Deep Learning-Based Data Augmentation and Model Fusion for Automatic Arrhythmia Identification and Classification Algorithms

Automated ECG-based arrhythmia detection is critical for early cardiac disease prevention and diagnosis. Recently, deep learning algorithms have been widely applied for arrhythmia detection with great success. However, the lack of labeled ECG data and low classification accuracy can have a significa...

Full description

Saved in:
Bibliographic Details
Published inComputational intelligence and neuroscience Vol. 2022; pp. 1 - 17
Main Authors Ma, Shuai, Cui, Jianfeng, Xiao, Weidong, Liu, Lijuan
Format Journal Article
LanguageEnglish
Published New York Hindawi 11.08.2022
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1687-5265
1687-5273
1687-5273
DOI10.1155/2022/1577778

Cover

Abstract Automated ECG-based arrhythmia detection is critical for early cardiac disease prevention and diagnosis. Recently, deep learning algorithms have been widely applied for arrhythmia detection with great success. However, the lack of labeled ECG data and low classification accuracy can have a significant impact on the overall effectiveness of a classification algorithm. In order to better apply deep learning methods to arrhythmia classification, in this study, feature extraction and classification strategy based on generative adversarial network data augmentation and model fusion are proposed to address these problems. First, the arrhythmia sparse data is augmented by generative adversarial networks. Then, aiming at the identification of different types of arrhythmias in long-term ECG, a spatial information fusion model based on ResNet and a temporal information fusion model based on BiLSTM are proposed. The model effectively fuses the location information of the nearest neighbors through the local feature extraction part of the generated ECG feature map and obtains the correlation of the global features by autonomous learning in multiple spaces through the BiLSTM network in the part of the global feature extraction. In addition, an attention mechanism is introduced to enhance the features of arrhythmia-type signal segments, and this mechanism can effectively focus on the extraction of key information to form a feature vector for final classification. Finally, it is validated by the enhanced MIT-BIH arrhythmia database. The experimental results demonstrate that the proposed classification technique enhances arrhythmia diagnostic accuracy by 99.4%, and the algorithm has high recognition performance and clinical value.
AbstractList Automated ECG-based arrhythmia detection is critical for early cardiac disease prevention and diagnosis. Recently, deep learning algorithms have been widely applied for arrhythmia detection with great success. However, the lack of labeled ECG data and low classification accuracy can have a significant impact on the overall effectiveness of a classification algorithm. In order to better apply deep learning methods to arrhythmia classification, in this study, feature extraction and classification strategy based on generative adversarial network data augmentation and model fusion are proposed to address these problems. First, the arrhythmia sparse data is augmented by generative adversarial networks. Then, aiming at the identification of different types of arrhythmias in long-term ECG, a spatial information fusion model based on ResNet and a temporal information fusion model based on BiLSTM are proposed. The model effectively fuses the location information of the nearest neighbors through the local feature extraction part of the generated ECG feature map and obtains the correlation of the global features by autonomous learning in multiple spaces through the BiLSTM network in the part of the global feature extraction. In addition, an attention mechanism is introduced to enhance the features of arrhythmia-type signal segments, and this mechanism can effectively focus on the extraction of key information to form a feature vector for final classification. Finally, it is validated by the enhanced MIT-BIH arrhythmia database. The experimental results demonstrate that the proposed classification technique enhances arrhythmia diagnostic accuracy by 99.4%, and the algorithm has high recognition performance and clinical value.
