Escape from homeostasis: spinal microcircuits and progression of amyotrophic lateral sclerosis
In amyotrophic lateral sclerosis (ALS), loss of motoneuron function leads to weakness and, ultimately, respiratory failure and death. Regardless of the initial pathogenic factors, motoneuron loss follows a specific pattern: the largest α-motoneurons die before smaller α-motoneurons, and γ-motoneuron...
Saved in:
Published in | Journal of neurophysiology Vol. 119; no. 5; pp. 1782 - 1794 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Physiological Society
01.05.2018
|
Series | Spinal Control of Motor Outputs |
Subjects | |
Online Access | Get full text |
ISSN | 0022-3077 1522-1598 1522-1598 |
DOI | 10.1152/jn.00331.2017 |
Cover
Abstract | In amyotrophic lateral sclerosis (ALS), loss of motoneuron function leads to weakness and, ultimately, respiratory failure and death. Regardless of the initial pathogenic factors, motoneuron loss follows a specific pattern: the largest α-motoneurons die before smaller α-motoneurons, and γ-motoneurons are spared. In this article, we examine how homeostatic responses to this orderly progression could lead to local microcircuit dysfunction that in turn propagates motoneuron dysfunction and death. We first review motoneuron diversity and the principle of α-γ coactivation and then discuss two specific spinal motoneuron microcircuits: those involving proprioceptive afferents and those involving Renshaw cells. Next, we propose that the overall homeostatic response of the nervous system is aimed at maintaining force output. Thus motoneuron degeneration would lead to an increase in inputs to motoneurons, and, because of the pattern of neuronal degeneration, would result in an imbalance in local microcircuit activity that would overwhelm initial homeostatic responses. We suggest that this activity would ultimately lead to excitotoxicity of motoneurons, which would hasten the progression of disease. Finally, we propose that should this be the case, new therapies targeted toward microcircuit dysfunction could slow the course of ALS. |
---|---|
AbstractList | In amyotrophic lateral sclerosis (ALS), loss of motoneuron function leads to weakness and, ultimately, respiratory failure and death. Regardless of the initial pathogenic factors, motoneuron loss follows a specific pattern: the largest α-motoneurons die before smaller α-motoneurons, and γ-motoneurons are spared. In this article, we examine how homeostatic responses to this orderly progression could lead to local microcircuit dysfunction that in turn propagates motoneuron dysfunction and death. We first review motoneuron diversity and the principle of α-γ coactivation and then discuss two specific spinal motoneuron microcircuits: those involving proprioceptive afferents and those involving Renshaw cells. Next, we propose that the overall homeostatic response of the nervous system is aimed at maintaining force output. Thus motoneuron degeneration would lead to an increase in inputs to motoneurons, and, because of the pattern of neuronal degeneration, would result in an imbalance in local microcircuit activity that would overwhelm initial homeostatic responses. We suggest that this activity would ultimately lead to excitotoxicity of motoneurons, which would hasten the progression of disease. Finally, we propose that should this be the case, new therapies targeted toward microcircuit dysfunction could slow the course of ALS. In amyotrophic lateral sclerosis (ALS), loss of motoneuron function leads to weakness and, ultimately, respiratory failure and death. Regardless of the initial pathogenic factors, motoneuron loss follows a specific pattern: the largest α-motoneurons die before smaller α-motoneurons, and