Deep Learning-Based Data Augmentation and Model Fusion for Automatic Arrhythmia Identification and Classification Algorithms
Automated ECG-based arrhythmia detection is critical for early cardiac disease prevention and diagnosis. Recently, deep learning algorithms have been widely applied for arrhythmia detection with great success. However, the lack of labeled ECG data and low classification accuracy can have a significa...
Saved in:
| Published in | Computational intelligence and neuroscience Vol. 2022; pp. 1 - 17 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Hindawi
11.08.2022
John Wiley & Sons, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1687-5265 1687-5273 1687-5273 |
| DOI | 10.1155/2022/1577778 |
Cover
| Abstract | Automated ECG-based arrhythmia detection is critical for early cardiac disease prevention and diagnosis. Recently, deep learning algorithms have been widely applied for arrhythmia detection with great success. However, the lack of labeled ECG data and low classification accuracy can have a significant impact on the overall effectiveness of a classification algorithm. In order to better apply deep learning methods to arrhythmia classification, in this study, feature extraction and classification strategy based on generative adversarial network data augmentation and model fusion are proposed to address these problems. First, the arrhythmia sparse data is augmented by generative adversarial networks. Then, aiming at the identification of different types of arrhythmias in long-term ECG, a spatial information fusion model based on ResNet and a temporal information fusion model based on BiLSTM are proposed. The model effectively fuses the location information of the nearest neighbors through the local feature extraction part of the generated ECG feature map and obtains the correlation of the global features by autonomous learning in multiple spaces through the BiLSTM network in the part of the global feature extraction. In addition, an attention mechanism is introduced to enhance the features of arrhythmia-type signal segments, and this mechanism can effectively focus on the extraction of key information to form a feature vector for final classification. Finally, it is validated by the enhanced MIT-BIH arrhythmia database. The experimental results demonstrate that the proposed classification technique enhances arrhythmia diagnostic accuracy by 99.4%, and the algorithm has high recognition performance and clinical value. |
|---|---|
| AbstractList | Automated ECG-based arrhythmia detection is critical for early cardiac disease prevention and diagnosis. Recently, deep learning algorithms have been widely applied for arrhythmia detection with great success. However, the lack of labeled ECG data and low classification accuracy can have a significant impact on the overall effectiveness of a classification algorithm. In order to better apply deep learning methods to arrhythmia classification, in this study, feature extraction and classification strategy based on generative adversarial network data augmentation and model fusion are proposed to address these problems. First, the arrhythmia sparse data is augmented by generative adversarial networks. Then, aiming at the identification of different types of arrhythmias in long-term ECG, a spatial information fusion model based on ResNet and a temporal information fusion model based on BiLSTM are proposed. The model effectively fuses the location information of the nearest neighbors through the local feature extraction part of the generated ECG feature map and obtains the correlation of the global features by autonomous learning in multiple spaces through the BiLSTM network in the part of the global feature extraction. In addition, an attention mechanism is introduced to enhance the features of arrhythmia-type signal segments, and this mechanism can effectively focus on the extraction of key information to form a feature vector for final classification. Finally, it is validated by the enhanced MIT-BIH arrhythmia database. The experimental results demonstrate that the proposed classification technique enhances arrhythmia diagnostic accuracy by 99.4%, and the algorithm has high recognition performance and clinical value. Automated ECG-based arrhythmia detection is critical for early cardiac disease prevention and diagnosis. Recently, deep learning algorithms have been widely applied for arrhythmia detection with great success. However, the lack of labeled ECG data and low classification accuracy can have a significant impact on the overall effectiveness of a classification algorithm. In order to better apply deep learning methods to arrhythmia classification, in this study, feature extraction and classification strategy based on generative adversarial network data augmentation and model fusion are proposed to address these problems. First, the arrhythmia sparse data is augmented by generative adversarial networks. Then, aiming at the identification of different types of arrhythmias in long-term ECG, a spatial information fusion model based on ResNet and a temporal information fusion model based on BiLSTM are proposed. The model effectively fuses the location information of the nearest neighbors through the local feature extraction part of the generated ECG feature map and obtains the correlation of the global features by autonomous learning in multiple spaces through the BiLSTM network in the part of the global feature extraction. In addition, an attention mechanism is introduced to enhance the features of arrhythmia-type signal segments, and this mechanism can effectively focus on the extraction of key information to form a feature vector for final classification. Finally, it is validated by the enhanced MIT-BIH arrhythmia database. The experimental results demonstrate that the proposed classification technique enhances arrhythmia diagnostic accuracy by 99.4%, and the algorithm has high recognition performance and clinical value.Automated ECG-based arrhythmia detection is critical for early cardiac disease prevention and diagnosis. Recently, deep learning algorithms have been widely applied for arrhythmia detection with great success. However, the lack of labeled ECG data and low classification accuracy can have a significant impact on the overall effectiveness of a classification algorithm. In order to better apply deep learning methods to arrhythmia classification, in this study, feature extraction and classification strategy based on generative adversarial network data augmentation and model fusion are proposed to address these problems. First, the arrhythmia sparse data is augmented by generative adversarial networks. Then, aiming at the identification of different types of arrhythmias in long-term ECG, a spatial information fusion model based on ResNet and a temporal information fusion model based on BiLSTM are proposed. The model effectively fuses the location information of the nearest neighbors through the local feature extraction part of the generated ECG feature map and obtains the correlation of the global features by autonomous learning in multiple spaces through the BiLSTM network in the part of the global feature extraction. In addition, an attention mechanism is introduced to enhance the features of arrhythmia-type signal segments, and this mechanism can effectively focus on the extraction of key information to form a feature vector for final classification. Finally, it is validated by the enhanced MIT-BIH arrhythmia database. The experimental results demonstrate that the proposed classification technique enhances arrhythmia diagnostic accuracy by 99.4%, and the algorithm has high recognition performance and clinical value. |
| Audience | Academic |
| Author | Cui, Jianfeng Xiao, Weidong Liu, Lijuan Ma, Shuai |
| AuthorAffiliation | 2 Xiamen University of Technology, School of Software Engineering, Xiamen 361024, China 1 Xiamen University of Technology, School of Computer and Information Engineering, Xiamen 361024, China |
| AuthorAffiliation_xml | – name: 1 Xiamen University of Technology, School of Computer and Information Engineering, Xiamen 361024, China – name: 2 Xiamen University of Technology, School of Software Engineering, Xiamen 361024, China |
| Author_xml | – sequence: 1 givenname: Shuai orcidid: 0000-0002-2977-0442 surname: Ma fullname: Ma, Shuai organization: Xiamen University of TechnologySchool of Computer and Information EngineeringXiamen 361024Chinaxmut.edu.cn – sequence: 2 givenname: Jianfeng orcidid: 0000-0003-0451-2233 surname: Cui fullname: Cui, Jianfeng organization: Xiamen University of TechnologySchool of Software EngineeringXiamen 361024Chinaxmut.edu.cn – sequence: 3 givenname: Weidong surname: Xiao fullname: Xiao, Weidong organization: Xiamen University of TechnologySchool of Software EngineeringXiamen 361024Chinaxmut.edu.cn – sequence: 4 givenname: Lijuan surname: Liu fullname: Liu, Lijuan organization: Xiamen University of TechnologySchool of Computer and Information EngineeringXiamen 361024Chinaxmut.edu.cn |
| BookMark | eNqFkV-P1CAUxRuzxv2jb36AJr6YaF2gpcCLSZ113U3G-KLP5BboDJsWRmjdTOKHl6YTx91E5QVy7-8cuIfz7MR5Z7LsJUbvMKb0kiBCLjFlafEn2RmuOSsoYeXJ73NNT7PzGO8Qoowi8iw7LakQCNfkLPt5ZcwuXxsIzrpN8QGi0fkVjJA302YwboTRepeD0_lnr02fX09xLnQ-JGL0Q-qrvAlhux-3g4X8VieR7aw6Clc9xHgsNf3GB5vo-Dx72kEfzYvDfpF9u_74dXVTrL98ul0160JVtByLUhiqOWm7Fioluqpra1JxhBQTvEOspYwDL02JVWs0aMYFMi3SGgFFjNSivMiKxXdyO9jfQ9_LXbADhL3ESM4pyjlFeUgx8e8Xfje1g9EqTRTgqPFg5cOOs1u58T-kKDkntE4Grw8GwX-fTBzlYKMyfQ_O-ClKwhAtBasZTuirR-idn4JLccxUxajg1R_UBnojret8ulfNprJhuKKirPD8brJQKvgYg-mksssHJtr2fxv27SPRf7J5s-Bb6zTc23_TvwD8Xs4f |
| CitedBy_id | crossref_primary_10_1016_j_artmed_2023_102632 crossref_primary_10_3390_app13084964 crossref_primary_10_32604_cmc_2024_059403 crossref_primary_10_1016_j_bspc_2024_107329 crossref_primary_10_3934_mbe_2023382 crossref_primary_10_3390_s23042024 crossref_primary_10_1177_11779322221149600 crossref_primary_10_3390_s23115237 crossref_primary_10_3389_fphys_2023_1246746 crossref_primary_10_17798_bitlisfen_1523524 crossref_primary_10_3390_s23218691 crossref_primary_10_1016_j_bspc_2023_105714 crossref_primary_10_1109_ACCESS_2023_3280565 |
