S Protein-Reactive IgG and Memory B Cell Production after Human SARS-CoV-2 Infection Includes Broad Reactivity to the S2 Subunit

The recent rapid worldwide spread of SARS-CoV-2 has established a pandemic of potentially serious disease in the highly susceptible human population. Key issues are whether humans have preexisting immune memory that provides some protection against SARS-CoV-2 and whether SARS-CoV-2 infection generat...

Full description

Saved in:
Bibliographic Details
Published inmBio Vol. 11; no. 5
Main Authors Nguyen-Contant, Phuong, Embong, A. Karim, Kanagaiah, Preshetha, Chaves, Francisco A., Yang, Hongmei, Branche, Angela R., Topham, David J., Sangster, Mark Y.
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 25.09.2020
Subjects
Online AccessGet full text
ISSN2161-2129
2150-7511
2150-7511
DOI10.1128/mBio.01991-20

Cover

Abstract The recent rapid worldwide spread of SARS-CoV-2 has established a pandemic of potentially serious disease in the highly susceptible human population. Key issues are whether humans have preexisting immune memory that provides some protection against SARS-CoV-2 and whether SARS-CoV-2 infection generates lasting immune protection against reinfection. Our analysis focused on pre- and postinfection IgG and IgG memory B cells (MBCs) reactive to SARS-CoV-2 proteins. Most importantly, we demonstrate that infection generates both IgG and IgG MBCs against the novel receptor binding domain and the conserved S2 subunit of the SARS-CoV-2 spike protein. Thus, even if antibody levels wane, long-lived MBCs remain to mediate rapid antibody production. Our study results also suggest that SARS-CoV-2 infection strengthens preexisting broad coronavirus protection through S2-reactive antibody and MBC formation. The high susceptibility of humans to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the cause of coronavirus disease 2019 (COVID-19), reflects the novelty of the virus and limited preexisting B cell immunity. IgG against the SARS-CoV-2 spike (S) protein, which carries the novel receptor binding domain (RBD), is absent or at low levels in unexposed individuals. To better understand the B cell response to SARS-CoV-2 infection, we asked whether virus-reactive memory B cells (MBCs) were present in unexposed subjects and whether MBC generation accompanied virus-specific IgG production in infected subjects. We analyzed sera and peripheral blood mononuclear cells (PBMCs) from non-SARS-CoV-2-exposed healthy donors and COVID-19 convalescent subjects. Serum IgG levels specific for SARS-CoV-2 proteins (S, including the RBD and S2 subunit, and nucleocapsid [N]) and non-SARS-CoV-2 proteins were related to measurements of circulating IgG MBC levels. Anti-RBD IgG was absent in unexposed subjects. Most unexposed subjects had anti-S2 IgG, and a minority had anti-N IgG, but IgG MBCs with these specificities were not detected, perhaps reflecting low frequencies. Convalescent subjects had high levels of IgG against the RBD, S2, and N, together with large populations of RBD- and S2-reactive IgG MBCs. Notably, IgG titers against the S protein of the human coronavirus OC43 were higher in convalescent subjects than in unexposed subjects and correlated strongly with anti-S2 titers. Our findings indicate cross-reactive B cell responses against the S2 subunit that might enhance broad coronavirus protection. Importantly, our demonstration of MBC induction by SARS-CoV-2 infection suggests that a durable form of B cell immunity is maintained even if circulating antibody levels wane. IMPORTANCE The recent rapid worldwide spread of SARS-CoV-2 has established a pandemic of potentially serious disease in the highly susceptible human population. Key issues are whether humans have preexisting immune memory that provides some protection against SARS-CoV-2 and whether SARS-CoV-2 infection generates lasting immune protection against reinfection. Our analysis focused on pre- and postinfection IgG and IgG memory B cells (MBCs) reactive to SARS-CoV-2 proteins. Most importantly, we demonstrate that infection generates both IgG and IgG MBCs against the novel receptor binding domain and the conserved S2 subunit of the SARS-CoV-2 spike protein. Thus, even if antibody levels wane, long-lived MBCs remain to mediate rapid antibody production. Our study results also suggest that SARS-CoV-2 infection strengthens preexisting broad coronavirus protection through S2-reactive antibody and MBC formation.
AbstractList The high susceptibility of humans to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the cause of coronavirus disease 2019 (COVID-19), reflects the novelty of the virus and limited preexisting B cell immunity. IgG against the SARS-CoV-2 spike (S) protein, which carries the novel receptor binding domain (RBD), is absent or at low levels in unexposed individuals. To better understand the B cell response to SARS-CoV-2 infection, we asked whether virus-reactive memory B cells (MBCs) were present in unexposed subjects and whether MBC generation accompanied virus-specific IgG production in infected subjects. We analyzed sera and peripheral blood mononuclear cells (PBMCs) from non-SARS-CoV-2-exposed healthy donors and COVID-19 convalescent subjects. Serum IgG levels specific for SARS-CoV-2 proteins (S, including the RBD and S2 subunit, and nucleocapsid [N]) and non-SARS-CoV-2 proteins were related to measurements of circulating IgG MBC levels. Anti-RBD IgG was absent in unexposed subjects. Most unexposed subjects had anti-S2 IgG, and a minority had anti-N IgG, but IgG MBCs with these specificities were not detected, perhaps reflecting low frequencies. Convalescent subjects had high levels of IgG against the RBD, S2, and N, together with large populations of RBD- and S2-reactive IgG MBCs. Notably, IgG titers against the S protein of the human coronavirus OC43 were higher in convalescent subjects than in unexposed subjects and correlated strongly with anti-S2 titers. Our findings indicate cross-reactive B cell responses against the S2 subunit that might enhance broad coronavirus protection. Importantly, our demonstration of MBC induction by SARS-CoV-2 infection suggests that a durable form of B cell immunity is maintained even if circulating antibody levels wane.IMPORTANCE The recent rapid worldwide spread of SARS-CoV-2 has established a pandemic of potentially serious disease in the highly susceptible human population. Key issues are whether humans have preexisting immune memory that provides some protection against SARS-CoV-2 and whether SARS-CoV-2 infection generates lasting immune protection against reinfection. Our analysis focused on pre- and postinfection IgG and IgG memory B cells (MBCs) reactive to SARS-CoV-2 proteins. Most