γ-motoneurons are spared. In this article, we examine how homeostatic responses to this orderly progression could lead to local microcircuit dysfunction that in turn propagates motoneuron dysfunction and death. We first review motoneuron diversity and the principle of α-γ coactivation and then discuss two specific spinal motoneuron microcircuits: those involving proprioceptive afferents and those involving Renshaw cells. Next, we propose that the overall homeostatic response of the nervous system is aimed at maintaining force output. Thus motoneuron degeneration would lead to an increase in inputs to motoneurons, and, because of the pattern of neuronal degeneration, would result in an imbalance in local microcircuit activity that would overwhelm initial homeostatic responses. We suggest that this activity would ultimately lead to excitotoxicity of motoneurons, which would hasten the progression of disease. Finally, we propose that should this be the case, new therapies targeted toward microcircuit dysfunction could slow the course of ALS.In amyotrophic lateral sclerosis (ALS), loss of motoneuron function leads to weakness and, ultimately, respiratory failure and death. Regardless of the initial pathogenic factors, motoneuron loss follows a specific pattern: the largest α-motoneurons die before smaller α-motoneurons, and γ-motoneurons are spared. In this article, we examine how homeostatic responses to this orderly progression could lead to local microcircuit dysfunction that in turn propagates motoneuron dysfunction and death. We first review motoneuron diversity and the principle of α-γ coactivation and then discuss two specific spinal motoneuron microcircuits: those involving proprioceptive afferents and those involving Renshaw cells. Next, we propose that the overall homeostatic response of the nervous system is aimed at maintaining force output. Thus motoneuron degeneration would lead to an increase in inputs to motoneurons, and, because of the pattern of neuronal degeneration, would result in an imbalance in local microcircuit activity that would overwhelm initial homeostatic responses. We suggest that this activity would ultimately lead to excitotoxicity of motoneurons, which would hasten the progression of disease. Finally, we propose that should this be the case, new therapies targeted toward microcircuit dysfunction could slow the course of ALS. |
Author | Lancelin, Camille Brownstone, Robert M. |
Author_xml | – sequence: 1 givenname: Robert M. orcidid: 0000-0001-5135-2725 surname: Brownstone fullname: Brownstone, Robert M. organization: Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom – sequence: 2 givenname: Camille surname: Lancelin fullname: Lancelin, Camille organization: Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29384454$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1rHSEUxaUkNC8fy26Ly27m9TqOo5NFoIQkLQSySbYRx7mT52NGp-or5L-v-WhoC1kp-rvnXM45JHs-eCTkE4M1Y6L-uvVrAM7ZugYmP5BVeasrJjq1R1YA5c5BygNymNIWAKSA-iM5qDuumkY0K3J_kaxZkI4xzHQTZgwpm-TSKU2L82ais7MxWBftzuVEjR_oEsNDxJRc8DSM1MyPIcewbJylk8kYy1CyE8ZQZI7J_mimhCev5xG5u7y4Pf9eXd9c_Tj_dl3ZRvBcCVSybW3LayaZEbbniAN0Siouh77vhRgMDB204wBCSRw7VIVgXSftIKDjR-TsRXfZ9TMOFn0ue-glutnERx2M0__-eLfRD-GXbgEUKFkEvrwKxPBzhynr2SWL02Q8hl3SxYoDY82z1-e_vd5M_oRagOoFKMmlFHF8Qxjop9L01uvn0vRTaYXn__HWZZNLvmVVN70z9RvBPZ1o |
