117
B114
B115
B112
B113
B110
B111
B70
B71
B72
B74
B75
B76
B77
B78
B79
B129
B127
B128
B125
B126
B123
B124
B121
B122
B120
Walker LB (B197) 1959; 133
B80
B81
B83
B85
B87
B88
B89
B138
B139
B136
B137
B134
B135
B132
B130
B131
Chennells M (B30) 1960; 151
Holemans KC (B82) 1968; 303
B90
B91
B92
B94
B95
B96
B97
B98
B99
B149
B147
B148
B145
B146
B143
B144
B141
B142
B140
B158
B159
B156
B157
B154
B155
B152
B153
B150
B151
Huber GC (B86) 1902; 1
Sherrington CS (B176) 1904; 70
B169
B167
B168
B165
B166
B163
B161
B162
B160
Grillner S (B73) 1969; 327
B178
B179
B177
B174
B172
B170
B171
B189
B187
B188
B186
B183
B184
B181
B182
B180
B198
B199
B196
B194
B195
B192
B193
B190
B191
Matthews PB (B133) 1962; 47
Schrøder HD (B173) 1984; 3
B10
B11
B12
B13
B14
B15
B16
B17
B18
B19
Garry RC (B67) 1957; 139
References_xml – ident: B120
  doi: 10.1523/JNEUROSCI.05-06-01545.1985
– ident: B6
  doi: 10.1113/jphysiol.1993.sp019596
– ident: B75
  doi: 10.1212/01.wnl.0000286948.99150.16
– ident: B192
  doi: 10.1016/0006-8993(81)90819-2
– ident: B200
  doi: 10.1113/jphysiol.1982.sp014137
– ident: B207
  doi: 10.1152/jn.1985.53.5.1323
– ident: B104
  doi: 10.1016/j.expneurol.2015.09.019
– ident: B100
  doi: 10.1152/jn.1971.34.5.908
– ident: B17
  doi: 10.1016/j.conb.2015.04.007
– ident: B146
  doi: 10.1016/j.mbs.2014.08.015
– ident: B147
  doi: 10.1007/s00401-017-1708-8
– ident: B154
  doi: 10.3389/fncel.2015.00507
– ident: B118
  doi: 10.1007/s00422-012-0519-1
– ident: B63
  doi: 10.1152/jn.1981.46.6.1349
– ident: B148
  doi: 10.1002/(SICI)1096-9861(20000103)416:1<112::AID-CNE9>3.0.CO;2-K
– ident: B70
  doi: 10.1093/brain/98.4.531
– ident: B8
  doi: 10.1007/BF00340493
– ident: B124
  doi: 10.1152/jn.1946.9.6.439
– ident: B3
  doi: 10.1113/jphysiol.2007.136200
– ident: B2
  doi: 10.1111/j.1469-7793.1999.787ab.x
– ident: B114
  doi: 10.1007/BF00687343
– ident: B40
  doi: 10.1523/JNEUROSCI.2611-14.2014
– ident: B34
  doi: 10.1038/263244a0
– ident: B83
  doi: 10.1016/j.apmr.2016.09.124
– ident: B162
  doi: 10.1212/WNL.44.11.2148
– ident: B31
  doi: 10.1016/0006-8993(93)91250-V
– ident: B142
  doi: 10.1152/jn.1982.48.5.1164
– ident: B136
  doi: 10.1038/263517a0
– ident: B140
  doi: 10.1523/JNEUROSCI.2541-15.2015
– ident: B189
  doi: 10.1016/0006-8993(82)90738-7
– ident: B127
  doi: 10.1002/jmor.1051430404
– ident: B12
  doi: 10.1113/jphysiol.1987.sp016410
– ident: B46
  doi: 10.1212/WNL.25.8.781
– ident: B111
  doi: 10.1016/0006-8993(81)90938-0
– ident: B61
  doi: 10.1093/brain/114.5.2283
– ident: B88
  doi: 10.1113/jphysiol.1971.sp009487
– ident: B160
  doi: 10.1523/JNEUROSCI.1594-13.2013
– ident: B69
  doi: 10.1212/WNL.0b013e3181a8269b
– ident: B33
  doi: 10.1113/jphysiol.1965.sp007621
– ident: B36
  doi: 10.1113/jphysiol.1978.sp012423
– ident: B179