importantly, we demonstrate that infection generates both IgG and IgG MBCs against the novel receptor binding domain and the conserved S2 subunit of the SARS-CoV-2 spike protein. Thus, even if antibody levels wane, long-lived MBCs remain to mediate rapid antibody production. Our study results also suggest that SARS-CoV-2 infection strengthens preexisting broad coronavirus protection through S2-reactive antibody and MBC formation.The high susceptibility of humans to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the cause of coronavirus disease 2019 (COVID-19), reflects the novelty of the virus and limited preexisting B cell immunity. IgG against the SARS-CoV-2 spike (S) protein, which carries the novel receptor binding domain (RBD), is absent or at low levels in unexposed individuals. To better understand the B cell response to SARS-CoV-2 infection, we asked whether virus-reactive memory B cells (MBCs) were present in unexposed subjects and whether MBC generation accompanied virus-specific IgG production in infected subjects. We analyzed sera and peripheral blood mononuclear cells (PBMCs) from non-SARS-CoV-2-exposed healthy donors and COVID-19 convalescent subjects. Serum IgG levels specific for SARS-CoV-2 proteins (S, including the RBD and S2 subunit, and nucleocapsid [N]) and non-SARS-CoV-2 proteins were related to measurements of circulating IgG MBC levels. Anti-RBD IgG was absent in unexposed subjects. Most unexposed subjects had anti-S2 IgG, and a minority had anti-N IgG, but IgG MBCs with these specificities were not detected, perhaps reflecting low frequencies. Convalescent subjects had high levels of IgG against the RBD, S2, and N, together with large populations of RBD- and S2-reactive IgG MBCs. Notably, IgG titers against the S protein of the human coronavirus OC43 were higher in convalescent subjects than in unexposed subjects and correlated strongly with anti-S2 titers. Our findings indicate cross-reactive B cell responses against the S2 subunit that might enhance broad coronavirus protection. Importantly, our demonstration of MBC induction by SARS-CoV-2 infection suggests that a durable form of B cell immunity is maintained even if circulating antibody levels wane.IMPORTANCE The recent rapid worldwide spread of SARS-CoV-2 has established a pandemic of potentially serious disease in the highly susceptible human population. Key issues are whether humans have preexisting immune memory that provides some protection against SARS-CoV-2 and whether SARS-CoV-2 infection generates lasting immune protection against reinfection. Our analysis focused on pre- and postinfection IgG and IgG memory B cells (MBCs) reactive to SARS-CoV-2 proteins. Most importantly, we demonstrate that infection generates both IgG and IgG MBCs against the novel receptor binding domain and the conserved S2 subunit of the SARS-CoV-2 spike protein. Thus, even if antibody levels wane, long-lived MBCs remain to mediate rapid antibody production. Our study results also suggest that SARS-CoV-2 infection strengthens preexisting broad coronavirus protection through S2-reactive antibody and MBC formation.
The recent rapid worldwide spread of SARS-CoV-2 has established a pandemic of potentially serious disease in the highly susceptible human population. Key issues are whether humans have preexisting immune memory that provides some protection against SARS-CoV-2 and whether SARS-CoV-2 infection generates lasting immune protection against reinfection. Our analysis focused on pre- and postinfection IgG and IgG memory B cells (MBCs) reactive to SARS-CoV-2 proteins. Most importantly, we demonstrate that infection generates both IgG and IgG MBCs against the novel receptor binding domain and the conserved S2 subunit of the SARS-CoV-2 spike protein. Thus, even if antibody levels wane, long-lived MBCs remain to mediate rapid antibody production. Our study results also suggest that SARS-CoV-2 infection strengthens preexisting broad coronavirus protection through S2-reactive antibody and MBC formation. The high susceptibility of humans to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the cause of coronavirus disease 2019 (COVID-19), reflects the novelty of the virus and limited preexisting B cell immunity. IgG against the SARS-CoV-2 spike (S) protein, which carries the novel receptor binding domain (RBD), is absent or at low levels in unexposed individuals. To better understand the B cell response to SARS-CoV-2 infection, we asked whether virus-reactive memory B cells (MBCs) were present in unexposed subjects and whether MBC generation accompanied virus-specific IgG production in infected subjects. We analyzed sera and peripheral blood mononuclear cells (PBMCs) from non-SARS-CoV-2-exposed healthy donors and COVID-19 convalescent subjects. Serum IgG levels specific for SARS-CoV-2 proteins (S, including the RBD and S2 subunit, and nucleocapsid [N]) and non-SARS-CoV-2 proteins were related to measurements of circulating IgG MBC levels. Anti-RBD IgG was absent in unexposed subjects. Most unexposed subjects had anti-S2 IgG, and a minority had anti-N IgG, but IgG MBCs with these specificities were not detected, perhaps reflecting low frequencies. Convalescent subjects had high levels of IgG against the RBD, S2, and N, together with large populations of RBD- and S2-reactive IgG MBCs. Notably, IgG titers against the S protein of the human coronavirus OC43 were higher in convalescent subjects than in unexposed subjects and correlated strongly with anti-S2 titers. Our findings indicate cross-reactive B cell responses against the S2 subunit that might enhance broad coronavirus protection. Importantly, our demonstration of MBC induction by SARS-CoV-2 infection suggests that a durable form of B cell immunity is maintained even if circulating antibody levels wane. IMPORTANCE The recent rapid worldwide spread of SARS-CoV-2 has established a pandemic of potentially serious disease in the highly susceptible human population. Key issues are whether humans have preexisting immune memory that provides some protection against SARS-CoV-2 and whether SARS-CoV-2 infection generates lasting immune protection against reinfection. Our analysis focused on pre- and postinfection IgG and IgG memory B cells (MBCs) reactive to SARS-CoV-2 proteins. Most importantly, we demonstrate that infection generates both IgG and IgG MBCs against the novel receptor binding domain and the conserved S2 subunit of the SARS-CoV-2 spike protein. Thus, even if antibody levels wane, long-lived MBCs remain to mediate rapid antibody production. Our study results also suggest that SARS-CoV-2 infection strengthens preexisting broad coronavirus protection through S2-reactive antibody and MBC formation.
The recent rapid worldwide spread of SARS-CoV-2 has established a pandemic of potentially serious disease in the highly susceptible human population. Key issues are whether humans have preexisting immune memory that provides some protection against SARS-CoV-2 and whether SARS-CoV-2 infection generates lasting immune protection against reinfection. Our analysis focused on pre- and postinfection IgG and IgG memory B cells (MBCs) reactive to SARS-CoV-2 proteins. Most importantly, we demonstrate that infection generates both IgG and IgG MBCs against the novel receptor binding domain and the conserved S2 subunit of the SARS-CoV-2 spike protein. Thus, even if antibody levels wane, long-lived MBCs remain to mediate rapid antibody production. Our study results also suggest that SARS-CoV-2 infection strengthens preexisting broad coronavirus protection through S2-reactive antibody and MBC formation. The high susceptibility of humans to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the cause of coronavirus disease 2019 (COVID-19), reflects the novelty of the virus and limited preexisting B cell immunity. IgG against the SARS-CoV-2 spike (S) protein, which carries the novel receptor binding domain (RBD), is absent or at low levels in unexposed individuals. To better understand the B cell response to SARS-CoV-2 infection, we asked whether virus-reactive memory B cells (MBCs) were present in unexposed subjects and whether MBC generation accompanied virus-specific IgG production in infected subjects. We analyzed sera and peripheral blood mononuclear cells (PBMCs) from non-SARS-CoV-2-exposed healthy donors and COVID-19 convalescent subjects. Serum IgG levels specific for SARS-CoV-2 proteins (S, including the RBD and S2 subunit, and nucleocapsid [N]) and non-SARS-CoV-2 proteins were related to measurements of circulating IgG MBC levels. Anti-RBD IgG was absent in unexposed subjects. Most unexposed subjects had anti-S2 IgG, and a minority had anti-N IgG, but IgG MBCs with these specificities were not detected, perhaps reflecting low frequencies. Convalescent subjects had high levels of IgG against the RBD, S2, and N, together with large populations of RBD- and S2-reactive IgG MBCs. Notably, IgG titers against the S protein of the human coronavirus OC43 were higher in convalescent subjects than in unexposed subjects and correlated strongly with anti-S2 titers. Our findings indicate cross-reactive B cell responses against the S2 subunit that might enhance broad coronavirus protection. Importantly, our demonstration of MBC induction by SARS-CoV-2 infection suggests that a durable form of B cell immunity is maintained even if circulating antibody levels wane.
The high susceptibility of humans to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the cause of coronavirus disease 2019 (COVID-19), reflects the novelty of the virus and limited preexisting B cell immunity. IgG against the SARS-CoV-2 spike (S) protein, which carries the novel receptor binding domain (RBD), is absent or at low levels in unexposed individuals. To better understand the B cell response to SARS-CoV-2 infection, we asked whether virus-reactive memory B cells (MBCs) were present in unexposed subjects and whether MBC generation accompanied virus-specific IgG production in infected subjects. We analyzed sera and peripheral blood mononuclear cells (PBMCs) from non-SARS-CoV-2-exposed healthy donors and COVID-19 convalescent subjects. Serum IgG levels specific for SARS-CoV-2 proteins (S, including the RBD and S2 subunit, and nucleocapsid [N]) and non-SARS-CoV-2 proteins were related to measurements of circulating IgG MBC levels. Anti-RBD IgG was absent in unexposed subjects. Most unexposed subjects had anti-S2 IgG, and a minority had anti-N IgG, but IgG MBCs with these specificities were not detected, perhaps reflecting low frequencies. Convalescent subjects had high levels of IgG against the RBD, S2, and N, together with large populations of RBD- and S2-reactive IgG MBCs. Notably, IgG titers against the S protein of the human coronavirus OC43 were higher in convalescent subjects than in unexposed subjects and correlated strongly with anti-S2 titers. Our findings indicate cross-reactive B cell responses against the S2 subunit that might enhance broad coronavirus protection. Importantly, our demonstration of MBC induction by SARS-CoV-2 infection suggests that a durable form of B cell immunity is maintained even if circulating antibody levels wane. The recent rapid worldwide spread of SARS-CoV-2 has established a pandemic of potentially serious disease in the highly susceptible human population. Key issues are whether humans have preexisting immune memory that provides some protection against SARS-CoV-2 and whether SARS-CoV-2 infection generates lasting immune protection against reinfection. Our analysis focused on pre- and postinfection IgG and IgG memory B cells (MBCs) reactive to SARS-CoV-2 proteins. Most importantly, we demonstrate that infection generates both IgG and IgG MBCs against the novel receptor binding domain and the conserved S2 subunit of the SARS-CoV-2 spike protein. Thus, even if antibody levels wane, long-lived MBCs remain to mediate rapid antibody production. Our study results also suggest that SARS-CoV-2 infection strengthens preexisting broad coronavirus protection through S2-reactive antibody and MBC formation.