CitedBy_id | crossref_primary_10_1007_s12640_019_00121_y crossref_primary_10_1113_JP281310 crossref_primary_10_46518_kjnmd_2023_15_1_18 crossref_primary_10_3390_life13030657 crossref_primary_10_31083_j_jin2206167 crossref_primary_10_1016_j_clinph_2020_09_021 crossref_primary_10_1016_j_neuroscience_2020_08_011 crossref_primary_10_3389_fncel_2018_00491 crossref_primary_10_3389_fnmol_2020_00074 crossref_primary_10_3389_fnins_2024_1434404 crossref_primary_10_3390_biomedicines11030933 crossref_primary_10_2174_1570159X21666230824091601 crossref_primary_10_3390_cells13060492 crossref_primary_10_1021_acschemneuro_0c00055 crossref_primary_10_1523_JNEUROSCI_1214_19_2019 crossref_primary_10_1093_brain_awad342 crossref_primary_10_3390_antiox9030212 crossref_primary_10_1002_mus_28035 crossref_primary_10_3390_brainsci11010108 crossref_primary_10_1016_j_brainresbull_2018_05_023 crossref_primary_10_1016_j_clinph_2020_08_009 crossref_primary_10_3390_biomedicines11112967 crossref_primary_10_3389_fncel_2024_1435619 crossref_primary_10_1038_s41467_024_48925_7 crossref_primary_10_1152_jn_00144_2024 crossref_primary_10_1111_apha_13758 crossref_primary_10_1515_med_2022_0444 crossref_primary_10_1016_j_celrep_2024_115046 crossref_primary_10_1523_ENEURO_0378_20_2021 crossref_primary_10_1016_j_neuroscience_2020_07_047 |
Cites_doi | 10.1523/JNEUROSCI.05-06-01545.1985 10.1113/jphysiol.1993.sp019596 10.1212/01.wnl.0000286948.99150.16 10.1016/0006-8993(81)90819-2 10.1113/jphysiol.1982.sp014137 10.1152/jn.1985.53.5.1323 10.1016/j.expneurol.2015.09.019 10.1152/jn.1971.34.5.908 10.1016/j.conb.2015.04.007 10.1016/j.mbs.2014.08.015 10.1007/s00401-017-1708-8 10.3389/fncel.2015.00507 10.1007/s00422-012-0519-1 10.1152/jn.1981.46.6.1349 10.1002/(SICI)1096-9861(20000103)416:1<112::AID-CNE9>3.0.CO;2-K 10.1093/brain/98.4.531 10.1007/BF00340493 10.1152/jn.1946.9.6.439 10.1113/jphysiol.2007.136200 10.1111/j.1469-7793.1999.787ab.x 10.1007/BF00687343 10.1523/JNEUROSCI.2611-14.2014 10.1038/263244a0 10.1016/j.apmr.2016.09.124 10.1212/WNL.44.11.2148 10.1016/0006-8993(93)91250-V 10.1152/jn.1982.48.5.1164 10.1038/263517a0 10.1523/JNEUROSCI.2541-15.2015 10.1016/0006-8993(82)90738-7 10.1002/jmor.1051430404 10.1113/jphysiol.1987.sp016410 10.1212/WNL.25.8.781 10.1016/0006-8993(81)90938-0 10.1093/brain/114.5.2283 10.1113/jphysiol.1971.sp009487 10.1523/JNEUROSCI.1594-13.2013 10.1212/WNL.0b013e3181a8269b 10.1113/jphysiol.1965.sp007621 10.1113/jphysiol.1978.sp012423 10.1111/j.1748-1716.1975.tb05869.x 10.1006/exnr.1998.6758 10.1152/physrev.00031.2010 10.1152/jn.1977.40.3.667 10.1126/science.126.3287.1345 10.1007/BF00234796 10.1038/nm.2160 10.1152/jn.1943.6.4.293 10.1152/jn.1990.63.6.1307 10.1038/nrn1327 10.1002/mus.21602 10.1016/0006-8993(85)90632-8 10.1142/S0219635211002786 10.1146/annurev.neuro.051508.135722 10.1113/jphysiol.1981.sp013895 10.1016/j.expneurol.2011.11.004 10.1152/jn.00358.2014 10.1113/jphysiol.1957.sp005794 10.1007/BF00691860 10.1523/JNEUROSCI.19-17-07557.1999 10.1073/pnas.1704328114 10.1093/brain/61.3.311 10.1002/mus.880160702 10.1152/jn.1990.64.3.767 10.1113/jphysiol.1981.sp013731 10.1111/j.1469-7793.1998.507be.x 10.1111/joa.12299 10.1007/BF00236206 10.1016/j.neuropharm.2013.10.003 10.1007/978-1-4757-0964-3_18 10.1038/252243a0 10.1113/jphysiol.1965.sp007722 10.1016/j.nbd.2007.07.003 10.55782/ane-1994-997 10.1016/0301-0082(96)00023-8 10.1016/j.expneurol.2014.07.021 10.1523/JNEUROSCI.0572-07.2007 10.1017/CBO9780511545047.005 10.1007/BF00230851 10.1098/rstb.2000.0732 10.1016/j.tins.2014.05.006 10.1152/jn.1976.39.3.447 10.2353/ajpath.2009.080557 10.1113/jphysiol.1982.sp014436 10.1113/jphysiol.1951.sp004681 10.1113/jphysiol.1961.sp006822 10.1016/0006-8993(89)90119-4 10.1152/physrev.1980.60.1.90 10.1523/JNEUROSCI.3090-16.2017 10.1152/jn.1964.27.6.1063 10.1002/cne.23848 10.1152/jn.1951.14.1.29 10.1111/j.1748-1716.1965.tb04079.x 10.1002/(SICI)1096-9861(19960826)372:3<465::AID-CNE9>3.0.CO;2-0 10.1113/jphysiol.2003.050971 10.1152/jn.1946.9.6.421 10.1152/physrev.1979.59.4.919 10.1111/j.1748-1716.1988.tb08502.x 10.1126/science.160.3823.96 10.1002/(SICI)1096-9861(19960930)373:4<619::AID-CNE9>3.0.CO;2-4 10.1152/jn.1943.6.4.317 10.1111/j.1748-1716.1976.tb10265.x 10.1152/jn.01157.2007 10.1152/jn.1985.53.5.1303 10.7554/eLife.04046 10.1016/S0006-8993(00)03048-1 10.1002/cne.903490209 10.1152/jn.1991.65.2.168 10.1002/jcb.24234 10.1007/BF02979882 10.1001/archneur.63.4.584 10.1007/s00401-017-1698-6 10.1136/jnnp.40.5.464 10.1113/jphysiol.1983.sp014531 10.1073/pnas.0906809106 10.1152/jn.1980.44.4.696 10.1002/cphy.c100086 10.1038/aps.2009.24 10.1002/cne.20620 10.1113/jphysiol.1958.sp006015 10.1002/cne.902550106 10.1113/jphysiol.1968.sp008527 10.1152/jn.00368.2011 10.1007/s002210050812 10.1113/jphysiol.1954.sp005226 10.1016/0166-2236(93)90181-K 10.1172/JCI71601 10.1007/s00018-003-3319-x 10.1016/0006-8993(79)90270-1 10.1152/jn.1998.80.2.572 10.1136/jnnp.31.5.424 10.1098/rspb.1925.0016 10.1152/jn.1946.9.2.87 10.1016/S0140-6736(10)61156-7 10.1152/jn.1971.34.4.700 10.1007/s00221-006-0774-2 10.1152/jn.1992.68.2.397 10.1016/j.neuron.2014.04.002 10.1002/cne.23266 10.1113/jphysiol.1973.sp010369 10.1113/jphysiol.1978.sp012137 10.1113/jphysiol.1973.sp010323 10.1113/jphysiol.1979.sp012918 10.3389/fncel.2014.00293 10.1073/pnas.1605210113 10.1113/jphysiol.1981.sp013654 10.1016/S0079-6123(05)51003-3 10.1152/jn.1993.69.4.1160 10.1038/070460a0 10.1152/jn.00718.2007 10.1016/S0079-6123(08)60743-8 10.1113/jphysiol.1968.sp008526 10.1113/jphysiol.1965.sp007592 10.1113/jphysiol.1961.sp006821 10.2170/jjphysiol.13.287 10.1113/jphysiol.1957.sp005857 10.1016/0006-8993(95)00063-V 10.1371/journal.pone.0034640 10.1002/jnr.20379 10.1038/179866b0 10.1007/BF00237722 10.1113/jphysiol.1981.sp013624 10.1152/jn.1988.60.6.1946 10.1016/j.tins.2003.10.002 10.1093/brain/awq167 10.1016/0301-0082(90)90020-H 10.1523/JNEUROSCI.20-07-02534.2000 10.1002/phy2.161 10.1016/0006-8993(82)90192-5 10.1016/j.neuron.2015.05.045 10.1523/JNEUROSCI.0574-09.2009 10.1113/jphysiol.2007.149286 10.1097/00005072-198111000-00008 10.3791/4312 10.1111/j.1748-1716.1973.tb05447.x 10.1038/nature20413 10.1152/jn.1946.9.3.191 10.7554/eLife.21715 10.1016/0006-8993(79)90612-7 10.1113/jphysiol.1982.sp014038 10.1038/nrneurol.2014.184 10.1016/0006-8993(81)90756-3 10.1038/nn1653 10.1152/jn.1970.33.2.257 10.1016/0006-8993(80)91319-0 10.1038/nm.2107 10.1111/j.1748-1716.1960.tb02070.x 10.1038/nrn1949 10.1111/j.1748-1716.1962.tb02451.x 10.1186/1749-8104-4-42 10.1016/S0022-510X(97)00100-7 10.1113/jphysiol.1971.sp009533 10.1016/j.nbd.2005.02.006 |
ContentType | Journal Article |
Copyright | Copyright © 2018 the American Physiological Society 2018 American Physiological Society |
Copyright_xml | – notice: Copyright © 2018 the American Physiological Society 2018 American Physiological Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1152/jn.00331.2017 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
DocumentTitleAlternate | SPINAL MICROCIRCUITS AND ALS |
EISSN | 1522-1598 |
EndPage | 1794 |
ExternalDocumentID | PMC6008087 29384454 10_1152_jn_00331_2017 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Wellcome Trust grantid: 110193/Z/15/Z – fundername: ; ; grantid: 110193/Z/15/Z – fundername: ; ; |
GroupedDBID | --- -DZ -~X .55 18M 29L 2WC 39C 4.4 53G 5GY 5VS AAYXX ABCQX ABHWK ABIVO ABJNI ABKWE ACGFO ACGFS ACNCT ADBBV ADFNX ADHGD ADIYS AENEX AETEA AFFNX AFOSN AIZAD ALMA_UNASSIGNED_HOLDINGS BAWUL BKKCC BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD EMOBN F5P H13 H~9 ITBOX KQ8 L7B OK1 P2P RAP RHI RPL RPRKH SJN TR2 UHB UPT W8F WH7 WOQ WOW X7M XSW YBH YQT YSK CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c453t-5e8766c632171a5cb3eed0987837dbbb55da0d906fd0587ef9e8eed1997cd5093 |
ISSN | 0022-3077 1522-1598 |
IngestDate | Thu Aug 21 14:04:10 EDT 2025 Fri Sep 05 12:16:09 EDT 2025 Thu Apr 03 07:01:49 EDT 2025 Thu Apr 24 23:02:56 EDT 2025 Tue Jul 01 00:33:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | α-motoneurons muscle spindles Renshaw cells excitotoxicity γ-motoneurons proprioceptive afferents |