Automated ECG-based arrhythmia detection is critical for early cardiac disease prevention and diagnosis. Recently, deep learning algorithms have been widely applied for arrhythmia detection with great success. However, the lack of labeled ECG data and low classification accuracy can have a significant impact on the overall effectiveness of a classification algorithm. In order to better apply deep learning methods to arrhythmia classification, in this study, feature extraction and classification strategy based on generative adversarial network data augmentation and model fusion are proposed to address these problems. First, the arrhythmia sparse data is augmented by generative adversarial networks. Then, aiming at the identification of different types of arrhythmias in long-term ECG, a spatial information fusion model based on ResNet and a temporal information fusion model based on BiLSTM are proposed. The model effectively fuses the location information of the nearest neighbors through the local feature extraction part of the generated ECG feature map and obtains the correlation of the global features by autonomous learning in multiple spaces through the BiLSTM network in the part of the global feature extraction. In addition, an attention mechanism is introduced to enhance the features of arrhythmia-type signal segments, and this mechanism can effectively focus on the extraction of key information to form a feature vector for final classification. Finally, it is validated by the enhanced MIT-BIH arrhythmia database. The experimental results demonstrate that the proposed classification technique enhances arrhythmia diagnostic accuracy by 99.4%, and the algorithm has high recognition performance and clinical value.Automated ECG-based arrhythmia detection is critical for early cardiac disease prevention and diagnosis. Recently, deep learning algorithms have been widely applied for arrhythmia detection with great success. However, the lack of labeled ECG data and low classification accuracy can have a significant impact on the overall effectiveness of a classification algorithm. In order to better apply deep learning methods to arrhythmia classification, in this study, feature extraction and classification strategy based on generative adversarial network data augmentation and model fusion are proposed to address these problems. First, the arrhythmia sparse data is augmented by generative adversarial networks. Then, aiming at the identification of different types of arrhythmias in long-term ECG, a spatial information fusion model based on ResNet and a temporal information fusion model based on BiLSTM are proposed. The model effectively fuses the location information of the nearest neighbors through the local feature extraction part of the generated ECG feature map and obtains the correlation of the global features by autonomous learning in multiple spaces through the BiLSTM network in the part of the global feature extraction. In addition, an attention mechanism is introduced to enhance the features of arrhythmia-type signal segments, and this mechanism can effectively focus on the extraction of key information to form a feature vector for final classification. Finally, it is validated by the enhanced MIT-BIH arrhythmia database. The experimental results demonstrate that the proposed classification technique enhances arrhythmia diagnostic accuracy by 99.4%, and the algorithm has high recognition performance and clinical value.
Audience Academic
Author Cui, Jianfeng
Xiao, Weidong
Liu, Lijuan
Ma, Shuai
AuthorAffiliation 2 Xiamen University of Technology, School of Software Engineering, Xiamen 361024, China
1 Xiamen University of Technology, School of Computer and Information Engineering, Xiamen 361024, China
AuthorAffiliation_xml – name: 1 Xiamen University of Technology, School of Computer and Information Engineering, Xiamen 361024, China
– name: 2 Xiamen University of Technology, School of Software Engineering, Xiamen 361024, China
Author_xml – sequence: 1
  givenname: Shuai
  orcidid: 0000-0002-2977-0442
  surname: Ma
  fullname: Ma, Shuai
  organization: Xiamen University of TechnologySchool of Computer and Information EngineeringXiamen 361024Chinaxmut.edu.cn
– sequence: 2
  givenname: Jianfeng
  orcidid: 0000-0003-0451-2233
  surname: Cui
  fullname: Cui, Jianfeng
  organization: Xiamen University of TechnologySchool of Software EngineeringXiamen 361024Chinaxmut.edu.cn
– sequence: 3
  givenname: Weidong