ABSTRACT The high susceptibility of humans to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the cause of coronavirus disease 2019 (COVID-19), reflects the novelty of the virus and limited preexisting B cell immunity. IgG against the SARS-CoV-2 spike (S) protein, which carries the novel receptor binding domain (RBD), is absent or at low levels in unexposed individuals. To better understand the B cell response to SARS-CoV-2 infection, we asked whether virus-reactive memory B cells (MBCs) were present in unexposed subjects and whether MBC generation accompanied virus-specific IgG production in infected subjects. We analyzed sera and peripheral blood mononuclear cells (PBMCs) from non-SARS-CoV-2-exposed healthy donors and COVID-19 convalescent subjects. Serum IgG levels specific for SARS-CoV-2 proteins (S, including the RBD and S2 subunit, and nucleocapsid [N]) and non-SARS-CoV-2 proteins were related to measurements of circulating IgG MBC levels. Anti-RBD IgG was absent in unexposed subjects. Most unexposed subjects had anti-S2 IgG, and a minority had anti-N IgG, but IgG MBCs with these specificities were not detected, perhaps reflecting low frequencies. Convalescent subjects had high levels of IgG against the RBD, S2, and N, together with large populations of RBD- and S2-reactive IgG MBCs. Notably, IgG titers against the S protein of the human coronavirus OC43 were higher in convalescent subjects than in unexposed subjects and correlated strongly with anti-S2 titers. Our findings indicate cross-reactive B cell responses against the S2 subunit that might enhance broad coronavirus protection. Importantly, our demonstration of MBC induction by SARS-CoV-2 infection suggests that a durable form of B cell immunity is maintained even if circulating antibody levels wane. IMPORTANCE The recent rapid worldwide spread of SARS-CoV-2 has established a pandemic of potentially serious disease in the highly susceptible human population. Key issues are whether humans have preexisting immune memory that provides some protection against SARS-CoV-2 and whether SARS-CoV-2 infection generates lasting immune protection against reinfection. Our analysis focused on pre- and postinfection IgG and IgG memory B cells (MBCs) reactive to SARS-CoV-2 proteins. Most importantly, we demonstrate that infection generates both IgG and IgG MBCs against the novel receptor binding domain and the conserved S2 subunit of the SARS-CoV-2 spike protein. Thus, even if antibody levels wane, long-lived MBCs remain to mediate rapid antibody production. Our study results also suggest that SARS-CoV-2 infection strengthens preexisting broad coronavirus protection through S2-reactive antibody and MBC formation.
Author Embong, A. Karim
Sangster, Mark Y.
Chaves, Francisco A.
Yang, Hongmei
Kanagaiah, Preshetha
Nguyen-Contant, Phuong
Branche, Angela R.
Topham, David J.
Author_xml – sequence: 1
  givenname: Phuong
  surname: Nguyen-Contant
  fullname: Nguyen-Contant, Phuong
  organization: David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
– sequence: 2
  givenname: A. Karim
  surname: Embong
  fullname: Embong, A. Karim
  organization: David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
– sequence: 3
  givenname: Preshetha
  surname: Kanagaiah
  fullname: Kanagaiah, Preshetha
  organization: David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
– sequence: 4
  givenname: Francisco A.
  surname: Chaves
  fullname: Chaves, Francisco A.
  organization: David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
– sequence: 5
  givenname: Hongmei
  surname: Yang
  fullname: Yang, Hongmei
  organization: Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York, USA
– sequence: 6
  givenname: Angela R.
  surname: Branche
  fullname: Branche, Angela R.
  organization: Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
– sequence: 7
  givenname: David J.
  orcidid: 0000-0002-9435-8673
  surname: Topham
  fullname: Topham, David J.
  organization: David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
– sequence: 8
  givenname: Mark Y.
  orcidid: 0000-0002-1599-5894
  surname: Sangster
  fullname: Sangster, Mark Y.
  organization: David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32978311$$D View this record in MEDLINE/PubMed
BookMark eNplkc9v0zAUxyM0xMbYkSvykUuKfyWOL0hrNbZKQ6AVuFqO_dx5SuzhOEO98aeTrmVQ8MWW_Xmf56fvy-IoxABF8ZrgGSG0edfPfZxhIiUpKX5WnFBS4VJUhBxtz_V0S6g8Ls6G4Q5PizHSMPyiOGZUioYRclL8XKHPKWbwobwBbbJ_ALRcXyIdLPoIfUwbNEcL6LotZscJiAFplyGhq7HXAa3Ob1blIn4rKVoGBztgGUw3WhjQPEVt0d7s8wbliPItoBVFq7Edg8-viudOdwOc7ffT4uuHiy-Lq_L60-VycX5dGl6xXDJu24ZSYxymNVTY1q7hGjfgHNGsFhJ4RSkTxDrTtkQ60gonWrCNrThhmp0Wy53XRn2n7pPvddqoqL16vIhprXTK3nSgsJQSjOCi5Y7rhmjsrHFtW0tRcyzryTXbucZwrzc_dNc9CQlW22RU3_qoHpNRFE8F73cF92PbgzUQctLdwS8OX4K_Vev4oERFcSXlJHi7F6T4fYQhq94PZopFB4jjoCjndS0oacSEvvm711OT35lPANsBJsVhSOCU8Vlvc5ta--7PCPPDEcp_qv4b-YD_Bb17z9I
CitedBy_id crossref_primary_10_1371_journal_ppat_1009352
crossref_primary_10_3390_ijerph182413173
crossref_primary_10_1186_s12884_022_04500_w
crossref_primary_10_1016_j_ebiom_2022_103888
crossref_primary_10_1093_cid_ciac057
crossref_primary_10_1126_sciadv_adg0330
crossref_primary_10_17352_jvi_000060
crossref_primary_10_3389_fimmu_2021_696370
crossref_primary_10_1016_j_antiviral_2023_105759
crossref_primary_10_1016_j_biopha_2025_117936
crossref_primary_10_1002_eji_202149655
crossref_primary_10_3389_fimmu_2022_988536
crossref_primary_10_3390_covid1010006
crossref_primary_10_1002_jmv_28584
crossref_primary_10_1016_j_isci_2022_103951
crossref_primary_10_1016_j_jiph_2025_102744
crossref_primary_10_3389_fimmu_2021_614676
crossref_primary_10_1007_s15010_021_01664_z
crossref_primary_10_1038_s41467_021_23977_1
crossref_primary_10_3389_fimmu_2024_1396603
crossref_primary_10_17650_1726_9784_2021_20_4_10_17
crossref_primary_10_1016_j_jim_2023_113457
crossref_primary_10_1093_immadv_ltab027
crossref_primary_10_1126_science_abe1107
crossref_primary_10_1016_j_medj_2021_08_001
crossref_primary_10_1016_j_vaccine_2024_04_034
crossref_primary_10_1002_JLB_4COVCRA0721_356RRR