Language | English |
License | Licensed under Creative Commons Attribution CC-BY 4.0: © the American Physiological Society. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c453t-5e8766c632171a5cb3eed0987837dbbb55da0d906fd0587ef9e8eed1997cd5093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-5135-2725 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6008087 |
PMID | 29384454 |
PQID | 1993011409 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6008087 proquest_miscellaneous_1993011409 pubmed_primary_29384454 crossref_primary_10_1152_jn_00331_2017 crossref_citationtrail_10_1152_jn_00331_2017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-05-01 |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bethesda, MD |
PublicationSeriesTitle | Spinal Control of Motor Outputs |
PublicationTitle | Journal of neurophysiology |
PublicationTitleAlternate | J Neurophysiol |
PublicationYear | 2018 |
Publisher | American Physiological Society |
Publisher_xml | – name: American Physiological Society |
References | B20 B21 B22 B23 B24 Severin FV (B175) 1966; 52 B25 B26 B27 B28 Iwata M (B93) 1979 Todd JK (B185) 1964; 49 B31 B32 B33 B34 B35 B36 B37 B38 B39 B206 B207 B204 B205 B202 B203 B200 B1 B201 B2 B3 B4 B5 B6 B7 B8 B9 B40 B41 B42 B43 B44 B45 B46 B47 B48 B49 Romaniuk JR (B164) 1994; 54 B50 B51 B52 B53 B54 B55 Fyffe RE (B65) 1979; 296 B56 B57 B58 B59 B109 B107 B108 B105 B106 B103 B104 B101 Hongo T (B84) 1992 B102 B100 B60 Charcot JM (B29) 1869; 2 B61 B62 B63 B64 B66 B68 B69 B118 B119 B116 B117 B114 B115 B112 B113 B110 B111 B70 B71 B72 B74 B75 B76 B77 B78 B79 B129 B127 B128 B125 B126 B123 B124 B121 B122 B120 Walker LB (B197) 1959; 133 B80 B81 B83 B85 B87 B88 B89 B138 B139 B136 B137 B134 B135 B132 B130 B131 Chennells M (B30) 1960; 151 Holemans KC (B82) 1968; 303 B90 B91 B92 B94 B95 B96 B97 B98 B99 B149 B147 B148 B145 B146 B143 B144 B141 B142 B140 B158 B159 B156 B157 B154 B155 B152 B153 B150 B151 Huber GC (B86) 1902; 1 Sherrington CS (B176) 1904; 70 B169 B167 B168 B165 B166 B163 B161 B162 B160 Grillner S (B73) 1969; 327 B178 B179 B177 B174 B172 B170 B171 B189 B187 B188 B186 B183 B184 B181 B182 B180 B198 B199 B196 B194 B195 B192 B193 B190 B191 Matthews PB (B133) 1962; 47 Schrøder HD (B173) 1984; 3 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 Garry RC (B67) 1957; 139 |
References_xml | – ident: B120 doi: 10.1523/JNEUROSCI.05-06-01545.1985 – ident: B6 doi: 10.1113/jphysiol.1993.sp019596 – ident: B75 doi: 10.1212/01.wnl.0000286948.99150.16 – ident: B192 doi: 10.1016/0006-8993(81)90819-2 – ident: B200 doi: 10.1113/jphysiol.1982.sp014137 – ident: B207 doi: 10.1152/jn.1985.53.5.1323 – ident: B104 doi: 10.1016/j.expneurol.2015.09.019 – ident: B100 doi: 10.1152/jn.1971.34.5.908 – ident: B17 doi: 10.1016/j.conb.2015.04.007 – ident: B146 doi: 10.1016/j.mbs.2014.08.015 – ident: B147 doi: 10.1007/s00401-017-1708-8 – ident: B154 doi: 10.3389/fncel.2015.00507 – ident: B118 doi: 10.1007/s00422-012-0519-1 – ident: B63 doi: 10.1152/jn.1981.46.6.1349 – ident: B148 doi: 10.1002/(SICI)1096-9861(20000103)416:1<112::AID-CNE9>3.0.CO;2-K – ident: B70 doi: 10.1093/brain/98.4.531 – ident: B8 doi: 10.1007/BF00340493 – ident: B124 doi: 10.1152/jn.1946.9.6.439 – ident: B3 doi: 10.1113/jphysiol.2007.136200 – ident: B2 doi: 10.1111/j.1469-7793.1999.787ab.x – ident: B114 doi: 10.1007/BF00687343 – ident: B40 doi: 10.1523/JNEUROSCI.2611-14.2014 – ident: B34 doi: 10.1038/263244a0 – ident: B83 doi: 10.1016/j.apmr.2016.09.124 – ident: B162 doi: 10.1212/WNL.44.11.2148 – ident: B31 doi: 10.1016/0006-8993(93)91250-V – ident: B142 doi: 10.1152/jn.1982.48.5.1164 – ident: B136 doi: 10.1038/263517a0 – ident: B140 doi: 10.1523/JNEUROSCI.2541-15.2015 – ident: B189 doi: 10.1016/0006-8993(82)90738-7 – ident: B127 doi: 10.1002/jmor.1051430404 – ident: B12 doi: 10.1113/jphysiol.1987.sp016410 – ident: B46 doi: 10.1212/WNL.25.8.781 – ident: B111 doi: 10.1016/0006-8993(81)90938-0 – ident: B61 doi: 10.1093/brain/114.5.2283 – ident: B88 doi: 10.1113/jphysiol.1971.sp009487 – ident: B160 doi: 10.1523/JNEUROSCI.1594-13.2013 – ident: B69 doi: 10.1212/WNL.0b013e3181a8269b – ident: B33 doi: 10.1113/jphysiol.1965.sp007621 – ident: B36 doi: 10.1113/jphysiol.1978.sp012423 – ident: B179 doi: 10.1111/j.1748-1716.1975.tb05869.x – ident: B139 doi: 10.1006/exnr.1998.6758 – ident: B171 doi: 10.1152/physrev.00031.2010 – ident: B26 doi: 10.1152/jn.1977.40.3.667 – ident: B81 doi: 10.1126/science.126.3287.1345 – ident: B7 doi: 10.1007/BF00234796 – ident: B145 doi: 10.1038/nm.2160 – ident: B122 doi: 10.1152/jn.1943.6.4.293 – ident: B56 doi: 10.1152/jn.1990.63.6.1307 – ident: B188 doi: 10.1038/nrn1327 – ident: B134 doi: 10.1002/mus.21602 – ident: B156 doi: 10.1016/0006-8993(85)90632-8 – ident: B130 doi: 10.1142/S0219635211002786 – volume: 133 start-page: 347 year: 1959 ident: B197 publication-title: Anat Rec – ident: B98 doi: 10.1146/annurev.neuro.051508.135722 – ident: B107 doi: 10.1113/jphysiol.1981.sp013895 – ident: B13 doi: 10.1016/j.expneurol.2011.11.004 – ident: B151 doi: 10.1152/jn.00358.2014 – ident: B52 doi: 10.1113/jphysiol.1957.sp005794 – ident: B113 doi: 10.1007/BF00691860 – ident: B199 doi: 10.1523/JNEUROSCI.19-17-07557.1999 – volume: 2 start-page: 744 year: 1869 ident: B29 publication-title: Arch Physiol – volume: 151 start-page: 23P year: 1960 ident: B30 publication-title: J Physiol – ident: B183 doi: 10.1073/pnas.1704328114 – ident: B39 doi: 10.1093/brain/61.3.311 – ident: B74 doi: 10.1002/mus.880160702 – ident: B45 doi: 10.1152/jn.1990.64.3.767 – ident: B59 doi: 10.1113/jphysiol.1981.sp013731 – ident: B68 doi: 10.1111/j.1469-7793.1998.507be.x – ident: B60 doi: 10.1111/joa.12299 – ident: B149 doi: 10.1007/BF00236206 – ident: B159 doi: 10.1016/j.neuropharm.2013.10.003 – ident: B55 doi: 10.1007/978-1-4757-0964-3_18 – ident: B105 doi: 10.1038/252243a0 – ident: B9 doi: 10.1113/jphysiol.1965.sp007722 – volume: 327 start-page: 1 year: 1969 ident: B73 publication-title: Acta Physiol Scand Suppl – ident: B79 doi: 10.1016/j.nbd.2007.07.003 – volume: 54 start-page: 11 year: 1994 ident: B164 publication-title: Acta Neurobiol Exp (Wars) doi: 10.55782/ane-1994-997 – ident: B203 doi: 10.1016/0301-0082(96)00023-8 – ident: B161 doi: 10.1016/j.expneurol.2014.07.021 – ident: B85 doi: 10.1523/JNEUROSCI.0572-07.2007 – ident: B153 doi: 10.1017/CBO9780511545047.005 – ident: B10 doi: 10.1007/BF00230851 – ident: B43 doi: 10.1098/rstb.2000.0732 – ident: B196 doi: 10.1016/j.tins.2014.05.006 – ident: B25 doi: 10.1152/jn.1976.39.3.447 – ident: B28 doi: 10.2353/ajpath.2009.080557 – ident: B143 doi: 10.1113/jphysiol.1982.sp014436 – ident: B91 doi: 10.1113/jphysiol.1951.sp004681 – ident: B48 doi: 10.1113/jphysiol.1961.sp006822 – ident: B177 doi: 10.1016/0006-8993(89)90119-4 – ident: B18 doi: 10.1152/physrev.1980.60.1.90 – ident: B186 doi: 10.1523/JNEUROSCI.3090-16.2017 – ident: B201 doi: 10.1152/jn.1964.27.6.1063 – ident: B195 doi: 10.1002/cne.23848 – ident: B109 doi: 10.1152/jn.1951.14.1.29 – volume: 1 start-page: 520 year: 1902 ident: B86 publication-title: Am J Anat – ident: B32 doi: 10.1111/j.1748-1716.1965.tb04079.x – ident: B23 doi: 10.1002/(SICI)1096-9861(19960826)372:3<465::AID-CNE9>3.0.CO;2-0 – ident: B87 doi: 10.1113/jphysiol.2003.050971 – ident: B123 doi: 10.1152/jn.1946.9.6.421 – ident: B191 doi: 10.1152/physrev.1979.59.4.919 – volume: 296 start-page: 39P year: 1979 ident: B65 publication-title: J Physiol – ident: B90 doi: 10.1111/j.1748-1716.1988.tb08502.x – ident: B137 doi: 10.1126/science.160.3823.96 – ident: B141 doi: 10.1002/(SICI)1096-9861(19960930)373:4<619::AID-CNE9>3.0.CO;2-4 – ident: B121 doi: 10.1152/jn.1943.6.4.317 – ident: B180 doi: 10.1111/j.1748-1716.1976.tb10265.x – ident: B158 doi: 10.1152/jn.01157.2007 – ident: B205 doi: 10.1152/jn.1985.53.5.1303 – ident: B116 doi: 10.7554/eLife.04046 – ident: B108 doi: 10.1016/S0006-8993(00)03048-1 – ident: B168 doi: 10.1002/cne.903490209 – ident: B119 doi: 10.1152/jn.1991.65.2.168 – ident: B194 doi: 10.1002/jcb.24234 – ident: B42 doi: 10.1007/BF02979882 – ident: B72 doi: 10.1001/archneur.63.4.584 – ident: B41 doi: 10.1007/s00401-017-1698-6 – ident: B128 doi: 10.1136/jnnp.40.5.464 – volume: 303 start-page: 289 year: 1968 ident: B82 publication-title: Pflugers Arch – ident: B4 doi: 10.1113/jphysiol.1983.sp014531 – volume: 139 start-page: 1P year: 1957 ident: B67 publication-title: J Physiol – ident: B64 doi: 10.1073/pnas.0906809106 – ident: B135 doi: 10.1152/jn.1980.44.4.696 – ident: B155 doi: 10.1002/cphy.c100086 – ident: B44 doi: 10.1038/aps.2009.24 – ident: B170 doi: 10.1002/cne.20620 – ident: B53 doi: 10.1113/jphysiol.1958.sp006015 – ident: B35 doi: 10.1002/cne.902550106 – ident: B21 doi: 10.1113/jphysiol.1968.sp008527 – ident: B132 doi: 10.1152/jn.00368.2011 – ident: B92 doi: 10.1007/s002210050812 – ident: B54 doi: 10.1113/jphysiol.1954.sp005226 – ident: B144 doi: 10.1016/0166-2236(93)90181-K – volume: 52 start-page: 453 year: 1966 ident: B175 publication-title: Fiziol Zh SSSR Im I M Sechenova – volume: 47 start-page: 324 year: 1962 ident: B133 publication-title: Q J Exp Physiol Cogn Med Sci – ident: B152 doi: 10.1172/JCI71601 – ident: B5 doi: 10.1007/s00018-003-3319-x – ident: B193 doi: 10.1016/0006-8993(79)90270-1 – ident: B115 doi: 10.1152/jn.1998.80.2.572 – ident: B57 doi: 10.1136/jnnp.31.5.424 – start-page: 277 volume-title: Progress in Neuropathology year: 1979 ident: B93 – volume: 49 start-page: 258 year: 1964 ident: B185 publication-title: Q J Exp Physiol Cogn Med Sci – ident: B117 doi: 10.1098/rspb.1925.0016 – ident: B47 doi: 10.1152/jn.1946.9.2.87 – ident: B103 doi: 10.1016/S0140-6736(10)61156-7 – ident: B166 doi: 10.1152/jn.1971.34.4.700 – start-page: 389 volume-title: Muscle Afferents and Spinal Control of Movement year: 1992 ident: B84 – ident: B187 doi: 10.1007/s00221-006-0774-2 – ident: B172 doi: 10.1152/jn.1992.68.2.397 – ident: B150 doi: 10.1016/j.neuron.2014.04.002 – ident: B204 doi: 10.1002/cne.23266 – ident: B24 doi: 10.1113/jphysiol.1973.sp010369 – ident: B14 doi: 10.1113/jphysiol.1978.sp012137 – ident: B16 doi: 10.1113/jphysiol.1973.sp010323 – ident: B126 doi: 10.1113/jphysiol.1979.sp012918 – ident: B181 doi: 10.3389/fncel.2014.00293 – ident: B112 doi: 10.1073/pnas.1605210113 – ident: B15 doi: 10.1113/jphysiol.1981.sp013654 – ident: B27 doi: 10.1016/S0079-6123(05)51003-3 – ident: B66 doi: 10.1152/jn.1993.69.4.1160 – volume: 70 start-page: 460 year: 1904 ident: B176 publication-title: Nature doi: 10.1038/070460a0 – ident: B19 doi: 10.1152/jn.00718.2007 – ident: B198 doi: 10.1016/S0079-6123(08)60743-8 – ident: B22 doi: 10.1113/jphysiol.1968.sp008526 – ident: B1 doi: 10.1113/jphysiol.1965.sp007592 – ident: B50 doi: 10.1113/jphysiol.1961.sp006821 – ident: B167 doi: 10.2170/jjphysiol.13.287 – ident: B71 doi: 10.1113/jphysiol.1957.sp005857 – ident: B38 doi: 10.1016/0006-8993(95)00063-V – ident: B190 doi: 10.1371/journal.pone.0034640 – ident: B206 doi: 10.1002/jnr.20379 – ident: B51 doi: 10.1038/179866b0 – ident: B89 doi: 10.1007/BF00237722 – ident: B37 doi: 10.1113/jphysiol.1981.sp013624 – ident: B76 doi: 10.1152/jn.1988.60.6.1946 – ident: B77 doi: 10.1016/j.tins.2003.10.002 – ident: B78 doi: 10.1093/brain/awq167 – volume: 3 start-page: 210 year: 1984 ident: B173 publication-title: Clin Neuropathol – ident: B202 doi: 10.1016/0301-0082(90)90020-H – ident: B62 doi: 10.1523/JNEUROSCI.20-07-02534.2000 – ident: B169 doi: 10.1002/phy2.161 – ident: B110 doi: 10.1016/0006-8993(82)90192-5 – ident: B138 doi: 10.1016/j.neuron.2015.05.045 – ident: B97 doi: 10.1523/JNEUROSCI.0574-09.2009 – ident: B80 doi: 10.1113/jphysiol.2007.149286 – ident: B99 doi: 10.1097/00005072-198111000-00008 – ident: B129 doi: 10.3791/4312 – ident: B95 doi: 10.1111/j.1748-1716.1973.tb05447.x – ident: B184 doi: 10.1038/nature20413 – ident: B163 doi: 10.1152/jn.1946.9.3.191 – ident: B20 doi: 10.7554/eLife.21715 – ident: B101 doi: 10.1016/0006-8993(79)90612-7 – ident: B106 doi: 10.1113/jphysiol.1982.sp014038 – ident: B182 doi: 10.1038/nrneurol.2014.184 – ident: B102 doi: 10.1016/0006-8993(81)90756-3 – ident: B157 doi: 10.1038/nn1653 – ident: B165 doi: 10.1152/jn.1970.33.2.257 – ident: B94 doi: 10.1016/0006-8993(80)91319-0 – ident: B11 doi: 10.1038/nm.2107 – ident: B49 doi: 10.1111/j.1748-1716.1960.tb02070.x – ident: B131 doi: 10.1038/nrn1949 – ident: B96 doi: 10.1111/j.1748-1716.1962.tb02451.x – ident: B178 doi: 10.1186/1749-8104-4-42 – ident: B125 doi: 10.1016/S0022-510X(97)00100-7 – ident: B58 doi: 10.1113/jphysiol.1971.sp009533 – ident: B174 doi: 10.1016/j.nbd.2005.02.006 |
SSID | ssj0007502 |
Score | 2.4235384 |
SecondaryResourceType | review_article |
Snippet | In amyotrophic lateral sclerosis (ALS), loss of motoneuron function leads to weakness and, ultimately, respiratory failure and death. Regardless of the initial... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1782 |
SubjectTerms | Afferent Pathways - pathology Amyotrophic Lateral Sclerosis - pathology Amyotrophic Lateral Sclerosis - physiopathology Disease Progression Humans Motor Neurons - pathology Muscle Spindles - pathology Proprioception - physiology Renshaw Cells - pathology Review |
Title | Escape from homeostasis: spinal microcircuits and progression of amyotrophic lateral sclerosis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29384454 https://www.proquest.com/docview/1993011409 https://pubmed.ncbi.nlm.nih.gov/PMC6008087 |
Volume | 119 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECXc9NJL0TZd3A0sUOTiypWsjeotMFIEBdwFSICcKkgUFSuwJMOSDu6X9fM6Q1JbmgBtLoZB05SleR4-Dt8MCXnvA2VIOHOMyEwSw7F4YDCGFWitxOfQxi0pHl999U7PnS8X7sVk8nugWmrqeM5_3ZhXcherQhvYFbNk_8Oy3aDQAO_BvvAKFobXf7LxSYXyJZUisi5zUQLVqzIpcqu28rirHPV2PNvxBjcIVFGA8lJpXyVRjPJ9We_K7Trjs02E6ciYJLkRMHlm1S3MVdbAlCGRUUxeruiRS4pesj1bzTvJD-JLHw-_xLCKvhd8UqLC7ftCBjKUdB6VOWVd7mbfmnrb1KPohMV6LeAgIQDdefujJPS0InXomDGpwNQnugjti6EN2BYbOWvtYLPhfrh0vZavTjHS0zg6mpunCBdLzl4VczzGDiMEKnd0AJdtLvECRIg5jipxfa0m9_fV0kOuzfx75P7CB9aGcoAffZ164GF9nXq4rba6q7v4OLoy1qLWlxkTo79WO9dFuwMWdPaIPNQgoMcKi4_JRBRPyOFxEdVlvqdHtDPA_pD8VPCkCE86gOcnqsBJR-CkAE46ACctUzoAJ9XgpB04n5Lzzydny1NDH-dhcMe1a8MVMPN63LNhFWxFLo9t4GdmwHxm-0kcx66bgHMITC9NTJf5Ig0Egx6ohOIJ8Fr7GTkoAMMvCI2tiMNQiwiM7CQLMxIBsxwnSNMAxvCDKfnQPsuQ61r3eOTKJpRrXncRXhWhtEKIVpiSo677VhV5ua3ju9YwIbhh3FuLClE2VYg6WIwtmHDt58pQ3VCthafEH5mw64Al3sefFNlalnrXKHt552--Ig_6v-VrclDvGvEGaHQdv5WI_QNxFNFF |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Escape+from+homeostasis%3A+spinal+microcircuits+and+progression+of+amyotrophic+lateral+sclerosis&rft.jtitle=Journal+of+neurophysiology&rft.au=Brownstone%2C+Robert+M.&rft.au=Lancelin%2C+Camille&rft.series=Spinal+Control+of+Motor+Outputs&rft.date=2018-05-01&rft.pub=American+Physiological+Society&rft.issn=0022-3077&rft.eissn=1522-1598&rft.volume=119&rft.issue=5&rft.spage=1782&rft.epage=1794&rft_id=info:doi/10.1152%2Fjn.00331.2017&rft_id=info%3Apmid%2F29384454&rft.externalDocID=PMC6008087 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon |