Evaluation of Automatically Quantified Foveal Avascular Zone Metrics for Diagnosis of Diabetic Retinopathy Using Optical Coherence Tomography Angiography
To describe an automated algorithm to quantify the foveal avascular zone (FAZ), using optical coherence tomography angiography (OCTA), and to compare its performance for diagnosis of diabetic retinopathy (DR) and association with best-corrected visual acuity (BCVA) to that of extrafoveal avascular a...
Saved in:
Published in | Investigative ophthalmology & visual science Vol. 59; no. 6; pp. 2212 - 2221 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The Association for Research in Vision and Ophthalmology
01.05.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1552-5783 0146-0404 1552-5783 |
DOI | 10.1167/iovs.17-23498 |
Cover
Abstract | To describe an automated algorithm to quantify the foveal avascular zone (FAZ), using optical coherence tomography angiography (OCTA), and to compare its performance for diagnosis of diabetic retinopathy (DR) and association with best-corrected visual acuity (BCVA) to that of extrafoveal avascular area (EAA).
We obtained 3 × 3-mm macular OCTA scans in diabetic patients with various levels of DR and healthy controls. An algorithm based on a generalized gradient vector flow (GGVF) snake model detected the FAZ, and metrics assessing FAZ size and irregularity were calculated. We compared the automated FAZ segmentation to manual delineation and tested the within-visit repeatability of FAZ metrics. The correlations of two conventional FAZ metrics, two novel FAZ metrics, and EAA with DR severity and BCVA, as determined by Early Treatment Diabetic Retinopathy Study (ETDRS) charts, were assessed.
Sixty-six eyes from 66 diabetic patients and 19 control eyes from 19 healthy participants were included. The agreement between manual and automated FAZ delineation had a Jaccard index > 0.82, and the repeatability of automated FAZ detection was excellent in eyes at all levels of DR severity. FAZ metrics that incorporated both FAZ size and shape irregularity had the strongest correlation with clinical DR grade and BCVA. Of all the tested OCTA metrics, EAA had the greatest sensitivity in differentiating diabetic eyes without clinical evidence of retinopathy, mild to moderate nonproliferative DR (NPDR), and severe NPDR to proliferative DR from healthy controls.
The GGVF snake algorithm tested in this study can accurately and reliably detect the FAZ, using OCTA data at all DR severity grades, and may be used to obtain clinically useful information from OCTA data regarding macular ischemia in patients with diabetes. While FAZ metrics can provide clinically useful information regarding macular ischemia, and possibly visual acuity potential, EAA measurements may be a better biomarker for DR. |
---|---|
AbstractList | To describe an automated algorithm to quantify the foveal avascular zone (FAZ), using optical coherence tomography angiography (OCTA), and to compare its performance for diagnosis of diabetic retinopathy (DR) and association with best-corrected visual acuity (BCVA) to that of extrafoveal avascular area (EAA).PurposeTo describe an automated algorithm to quantify the foveal avascular zone (FAZ), using optical coherence tomography angiography (OCTA), and to compare its performance for diagnosis of diabetic retinopathy (DR) and association with best-corrected visual acuity (BCVA) to that of extrafoveal avascular area (EAA).We obtained 3 × 3-mm macular OCTA scans in diabetic patients with various levels of DR and healthy controls. An algorithm based on a generalized gradient vector flow (GGVF) snake model detected the FAZ, and metrics assessing FAZ size and irregularity were calculated. We compared the automated FAZ segmentation to manual delineation and tested the within-visit repeatability of FAZ metrics. The correlations of two conventional FAZ metrics, two novel FAZ metrics, and EAA with DR severity and BCVA, as determined by Early Treatment