  doi: 10.1111/j.1748-1716.1975.tb05869.x
– ident: B139
  doi: 10.1006/exnr.1998.6758
– ident: B171
  doi: 10.1152/physrev.00031.2010
– ident: B26
  doi: 10.1152/jn.1977.40.3.667
– ident: B81
  doi: 10.1126/science.126.3287.1345
– ident: B7
  doi: 10.1007/BF00234796
– ident: B145
  doi: 10.1038/nm.2160
– ident: B122
  doi: 10.1152/jn.1943.6.4.293
– ident: B56
  doi: 10.1152/jn.1990.63.6.1307
– ident: B188
  doi: 10.1038/nrn1327
– ident: B134
  doi: 10.1002/mus.21602
– ident: B156
  doi: 10.1016/0006-8993(85)90632-8
– ident: B130
  doi: 10.1142/S0219635211002786
– volume: 133
  start-page: 347
  year: 1959
  ident: B197
  publication-title: Anat Rec
– ident: B98
  doi: 10.1146/annurev.neuro.051508.135722
– ident: B107
  doi: 10.1113/jphysiol.1981.sp013895
– ident: B13
  doi: 10.1016/j.expneurol.2011.11.004
– ident: B151
  doi: 10.1152/jn.00358.2014
– ident: B52
  doi: 10.1113/jphysiol.1957.sp005794
– ident: B113
  doi: 10.1007/BF00691860
– ident: B199
  doi: 10.1523/JNEUROSCI.19-17-07557.1999
– volume: 2
  start-page: 744
  year: 1869
  ident: B29
  publication-title: Arch Physiol
– volume: 151
  start-page: 23P
  year: 1960
  ident: B30
  publication-title: J Physiol
– ident: B183
  doi: 10.1073/pnas.1704328114
– ident: B39
  doi: 10.1093/brain/61.3.311
– ident: B74
  doi: 10.1002/mus.880160702
– ident: B45
  doi: 10.1152/jn.1990.64.3.767
– ident: B59
  doi: 10.1113/jphysiol.1981.sp013731
– ident: B68
  doi: 10.1111/j.1469-7793.1998.507be.x
– ident: B60
  doi: 10.1111/joa.12299
– ident: B149
  doi: 10.1007/BF00236206
– ident: B159
  doi: 10.1016/j.neuropharm.2013.10.003
– ident: B55
  doi: 10.1007/978-1-4757-0964-3_18
– ident: B105
  doi: 10.1038/252243a0
– ident: B9
  doi: 10.1113/jphysiol.1965.sp007722
– volume: 327
  start-page: 1
  year: 1969
  ident: B73
  publication-title: Acta Physiol Scand Suppl
– ident: B79
  doi: 10.1016/j.nbd.2007.07.003
– volume: 54
  start-page: 11
  year: 1994
  ident: B164
  publication-title: Acta Neurobiol Exp (Wars)
  doi: 10.55782/ane-1994-997
– ident: B203
  doi: 10.1016/0301-0082(96)00023-8
– ident: B161
  doi: 10.1016/j.expneurol.2014.07.021
– ident: B85
  doi: 10.1523/JNEUROSCI.0572-07.2007
– ident: B153
  doi: 10.1017/CBO9780511545047.005
– ident: B10
  doi: 10.1007/BF00230851
– ident: B43
  doi: 10.1098/rstb.2000.0732
– ident: B196
  doi: 10.1016/j.tins.2014.05.006
– ident: B25
  doi: 10.1152/jn.1976.39.3.447
– ident: B28
  doi: 10.2353/ajpath.2009.080557
– ident: B143
  doi: 10.1113/jphysiol.1982.sp014436
– ident: B91
  doi: 10.1113/jphysiol.1951.sp004681
– ident: B48
  doi: 10.1113/jphysiol.1961.sp006822
– ident: B177
  doi: 10.1016/0006-8993(89)90119-4
– ident: B18
  doi: 10.1152/physrev.1980.60.1.90
– ident: B186
  doi: 10.1523/JNEUROSCI.3090-16.2017
– ident: B201