| Cites_doi | 10.1007/s10844-021-00692-3 10.1007/s11760-020-01813-1 10.1016/j.artmed.2019.101756 10.1016/j.procs.2018.05.034 10.1016/j.measurement.2020.108522 10.1016/j.cmpb.2015.12.024 10.1155/2021/2831064 10.1007/s11192-020-03351-6 10.1016/j.comnet.2019.04.021 10.1109/TBME.2003.808805 10.1016/j.measurement.2017.05.022 10.1109/ACCESS.2020.2983674 10.1111/exsy.12547 10.1007/s10586-018-2273-1 10.1016/j.measurement.2021.110040 10.1093/oxfordjournals.eurheartj.a060332 10.1109/access.2020.2974712 10.1016/j.compbiomed.2017.08.022 10.1016/j.compbiomed.2013.06.017 10.1609/aaai.v34i08.7037 10.1016/j.compbiomed.2017.12.023 10.1109/CIC.1995.482760 10.1016/j.neucom.2020.04.076 10.1109/ACCESS.2021.3049261 10.1016/j.inffus.2019.06.004 10.3109/03091908509032101 10.1109/JSAC.2020.3020598 10.1016/j.measurement.2019.107377 10.1016/j.neunet.2020.10.004 10.1007/s00521-021-06487-5 10.1007/978-3-319-24553-9_68 10.1016/j.neunet.2019.11.017 10.3390/app11062848 10.3233/JIFS-191135 10.1016/j.knosys.2020.106464 10.1016/j.inffus.2021.01.009 10.1007/s11432-019-2897-9 10.1016/j.ins.2020.06.019 10.1016/j.compbiomed.2018.08.003 10.1016/j.compbiomed.2018.03.016 10.1016/j.jelectrocard.2007.06.023 10.3390/e18080285 10.1109/JBHI.2022.3171918 10.1109/ACCESS.2020.2994762 10.1016/j.artmed.2010.09.005 10.1016/j.artmed.2020.101856 10.1016/j.artmed.2017.06.004 10.1038/s41598-019-42516-z 10.1016/j.cmpb.2015.06.003 |
| ContentType | Journal Article |
| Copyright | Copyright © 2022 Shuai Ma et al. COPYRIGHT 2022 John Wiley & Sons, Inc. Copyright © 2022 Shuai Ma et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 Copyright © 2022 Shuai Ma et al. 2022 |
| Copyright_xml | – notice: Copyright © 2022 Shuai Ma et al. – notice: COPYRIGHT 2022 John Wiley & Sons, Inc. – notice: Copyright © 2022 Shuai Ma et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 – notice: Copyright © 2022 Shuai Ma et al. 2022 |
| DBID | RHU RHW RHX AAYXX CITATION 3V. 7QF 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7X7 7XB 8AL 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU COVID CWDGH DWQXO F28 FR3 FYUFA GHDGH GNUQQ H8D H8G HCIFZ JG9 JQ2 K7- K9. KR7 L6V L7M LK8 L~C L~D M0N M0S M1P M7P M7S P5Z P62 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS Q9U 7X8 5PM ADTOC UNPAY |
| DOI | 10.1155/2022/1577778 |
| DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef ProQuest Central (Corporate) Aluminium Industry Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College Coronavirus Research Database Middle East & Africa Database ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni) Medical Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest One Psychology Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Health & Medical Research Collection ProQuest Engineering Collection Middle East & Africa Database Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1687-5273 |
| Editor | Sharma, Kapil |
| Editor_xml | – sequence: 1 givenname: Kapil surname: Sharma fullname: Sharma, Kapil |
| EndPage | 17 |
| ExternalDocumentID | 10.1155/2022/1577778 PMC9388256 A714593418 10_1155_2022_1577778 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GrantInformation_xml | – fundername: Natural Science Foundation of Fujian Province grantid: 2020J02160 – fundername: National Natural Science Foundation of China grantid: 62103345 – fundername: Xiamen University of Technology grantid: YKJ19012R – fundername: Xiamen Youth Innovation Fund grantid: 3502Z20206076 – fundername: Xiamen Major Science and Technology grantid: 3502Z20221024 |