Diabetic Retinopathy Study (ETDRS) charts, were assessed.MethodsWe obtained 3 × 3-mm macular OCTA scans in diabetic patients with various levels of DR and healthy controls. An algorithm based on a generalized gradient vector flow (GGVF) snake model detected the FAZ, and metrics assessing FAZ size and irregularity were calculated. We compared the automated FAZ segmentation to manual delineation and tested the within-visit repeatability of FAZ metrics. The correlations of two conventional FAZ metrics, two novel FAZ metrics, and EAA with DR severity and BCVA, as determined by Early Treatment Diabetic Retinopathy Study (ETDRS) charts, were assessed.Sixty-six eyes from 66 diabetic patients and 19 control eyes from 19 healthy participants were included. The agreement between manual and automated FAZ delineation had a Jaccard index > 0.82, and the repeatability of automated FAZ detection was excellent in eyes at all levels of DR severity. FAZ metrics that incorporated both FAZ size and shape irregularity had the strongest correlation with clinical DR grade and BCVA. Of all the tested OCTA metrics, EAA had the greatest sensitivity in differentiating diabetic eyes without clinical evidence of retinopathy, mild to moderate nonproliferative DR (NPDR), and severe NPDR to proliferative DR from healthy controls.ResultsSixty-six eyes from 66 diabetic patients and 19 control eyes from 19 healthy participants were included. The agreement between manual and automated FAZ delineation had a Jaccard index > 0.82, and the repeatability of automated FAZ detection was excellent in eyes at all levels of DR severity. FAZ metrics that incorporated both FAZ size and shape irregularity had the strongest correlation with clinical DR grade and BCVA. Of all the tested OCTA metrics, EAA had the greatest sensitivity in differentiating diabetic eyes without clinical evidence of retinopathy, mild to moderate nonproliferative DR (NPDR), and severe NPDR to proliferative DR from healthy controls.The GGVF snake algorithm tested in this study can accurately and reliably detect the FAZ, using OCTA data at all DR severity grades, and may be used to obtain clinically useful information from OCTA data regarding macular ischemia in patients with diabetes. While FAZ metrics can provide clinically useful information regarding macular ischemia, and possibly visual acuity potential, EAA measurements may be a better biomarker for DR.ConclusionsThe GGVF snake algorithm tested in this study can accurately and reliably detect the FAZ, using OCTA data at all DR severity grades, and may be used to obtain clinically useful information from OCTA data regarding macular ischemia in patients with diabetes. While FAZ metrics can provide clinically useful information regarding macular ischemia, and possibly visual acuity potential, EAA measurements may be a better biomarker for DR. To describe an automated algorithm to quantify the foveal avascular zone (FAZ), using optical coherence tomography angiography (OCTA), and to compare its performance for diagnosis of diabetic retinopathy (DR) and association with best-corrected visual acuity (BCVA) to that of extrafoveal avascular area (EAA). We obtained 3 × 3-mm macular OCTA scans in diabetic patients with various levels of DR and healthy controls. An algorithm based on a generalized gradient vector flow (GGVF) snake model detected the FAZ, and metrics assessing FAZ size and irregularity were calculated. We compared the automated FAZ segmentation to manual delineation and tested the within-visit repeatability of FAZ metrics. The correlations of two conventional FAZ metrics, two novel FAZ metrics, and EAA with DR severity and BCVA, as determined by Early Treatment Diabetic Retinopathy Study (ETDRS) charts, were assessed. Sixty-six eyes from 66 diabetic patients and 19 control eyes from 19 healthy participants were included. The agreement between manual and automated FAZ delineation had a Jaccard index > 0.82, and the repeatability of automated