crossref_primary_10_1073_pnas_2119761119
crossref_primary_10_1097_INF_0000000000003413
crossref_primary_10_3390_v15040966
crossref_primary_10_1016_j_celrep_2021_109929
crossref_primary_10_3390_microbiolres14030093
crossref_primary_10_1093_cei_uxac009
crossref_primary_10_1016_j_ebiom_2022_104341
crossref_primary_10_3390_microorganisms9122578
crossref_primary_10_1016_j_cell_2021_01_007
crossref_primary_10_3389_fimmu_2022_856033
crossref_primary_10_3389_fimmu_2022_945021
crossref_primary_10_1016_j_trsl_2021_02_006
crossref_primary_10_1016_j_smim_2021_101507
crossref_primary_10_1016_j_isci_2021_103659
crossref_primary_10_3389_fimmu_2021_772239
crossref_primary_10_3390_v15010175
crossref_primary_10_1186_s12916_020_01887_1
crossref_primary_10_3389_fimmu_2023_1291664
crossref_primary_10_3390_vaccines11010123
crossref_primary_10_1177_17534259211043159
crossref_primary_10_3390_pathogens11020186
crossref_primary_10_1002_JLB_5COVA0620_370RR
crossref_primary_10_1080_19490976_2022_2117503
crossref_primary_10_1016_j_ebiom_2021_103580
crossref_primary_10_3390_jcm11216272
crossref_primary_10_3389_fimmu_2024_1341600
crossref_primary_10_1371_journal_pone_0264124
crossref_primary_10_1080_21645515_2021_1953351
crossref_primary_10_1038_s41392_022_00996_y
crossref_primary_10_1038_s43856_021_00039_7
crossref_primary_10_1038_s41591_021_01542_z
crossref_primary_10_3389_fimmu_2021_656362
crossref_primary_10_1128_mbio_02722_23
crossref_primary_10_1128_mBio_03192_20
crossref_primary_10_1016_j_virol_2021_02_002
crossref_primary_10_1126_scitranslmed_abn3715
crossref_primary_10_1038_s41598_023_35471_3
crossref_primary_10_1093_cid_ciac934
crossref_primary_10_1016_j_celrep_2022_111496
crossref_primary_10_1038_s41598_021_95045_z
crossref_primary_10_1016_j_virol_2022_08_010
crossref_primary_10_3390_cells10081843
crossref_primary_10_1126_science_abf4860
crossref_primary_10_3390_microorganisms9081643
crossref_primary_10_1111_pbi_13908
crossref_primary_10_1002_path_5642
crossref_primary_10_1080_22221751_2022_2146535
crossref_primary_10_3389_fimmu_2022_836449
crossref_primary_10_1016_j_chom_2021_12_005
crossref_primary_10_1177_0004563221992390
crossref_primary_10_2139_ssrn_3956430
crossref_primary_10_1016_j_biopha_2021_112282
crossref_primary_10_1093_ckj_sfab048
crossref_primary_10_1128_spectrum_02676_21
crossref_primary_10_1371_journal_pone_0261656
crossref_primary_10_4103_sjhs_sjhs_168_20
crossref_primary_10_1016_j_xcrm_2022_100685
crossref_primary_10_1126_sciimmunol_abl5842
crossref_primary_10_1111_sji_13345
crossref_primary_10_1038_s41467_022_31557_0
crossref_primary_10_3389_fimmu_2020_567710
crossref_primary_10_3390_ijms232214340
crossref_primary_10_1016_j_isci_2024_109210
crossref_primary_10_3389_fimmu_2020_610688
crossref_primary_10_3389_fimmu_2022_904686
crossref_primary_10_1080_21645515_2022_2047582
crossref_primary_10_1021_acsnano_4c02434
crossref_primary_10_3389_fimmu_2024_1355949
crossref_primary_10_1007_s11696_023_02795_3
crossref_primary_10_1080_19932820_2023_2209949
crossref_primary_10_3389_fimmu_2022_770982
crossref_primary_10_3889_oamjms_2022_9957
crossref_primary_10_1631_jzus_B2200049
crossref_primary_10_1126_scitranslmed_adf6598
crossref_primary_10_1038_s41541_023_00801_z
crossref_primary_10_1126_sciimmunol_abf8891
crossref_primary_10_1126_science_abm0829
crossref_primary_10_1016_j_ijid_2023_11_008
crossref_primary_10_3389_fimmu_2022_889836
crossref_primary_10_1038_s41467_023_43152_y
crossref_primary_10_3390_vaccines11020408
crossref_primary_10_7554_eLife_70330
crossref_primary_10_7189_jogh_11_03057
crossref_primary_10_1002_cti2_1306
crossref_primary_10_1016_j_tim_2021_03_016
crossref_primary_10_1016_j_isci_2024_110470
crossref_primary_10_1080_14787210_2021_1905519
crossref_primary_10_1016_j_cell_2021_02_010
crossref_primary_10_1093_labmed_lmab061
crossref_primary_10_3390_vaccines11040849
crossref_primary_10_1016_j_celrep_2022_110904
crossref_primary_10_1038_s41467_022_32298_w
crossref_primary_10_3390_vaccines9020178
crossref_primary_10_1126_sciimmunol_abj2901
crossref_primary_10_3389_fimmu_2022_1038712
crossref_primary_10_3389_fimmu_2021_637651
crossref_primary_10_3389_fmed_2021_770381
crossref_primary_10_1016_j_ijid_2021_09_039
crossref_primary_10_4049_jimmunol_2100762
crossref_primary_10_1016_j_ebiom_2021_103495
crossref_primary_10_1007_s00253_023_12927_0
crossref_primary_10_3390_genes13091602
crossref_primary_10_3892_mmr_2024_13272
crossref_primary_10_1111_all_15441
crossref_primary_10_3390_v15010248
crossref_primary_10_1038_s41577_022_00809_x
crossref_primary_10_14336_AD_2020_1104
crossref_primary_10_3201_eid2811_221041
crossref_primary_10_1111_trf_16327
crossref_primary_10_1126_sciadv_adk6425
crossref_primary_10_1093_infdis_jiac022
crossref_primary_10_1016_j_chom_2021_06_009
crossref_primary_10_1038_s41467_022_30649_1
crossref_primary_10_1021_acsnano_4c03075
crossref_primary_10_3389_fimmu_2021_660019
crossref_primary_10_3389_fimmu_2021_790415
crossref_primary_10_1080_21645515_2022_2055373
crossref_primary_10_3390_vaccines11030545
crossref_primary_10_1016_j_cell_2021_01_050
crossref_primary_10_3390_vaccines10060980
Cites_doi 10.1073/pnas.0403492101
10.1038/s41586-020-2456-9
10.1016/j.jmb.2020.04.009
10.1128/CDLI.2.5.590-597.1995
10.1016/j.cell.2020.05.015
10.4049/jimmunol.171.10.4969
10.1038/s41591-020-0913-5
10.1016/j.jim.2011.09.006
10.1016/j.immuni.2020.03.020
10.1038/ni.3533
10.1016/j.chom.2020.02.001
10.1016/j.immuni.2020.03.007
10.1101/2020.05.14.095414
10.1016/j.cell.2019.03.016
10.3390/pathogens8040167
10.1073/pnas.0800003105
10.1126/science.1085952
10.1155/2006/152612
10.1038/s41586-020-2598-9
10.1101/2020.05.20.106294
10.1371/journal.pone.0050366
10.1126/science.abc7424
10.1038/s41586-020-2196-x
10.1016/j.immuni.2019.06.024
10.1126/sciimmunol.abc8413
10.1128/JVI.00169-19
10.1038/s41591-020-0897-1
10.1080/22221751.2020.1762515
10.1038/s41586-020-2012-7
10.1038/s41591-020-0965-6
10.1086/422040
10.1016/j.chom.2020.03.002
10.1101/2020.05.24.20112300
10.1093/infdis/jiaa273
10.1016/S0140-6736(20)30183-5
ContentType Journal Article
Copyright Copyright © 2020 Nguyen-Contant et al.