| GroupedDBID | --- 188 29F 2WC 3V. 4.4 53G 5GY 5VS 6J9 7X7 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAFWJ AAJEY AAKPC ABDBF ABIVO ABJCF ABUWG ACGFO ACIWK ACM ACPRK ADBBV ADRAZ AENEX AFKRA AHMBA AINHJ ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI CCPQU CS3 CWDGH DIK DWQXO E3Z EBD EBS EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE I-F IAO ICD INH INR IPY ITC K6V K7- KQ8 L6V LK8 M0N M1P M48 M7P M7S MK~ O5R O5S OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO PSYQQ PTHSS Q2X RHU RHW RHX RNS RPM SV3 TR2 TUS UKHRP XH6 ~8M 0R~ 24P AAMMB AAYXX ACCMX ACUHS AEFGJ AGXDD AIDQK AIDYY CITATION H13 IHR OVT PGMZT PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO 7QF 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7XB 8AL 8BQ 8FD 8FK COVID F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM 2UF ADTOC C1A EJD IL9 UNPAY UZ4 |
| ID | FETCH-LOGICAL-c453t-39e5d82bfba4c9f4fb624800c798f07b578a83e31cbedad7890eb0dd0a5072693 |
| IEDL.DBID | UNPAY |
| ISSN | 1687-5265 1687-5273 |
| IngestDate | Sun Oct 26 04:06:56 EDT 2025 Tue Sep 30 16:46:53 EDT 2025 Sat Sep 27 16:45:35 EDT 2025 Tue Oct 07 05:57:11 EDT 2025 Mon Oct 20 22:49:17 EDT 2025 Thu Apr 24 23:02:56 EDT 2025 Wed Oct 01 02:22:27 EDT 2025 Sun Jun 02 19:22:37 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c453t-39e5d82bfba4c9f4fb624800c798f07b578a83e31cbedad7890eb0dd0a5072693 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Academic Editor: Kapil Sharma |
| ORCID | 0000-0002-2977-0442 0000-0003-0451-2233 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://downloads.hindawi.com/journals/cin/2022/1577778.pdf |
| PMID | 35990162 |
| PQID | 2704759841 |
| PQPubID | 237303 |
| PageCount | 17 |
| ParticipantIDs | unpaywall_primary_10_1155_2022_1577778 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9388256 proquest_miscellaneous_2705397671 proquest_journals_2704759841 gale_infotracmisc_A714593418 crossref_citationtrail_10_1155_2022_1577778 crossref_primary_10_1155_2022_1577778 hindawi_primary_10_1155_2022_1577778 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-11 |
| PublicationDateYYYYMMDD | 2022-08-11 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-11 day: 11 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Computational intelligence and neuroscience |
| PublicationYear | 2022 |
| Publisher | Hindawi John Wiley & Sons, Inc |
| Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc |
| References | 45 46 47 48 49 World Health Organization (1) 50 51 52 10 11 12 13 14 15 16 17 18 19 R. E. Hermes (44) 1980 2 3 4 5 6 7 8 9 20 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 I. Goodfellow (21) 2014; 27 40 41 42 43 |
| References_xml | – ident: 38 doi: 10.1007/s10844-021-00692-3 – ident: 10 doi: 10.1007/s11760-020-01813-1 – ident: 17 doi: 10.1016/j.artmed.2019.101756 – ident: 36 doi: 10.1016/j.procs.2018.05.034 – ident: 19 doi: 10.1016/j.measurement.2020.108522 – ident: 50 doi: 10.1016/j.cmpb.2015.12.024 – ident: 16 doi: 10.1155/2021/2831064 – ident: 20 doi: 10.1007/s11192-020-03351-6 – ident: 5 doi: 10.1016/j.comnet.2019.04.021 – ident: 27 doi: 10.1109/TBME.2003.808805 – ident: 52 doi: 10.1016/j.measurement.2017.05.022 – ident: 9 doi: 10.1109/ACCESS.2020.2983674 – ident: 40 doi: 10.1111/exsy.12547 – ident: 8 doi: 10.1007/s10586-018-2273-1 – ident: 47 doi: 10.1016/j.measurement.2021.110040 – ident: 46 doi: 10.1093/oxfordjournals.eurheartj.a060332 – ident: 25 doi: 10.1109/access.2020.2974712 – ident: 34 doi: 10.1016/j.compbiomed.2017.08.022 – ident: 28 doi: 10.1016/j.compbiomed.2013.06.017 – ident: 29 doi: 10.1609/aaai.v34i08.7037 – ident: 49 doi: 10.1016/j.compbiomed.2017.12.023 – ident: 43 doi: 10.1109/CIC.1995.482760 – ident: 32 doi: 10.1016/j.neucom.2020.04.076 – ident: 11 doi: 10.1109/ACCESS.2021.3049261 – ident: 3 doi: 10.1016/j.inffus.2019.06.004 – ident: 45 doi: 10.3109/03091908509032101 – ident: 