FAZ detection was excellent in eyes at all levels of DR severity. FAZ metrics that incorporated both FAZ size and shape irregularity had the strongest correlation with clinical DR grade and BCVA. Of all the tested OCTA metrics, EAA had the greatest sensitivity in differentiating diabetic eyes without clinical evidence of retinopathy, mild to moderate nonproliferative DR (NPDR), and severe NPDR to proliferative DR from healthy controls. The GGVF snake algorithm tested in this study can accurately and reliably detect the FAZ, using OCTA data at all DR severity grades, and may be used to obtain clinically useful information from OCTA data regarding macular ischemia in patients with diabetes. While FAZ metrics can provide clinically useful information regarding macular ischemia, and possibly visual acuity potential, EAA measurements may be a better biomarker for DR. |
Author | Zhang, Miao Huang, David Jia, Yali Lu, Yansha Li, Dengwang Simonett, Joseph M. Hagag, Ahmed M. Wang, Jie Hwang, Thomas |
Author_xml | – sequence: 1 givenname: Yansha surname: Lu fullname: Lu, Yansha organization: Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States, Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Biomedical Sciences, School of Physics and Electronics, Shandong Normal University, Jinan, China – sequence: 2 givenname: Joseph M. surname: Simonett fullname: Simonett, Joseph M. organization: Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States – sequence: 3 givenname: Jie surname: Wang fullname: Wang, Jie organization: Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States – sequence: 4 givenname: Miao surname: Zhang fullname: Zhang, Miao organization: Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States, Optovue, Inc., Fremont, California, United States – sequence: 5 givenname: Thomas surname: Hwang fullname: Hwang, Thomas organization: Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States – sequence: 6 givenname: Ahmed M. surname: Hagag fullname: Hagag, Ahmed M. organization: Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States – sequence: 7 givenname: David surname: Huang fullname: Huang, David organization: Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States – sequence: 8 givenname: Dengwang surname: Li fullname: Li, Dengwang organization: Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Biomedical Sciences, School of Physics and Electronics, Shandong Normal University, Jinan, China – sequence: 9 givenname: Yali surname: Jia fullname: Jia, Yali organization: Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29715365$$D View this record in MEDLINE/PubMed |
BookMark | eNptkUtv1DAUhS1URB-wZIu8ZJNix3Ecb5BGQwtIRRWo3bCxPJ7rjJFjBzuJND-Ff0synaKC2NyHfO53LJ1zdBJiAIReU3JJaS3euTjlSyqKklWyeYbOKOdlwUXDTp7Mp-g85x-ElJSW5AU6LaWgnNX8DP26mrQf9eBiwNHi1TjEbt6M9n6Pv446DM462OLrOIH2eDXpbEavE_4-fwN_gSE5k7GNCX9wug0xu7xw5mUDMwZ_m2uIvR52e3yfXWjxbX_A43XcQYJgAN_FLrZJ97NkFVp3nF-i51b7DK-O_QLdX1_drT8VN7cfP69XN4WpOBsKbqq6IaKyUsiSa1sbMIyVXEq5FZJKWzFowLJtvbE1N4zYpuGmIcCZ5kbU7AK9f-D246aDrYEwJO1Vn1yn015F7dTfL8HtVBsnxSVvGFkAb4-AFH-OkAfVuWzAex0gjlmVhDEmqOSL9M1Trz8mj3nMAvYgMCnmnMAq44ZDOrO184oStaSultQVFeqQ-nxV_HP1CP6__jeDY7PP |
CitedBy_id | crossref_primary_10_1038_s41591_023_02702_z crossref_primary_10_3390_app132011259 crossref_primary_10_1016_j_msard_2024_105864 crossref_primary_10_3389_fneur_2020_604049 crossref_primary_10_1136_bmjdrc_2023_003758 crossref_primary_10_1177_2515841419840249 crossref_primary_10_1364_OSAC_381120 crossref_primary_10_3390_jcm9092829 crossref_primary_10_3390_jcm9061723 crossref_primary_10_1016_j_xops_2021_100030 crossref_primary_10_1167_tvst_10_7_31 crossref_primary_10_4103_ijo_IJO_1267_21 crossref_primary_10_1002_brb3_2125 crossref_primary_10_1371_journal_pone_0258848 crossref_primary_10_3389_fmed_2024_1294432 crossref_primary_10_1097_IAE_0000000000003145 crossref_primary_10_1167_tvst_7_5_20 crossref_primary_10_1007_s10792_022_02399_y crossref_primary_10_1167_tvst_12_7_13 crossref_primary_10_3390_jpm14050501 