Copyright © 2020 Nguyen-Contant et al. 2020 Nguyen-Contant et al.
Copyright_xml – notice: Copyright © 2020 Nguyen-Contant et al.
– notice: Copyright © 2020 Nguyen-Contant et al. 2020 Nguyen-Contant et al.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1128/mBio.01991-20
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Memory B Cell Response to SARS-CoV-2
EISSN 2150-7511
ExternalDocumentID oai_doaj_org_article_0999ec747b4f4a81a0fdcfbb69764096
10.1128/mbio.01991-20
PMC7520599
32978311
10_1128_mBio_01991_20
Genre Journal Article
Comparative Study
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: HHSN272201400005C
– fundername: ;
  grantid: HHSN272201400005C
GroupedDBID ---
0R~
53G
5VS
AAFWJ
AAGFI
AAUOK
AAYXX
ADBBV
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BTFSW
CITATION
DIK
E3Z
EBS
FRP
GROUPED_DOAJ
GX1
H13
HYE
HZ~
KQ8
M48
O5R
O5S
O9-
OK1
P2P
PGMZT
RHI
RNS
RPM
RSF
CGR
CUY
CVF
ECM
EIF
M~E
NPM
RHF
7X8
5PM
ADRAZ
ADTOC
C1A
EJD
UNPAY
ID FETCH-LOGICAL-c453t-34db822ccf026e50d6f84a08eff1a3679e4522371dfcbb19f1b7f7bed8d5413a3
IEDL.DBID M48
ISSN 2161-2129
2150-7511
IngestDate Wed Aug 27 01:30:44 EDT 2025
Sun Sep 07 11:22:29 EDT 2025
Tue Sep 30 16:43:04 EDT 2025
Thu Jul 10 23:18:24 EDT 2025
Wed Feb 19 02:03:56 EST 2025
Tue Jul 01 01:52:45 EDT 2025
Thu Apr 24 23:06:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords COVID-19
IgG antibodies
SARS-CoV-2
memory B cells
spike protein
Language English
License Copyright © 2020 Nguyen-Contant et al.
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c453t-34db822ccf026e50d6f84a08eff1a3679e4522371dfcbb19f1b7f7bed8d5413a3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ORCID 0000-0002-9435-8673
0000-0002-1599-5894
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1128/mBio.01991-20
PMID 32978311
PQID 2446672187
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_0999ec747b4f4a81a0fdcfbb69764096
unpaywall_primary_10_1128_mbio_01991_20
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7520599
proquest_miscellaneous_2446672187
pubmed_primary_32978311
crossref_citationtrail_10_1128_mBio_01991_20
crossref_primary_10_1128_mBio_01991_20
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200925
PublicationDateYYYYMMDD 2020-09-25
PublicationDate_xml – month: 9
  year: 2020
  text: 20200925
  day: 25
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle mBio
PublicationTitleAlternate mBio
PublicationYear 2020
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
References_xml – ident: e_1_3_2_24_2
  doi: 10.1073/pnas.0403492101
– ident: e_1_3_2_21_2
  doi: 10.1038/s41586-020-2456-9
– ident: e_1_3_2_7_2
  doi: 10.1016/j.jmb.2020.04.009
– ident: e_1_3_2_36_2
  doi: 10.1128/CDLI.2.5.590-597.1995
– ident: e_1_3_2_10_2
  doi: 10.1016/j.cell.2020.05.015
– ident: e_1_3_2_32_2
  doi: 10.4049/jimmunol.171.10.4969
– ident: e_1_3_2_8_2
  doi: 10.1038/s41591-020-0913-5
– ident: e_1_3_2_27_2
  doi: 10.1016/j.jim.2011.09.006
– ident: e_1_3_2_28_2
  doi: 10.1016/j.immuni.2020.03.020
– ident: e_1_3_2_34_2
  doi: 10.1038/ni.3533
– ident: e_1_3_2_6_2
  doi: 10.1016/j.chom.2020.02.001
– ident: e_1_3_2_3_2
  doi: 10.1016/j.immuni.2020.03.007
– ident: e_1_3_2_11_2
  doi: 10.1101/2020.05.14.095414
– ident: e_1_3_2_15_2
  doi: 10.1016/j.cell.2019.03.016
– ident: e_1_3_2_33_2
  doi: 10.3390/pathogens8040167
– ident: e_1_3_2_29_2
  doi: 10.1073/pnas.0800003105
– ident: e_1_3_2_12_2
  doi: 10.1126/science.1085952
– ident: e_1_3_2_25_2
  doi: 10.1155/2006/152612
– ident: e_1_3_2_9_2
  doi: 10.1038/s41586-020-2598-9
– ident: e_1_3_2_19_2
  doi: 10.1101/2020.05.20.106294
– ident: e_1_3_2_26_2
  doi: 10.1371/journal.pone.0050366
– ident: e_1_3_2_20_2
  doi: 10.1126/science.abc7424
– ident: e_1_3_2_14_2
  doi: 10.1038/s41586-020-2196-x
– ident: e_1_3_2_35_2
  doi: 10.1016/j.immuni.2019.06.024
– ident: e_1_3_2_31_2
  doi: 10.1126/sciimmunol.abc8413
– ident: e_1_3_2_23_2
  doi: 10.1128/JVI.00169-19
– ident: e_1_3_2_16_2
  doi: 10.1038/s41591-020-0897-1
– ident: e_1_3_2_17_2
  doi: 10.1080/22221751.2020.1762515
– ident: e_1_3_2_2_2
  doi: 10.1038/s41586-020-2012-7
– ident: e_1_3_2_5_2
  doi: 10.1038/s41591-020-0965-6
– ident: e_1_3_2_13_2
  doi: 10.1086/422040
– ident: e_1_3_2_30_2
  doi: 10.1016/j.chom.2020.03.002
– ident: e_1_3_2_18_2
  doi: 10.1101/2020.05.24.20112300
– ident: e_1_3_2_22_2
  doi: 10.1093/infdis/jiaa273
– ident: e_1_3_2_4_2
  doi: 10.1016/S0140-6736(20)30183-5
SSID ssj0000331830
Score 2.6154287
Snippet The recent rapid worldwide spread of SARS-CoV-2 has established a pandemic of potentially serious disease in the highly susceptible human population. Key...
The high susceptibility of humans to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the cause of coronavirus disease 2019 (COVID-19),...
ABSTRACT The high susceptibility of humans to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the cause of coronavirus disease 2019...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Adult
Antibodies, Viral - immunology
B-Lymphocytes - immunology
B-Lymphocytes - virology
Betacoronavirus - immunology
Convalescence
Coronavirus Infections - immunology
Coronavirus Nucleocapsid Proteins
COVID-19
Cross Reactions
Female
Healthy Volunteers
Host-Microbe Biology
Humans
IgG antibodies
Immunoglobulin G - immunology
Immunologic Memory
Male
memory B cells
Middle Aged
Nucleocapsid Proteins - immunology
Pandemics
Phosphoproteins
Pneumonia, Viral - immunology
Protein Interaction Domains and Motifs
Protein Subunits
SARS-CoV-2
Spike Glycoprotein, Coronavirus - chemistry
Spike Glycoprotein, Coronavirus - immunology
spike protein
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJQQXxJsUioyE4EJoYjtx9thdUVqkItSlqLfIT1gpdSq6EdobP70zTnaVVUFcuEXJKLE9Y8839uQbQl6rSjKnhE_tRKhUiAlMKVXyVCO3FNfgIh3-KHzyuTw6E5_Oi_NRqS_MCevpgfuB20cE4wyAXi28UFWuMm-N17oEPwqxSSTbBjc2CqbiGszRVrM1qSar9i-mi_Z9FhN9sLb3yAlFrv4_AcybeZJ3unCpVr9U04yc0OF9cm9Aj_Sgb_UDcsuFh-R2X09y9Yj8ntMvyLuwCOmpU3Elo8ffP1IVLD3BlNoVndKZaxoUsz1vLI1VwmnczKfzg9N5Omu_pYweD1laAa5M01l3RSFkV5YObwb0TpctBfxI54zC-tPB4vCYnB1--Do7SocSC6kRBV-mXFgNEMEYD7GYKzJb-kqorHLe54qXcuKQcZ3L3HqjdT7xuZZeamcrW4D7U_wJ2QltcM8INTbzGrC6zLwTtuTaeMAGonCVZiBvEvJuPea1GfjHsQxGU8c4hFU1qqiOKqpZlpA3G_HLnnjjb4JTVOBGCPmy4w2wonqwovpfVpSQV2v11zC_8NBEBdd2VzXDA28IkyuZkKe9OWw-xRlunOV5QuSWoWy1ZftJWPyIHN6yYMiMk5C3G5O62U096ubu_-jmc3KX4X4BnqoVL8jO8mfn9gBULfXLOH-uAfpnIJk
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdQJwQvML4DGzISghfcJY4TJ49dtbIhbZpWisZT5E-oyJKJJULliT-ds5NW7QaCtyi5JHZ8Pv8ud_4dQq9FxqkRzBKdM0EYy2FKiTQm0nFLxRKWSOM2Ch-fpIcz9uE8Oe-TaNxemPX4PZjOvQs5r4ehz8-h4JlvpS6ONEBbs5PT0WdXOA4ADeGJr7NLAb0QMMX5kkvz-v0ba4-n6P8TrryZHnmnrS7F4ocoy7W1Z3IfTZat7lJOvg3bRg7Vz2uEjv_s1ja616NPPOrU5QG6ZaqH6HZXj3LxCP2a4lPH2zCvyJkR3hLioy_vsag0PnYpuQu8j8emLJ2Y7nhnsa8yjn0wAE9HZ1Myrj8Rio_6LK8KjlTZanOFweUXGvdPBvSPmxoD_sRTisF-tWBcHqPZ5ODj-JD0JRqIYknckJhpCRBDKQu-nElCndqMiTAz1kYiTnluHGN7zCNtlZRRbiPJLZdGZzqB5VPET9CgqivzDGGlQysB6_PQGqbTWCoL2IIlJpMU5FWA3i0Hr1A9f7kro1EW3o-hWXEBn6vwH7WgYYDerMQvO-KOvwnuO01YCTm-bX8Cxqvop2_hcLRR4HpJZpnIIhFarayUKaA58JDTAL1a6lEB89MFXURl6vaqoC5gDm52xgP0tNOr1ati6n68RVGA-IbGbbRl80o1_-o5wHlCHbNOgN6udPNmN-VaN5__t-QLdJe6nwou9JbsoEHzvTW7gLwa-bKfd78B2uYpAQ
  priority: 102
  providerName: Unpaywall
Title S Protein-Reactive IgG and Memory B Cell Production after Human SARS-CoV-2 Infection Includes Broad Reactivity to the S2 Subunit
URI https://www.ncbi.nlm.nih.gov/pubmed/32978311
https://www.proquest.com/docview/2446672187
https://pubmed.ncbi.nlm.nih.gov/PMC7520599
https://doi.org/10.1128/mbio.01991-20
https://doaj.org/article/0999ec747b4f4a81a0fdcfbb69764096
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABX
  databaseName: American Society for Microbiology Open Access
  customDbUrl:
  eissn: 2150-7511
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331830
  issn: 2161-2129
  databaseCode: AAUOK
  dateStart: 20100518
  isFulltext: true
  titleUrlDefault: https://journals.asm.org/
  providerName: American Society for Microbiology
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2150-7511
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331830
  issn: 2161-2129
  databaseCode: KQ8