  doi: 10.1152/jn.1964.27.6.1063
– ident: B195
  doi: 10.1002/cne.23848
– ident: B109
  doi: 10.1152/jn.1951.14.1.29
– volume: 1
  start-page: 520
  year: 1902
  ident: B86
  publication-title: Am J Anat
– ident: B32
  doi: 10.1111/j.1748-1716.1965.tb04079.x
– ident: B23
  doi: 10.1002/(SICI)1096-9861(19960826)372:3<465::AID-CNE9>3.0.CO;2-0
– ident: B87
  doi: 10.1113/jphysiol.2003.050971
– ident: B123
  doi: 10.1152/jn.1946.9.6.421
– ident: B191
  doi: 10.1152/physrev.1979.59.4.919
– volume: 296
  start-page: 39P
  year: 1979
  ident: B65
  publication-title: J Physiol
– ident: B90
  doi: 10.1111/j.1748-1716.1988.tb08502.x
– ident: B137
  doi: 10.1126/science.160.3823.96
– ident: B141
  doi: 10.1002/(SICI)1096-9861(19960930)373:4<619::AID-CNE9>3.0.CO;2-4
– ident: B121
  doi: 10.1152/jn.1943.6.4.317
– ident: B180
  doi: 10.1111/j.1748-1716.1976.tb10265.x
– ident: B158
  doi: 10.1152/jn.01157.2007
– ident: B205
  doi: 10.1152/jn.1985.53.5.1303
– ident: B116
  doi: 10.7554/eLife.04046
– ident: B108
  doi: 10.1016/S0006-8993(00)03048-1
– ident: B168
  doi: 10.1002/cne.903490209
– ident: B119
  doi: 10.1152/jn.1991.65.2.168
– ident: B194
  doi: 10.1002/jcb.24234
– ident: B42
  doi: 10.1007/BF02979882
– ident: B72
  doi: 10.1001/archneur.63.4.584
– ident: B41
  doi: 10.1007/s00401-017-1698-6
– ident: B128
  doi: 10.1136/jnnp.40.5.464
– volume: 303
  start-page: 289
  year: 1968
  ident: B82
  publication-title: Pflugers Arch
– ident: B4
  doi: 10.1113/jphysiol.1983.sp014531
– volume: 139
  start-page: 1P
  year: 1957
  ident: B67
  publication-title: J Physiol
– ident: B64
  doi: 10.1073/pnas.0906809106
– ident: B135
  doi: 10.1152/jn.1980.44.4.696
– ident: B155
  doi: 10.1002/cphy.c100086
– ident: B44
  doi: 10.1038/aps.2009.24
– ident: B170
  doi: 10.1002/cne.20620
– ident: B53
  doi: 10.1113/jphysiol.1958.sp006015
– ident: B35
  doi: 10.1002/cne.902550106
– ident: B21
  doi: 10.1113/jphysiol.1968.sp008527
– ident: B132
  doi: 10.1152/jn.00368.2011
– ident: B92
  doi: 10.1007/s002210050812
– ident: B54
  doi: 10.1113/jphysiol.1954.sp005226
– ident: B144
  doi: 10.1016/0166-2236(93)90181-K
– volume: 52
  start-page: 453
  year: 1966
  ident: B175
  publication-title: Fiziol Zh SSSR Im I M Sechenova
– volume: 47
  start-page: 324
  year: 1962
  ident: B133
  publication-title: Q J Exp Physiol Cogn Med Sci
– ident: B152
  doi: 10.1172/JCI71601
– ident: B5
  doi: 10.1007/s00018-003-3319-x
– ident: B193
  doi: 10.1016/0006-8993(79)90270-1
– ident: B115
  doi: 10.1152/jn.1998.80.2.572
– ident: B57
  doi: 10.1136/jnnp.31.5.424
– start-page: 277
  volume-title: Progress in Neuropathology
  year: 1979
  ident: B93
– volume: 49
  start-page: 258
  year: 1964
  ident: B185
  publication-title: Q J Exp Physiol Cogn Med Sci