crossref_primary_10_1002_jbio_201900103 crossref_primary_10_1016_j_pediatrneurol_2024_01_013 crossref_primary_10_1136_postgradmedj_2018_136102 crossref_primary_10_1364_BOE_10_002493 crossref_primary_10_1186_s42492_019_0031_8 crossref_primary_10_1001_jamaophthalmol_2019_4821 crossref_primary_10_1016_j_preteyeres_2020_100878 crossref_primary_10_1038_s41598_021_82334_w crossref_primary_10_1038_s41598_023_36058_8 crossref_primary_10_3390_app11209734 crossref_primary_10_1007_s00417_019_04315_0 crossref_primary_10_3390_photonics11060522 crossref_primary_10_3389_fpubh_2023_1128008 crossref_primary_10_3390_jcm11010197 crossref_primary_10_1136_bjophthalmol_2020_318646 crossref_primary_10_3390_biomedicines10010088 crossref_primary_10_1016_j_ajo_2021_09_019 crossref_primary_10_1016_j_oret_2019_02_013 crossref_primary_10_1097_IAE_0000000000002655 crossref_primary_10_3390_jcm12010183 crossref_primary_10_1177_11206721241228010 crossref_primary_10_1109_ACCESS_2020_3017440 crossref_primary_10_1016_j_media_2024_103092 crossref_primary_10_1109_TMI_2022_3193029 crossref_primary_10_1016_j_preteyeres_2022_101134 crossref_primary_10_1016_j_preteyeres_2021_101033 crossref_primary_10_4274_jcrpe_galenos_2023_2022_12_16 crossref_primary_10_1007_s00371_024_03418_y crossref_primary_10_1016_j_ajo_2019_02_034 crossref_primary_10_1364_BOE_10_003522 crossref_primary_10_1016_j_preteyeres_2021_100965 crossref_primary_10_1007_s40123_024_00995_y crossref_primary_10_1080_02713683_2022_2078493 crossref_primary_10_1177_1535370219899893 crossref_primary_10_1007_s00417_018_4138_y crossref_primary_10_1167_iovs_61_3_50 crossref_primary_10_1038_s41598_020_63931_7 crossref_primary_10_1016_j_oret_2019_11_008 crossref_primary_10_1167_iovs_18_25294 crossref_primary_10_1364_BOE_9_005982 crossref_primary_10_1007_s00347_024_02065_x crossref_primary_10_1038_s41598_020_65243_2 crossref_primary_10_1016_j_ophtha_2019_09_025 crossref_primary_10_1167_tvst_9_2_20 crossref_primary_10_1167_iovs_19_28137 crossref_primary_10_12998_wjcc_v11_i23_5479 crossref_primary_10_1016_j_ophtha_2019_06_016 crossref_primary_10_1016_j_knosys_2024_112704 crossref_primary_10_1016_j_preteyeres_2023_101206 crossref_primary_10_3389_fmed_2022_1069449 crossref_primary_10_1167_tvst_11_9_7 crossref_primary_10_1016_j_ajo_2020_01_016 crossref_primary_10_1155_2024_5560696 crossref_primary_10_1080_01658107_2021_1963787 crossref_primary_10_1186_s40662_019_0160_3 crossref_primary_10_3928_01913913_20200903_01 crossref_primary_10_1016_j_ajo_2024_09_012 crossref_primary_10_1097_IAE_0000000000003016 crossref_primary_10_1016_j_mvr_2024_104743 crossref_primary_10_1109_TMI_2020_2992244 crossref_primary_10_3390_medicina58121797 crossref_primary_10_1016_j_bspc_2021_102456 crossref_primary_10_2147_OPTH_S353426 crossref_primary_10_1038_s41433_021_01825_2 crossref_primary_10_1142_S1793545822420019 crossref_primary_10_1007_s10384_024_01053_7 crossref_primary_10_1016_j_pdpdt_2022_103214 crossref_primary_10_1177_11206721231167458 crossref_primary_10_1016_j_oret_2019_04_027 crossref_primary_10_1080_08820538_2021_1889612 crossref_primary_10_1016_j_oret_2019_10_018 crossref_primary_10_1167_iovs_61_5_39 |
ContentType | Journal Article |
Copyright | Copyright 2018 The Authors 2018 |
Copyright_xml | – notice: Copyright 2018 The Authors 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1167/iovs.17-23498 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | OCTA of Foveal Avascular Zone in Diabetic Eyes |
EISSN | 1552-5783 |
EndPage | 2221 |
ExternalDocumentID | PMC5958306 29715365 10_1167_iovs_17_23498 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NEI NIH HHS grantid: P30 EY010572 – fundername: NEI NIH HHS grantid: R01 EY027833 – fundername: NIDDK NIH HHS grantid: DP3 DK104397 – fundername: NEI NIH HHS grantid: R01 EY024544 |
GroupedDBID | --- 18M 2WC 34G 39C 5GY 5RE AAYXX ACGFO ACNCT ADBBV AENEX AFOSN ALMA_UNASSIGNED_HOLDINGS BAWUL CITATION CS3 DIK DU5 E3Z EBS EJD F5P GROUPED_DOAJ GX1 N9A OK1 P2P RPM SJN TR2 TRV W8F WH7 WOQ WOW CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c453t-5c468074f97925af6cec3325999d7919f43e8ef3d6bf65c30f885c80e53a5c763 |