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2150-7511
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331830
  issn: 2161-2129
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2150-7511
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331830
  issn: 2161-2129
  databaseCode: DIK
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2150-7511
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331830
  issn: 2161-2129
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2150-7511
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331830
  issn: 2161-2129
  databaseCode: GX1
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2150-7511
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331830
  issn: 2161-2129
  databaseCode: RPM
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2150-7511
  dateEnd: 20210131
  omitProxy: true
  ssIdentifier: ssj0000331830
  issn: 2161-2129
  databaseCode: M48
  dateStart: 20200801
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2150-7511
  dateEnd: 20250831
  omitProxy: true
  ssIdentifier: ssj0000331830
  issn: 2161-2129
  databaseCode: M48
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6hVkAviDcuEC0Sggtu7fX6kQNCSUQfSKmqhqBwsvZZIhm7TWJBbvx0ZtZOaGi5cLEse-z1emd2vtnHN4S8FlnKjODW110ufM67YFIiiXyJ3FKRBBdpcKPw8CQ5GvNPk3jyh1Ko_YHzG0M7zCc1nhV7Py-XH8Dg3zcbYLL97_1ptRe4NTwMovdtcEoMFXzYIn3XKUeovMGKZfPvp3bInYjhKEgYbjgox-N_E_i8vobybl1eiOUPURRXHNTBfXKvRZa016jCA3LLlA_J7SbX5PIR-TWip8jJMC39MyNcL0ePzw-pKDUd4nLbJe3TgSkKFNMNpyx1GcSpG-ino97ZyB9UX3xGj9sVXCWcqaLWZk4hnBeatm8GZE8XFQVsSUeMQt9UQ8fxmIwPPn4eHPlt-gVf8Tha-BHXEuCDUhbiNBMHOrEZF0FmrA1FlKRdg2zsURpqq6QMuzaUqU2l0ZmOwTWK6AnZKqvSPCNU6cBKwPFpYA3XSSSVBdzAY5NJBvLKI-9W_zxXLTc5psgochejsCzH1spda-Us8MibtfhFQ8rxL8E-NuBaCLm03YVqdp63ppkjRjYKwirJLRdZKAKrlZUyAaQG0W_ikVer5s_B9nBCRZSmquc5w8lwCKGz1CNPG3VYF7VSJ4-kG4qy8S2bd8rpN8fvncYMWXM88natUterKa9Uc_e_y3hOdhgOIOA0W_yCbC1mtXkJKGshO250Ao6Hk7DjbKlDtscnp72vvwFQXStt
linkProvider Scholars Portal
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdQJwQvML4DGzISghfcJY4TJ49dtbIhbZpWisZT5E-oyJKJJULliT-ds5NW7QaCtyi5JHZ8Pv8ud_4dQq9FxqkRzBKdM0EYy2FKiTQm0nFLxRKWSOM2Ch-fpIcz9uE8Oe-TaNxemPX4PZjOvQs5r4ehz8-h4JlvpS6ONEBbs5PT0WdXOA4ADeGJr7NLAb0QMMX5kkvz-v0ba4-n6P8TrryZHnmnrS7F4ocoy7W1Z3IfTZat7lJOvg3bRg7Vz2uEjv_s1ja616NPPOrU5QG6ZaqH6HZXj3LxCP2a4lPH2zCvyJkR3hLioy_vsag0PnYpuQu8j8emLJ2Y7nhnsa8yjn0wAE9HZ1Myrj8Rio_6LK8KjlTZanOFweUXGvdPBvSPmxoD_sRTisF-tWBcHqPZ5ODj-JD0JRqIYknckJhpCRBDKQu-nElCndqMiTAz1kYiTnluHGN7zCNtlZRRbiPJLZdGZzqB5VPET9CgqivzDGGlQysB6_PQGqbTWCoL2IIlJpMU5FWA3i0Hr1A9f7kro1EW3o-hWXEBn6vwH7WgYYDerMQvO-KOvwnuO01YCTm-bX8Cxqvop2_hcLRR4HpJZpnIIhFarayUKaA58JDTAL1a6lEB89MFXURl6vaqoC5gDm52xgP0tNOr1ati6n68RVGA-IbGbbRl80o1_-o5wHlCHbNOgN6udPNmN-VaN5__t-QLdJe6nwou9JbsoEHzvTW7gLwa-bKfd78B2uYpAQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=S+Protein-Reactive+IgG+and+Memory+B+Cell+Production+after+Human+SARS-CoV-2+Infection+Includes+Broad+Reactivity+to+the+S2+Subunit&rft.jtitle=mBio&rft.au=Nguyen-Contant%2C+Phuong&rft.au=Embong%2C+A.+Karim&rft.au=Kanagaiah%2C+Preshetha&rft.au=Chaves%2C+Francisco+A.&rft.date=2020-09-25&rft.pub=American+Society+for+Microbiology&rft.eissn=2150-7511&rft.volume=11&rft.issue=5&rft_id=info:doi/10.1128%2FmBio.01991-20&rft_id=info%3Apmid%2F32978311&rft.externalDocID=PMC7520599
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-2129&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-2129&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-2129&client=summon