  surname: Xiao
  fullname: Xiao, Weidong
  organization: Xiamen University of TechnologySchool of Software EngineeringXiamen 361024Chinaxmut.edu.cn
– sequence: 4
  givenname: Lijuan
  surname: Liu
  fullname: Liu, Lijuan
  organization: Xiamen University of TechnologySchool of Computer and Information EngineeringXiamen 361024Chinaxmut.edu.cn
BookMark eNqFkV-P1CAUxRuzxv2jb36AJr6YaF2gpcCLSZ113U3G-KLP5BboDJsWRmjdTOKHl6YTx91E5QVy7-8cuIfz7MR5Z7LsJUbvMKb0kiBCLjFlafEn2RmuOSsoYeXJ73NNT7PzGO8Qoowi8iw7LakQCNfkLPt5ZcwuXxsIzrpN8QGi0fkVjJA302YwboTRepeD0_lnr02fX09xLnQ-JGL0Q-qrvAlhux-3g4X8VieR7aw6Clc9xHgsNf3GB5vo-Dx72kEfzYvDfpF9u_74dXVTrL98ul0160JVtByLUhiqOWm7Fioluqpra1JxhBQTvEOspYwDL02JVWs0aMYFMi3SGgFFjNSivMiKxXdyO9jfQ9_LXbADhL3ESM4pyjlFeUgx8e8Xfje1g9EqTRTgqPFg5cOOs1u58T-kKDkntE4Grw8GwX-fTBzlYKMyfQ_O-ClKwhAtBasZTuirR-idn4JLccxUxajg1R_UBnojret8ulfNprJhuKKirPD8brJQKvgYg-mksssHJtr2fxv27SPRf7J5s-Bb6zTc23_TvwD8Xs4f
CitedBy_id crossref_primary_10_1016_j_artmed_2023_102632
crossref_primary_10_3390_app13084964
crossref_primary_10_32604_cmc_2024_059403
crossref_primary_10_1016_j_bspc_2024_107329
crossref_primary_10_3934_mbe_2023382
crossref_primary_10_3390_s23042024
crossref_primary_10_1177_11779322221149600
crossref_primary_10_3390_s23115237
crossref_primary_10_3389_fphys_2023_1246746
crossref_primary_10_17798_bitlisfen_1523524
crossref_primary_10_3390_s23218691
crossref_primary_10_1016_j_bspc_2023_105714
crossref_primary_10_1109_ACCESS_2023_3280565
Cites_doi 10.1007/s10844-021-00692-3
10.1007/s11760-020-01813-1
10.1016/j.artmed.2019.101756
10.1016/j.procs.2018.05.034
10.1016/j.measurement.2020.108522
10.1016/j.cmpb.2015.12.024
10.1155/2021/2831064
10.1007/s11192-020-03351-6
10.1016/j.comnet.2019.04.021
10.1109/TBME.2003.808805
10.1016/j.measurement.2017.05.022
10.1109/ACCESS.2020.2983674
10.1111/exsy.12547
10.1007/s10586-018-2273-1
10.1016/j.measurement.2021.110040
10.1093/oxfordjournals.eurheartj.a060332
10.1109/access.2020.2974712
10.1016/j.compbiomed.2017.08.022
10.1016/j.compbiomed.2013.06.017
10.1609/aaai.v34i08.7037
10.1016/j.compbiomed.2017.12.023
10.1109/CIC.1995.482760
10.1016/j.neucom.2020.04.076
10.1109/ACCESS.2021.3049261
10.1016/j.inffus.2019.06.004
10.3109/03091908509032101
10.1109/JSAC.2020.3020598
10.1016/j.measurement.2019.107377
10.1016/j.neunet.2020.10.004
10.1007/s00521-021-06487-5
10.1007/978-3-319-24553-9_68
10.1016/j.neunet.2019.11.017
10.3390/app11062848
10.3233/JIFS-191135
10.1016/j.knosys.2020.106464
10.1016/j.inffus.2021.01.009
10.1007/s11432-019-2897-9
10.1016/j.ins.2020.06.019
10.1016/j.compbiomed.2018.08.003
10.1016/j.compbiomed.2018.03.016
10.1016/j.jelectrocard.2007.06.023
10.3390/e18080285
10.1109/JBHI.2022.3171918
10.1109/ACCESS.2020.2994762
10.1016/j.artmed.2010.09.005
10.1016/j.artmed.2020.101856
10.1016/j.artmed.2017.06.004
10.1038/s41598-019-42516-z
10.1016/j.cmpb.2015.06.003
ContentType Journal Article
Copyright Copyright © 2022 Shuai Ma et al.
COPYRIGHT 2022 John Wiley & Sons, Inc.
Copyright © 2022 Shuai Ma et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright © 2022 Shuai Ma et al. 2022
Copyright_xml – notice: Copyright © 2022 Shuai Ma et al.
– notice: COPYRIGHT 2022 John Wiley & Sons, Inc.
– notice: Copyright © 2022 Shuai Ma et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
– notice: Copyright © 2022 Shuai Ma et al. 2022
DBID RHU
RHW
RHX
AAYXX
CITATION
3V.
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7X7
7XB
8AL
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
COVID
CWDGH
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K7-
K9.
KR7
L6V
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.1155/2022/1577778
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
Middle East & Africa Database
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Middle East & Africa Database
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1687-5273
Editor Sharma, Kapil
Editor_xml – sequence: 1
  givenname: Kapil
  surname: Sharma
  fullname: Sharma, Kapil
EndPage 17
ExternalDocumentID 10.1155/2022/1577778
PMC9388256
A714593418
10_1155_2022_1577778
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Natural Science Foundation of Fujian Province
  grantid: 2020J02160
– fundername: National Natural Science Foundation of China
  grantid: 62103345
– fundername: Xiamen University of Technology
  grantid: YKJ19012R
– fundername: Xiamen Youth Innovation Fund
  grantid: 3502Z20206076
– fundername: Xiamen Major Science and Technology
  grantid: 3502Z20221024
GroupedDBID ---
188
29F
2WC
3V.
4.4
53G
5GY
5VS
6J9
7X7
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAFWJ
AAJEY
AAKPC
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIWK
ACM
ACPRK
ADBBV
ADRAZ
AENEX
AFKRA
AHMBA
AINHJ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
CS3
CWDGH
DIK
DWQXO
E3Z
EBD
EBS
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
I-F
IAO
ICD
INH
INR
IPY
ITC
K6V
K7-
KQ8
L6V
LK8
M0N
M1P
M48
M7P
M7S
MK~
O5R
O5S
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
Q2X
RHU
RHW
RHX
RNS
RPM
SV3
TR2
TUS
UKHRP
XH6
~8M
0R~
24P
AAMMB
AAYXX
ACCMX
ACUHS
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
H13
IHR
OVT
PGMZT
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7XB
8AL
8BQ
8FD
8FK
COVID
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
2UF
ADTOC
C1A
EJD
IL9
UNPAY
UZ4
ID FETCH-LOGICAL-c453t-39e5d82bfba4c9f4fb624800c798f07b578a83e31cbedad7890eb0dd0a5072693
IEDL.DBID UNPAY
ISSN 1687-5265
1687-5273
IngestDate Sun Oct 26 04:06:56 EDT 2025
Tue Sep 30 16:46:53 EDT 2025
Sat Sep 27 16:45:35 EDT 2025
Tue Oct 07 05:57:11 EDT 2025
Mon Oct 20 22:49:17 EDT 2025
Thu Apr 24 23:02:56 EDT 2025
Wed Oct 01 02:22:27 EDT 2025
Sun Jun 02 19:22:37 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c453t-39e5d82bfba4c9f4fb624800c798f07b578a83e31cbedad7890eb0dd0a5072693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Academic Editor: Kapil Sharma
ORCID 0000-0002-2977-0442
0000-0003-0451-2233
OpenAccessLink https://proxy.k.utb.cz/login?url=https://downloads.hindawi.com/journals/cin/2022/1577778.pdf
PMID 35990162
PQID 2704759841
PQPubID 237303
PageCount 17
ParticipantIDs unpaywall_primary_10_1155_2022_1577778
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9388256
proquest_miscellaneous_2705397671
proquest_journals_2704759841
gale_infotracmisc_A714593418
crossref_citationtrail_10_1155_2022_1577778
crossref_primary_10_1155_2022_1577778
hindawi_primary_10_1155_2022_1577778
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-11
PublicationDateYYYYMMDD 2022-08-11
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-11
  day: 11
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Computational intelligence and neuroscience
PublicationYear 2022
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References 45
46
47
48
49
World Health Organization (1)
50
51
52
10
11
12
13
14
15
16
17
18
19
R. E. Hermes (44) 1980
2
3
4
5
6
7
8
9
20
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
I. Goodfellow (21) 2014; 27
40
41
42
43
References_xml – ident: 38
  doi: 10.1007/s10844-021-00692-3
– ident: 10
  doi: 10.1007/s11760-020-01813-1
– ident: 17
  doi: 10.1016/j.artmed.2019.101756
– ident: 36
  doi: 10.1016/j.procs.2018.05.034
– ident: 19
  doi: 10.1016/j.measurement.2020.108522
– ident: 50
  doi: 10.1016/j.cmpb.2015.12.024
– ident: 16
  doi: 10.1155/2021/2831064
– ident: 20
  doi: 10.1007/s11192-020-03351-6
– ident: 5
  doi: 10.1016/j.comnet.2019.04.021
– ident: 27
  doi: 10.1109/TBME.2003.808805
– ident: 52
  doi: 10.1016/j.measurement.2017.05.022
– ident: 9
  doi: 10.1109/ACCESS.2020.2983674
– ident: 40
  doi: 10.1111/exsy.12547
– ident: 8
  doi: 10.1007/s10586-018-2273-1
– ident: 47
  doi: 10.1016/j.measurement.2021.110040
– ident: 46
  doi: 10.1093/oxfordjournals.eurheartj.a060332
– ident: 25
  doi: 10.1109/access.2020.2974712
– ident: 34
  doi: 10.1016/j.compbiomed.2017.08.022
– ident: 28
  doi: 10.1016/j.compbiomed.2013.06.017
– ident: 29
  doi: 10.1609/aaai.v34i08.7037
– ident: 49
  doi: 10.1016/j.compbiomed.2017.12.023
– ident: 43
  doi: 10.1109/CIC.1995.482760
– ident: 32
  doi: 10.1016/j.neucom.2020.04.076
– ident: 11
  doi: 10.1109/ACCESS.2021.3049261
– ident: 3
  doi: 10.1016/j.inffus.2019.06.004
– ident: 45
  doi: 10.3109/03091908509032101
– ident: 6
  doi: 10.1109/JSAC.2020.3020598
– ident: 1
  article-title: World health statistics 2020
– ident: 23
  doi: 10.1016/j.measurement.2019.107377
– ident: 24
  doi: 10.1016/j.neunet.2020.10.004
– ident: 33
  doi: 10.1007/s00521-021-06487-5
– ident: 18
  doi: 10.1007/978-3-319-24553-9_68
– ident: 26
  doi: 10.1016/j.neunet.2019.11.017
– ident: 41
  doi: 10.3390/app11062848
– ident: 51
  doi: 10.3233/JIFS-191135
– ident: 12
  doi: 10.1016/j.knosys.2020.106464
– ident: 39
  doi: 10.1016/j.inffus.2021.01.009
– ident: 13
  doi: 10.1007/s11432-019-2897-9
– ident: 30
  doi: 10.1016/j.ins.2020.06.019
– ident: 14
  doi: 10.1016/j.compbiomed.2018.08.003
– ident: 35
  doi: 10.1016/j.compbiomed.2018.03.016
– ident: 2
  doi: 10.1016/j.jelectrocard.2007.06.023
– ident: 48
  doi: 10.3390/e18080285
– ident: 4
  doi: 10.1109/JBHI.2022.3171918
– ident: 22
  doi: 10.1109/ACCESS.2020.2994762
– ident: 15
  doi: 10.1016/j.artmed.2010.09.005
– ident: 42
  doi: 10.1016/j.artmed.2020.101856
– ident: 37
  doi: 10.1016/j.artmed.2017.06.004
– volume: 27
  year: 2014
  ident: 21
  article-title: Generative adversarial nets
  publication-title: Advances in neural information processing systems
– ident: 31
  doi: 10.1038/s41598-019-42516-z
– ident: 7
  doi: 10.1016/j.cmpb.2015.06.003
– start-page: 263
  year: 1980
  ident: 44
  article-title: Development, distribution, and use of the American Heart Association database for ventricular arrhythmia detector evaluation
  publication-title: Computers in Cardiology
SSID ssj0057502
Score 2.3979564
Snippet Automated ECG-based arrhythmia detection is critical for early cardiac disease prevention and diagnosis. Recently, deep learning algorithms have been widely...
SourceID unpaywall
pubmedcentral
proquest
gale
crossref
hindawi
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Algorithms
Analysis
Arrhythmia
Artificial intelligence
Cardiac arrhythmia
Cardiovascular disease
Classification
Computational linguistics
Coronary artery disease
Data augmentation
Data integration
Data mining
Deep learning
Diagnosis
Discriminant analysis
EKG
Electrocardiogram
Electrocardiography
Experiments
Feature extraction
Feature maps
Generative adversarial networks
Heart diseases
Language processing
Machine learning
Multisensor fusion
Natural language interfaces
Neural networks
Spatial data
Wavelet transforms
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swELYGEhovaIwhCmzyJMYLisgP20kes0FVIcEDAqlvke04baXUrdpEqBJ__O5St6xMbOQt8cVOcrncd5fzZ0LOfJmEKkylp8KSeUyUkQdeMfACXcZGMy2Ej5OTb-9E75Hd9HnfkSTN__6FD94Ow_PwMuAxbMkW2UoEVm7d9_qrDy4AjmVpoQB7Qbb3VX37q3M3PI_7_u4MMfJ9Gm3gy9fVkR8bO5WLJ1lVf7ie7iey5zAjzZZK3icfjP1MDjIL8fJ4Qc9pW8XZpscPyPOVMVPqWFMH3k9wUgW9krWkWTMYu4lGlkpbUFwGraLdBvNlFLArSECHyOAKQ82Gi3o4Hkm6nMlbutRee2K7kObLoawaTGYjkJ5_IY_d64dfPc-tsOBpxqPai1LDC1BWqSTTaclKJUIGEFLHaVL6sQJzlgmmSbUyhSxw0qxRflH4EmBkKNLokGzbiTVHhIpU-awwLAihCy6ZlAAmJXg7JQBhMdMhF6unn2tHP46rYFR5G4ZwnqOucqerDvmxlp4uaTfekDtFReZojdCbBtvQeRYHjKfgnqH5zCn4f72stJ87E57nYewjF2LCgg75vm7GAbAszZpJ08pwBHQxyMQbb816PKTv3myxo2FL451GEN1w0SHn6_frn1d5_L6bOSG7uIt57yA4Jdv1rDFfATjV6ltrNr8BM-wP6Q
  priority: 102
  providerName: Hindawi Publishing
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3daxNBEF9qiuiLqFWatsoKtS-y9D529-4eRK62oQgGEQt9O_brksDlEts7SsA_3pnLXmoEax6zk93jZmfnt5OZ3xByHKg00lGmmI5KzrgsYwZeMWShKRNnuJEywOLkr2N5ecW_XIvrHTLua2EwrbI_E7uD2i4MxshPoyRAarqUh5-WPxl2jcJ_V_sWGsq3VrAfO4qxR2Q3QmasAdk9uxh_-96fzYBN1lmIEkwLieH7VHghMAoQnYYigU-65aT8Uf14ipfku9kWFP07kfJJWy_V6k5V1R9eavScPPPwkubr_fCC7Lj6JdnLa7haz1f0hHYJn10kfY_8OnduST3B6oSdgT-z9Fw1iubtZO5rkmqqakuxY1pFRy2G1ijAXJCACZHsFZa6ma6a6Xym6Lrot_RRwO6HXc_N-6_yagLvFKRvX5Gr0cWPz5fMN2Nghou4YXHmhAW9llpxk5W81DLigDZNkqVlkGiwfJViRNVoZ5XF-lqnA2sDBYgzkln8mgzqRe32CZWZDrh1PIxgCqG4UoA7FThGLQGMcTckH_q3XxjPVI4NM6qiu7EIUaCuCq-rIXm_kV6uGTr-IXeEiizQcGE2A2ZkijwJucjAk8PwsVfw_2bptV94a78t7vfmkLzbDOMCmMFWu0XbyQjEfgnIJFu7ZrMeMn1vj9Szacf4ncVwERJySE42--vBpzx4-CkPyVOUxtB4GB6RQXPTujeArRr91hvMbxorIKM
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGELAXBAxEYSAjjb2gQD5sJ35AKDCqCWk8UWlvke04baXULV2iUYk_nrvUCXTiQ6KP9eVc-e56v7uc7wg5DlUW61iqQMcVC5iokgC8YhREpkqtYUaIEC8nn38WZxP26YJf7JF-2qg_wMvfhnY4T2qyrl9_-7p5Bwb_tjN4zjF-j99EPIVPdoPcBB8lcYjDORveJwAm2VYfCjApbAjfl8Bfe_qA3E44vikS8Y6f8v_Wt2YYJ1_Nd9Do9VrKO61bqc2VqutfHNX4HrnrESbNtypxn-xZ94Ac5g6i68WGntCu5rNLph-S76fWrqjvsToN3oNLK-mpahTN2-nCX0tyVLmS4tC0mo5bzK5RQLpAAQyx3ytstZ5tmtliruj23m_lE4Hdg93YzZ9f5fV0uZ4D9eVDMhl__PLhLPDzGALDeNIEibS8BNFWWjEjK1ZpETMAnCaVWRWmGoxfZZhUNdqWqsQrtlaHZRkqAJ2xkMkjsu-Wzj4mVEgdstKyKAYWXDGl4MwV-EYtAI8xOyKv-tMvjG9WjjMz6qILWjgvUGyFF9uIvByoV9smHX-gO0JBFqhNwM2AJZkiTyPGJThzWD72Av4Xl176Ra-vRZyG2DkxY9GIvBiWcQMsYnN22XY0HOFfCjTpjtYM-2Gz790VN591Tb9lArEQFyNyMujXX3_lk__e4ik5QEaYOI-iI7LfrFv7DJBXo593RvUDpuIpNw
  priority: 102
  providerName: Scholars Portal
Title Deep Learning-Based Data Augmentation and Model Fusion for Automatic Arrhythmia Identification and Classification Algorithms
URI https://dx.doi.org/10.1155/2022/1577778
https://www.proquest.com/docview/2704759841
https://www.proquest.com/docview/2705397671
https://pubmed.ncbi.nlm.nih.gov/PMC9388256
https://downloads.hindawi.com/journals/cin/2022/1577778.pdf
UnpaywallVersion publishedVersion
Volume 2022
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: KQ8
  dateStart: 20070625
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: KQ8
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1687-5273
  dateEnd: 20230628
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: ABDBF
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals - Free Access to All
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: DIK
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Medical Journals Open Access
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: GX1
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: 7X7
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Middle East & Africa Database
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: CWDGH
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/middleeastafrica
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: 8FG
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250430
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: M48
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: 24P
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9swEBdtwti-7NWVZeuCBl2_DKd-SJbNPrlr0zBoKGWBDAZGLydhiRMSm5KxP34nR06Xwh4sH0RsnU-2dJJ-d9ydEDp2eeQLP-aO8DPikDALHNgVPceTGdOSyDB0TXDyVT_sDcinIR3uoQ91LIwyKeLnXK06Y6OT3k6q1dr26-pUgrYI6rp_6lEGv6izUNk-aoYUgHgDNQf96-SLUbFCmDom8fvdfxbUbu-U7rDY2ZDssvzANr4DO-87TT4s8wVf3_Lp9JcdqfsEfa2_ZeOI8q1TFqIjv99L8_ifH_sUPbZIFScb0XqG9nT-HB0kOWjpszU-wZXvaGWUP0A_zrVeYJurdeScwdao8DkvOE7K0cyGN-WY5wqbw9emuFsaKx0GxAwUwNDkjYWmluN1MZ5NON7ED2fWoFg9WB3feXcrmY7mywlQr16gQffi88eeY891cCShQeEEsaYKRCQTnMg4I5kIfQLAVbI4ylwmYBHhkTHOSqEVVyZUVwtXKZcDePXDODhEjXye65cIh7FwidLE84EF5YRzgLAc9lgRAq4juoXe14ObSpv03Jy9MU0r5YfS1HRwaju4hd5tqRebZB-_oTsycpKaNQC4SZiRMk2YR2gMoACqj-14_o1LLVxpPeapz1yTgTEiXgu93VabBowzXK7nZUVDDYxkQMN2hHLbnkkavluTT8ZV8vA4AJ2Khi10shXfP77lq38lfI0emUtjb_e8I9QolqV-A4CtEG20z4YMyqh72UbNs4v-9Q1cXQ49KK9IBOVNb9i20_cn2xRCPg
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lc9MwENaUdJhy4VUYUgqImTYXxq2tSHZ84GAaQkofp3bozUiynGSaOKGxJxOG38Rf4S-x68gp6Qzl1AM-WmtJI69W3672QciOK1tMsVA6iqXc4X7adOBU9BxPp4HRXPu-i8HJJ6d-95x_vhAXa-RnFQuDbpWVTCwFdTLWaCPfZ4GLqela3LMelEdmPgP9bPr-sA0_c5exzsezg65jSwg4motm7jRDIxKYTaok12HKU-UzDhhJB2ErdQMF_CpbaAfUyiQywahQo9wkcSXgJOZjpiXWmHxzsEoV3ubakh33yDrwucdqZP3gS_tTt5L9gH0WXo4-bF1MPF-52guBVga274kAntbKIWiPgvt9VMJngxWoe9NRc6PIJnI-k8PhH6dg5xH5Va3fwvnlcq_I1Z7-fiO15P-zwI_JQwvIabTYQU_Imsmeks0ok_l4NKcNWrrIlncPm-RH25gJtSlpe84HQAAJbctc0qjojWwUV0ZlllCsMTeknQKNkRQUA6CADjE9Lgx11Z_n_dFA0kWYdGrtpuWHZZXS61fRsAeTBurpM3J-J0vznNSycWZeEOqHyuWJ4R6DLoTkUgJSlwAllA_wlZs6eVfxU6xtbncsMTKMSx1PiBi5L7bcVye7S-rJIqfJX-i2kTVjFHXQmwbBo-Mo8LgIAftA845l2X_1UvFbbOXjNL5mtjp5u2zGAdDnLzPjoqQRiJYDoAlW9sFyPMyNvtqSDfpljvSwCaqj8Ouksdwxt85y6_ZZviEb3bOT4_j48PToJXmAX-LFgudtk1p-VZhXgExz9dqKA0q-3vWe-Q04DJwv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLamTVxeuA1ExwAjbXtBWZPUdpIHhMpK6RhMPDCxt2A7TlutTcuaqCril_FX-DOckzgdncR42gN5jE9syzmXz_a5ELLjytBXfiQd5afMYSJtOWAVPcfTaWA000K4GJz88Vj0Ttj7U366Rn7WsTDoVlnrxFJRJxONZ-RNP3AxNV3IvGZq3SI-dbqvp98crCCFN611OY2KRY7MYg7bt9mrww78613f7779fNBzbIUBRzPeyp1WZHgCk02VZDpKWaqEzwBC6SAKUzdQwM4yxGNCrUwiEwwaNcpNElcCjPIFJmIC9b8RikCAUtg4-NJ516vtAOCgyuNRgBhjEvra7Z5zPHHwmx4P4AlXDKI1CzcGuCGfD1dg72WnzVtFNpWLuRyN_rCI3bvkV72WlSPM2X6Rq339_VKayf9zse-ROxao03YlWffJmskekM12JvPJeEH3aOk6W95JbJIfHWOm1Kaq7TtvABkktCNzSdtFf2yjuzIqs4Ri7bkR7RZ4SElhwwAU0CGmzYWhzgeLfDAeSlqFT6f2PLX8sKxeevGqPerDIgH17CE5uZZ1eETWs0lmHhMqIuWyxDDPhy64ZFICgpcAMZQAWMtMg7yseSvWNuc7lh4ZxeXej_MYOTG2nNggu0vqaZXr5C9028imMapA6E2DQtJxO_AYjwATQfOOZd9_9VLzXmz15iy-YLwGebFsxgHQFzAzk6Kk4YiiA6AJVmRiOR7mTF9tyYaDMnd61IItJRcNsreUnitnuXX1LJ-TmyAY8YfD46Mn5DZ-iPcNnrdN1vPzwjwFwJqrZ1YzUPL1uuXjN7D8pPc
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdGJwQvfI2JwkBGGntB6fJhO4l4CoxqQmLigUpDQor8lbYiTas20VTEH89d6nR0Eh-iT219PTf22fc76-5nQo59mYQqTKWnwoJ5TBSRB14x8AJdxFYzLYSPxckfL8T5iH245Jd75E1XC2OQIn4uzWowwZj0atru1m5cV6caokUI18PTgMfwSgYLU9wi-4IDEO-R_dHFp-wLhlgClg4Sv1-_j6Mu7Z3zHRU7Dslty7dd5zuw82bS5J2mWsj1lSzLXzzS8D752j3LJhHl26Cp1UB_v0Hz-J8P-4Dcc0iVZhvTekj2bPWIHGQVROmzNT2hbe5oeyh_QH6cWbugjqt17L0F12jomawlzZrxzJU3VVRWhuLlayUdNnhKRwExgwQoRN5Y6Go5WdeT2VTSTf1w4Q4U2x-213def5WV4_lyCtKrx2Q0fP_53bnn7nXwNONR7UWp5QZMpFCS6bRghRIhA-Cq4zQp_FjBJiITPJzVyhppsFTXKt8YXwJ4DUUaHZJeNa_sE0JFqnxmLAtCUMElkxIgrAQfqwTgOmb75HU3ubl2pOd490aZt8EP5zkOcO4GuE9ebaUXG7KP38gdoZ3kuAeANg0rUudZHDCeAiiA5mM3n3_T0hlX3s15HsY-MjAmLOiTl9tm7ACT4So7b1oZjjAyBpl4xyi3_SFp-G5LNZ205OFpBDEVF31ysjXfP_7Lp_8q-IzcxY943h4ER6RXLxv7HABbrV64hfkTju07-Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning-Based+Data+Augmentation+and+Model+Fusion+for+Automatic+Arrhythmia+Identification+and+Classification+Algorithms&rft.jtitle=Computational+intelligence+and+neuroscience&rft.au=Ma%2C+Shuai&rft.au=Cui%2C+Jianfeng&rft.au=Xiao%2C+Weidong&rft.au=Liu%2C+Lijuan&rft.date=2022-08-11&rft.pub=Hindawi&rft.issn=1687-5265&rft.eissn=1687-5273&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F1577778&rft_id=info%3Apmid%2F35990162&rft.externalDocID=PMC9388256
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5265&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5265&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5265&client=summon