6 doi: 10.1109/JSAC.2020.3020598 – ident: 1 article-title: World health statistics 2020 – ident: 23 doi: 10.1016/j.measurement.2019.107377 – ident: 24 doi: 10.1016/j.neunet.2020.10.004 – ident: 33 doi: 10.1007/s00521-021-06487-5 – ident: 18 doi: 10.1007/978-3-319-24553-9_68 – ident: 26 doi: 10.1016/j.neunet.2019.11.017 – ident: 41 doi: 10.3390/app11062848 – ident: 51 doi: 10.3233/JIFS-191135 – ident: 12 doi: 10.1016/j.knosys.2020.106464 – ident: 39 doi: 10.1016/j.inffus.2021.01.009 – ident: 13 doi: 10.1007/s11432-019-2897-9 – ident: 30 doi: 10.1016/j.ins.2020.06.019 – ident: 14 doi: 10.1016/j.compbiomed.2018.08.003 – ident: 35 doi: 10.1016/j.compbiomed.2018.03.016 – ident: 2 doi: 10.1016/j.jelectrocard.2007.06.023 – ident: 48 doi: 10.3390/e18080285 – ident: 4 doi: 10.1109/JBHI.2022.3171918 – ident: 22 doi: 10.1109/ACCESS.2020.2994762 – ident: 15 doi: 10.1016/j.artmed.2010.09.005 – ident: 42 doi: 10.1016/j.artmed.2020.101856 – ident: 37 doi: 10.1016/j.artmed.2017.06.004 – volume: 27 year: 2014 ident: 21 article-title: Generative adversarial nets publication-title: Advances in neural information processing systems – ident: 31 doi: 10.1038/s41598-019-42516-z – ident: 7 doi: 10.1016/j.cmpb.2015.06.003 – start-page: 263 year: 1980 ident: 44 article-title: Development, distribution, and use of the American Heart Association database for ventricular arrhythmia detector evaluation publication-title: Computers in Cardiology |
| SSID | ssj0057502 |
| Score | 2.3979564 |
| Snippet | Automated ECG-based arrhythmia detection is critical for early cardiac disease prevention and diagnosis. Recently, deep learning algorithms have been widely... |
| SourceID | unpaywall pubmedcentral proquest gale crossref hindawi |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Algorithms Analysis Arrhythmia Artificial intelligence Cardiac arrhythmia Cardiovascular disease Classification Computational linguistics Coronary artery disease Data augmentation Data integration Data mining Deep learning Diagnosis Discriminant analysis EKG Electrocardiogram Electrocardiography Experiments Feature extraction Feature maps Generative adversarial networks Heart diseases Language processing Machine learning Multisensor fusion Natural language interfaces Neural networks Spatial data Wavelet transforms |
| SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swELYGEhovaIwhCmzyJMYLisgP20kes0FVIcEDAqlvke04baXUrdpEqBJ__O5St6xMbOQt8cVOcrncd5fzZ0LOfJmEKkylp8KSeUyUkQdeMfACXcZGMy2Ej5OTb-9E75Hd9HnfkSTN__6FD94Ow_PwMuAxbMkW2UoEVm7d9_qrDy4AjmVpoQB7Qbb3VX37q3M3PI_7_u4MMfJ9Gm3gy9fVkR8bO5WLJ1lVf7ie7iey5zAjzZZK3icfjP1MDjIL8fJ4Qc9pW8XZpscPyPOVMVPqWFMH3k9wUgW9krWkWTMYu4lGlkpbUFwGraLdBvNlFLArSECHyOAKQ82Gi3o4Hkm6nMlbutRee2K7kObLoawaTGYjkJ5_IY_d64dfPc-tsOBpxqPai1LDC1BWqSTTaclKJUIGEFLHaVL6sQJzlgmmSbUyhSxw0qxRflH4EmBkKNLokGzbiTVHhIpU-awwLAihCy6ZlAAmJXg7JQBhMdMhF6unn2tHP46rYFR5G4ZwnqOucqerDvmxlp4uaTfekDtFReZojdCbBtvQeRYHjKfgnqH5zCn4f72stJ87E57nYewjF2LCgg75vm7GAbAszZpJ08pwBHQxyMQbb816PKTv3myxo2FL451GEN1w0SHn6_frn1d5_L6bOSG7uIt57yA4Jdv1rDFfATjV6ltrNr8BM-wP6Q priority: 102 providerName: Hindawi Publishing – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3daxNBEF9qiuiLqFWatsoKtS-y9D529-4eRK62oQgGEQt9O_brksDlEts7SsA_3pnLXmoEax6zk93jZmfnt5OZ3xByHKg00lGmmI5KzrgsYwZeMWShKRNnuJEywOLkr2N5ecW_XIvrHTLua2EwrbI_E7uD2i4MxshPoyRAarqUh5-WPxl2jcJ_V_sWGsq3VrAfO4qxR2Q3QmasAdk9uxh_-96fzYBN1lmIEkwLieH7VHghMAoQnYYigU-65aT8Uf14ipfku9kWFP07kfJJWy_V6k5V1R9eavScPPPwkubr_fCC7Lj6JdnLa7haz1f0hHYJn10kfY_8OnduST3B6oSdgT-z9Fw1iubtZO5rkmqqakuxY1pFRy2G1ijAXJCACZHsFZa6ma6a6Xym6Lrot_RRwO6HXc_N-6_yagLvFKRvX5Gr0cWPz5fMN2Nghou4YXHmhAW9llpxk5W81DLigDZNkqVlkGiwfJViRNVoZ5XF-lqnA2sDBYgzkln8mgzqRe32CZWZDrh1PIxgCqG4UoA7FThGLQGMcTckH_q3XxjPVI4NM6qiu7EIUaCuCq-rIXm_kV6uGTr-IXeEiizQcGE2A2ZkijwJucjAk8PwsVfw_2bptV94a78t7vfmkLzbDOMCmMFWu0XbyQjEfgnIJFu7ZrMeMn1vj9Szacf4ncVwERJySE42--vBpzx4-CkPyVOUxtB4GB6RQXPTujeArRr91hvMbxorIKM priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGELAXBAxEYSAjjb2gQD5sJ35AKDCqCWk8UWlvke04baXULV2iUYk_nrvUCXTiQ6KP9eVc-e56v7uc7wg5DlUW61iqQMcVC5iokgC8YhREpkqtYUaIEC8nn38WZxP26YJf7JF-2qg_wMvfhnY4T2qyrl9_-7p5Bwb_tjN4zjF-j99EPIVPdoPcBB8lcYjDORveJwAm2VYfCjApbAjfl8Bfe_qA3E44vikS8Y6f8v_Wt2YYJ1_Nd9Do9VrKO61bqc2VqutfHNX4HrnrESbNtypxn-xZ94Ac5g6i68WGntCu5rNLph-S76fWrqjvsToN3oNLK-mpahTN2-nCX0tyVLmS4tC0mo5bzK5RQLpAAQyx3ytstZ5tmtliruj23m_lE4Hdg93YzZ9f5fV0uZ4D9eVDMhl__PLhLPDzGALDeNIEibS8BNFWWjEjK1ZpETMAnCaVWRWmGoxfZZhUNdqWqsQrtlaHZRkqAJ2xkMkjsu-Wzj4mVEgdstKyKAYWXDGl4MwV-EYtAI8xOyKv-tMvjG9WjjMz6qILWjgvUGyFF9uIvByoV9smHX-gO0JBFqhNwM2AJZkiTyPGJThzWD72Av4Xl176Ra-vRZyG2DkxY9GIvBiWcQMsYnN22XY0HOFfCjTpjtYM-2Gz790VN591Tb9lArEQFyNyMujXX3_lk__e4ik5QEaYOI-iI7LfrFv7DJBXo593RvUDpuIpNw priority: 102 providerName: Scholars Portal |
| Title | Deep Learning-Based Data Augmentation and Model Fusion for Automatic Arrhythmia Identification and Classification Algorithms |
| URI | https://dx.doi.org/10.1155/2022/1577778 https://www.proquest.com/docview/2704759841 https://www.proquest.com/docview/2705397671 https://pubmed.ncbi.nlm.nih.gov/PMC9388256 https://downloads.hindawi.com/journals/cin/2022/1577778.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 2022 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: KQ8 dateStart: 20070625 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: KQ8 dateStart: 20070101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1687-5273 dateEnd: 20230628 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: ABDBF dateStart: 20070101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals - Free Access to All customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: DIK dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Medical Journals Open Access customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: GX1 dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 1687-5273 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: 7X7 dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Middle East & Africa Database customDbUrl: eissn: 1687-5273 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: CWDGH dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/middleeastafrica providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1687-5273 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: 8FG dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1687-5273 dateEnd: 20250430 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: M48 dateStart: 20070101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: 24P dateStart: 20070101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9swEBdtwti-7NWVZeuCBl2_DKd-SJbNPrlr0zBoKGWBDAZGLydhiRMSm5KxP34nR06Xwh4sH0RsnU-2dJJ-d9ydEDp2eeQLP-aO8DPikDALHNgVPceTGdOSyDB0TXDyVT_sDcinIR3uoQ91LIwyKeLnXK06Y6OT3k6q1dr26-pUgrYI6rp_6lEGv6izUNk-aoYUgHgDNQf96-SLUbFCmDom8fvdfxbUbu-U7rDY2ZDssvzANr4DO-87TT4s8wVf3_Lp9JcdqfsEfa2_ZeOI8q1TFqIjv99L8_ifH_sUPbZIFScb0XqG9nT-HB0kOWjpszU-wZXvaGWUP0A_zrVeYJurdeScwdao8DkvOE7K0cyGN-WY5wqbw9emuFsaKx0GxAwUwNDkjYWmluN1MZ5NON7ED2fWoFg9WB3feXcrmY7mywlQr16gQffi88eeY891cCShQeEEsaYKRCQTnMg4I5kIfQLAVbI4ylwmYBHhkTHOSqEVVyZUVwtXKZcDePXDODhEjXye65cIh7FwidLE84EF5YRzgLAc9lgRAq4juoXe14ObSpv03Jy9MU0r5YfS1HRwaju4hd5tqRebZB-_oTsycpKaNQC4SZiRMk2YR2gMoACqj-14_o1LLVxpPeapz1yTgTEiXgu93VabBowzXK7nZUVDDYxkQMN2hHLbnkkavluTT8ZV8vA4AJ2Khi10shXfP77lq38lfI0emUtjb_e8I9QolqV-A4CtEG20z4YMyqh72UbNs4v-9Q1cXQ49KK9IBOVNb9i20_cn2xRCPg |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lc9MwENaUdJhy4VUYUgqImTYXxq2tSHZ84GAaQkofp3bozUiynGSaOKGxJxOG38Rf4S-x68gp6Qzl1AM-WmtJI69W3672QciOK1tMsVA6iqXc4X7adOBU9BxPp4HRXPu-i8HJJ6d-95x_vhAXa-RnFQuDbpWVTCwFdTLWaCPfZ4GLqela3LMelEdmPgP9bPr-sA0_c5exzsezg65jSwg4motm7jRDIxKYTaok12HKU-UzDhhJB2ErdQMF_CpbaAfUyiQywahQo9wkcSXgJOZjpiXWmHxzsEoV3ubakh33yDrwucdqZP3gS_tTt5L9gH0WXo4-bF1MPF-52guBVga274kAntbKIWiPgvt9VMJngxWoe9NRc6PIJnI-k8PhH6dg5xH5Va3fwvnlcq_I1Z7-fiO15P-zwI_JQwvIabTYQU_Imsmeks0ok_l4NKcNWrrIlncPm-RH25gJtSlpe84HQAAJbctc0qjojWwUV0ZlllCsMTeknQKNkRQUA6CADjE9Lgx11Z_n_dFA0kWYdGrtpuWHZZXS61fRsAeTBurpM3J-J0vznNSycWZeEOqHyuWJ4R6DLoTkUgJSlwAllA_wlZs6eVfxU6xtbncsMTKMSx1PiBi5L7bcVye7S-rJIqfJX-i2kTVjFHXQmwbBo-Mo8LgIAftA845l2X_1UvFbbOXjNL5mtjp5u2zGAdDnLzPjoqQRiJYDoAlW9sFyPMyNvtqSDfpljvSwCaqj8Ouksdwxt85y6_ZZviEb3bOT4_j48PToJXmAX-LFgudtk1p-VZhXgExz9dqKA0q-3vWe-Q04DJwv |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLamTVxeuA1ExwAjbXtBWZPUdpIHhMpK6RhMPDCxt2A7TlutTcuaqCril_FX-DOckzgdncR42gN5jE9syzmXz_a5ELLjytBXfiQd5afMYSJtOWAVPcfTaWA000K4GJz88Vj0Ttj7U366Rn7WsTDoVlnrxFJRJxONZ-RNP3AxNV3IvGZq3SI-dbqvp98crCCFN611OY2KRY7MYg7bt9mrww78613f7779fNBzbIUBRzPeyp1WZHgCk02VZDpKWaqEzwBC6SAKUzdQwM4yxGNCrUwiEwwaNcpNElcCjPIFJmIC9b8RikCAUtg4-NJ516vtAOCgyuNRgBhjEvra7Z5zPHHwmx4P4AlXDKI1CzcGuCGfD1dg72WnzVtFNpWLuRyN_rCI3bvkV72WlSPM2X6Rq339_VKayf9zse-ROxao03YlWffJmskekM12JvPJeEH3aOk6W95JbJIfHWOm1Kaq7TtvABkktCNzSdtFf2yjuzIqs4Ri7bkR7RZ4SElhwwAU0CGmzYWhzgeLfDAeSlqFT6f2PLX8sKxeevGqPerDIgH17CE5uZZ1eETWs0lmHhMqIuWyxDDPhy64ZFICgpcAMZQAWMtMg7yseSvWNuc7lh4ZxeXej_MYOTG2nNggu0vqaZXr5C9028imMapA6E2DQtJxO_AYjwATQfOOZd9_9VLzXmz15iy-YLwGebFsxgHQFzAzk6Kk4YiiA6AJVmRiOR7mTF9tyYaDMnd61IItJRcNsreUnitnuXX1LJ-TmyAY8YfD46Mn5DZ-iPcNnrdN1vPzwjwFwJqrZ1YzUPL1uuXjN7D8pPc |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdGJwQvfI2JwkBGGntB6fJhO4l4CoxqQmLigUpDQor8lbYiTas20VTEH89d6nR0Eh-iT219PTf22fc76-5nQo59mYQqTKWnwoJ5TBSRB14x8AJdxFYzLYSPxckfL8T5iH245Jd75E1XC2OQIn4uzWowwZj0atru1m5cV6caokUI18PTgMfwSgYLU9wi-4IDEO-R_dHFp-wLhlgClg4Sv1-_j6Mu7Z3zHRU7Dslty7dd5zuw82bS5J2mWsj1lSzLXzzS8D752j3LJhHl26Cp1UB_v0Hz-J8P-4Dcc0iVZhvTekj2bPWIHGQVROmzNT2hbe5oeyh_QH6cWbugjqt17L0F12jomawlzZrxzJU3VVRWhuLlayUdNnhKRwExgwQoRN5Y6Go5WdeT2VTSTf1w4Q4U2x-213def5WV4_lyCtKrx2Q0fP_53bnn7nXwNONR7UWp5QZMpFCS6bRghRIhA-Cq4zQp_FjBJiITPJzVyhppsFTXKt8YXwJ4DUUaHZJeNa_sE0JFqnxmLAtCUMElkxIgrAQfqwTgOmb75HU3ubl2pOd490aZt8EP5zkOcO4GuE9ebaUXG7KP38gdoZ3kuAeANg0rUudZHDCeAiiA5mM3n3_T0hlX3s15HsY-MjAmLOiTl9tm7ACT4So7b1oZjjAyBpl4xyi3_SFp-G5LNZ205OFpBDEVF31ysjXfP_7Lp_8q-IzcxY943h4ER6RXLxv7HABbrV64hfkTju07-Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning-Based+Data+Augmentation+and+Model+Fusion+for+Automatic+Arrhythmia+Identification+and+Classification+Algorithms&rft.jtitle=Computational+intelligence+and+neuroscience&rft.au=Ma%2C+Shuai&rft.au=Cui%2C+Jianfeng&rft.au=Xiao%2C+Weidong&rft.au=Liu%2C+Lijuan&rft.date=2022-08-11&rft.pub=Hindawi&rft.issn=1687-5265&rft.eissn=1687-5273&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F1577778&rft_id=info%3Apmid%2F35990162&rft.externalDocID=PMC9388256 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5265&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5265&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5265&client=summon |