ISSN | 1552-5783 0146-0404 |
IngestDate | Thu Aug 21 17:55:39 EDT 2025 Fri Sep 05 13:38:00 EDT 2025 Mon Jul 21 06:05:48 EDT 2025 Tue Jul 01 02:30:28 EDT 2025 Thu Apr 24 23:03:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | http://creativecommons.org/licenses/by-nc-nd/4.0 This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c453t-5c468074f97925af6cec3325999d7919f43e8ef3d6bf65c30f885c80e53a5c763 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 YL and JMS contributed equally to the work presented here and should therefore be regarded as equivalent authors. |
OpenAccessLink | http://dx.doi.org/10.1167/iovs.17-23498 |
PMID | 29715365 |
PQID | 2033371956 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5958306 proquest_miscellaneous_2033371956 pubmed_primary_29715365 crossref_citationtrail_10_1167_iovs_17_23498 crossref_primary_10_1167_iovs_17_23498 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-05-01 20180501 |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Investigative ophthalmology & visual science |
PublicationTitleAlternate | Invest Ophthalmol Vis Sci |
PublicationYear | 2018 |
Publisher | The Association for Research in Vision and Ophthalmology |
Publisher_xml | – name: The Association for Research in Vision and Ophthalmology |
SSID | ssj0021120 |
Score | 2.5564075 |
Snippet | To describe an automated algorithm to quantify the foveal avascular zone (FAZ), using optical coherence tomography angiography (OCTA), and to compare its... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2212 |
SubjectTerms | Adult Algorithms Diabetic Retinopathy - diagnosis Diabetic Retinopathy - physiopathology Female Fluorescein Angiography - methods Fovea Centralis - pathology Fundus Oculi Humans Male Middle Aged Multidisciplinary Ophthalmic Imaging Retinal Vessels - pathology Tomography, Optical Coherence - methods Visual Acuity |
Title | Evaluation of Automatically Quantified Foveal Avascular Zone Metrics for Diagnosis of Diabetic Retinopathy Using Optical Coherence Tomography Angiography |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29715365 https://www.proquest.com/docview/2033371956 https://pubmed.ncbi.nlm.nih.gov/PMC5958306 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LjtMwFLXKICE2iDflMTISYlNSmjiOk2WFZjQMFBZ0xIhNlLgODWqTiiaVhj_hH_hIrh9xkikjAZuoSly36j31ffj4XIReLGjCIEzgDg8n1PFFyJ3EmzAnFV7CopSRjMuC_uxDcHLmn57T88HgV4e1VFfpmP_447mS_7Eq3AO7ylOy_2BZOyncgNdgX7iCheH6VzY-slLdKqCsq1IJsCar1YVkayoeEASUx-VOygdPLev0Swmh5Uz20uJKjgEWPkW409okmiSjCPZVXpSyZ_HFSFMLPm506Vse6tDytPNybUSvR9Pia94VwP7WkOStksdOjMrNslomq7WWfpK42-XbujmZ2cLsfa2cAzjSpXUcnwBXheEV652Ltpb72dS9T3M7ha2Fz_Kk7FY33LDlEo6FWZEpZMtMd7tplmwjIp7vr7-eJmXvO4ZAbk3n5W47BrfsEV_3vu6AZLNWKPEiBk5A96-4pMTdPLqGrnsMIjUZgr99Z9N7iFwnjYprwF73PktqTpt39wOgvazmMjm3E-3Mb6NbJk3BU425O2ggirvoxswQMe6hny30cJnhHvRwCz2soYct9LCEHjbQwwA9bKEn52mghzvQwwp62EAPW-jhFnq4A7376Oz4aP7mxDFdPhzuU1I5lPuBVGTKIhZ5NMkCLjghkJVH0YJFbpT5RIQiI4sgzQLKySQLQwori6AkoRzc4wN0UMB3f4RwGoRuxoKFS2VXAQEDIf5KqPC8LBUQWw_Rq-anj7mRwJedWFaxSoUDFkujxS6LldGG6KUdvtHaL1cNfN7YMYbVWW65JYUo623sTQghTJ7JHaKH2q52qgYQQ8R6FrcDpPJ7_0mRL5UCPI1oCLn-4yvnfIJutv-mp-ig-l6LZxA9V-mhAu2hqj39Bq6k0ME |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+Automatically+Quantified+Foveal+Avascular+Zone+Metrics+for+Diagnosis+of+Diabetic+Retinopathy+Using+Optical+Coherence+Tomography+Angiography&rft.jtitle=Investigative+ophthalmology+%26+visual+science&rft.au=Lu%2C+Yansha&rft.au=Simonett%2C+Joseph+M&rft.au=Wang%2C+Jie&rft.au=Zhang%2C+Miao&rft.date=2018-05-01&rft.eissn=1552-5783&rft.volume=59&rft.issue=6&rft.spage=2212&rft_id=info:doi/10.1167%2Fiovs.17-23498&rft_id=info%3Apmid%2F29715365&rft.externalDocID=29715365 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-5783&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-5783&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-5783&client=summon |