– ident: B117
  doi: 10.1098/rspb.1925.0016
– ident: B47
  doi: 10.1152/jn.1946.9.2.87
– ident: B103
  doi: 10.1016/S0140-6736(10)61156-7
– ident: B166
  doi: 10.1152/jn.1971.34.4.700
– start-page: 389
  volume-title: Muscle Afferents and Spinal Control of Movement
  year: 1992
  ident: B84
– ident: B187
  doi: 10.1007/s00221-006-0774-2
– ident: B172
  doi: 10.1152/jn.1992.68.2.397
– ident: B150
  doi: 10.1016/j.neuron.2014.04.002
– ident: B204
  doi: 10.1002/cne.23266
– ident: B24
  doi: 10.1113/jphysiol.1973.sp010369
– ident: B14
  doi: 10.1113/jphysiol.1978.sp012137
– ident: B16
  doi: 10.1113/jphysiol.1973.sp010323
– ident: B126
  doi: 10.1113/jphysiol.1979.sp012918
– ident: B181
  doi: 10.3389/fncel.2014.00293
– ident: B112
  doi: 10.1073/pnas.1605210113
– ident: B15
  doi: 10.1113/jphysiol.1981.sp013654
– ident: B27
  doi: 10.1016/S0079-6123(05)51003-3
– ident: B66
  doi: 10.1152/jn.1993.69.4.1160
– volume: 70
  start-page: 460
  year: 1904
  ident: B176
  publication-title: Nature
  doi: 10.1038/070460a0
– ident: B19
  doi: 10.1152/jn.00718.2007
– ident: B198
  doi: 10.1016/S0079-6123(08)60743-8
– ident: B22
  doi: 10.1113/jphysiol.1968.sp008526
– ident: B1
  doi: 10.1113/jphysiol.1965.sp007592
– ident: B50
  doi: 10.1113/jphysiol.1961.sp006821
– ident: B167
  doi: 10.2170/jjphysiol.13.287
– ident: B71
  doi: 10.1113/jphysiol.1957.sp005857
– ident: B38
  doi: 10.1016/0006-8993(95)00063-V
– ident: B190
  doi: 10.1371/journal.pone.0034640
– ident: B206
  doi: 10.1002/jnr.20379
– ident: B51
  doi: 10.1038/179866b0
– ident: B89
  doi: 10.1007/BF00237722
– ident: B37
  doi: 10.1113/jphysiol.1981.sp013624
– ident: B76
  doi: 10.1152/jn.1988.60.6.1946
– ident: B77
  doi: 10.1016/j.tins.2003.10.002
– ident: B78
  doi: 10.1093/brain/awq167
– volume: 3
  start-page: 210
  year: 1984
  ident: B173
  publication-title: Clin Neuropathol
– ident: B202
  doi: 10.1016/0301-0082(90)90020-H
– ident: B62
  doi: 10.1523/JNEUROSCI.20-07-02534.2000
– ident: B169
  doi: 10.1002/phy2.161
– ident: B110
  doi: 10.1016/0006-8993(82)90192-5
– ident: B138
  doi: 10.1016/j.neuron.2015.05.045
– ident: B97
  doi: 10.1523/JNEUROSCI.0574-09.2009
– ident: B80
  doi: 10.1113/jphysiol.2007.149286
– ident: B99
  doi: 10.1097/00005072-198111000-00008
– ident: B129
  doi: 10.3791/4312
– ident: B95
  doi: 10.1111/j.1748-1716.1973.tb05447.x
– ident: B184
  doi: 10.1038/nature20413
– ident: B163
  doi: 10.1152/jn.1946.9.3.191
– ident: B20
  doi: 10.7554/eLife.21715
– ident: B101
  doi: 10.1016/0006-8993(79)90612-7
– ident: B106
  doi: 10.1113/jphysiol.1982.sp014038
– ident: B182
  doi: 10.1038/nrneurol.2014.184
– ident: B102
  doi: 10.1016/0006-8993(81)90756-3
– ident: B157
  doi: 10.1038/nn1653
– ident: B165
  doi: 10.1152/jn.1970.33.2.257
– ident: B94
  doi: 10.1016/0006-8993(80)91319-0
– ident: B11
  doi: 10.1038/nm.2107
– ident: B49
  doi: 10.1111/j.1748-1716.1960.tb02070.x
– ident: B131
  doi: 10.1038/nrn1949
– ident: B96
  doi: 10.1111/j.1748-1716.1962.tb02451.x
– ident: B178
  doi: 10.1186/1749-8104-4-42
– ident: B125
  doi: 10.1016/S0022-510X(97)00100-7
– ident: B58
  doi: 10.1113/jphysiol.1971.sp009533
– ident: B174
  doi: 10.1016/j.nbd.2005.02.006
SSID ssj0007502
Score 2.4235384
SecondaryResourceType review_article
Snippet In amyotrophic lateral sclerosis (ALS), loss of motoneuron function leads to weakness and, ultimately, respiratory failure and death. Regardless of the initial...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1782
SubjectTerms Afferent Pathways - pathology
Amyotrophic Lateral Sclerosis - pathology
Amyotrophic Lateral Sclerosis - physiopathology
Disease Progression
Humans
Motor Neurons - pathology
Muscle Spindles - pathology
Proprioception - physiology
Renshaw Cells - pathology
Review
Title Escape from homeostasis: spinal microcircuits and progression of amyotrophic lateral sclerosis
URI https://www.ncbi.nlm.nih.gov/pubmed/29384454
https://www.proquest.com/docview/1993011409
https://pubmed.ncbi.nlm.nih.gov/PMC6008087
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECXc9NJL0TZd3A0sUOTiypWsjeotMFIEBdwFSICcKkgUFSuwJMOSDu6X9fM6Q1JbmgBtLoZB05SleR4-Dt8MCXnvA2VIOHOMyEwSw7F4YDCGFWitxOfQxi0pHl999U7PnS8X7sVk8nugWmrqeM5_3ZhXcherQhvYFbNk_8Oy3aDQAO_BvvAKFobXf7LxSYXyJZUisi5zUQLVqzIpcqu28rirHPV2PNvxBjcIVFGA8lJpXyVRjPJ9We_K7Trjs02E6ciYJLkRMHlm1S3MVdbAlCGRUUxeruiRS4pesj1bzTvJD-JLHw-_xLCKvhd8UqLC7ftCBjKUdB6VOWVd7mbfmnrb1KPohMV6LeAgIQDdefujJPS0InXomDGpwNQnugjti6EN2BYbOWvtYLPhfrh0vZavTjHS0zg6mpunCBdLzl4VczzGDiMEKnd0AJdtLvECRIg5jipxfa0m9_fV0kOuzfx75P7CB9aGcoAffZ164GF9nXq4rba6q7v4OLoy1qLWlxkTo79WO9dFuwMWdPaIPNQgoMcKi4_JRBRPyOFxEdVlvqdHtDPA_pD8VPCkCE86gOcnqsBJR-CkAE46ACctUzoAJ9XgpB04n5Lzzydny1NDH-dhcMe1a8MVMPN63LNhFWxFLo9t4GdmwHxm-0kcx66bgHMITC9NTJf5Ig0Egx6ohOIJ8Fr7GTkoAMMvCI2tiMNQiwiM7CQLMxIBsxwnSNMAxvCDKfnQPsuQ61r3eOTKJpRrXncRXhWhtEKIVpiSo677VhV5ua3ju9YwIbhh3FuLClE2VYg6WIwtmHDt58pQ3VCthafEH5mw64Al3sefFNlalnrXKHt552--Ig_6v-VrclDvGvEGaHQdv5WI_QNxFNFF
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Escape+from+homeostasis%3A+spinal+microcircuits+and+progression+of+amyotrophic+lateral+sclerosis&rft.jtitle=Journal+of+neurophysiology&rft.au=Brownstone%2C+Robert+M.&rft.au=Lancelin%2C+Camille&rft.series=Spinal+Control+of+Motor+Outputs&rft.date=2018-05-01&rft.pub=American+Physiological+Society&rft.issn=0022-3077&rft.eissn=1522-1598&rft.volume=119&rft.issue=5&rft.spage=1782&rft.epage=1794&rft_id=info:doi/10.1152%2Fjn.00331.2017&rft_id=info%3Apmid%2F29384454&rft.externalDocID=PMC6008087
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon