Growth bound and threshold dynamic for nonautonomous nondensely defined evolution problems
We propose a general framework for simultaneously calculating the threshold value for population growth and determining the sign of the growth bound of the evolution family generated by the problem below d v ( t ) d t = A v ( t ) + F ( t ) v ( t ) - V ( t ) v ( t ) , where A : D ( A ) ⊂ X → X is a H...
Saved in:
Published in | Journal of mathematical biology Vol. 87; no. 2; p. 32 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2023
Springer Nature B.V Springer |
Subjects | |
Online Access | Get full text |
ISSN | 0303-6812 1432-1416 1432-1416 |
DOI | 10.1007/s00285-023-01966-w |
Cover
Abstract | We propose a general framework for simultaneously calculating the threshold value for population growth and determining the sign of the growth bound of the evolution family generated by the problem below
d
v
(
t
)
d
t
=
A
v
(
t
)
+
F
(
t
)
v
(
t
)
-
V
(
t
)
v
(
t
)
,
where
A
:
D
(
A
)
⊂
X
→
X
is a Hille–Yosida linear operator (possibly unbounded, non-densely defined) on a Banach space
(
X
,
‖
·
‖
)
, and the maps
t
∈
R
↦
V
(
t
)
∈
L
(
X
0
,
X
)
,
t
∈
R
↦
F
(
t
)
∈
L
(
X
0
,
X
)
are
p
-periodic in time and continuous in the operator norm topology. We give applications of our approach for two general examples of an age-structured model, and a delay differential system. Other examples concern the dynamics of a nonlocal problem arising in population genetics and the dynamics of a structured human-vector malaria model. |
---|---|
AbstractList | We propose a general framework for simultaneously calculating the threshold value for population growth and determining the sign of the growth bound of the evolution family generated by the problem below dv(t)dt=Av(t)+F(t)v(t)-V(t)v(t),where A:D(A)⊂X→X is a Hille–Yosida linear operator (possibly unbounded, non-densely defined) on a Banach space (X,‖·‖), and the maps t∈R↦V(t)∈L(X0,X), t∈R↦F(t)∈L(X0,X) are p-periodic in time and continuous in the operator norm topology. We give applications of our approach for two general examples of an age-structured model, and a delay differential system. Other examples concern the dynamics of a nonlocal problem arising in population genetics and the dynamics of a structured human-vector malaria model. We propose a general framework for simultaneously calculating the threshold value for population growth and determining the sign of the growth bound of the evolution family generated by the problem below [Formula: see text]where [Formula: see text] is a Hille-Yosida linear operator (possibly unbounded, non-densely defined) on a Banach space [Formula: see text], and the maps [Formula: see text], [Formula: see text] are p-periodic in time and continuous in the operator norm topology. We give applications of our approach for two general examples of an age-structured model, and a delay differential system. Other examples concern the dynamics of a nonlocal problem arising in population genetics and the dynamics of a structured human-vector malaria model. We propose a general framework for simultaneously calculating the threshold value for population growth and determining the sign of the growth bound of the evolution family generated by the problem below d v ( t ) d t = A v ( t ) + F ( t ) v ( t ) - V ( t ) v ( t ) , where A : D ( A ) ⊂ X → X is a Hille–Yosida linear operator (possibly unbounded, non-densely defined) on a Banach space ( X , ‖ · ‖ ) , and the maps t ∈ R ↦ V ( t ) ∈ L ( X 0 , X ) , t ∈ R ↦ F ( t ) ∈ L ( X 0 , X ) are p -periodic in time and continuous in the operator norm topology. We give applications of our approach for two general examples of an age-structured model, and a delay differential system. Other examples concern the dynamics of a nonlocal problem arising in population genetics and the dynamics of a structured human-vector malaria model. We propose a general framework for simultaneously calculating the threshold value for population growth and determining the sign of the growth bound of the evolution family generated by the problem below dv(t) dt = Av(t) + F(t)v(t) − V(t)v(t), where A : D(A) ⊂ X → X is a Hille-Yosida linear operator (possibly unbounded, non-densely defined) on a Banach space (X, ∥ • ∥), and the maps t ∈ R → V(t) ∈ L(X 0 , X), t ∈ R → F(t) ∈ L(X 0 , X) are p-periodic in time and continuous in the operator norm topology. We give applications of our approach for two general examples of an age-structured model, and a delay differential system. Other examples concern the dynamics of a nonlocal problem arising in population genetics and the dynamics of a structured human-vector malaria model. We propose a general framework for simultaneously calculating the threshold value for population growth and determining the sign of the growth bound of the evolution family generated by the problem below [Formula: see text]where [Formula: see text] is a Hille-Yosida linear operator (possibly unbounded, non-densely defined) on a Banach space [Formula: see text], and the maps [Formula: see text], [Formula: see text] are p-periodic in time and continuous in the operator norm topology. We give applications of our approach for two general examples of an age-structured model, and a delay differential system. Other examples concern the dynamics of a nonlocal problem arising in population genetics and the dynamics of a structured human-vector malaria model.We propose a general framework for simultaneously calculating the threshold value for population growth and determining the sign of the growth bound of the evolution family generated by the problem below [Formula: see text]where [Formula: see text] is a Hille-Yosida linear operator (possibly unbounded, non-densely defined) on a Banach space [Formula: see text], and the maps [Formula: see text], [Formula: see text] are p-periodic in time and continuous in the operator norm topology. We give applications of our approach for two general examples of an age-structured model, and a delay differential system. Other examples concern the dynamics of a nonlocal problem arising in population genetics and the dynamics of a structured human-vector malaria model. |
ArticleNumber | 32 |
Author | Seydi, Ousmane Djidjou-Demasse, Ramsès Goudiaby, Ibou |
Author_xml | – sequence: 1 givenname: Ramsès surname: Djidjou-Demasse fullname: Djidjou-Demasse, Ramsès organization: MIVEGEC, CNRS, IRD, University of Montpellier, Département Tronc Commun, École Polytechnique de Thiès – sequence: 2 givenname: Ibou surname: Goudiaby fullname: Goudiaby, Ibou organization: LMA, Université Assane Seck de Ziguinchor – sequence: 3 givenname: Ousmane orcidid: 0000-0001-5702-2575 surname: Seydi fullname: Seydi, Ousmane email: oseydi@ept.sn organization: Département Tronc Commun, École Polytechnique de Thiès |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37479899$$D View this record in MEDLINE/PubMed https://hal.science/hal-03883208$$DView record in HAL |
BookMark | eNqNkcFu3CAQhlGVqtls-wI9VJZ6aQ9OBjAYH6OoTSqtlEtz6QVhwF1HGLZgZ7VvX1xvEimHqAeEQN_PzHycoRMfvEXoI4ZzDFBfJAAiWAmEloAbzsv9G7TCFSUlrjA_QSugQEsuMDlFZyndA-CaNfgdOqV1VTeiaVbo13UM-3FbtGHyplB5jdto0zY4U5iDV0Oviy7EIpdW0xh8GMKU5pOxPll3KIztem9NYR-Cm8Y--GIXQ-vskN6jt51yyX447mt09_3bz6ubcnN7_ePqclPqitGxpIC7VrScka7mTGGjcctxwypqG66hNgpUa0BobZhqsCCKctayrgHOgbGOrhFd3p38Th32yjm5i_2g4kFikLMpuZiS2ZT8Z0ruc-rrktqqZz6oXt5cbuR8B1QISkA8kMx-Wdg82p_JplEOfdLWOeVt1iGJqDAQTLL7Nfr8Ar0PU_R5_pmCCjPGaKY-HampHax5qv_4LxkQC6BjSCnaTup-VLPeMarevT4YeRH9LxtHhynD_reNz22_kvoLkenBiA |
CitedBy_id | crossref_primary_10_1016_j_jmaa_2025_129251 crossref_primary_10_1007_s10884_025_10424_8 |
Cites_doi | 10.1007/978-3-031-04616-2_4 10.1126/science.7063839 10.1111/j.1467-9574.1996.tb01482.x 10.1007/s00285-019-01375-y 10.1007/s10884-015-9425-2 10.1016/S0025-5564(02)00108-6 10.1007/BFb0089647 10.1137/080732870 10.1016/j.nonrwa.2021.103393 10.1142/S0218202517500051 10.4064/sm-126-3-219-233 10.1155/S1085337599000214 10.1007/978-3-0348-0087-7 10.1007/s00285-006-0015-0 10.1007/978-3-030-01506-0 10.1016/j.tree.2018.02.004 10.1007/BF00178324 10.1007/s00285-011-0463-z 10.1007/s10884-017-9601-7 10.1090/S0065-9266-09-00568-7 10.1016/j.mbs.2007.07.005 10.1007/s10884-008-9111-8 10.1007/s00285-010-0354-8 10.1093/oso/9780198545996.001.0001 10.1090/surv/070 10.4153/S0008414X20000541 10.1016/j.jde.2008.01.007 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION NPM 3V. 7TK 7TM 7U9 7X7 7XB 88A 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ JQ2 K7- K9. L6V LK8 M0S M1P M7N M7P M7S M7Z P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 1XC VOOES ADTOC UNPAY |
DOI | 10.1007/s00285-023-01966-w |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Algology Mycology and Protozoology Abstracts (Microbiology C) ProQuest Biological Science Engineering Database Biochemistry Abstracts 1 ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef PubMed Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Computer Science Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Mathematics |
EISSN | 1432-1416 |
ExternalDocumentID | oai:HAL:hal-03883208v1 oai_HAL_hal_03883208v2 37479899 10_1007_s00285_023_01966_w |
Genre | Journal Article |
GrantInformation_xml | – fundername: ANR grantid: ANR-21-CE45-000 |
GroupedDBID | --- -52 -5D -5G -BR -EM -Y2 -~C -~X .86 06D 0R~ 0VY 186 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 3-Y 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 78A 7X7 88A 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAGAY AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP D0L DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMB EMOBN EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW L6V LAS LK8 LLZTM M0L M1P M4Y M7P M7S MA- MQGED MVM N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQQKQ PROAC PSQYO PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZN T13 T16 TN5 TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WIP WJK WK6 WK8 YLTOR YQT Z45 Z7U ZMTXR ZWQNP ZXP ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO NPM 7TK 7TM 7U9 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ H94 JQ2 K9. M7N M7Z P64 PKEHL PQEST PQUKI PRINS 7X8 1XC VOOES ADTOC UNPAY |
ID | FETCH-LOGICAL-c453t-301fb8b652f765a1dc1b619543e96c07da0abd08ccd5a9182a365b5f9066055f3 |
IEDL.DBID | AGYKE |
ISSN | 0303-6812 1432-1416 |
IngestDate | Sun Sep 07 11:22:54 EDT 2025 Fri Sep 12 12:36:49 EDT 2025 Thu Sep 04 23:56:20 EDT 2025 Fri Jul 25 19:22:42 EDT 2025 Mon Jul 21 05:53:44 EDT 2025 Wed Oct 01 02:44:43 EDT 2025 Thu Apr 24 23:02:04 EDT 2025 Fri Feb 21 02:43:24 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Threshold dynamics Evolutionary systems 47N60 92D25 37B55 47D62 Reproduction number Growth bound 34K20 Reproduction number Growth bound Threshold dynamics evolutionary systems Mathematics Subject Classification 34K20 37B55 47D62 47N60 92D25 evolutionary systems |
Language | English |
License | 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 other-oa |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c453t-301fb8b652f765a1dc1b619543e96c07da0abd08ccd5a9182a365b5f9066055f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5702-2575 0000-0003-1684-5190 |
OpenAccessLink | https://hal.science/hal-03883208 |
PMID | 37479899 |
PQID | 2840415553 |
PQPubID | 54026 |
ParticipantIDs | unpaywall_primary_10_1007_s00285_023_01966_w hal_primary_oai_HAL_hal_03883208v2 proquest_miscellaneous_2841021214 proquest_journals_2840415553 pubmed_primary_37479899 crossref_citationtrail_10_1007_s00285_023_01966_w crossref_primary_10_1007_s00285_023_01966_w springer_journals_10_1007_s00285_023_01966_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationTitle | Journal of mathematical biology |
PublicationTitleAbbrev | J. Math. Biol |
PublicationTitleAlternate | J Math Biol |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V Springer |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: Springer |
References | AndersonRMMayRInfectious diseases of humans, dynamics and control1991OxfordOxford University Press ArendtWBattyCJHieberMNeubranderFVector-valued Laplace transforms and Cauchy problems2011BaselSpringer10.1007/978-3-0348-0087-71226.34002 BacaërNGuernaouiSThe epidemic threshold of vector-borne diseases with seasonalityJ Math Biol2006533421436225177910.1007/s00285-006-0015-01098.92056 WangWZhaoX-QThreshold dynamics for compartmental epidemic models in periodic environmentsJ Dyn Differ Equ2008203699717242944210.1007/s10884-008-9111-81157.34041 RhandiAExtrapolation methods to solve non-autonomous retarded partial differential equationsStud Math19971263219233147592010.4064/sm-126-3-219-2330907.47041 MacdonaldGThe analysis of the sporozoite rateTrop Dis Bull1952496569586 RichardQChoisyMLefèvreTDjidjou-DemasseRHuman-vector malaria transmission model structured by age, time since infection and waning immunityNonlinear Anal Real World Appl202263429030310.1016/j.nonrwa.2021.1033931480.92212 Djidjou-DemasseRDucrotAFabreFSteady state concentration for a phenotypic structured problem modeling the evolutionary epidemiology of spore producing pathogensMath Models Methods Appl Sci20172702385426360696010.1142/S02182025175000511360.92077 Bacaër N, Ait Dads EH (2011) Genealogy with seasonality, the basic reproduction number, and the influenza pandemic. J Math Biol 62(5):741–762 Dietz K (1975) Transmission and control of arbovirus diseases. In: Transmission and control of arbovirus diseases. Society for Industrial and Applied Mathematics, Philadelphia ZhaoX-QBasic reproduction ratios for periodic compartmental models with time delayJ Dyn Differ Equ20172916782361296610.1007/s10884-015-9425-21365.34145 Magal P, Ruan S (2018) Theory and applications of abstract semilinear Cauchy problems, vol 201. Applied Mathematical Sciences. Springer International Publishing, Cham BacaërNOuifkiRGrowth rate and basic reproduction number for population models with a simple periodic factorMath Biosci20072102647658237448610.1016/j.mbs.2007.07.0051133.92023 GühringGRäbigerFAsymptotic properties of mild solutions of nonautonomous evolution equations with applications to retarded differential equationsAbstr Appl Anal19994169194181123410.1155/S10853375990002140987.34062 Magal P, Ruan S (2009) Center manifolds for semilinear equations with non-dense domain and applications to Hopf bifurcation in age structured models. American Mathematical Society LiangXZhangLZhaoX-QBasic reproduction ratios for periodic abstract functional differential equations (with application to a spatial model for Lyme disease)J Dyn Differ Equ201931312471278399207110.1007/s10884-017-9601-71425.34086 DiekmannOHeesterbeekJAPMathematical epidemiology of infectious diseases: model building, analysis and interpretation2000ChichesterWiley-Blackwell0997.92505 InabaHThe basic reproduction number R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_0$$\end{document} in time-heterogeneous environmentsJ Math Biol2019792731764398271010.1007/s00285-019-01375-y1418.92170 Chicone C, Latushkin Y (1999) Evolution semigroups in dynamical systems and differential equations, vol 70. mathematical surveys and monographs. American Mathematical Society, Providence, Rhode Island Anderson RM, May RM (1982) Directly transmitted infections diseases: Control by vaccination. Science 215(4536):1053–1060 GühringGRuessWMRäbigerFLinearized stability for semilinear non-autonomous evolution equations with applications to retarded differential equationsDiffer Integr Equ2000134–650352717500380990.34068 LionSMetzJAJBeyond R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_0$$\end{document} maximisation: on pathogen evolution and environmental dimensionsTrends Ecol Evol201833645847310.1016/j.tree.2018.02.004 ThiemeHRSpectral bound and reproduction number for infinite-dimensional population structure and time heterogeneitySIAM J Appl Math2009701188211250508510.1137/0807328701191.47089 HeesterbeekJPDietzKThe concept of R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_0$$\end{document} in epidemic theoryStat Neerl19965018911010.1111/j.1467-9574.1996.tb01482.x0854.92018 DiekmannOHeesterbeekJAMetzJAOn the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populationsJ Math Biol1990284365382105704410.1007/BF001783240726.92018 InabaHOn a new perspective of the basic reproduction number in heterogeneous environmentsJ Math Biol2012652309348294451310.1007/s00285-011-0463-z1303.92117 van den DriesschePWatmoughJReproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmissionMath Biosci200218012948195074710.1016/S0025-5564(02)00108-61015.92036 Djidjou-Demasse R, Lemdjo C, Seydi O (2022) Global dynamics of a spore producing pathogens epidemic system with nonlocal diffusion process. In: Seck D, Kangni K, Nang P, Salomon Sambou M (eds) Nonlinear analysis. Geometry and Applications, Trends in Mathematics. Springer International Publishing, Cham, pp 83–120 Henry D (1981) geometric theory of semilinear parabolic equations, vol 840. Lecture Notes in Mathematics. Springer, Berlin ThiemeHRSemiflows generated by Lipschitz perturbations of non-densely defined operatorsDiffer Integr Equ1990361035106610730560734.34059 LiuZMagalPRuanSProjectors on the generalized eigenspaces for functional differential equations using integrated semigroupsJ Differ Equ2008244717841809240443910.1016/j.jde.2008.01.0071178.34072 MagalPSeydiOVariation of constants formula and exponential dichotomy for nonautonomous non-densely defined Cauchy problemsCan J Math202173513471389432586810.4153/S0008414X200005411496.34096 Dieye M, Djidjou-Demasse R, Seydi O (2022) Flow invariance for non densely defined Cauchy problems 1966_CR17 HR Thieme (1966_CR29) 1990; 3 G Gühring (1966_CR15) 2000; 13 P van den Driessche (1966_CR31) 2002; 180 1966_CR13 JP Heesterbeek (1966_CR16) 1996; 50 1966_CR10 H Inaba (1966_CR19) 2019; 79 1966_CR11 G Macdonald (1966_CR23) 1952; 49 P Magal (1966_CR26) 2021; 73 N Bacaër (1966_CR6) 2007; 210 N Bacaër (1966_CR5) 2006; 53 RM Anderson (1966_CR1) 1991 W Arendt (1966_CR3) 2011 S Lion (1966_CR21) 2018; 33 G Gühring (1966_CR14) 1999; 4 H Inaba (1966_CR18) 2012; 65 X-Q Zhao (1966_CR33) 2017; 29 Q Richard (1966_CR28) 2022; 63 1966_CR24 1966_CR25 Z Liu (1966_CR22) 2008; 244 R Djidjou-Demasse (1966_CR12) 2017; 27 1966_CR4 O Diekmann (1966_CR9) 2000 1966_CR2 W Wang (1966_CR32) 2008; 20 A Rhandi (1966_CR27) 1997; 126 X Liang (1966_CR20) 2019; 31 1966_CR7 O Diekmann (1966_CR8) 1990; 28 HR Thieme (1966_CR30) 2009; 70 |
References_xml | – reference: InabaHThe basic reproduction number R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_0$$\end{document} in time-heterogeneous environmentsJ Math Biol2019792731764398271010.1007/s00285-019-01375-y1418.92170 – reference: BacaërNOuifkiRGrowth rate and basic reproduction number for population models with a simple periodic factorMath Biosci20072102647658237448610.1016/j.mbs.2007.07.0051133.92023 – reference: DiekmannOHeesterbeekJAPMathematical epidemiology of infectious diseases: model building, analysis and interpretation2000ChichesterWiley-Blackwell0997.92505 – reference: RhandiAExtrapolation methods to solve non-autonomous retarded partial differential equationsStud Math19971263219233147592010.4064/sm-126-3-219-2330907.47041 – reference: GühringGRäbigerFAsymptotic properties of mild solutions of nonautonomous evolution equations with applications to retarded differential equationsAbstr Appl Anal19994169194181123410.1155/S10853375990002140987.34062 – reference: van den DriesschePWatmoughJReproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmissionMath Biosci200218012948195074710.1016/S0025-5564(02)00108-61015.92036 – reference: ArendtWBattyCJHieberMNeubranderFVector-valued Laplace transforms and Cauchy problems2011BaselSpringer10.1007/978-3-0348-0087-71226.34002 – reference: Djidjou-DemasseRDucrotAFabreFSteady state concentration for a phenotypic structured problem modeling the evolutionary epidemiology of spore producing pathogensMath Models Methods Appl Sci20172702385426360696010.1142/S02182025175000511360.92077 – reference: RichardQChoisyMLefèvreTDjidjou-DemasseRHuman-vector malaria transmission model structured by age, time since infection and waning immunityNonlinear Anal Real World Appl202263429030310.1016/j.nonrwa.2021.1033931480.92212 – reference: ThiemeHRSemiflows generated by Lipschitz perturbations of non-densely defined operatorsDiffer Integr Equ1990361035106610730560734.34059 – reference: MacdonaldGThe analysis of the sporozoite rateTrop Dis Bull1952496569586 – reference: BacaërNGuernaouiSThe epidemic threshold of vector-borne diseases with seasonalityJ Math Biol2006533421436225177910.1007/s00285-006-0015-01098.92056 – reference: GühringGRuessWMRäbigerFLinearized stability for semilinear non-autonomous evolution equations with applications to retarded differential equationsDiffer Integr Equ2000134–650352717500380990.34068 – reference: WangWZhaoX-QThreshold dynamics for compartmental epidemic models in periodic environmentsJ Dyn Differ Equ2008203699717242944210.1007/s10884-008-9111-81157.34041 – reference: ZhaoX-QBasic reproduction ratios for periodic compartmental models with time delayJ Dyn Differ Equ20172916782361296610.1007/s10884-015-9425-21365.34145 – reference: LiangXZhangLZhaoX-QBasic reproduction ratios for periodic abstract functional differential equations (with application to a spatial model for Lyme disease)J Dyn Differ Equ201931312471278399207110.1007/s10884-017-9601-71425.34086 – reference: AndersonRMMayRInfectious diseases of humans, dynamics and control1991OxfordOxford University Press – reference: Anderson RM, May RM (1982) Directly transmitted infections diseases: Control by vaccination. Science 215(4536):1053–1060 – reference: Dietz K (1975) Transmission and control of arbovirus diseases. In: Transmission and control of arbovirus diseases. Society for Industrial and Applied Mathematics, Philadelphia – reference: InabaHOn a new perspective of the basic reproduction number in heterogeneous environmentsJ Math Biol2012652309348294451310.1007/s00285-011-0463-z1303.92117 – reference: ThiemeHRSpectral bound and reproduction number for infinite-dimensional population structure and time heterogeneitySIAM J Appl Math2009701188211250508510.1137/0807328701191.47089 – reference: LiuZMagalPRuanSProjectors on the generalized eigenspaces for functional differential equations using integrated semigroupsJ Differ Equ2008244717841809240443910.1016/j.jde.2008.01.0071178.34072 – reference: Dieye M, Djidjou-Demasse R, Seydi O (2022) Flow invariance for non densely defined Cauchy problems – reference: MagalPSeydiOVariation of constants formula and exponential dichotomy for nonautonomous non-densely defined Cauchy problemsCan J Math202173513471389432586810.4153/S0008414X200005411496.34096 – reference: Chicone C, Latushkin Y (1999) Evolution semigroups in dynamical systems and differential equations, vol 70. mathematical surveys and monographs. American Mathematical Society, Providence, Rhode Island – reference: Bacaër N, Ait Dads EH (2011) Genealogy with seasonality, the basic reproduction number, and the influenza pandemic. J Math Biol 62(5):741–762 – reference: LionSMetzJAJBeyond R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_0$$\end{document} maximisation: on pathogen evolution and environmental dimensionsTrends Ecol Evol201833645847310.1016/j.tree.2018.02.004 – reference: Magal P, Ruan S (2009) Center manifolds for semilinear equations with non-dense domain and applications to Hopf bifurcation in age structured models. American Mathematical Society – reference: Henry D (1981) geometric theory of semilinear parabolic equations, vol 840. Lecture Notes in Mathematics. Springer, Berlin – reference: Djidjou-Demasse R, Lemdjo C, Seydi O (2022) Global dynamics of a spore producing pathogens epidemic system with nonlocal diffusion process. In: Seck D, Kangni K, Nang P, Salomon Sambou M (eds) Nonlinear analysis. Geometry and Applications, Trends in Mathematics. Springer International Publishing, Cham, pp 83–120 – reference: DiekmannOHeesterbeekJAMetzJAOn the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populationsJ Math Biol1990284365382105704410.1007/BF001783240726.92018 – reference: HeesterbeekJPDietzKThe concept of R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_0$$\end{document} in epidemic theoryStat Neerl19965018911010.1111/j.1467-9574.1996.tb01482.x0854.92018 – reference: Magal P, Ruan S (2018) Theory and applications of abstract semilinear Cauchy problems, vol 201. Applied Mathematical Sciences. Springer International Publishing, Cham – ident: 1966_CR13 doi: 10.1007/978-3-031-04616-2_4 – ident: 1966_CR2 doi: 10.1126/science.7063839 – volume: 50 start-page: 89 issue: 1 year: 1996 ident: 1966_CR16 publication-title: Stat Neerl doi: 10.1111/j.1467-9574.1996.tb01482.x – volume: 79 start-page: 731 issue: 2 year: 2019 ident: 1966_CR19 publication-title: J Math Biol doi: 10.1007/s00285-019-01375-y – volume: 29 start-page: 67 issue: 1 year: 2017 ident: 1966_CR33 publication-title: J Dyn Differ Equ doi: 10.1007/s10884-015-9425-2 – volume-title: Mathematical epidemiology of infectious diseases: model building, analysis and interpretation year: 2000 ident: 1966_CR9 – volume: 13 start-page: 503 issue: 4–6 year: 2000 ident: 1966_CR15 publication-title: Differ Integr Equ – ident: 1966_CR11 – volume: 180 start-page: 29 issue: 1 year: 2002 ident: 1966_CR31 publication-title: Math Biosci doi: 10.1016/S0025-5564(02)00108-6 – volume: 49 start-page: 569 issue: 6 year: 1952 ident: 1966_CR23 publication-title: Trop Dis Bull – ident: 1966_CR17 doi: 10.1007/BFb0089647 – volume: 70 start-page: 188 issue: 1 year: 2009 ident: 1966_CR30 publication-title: SIAM J Appl Math doi: 10.1137/080732870 – volume: 63 year: 2022 ident: 1966_CR28 publication-title: Nonlinear Anal Real World Appl doi: 10.1016/j.nonrwa.2021.103393 – volume: 27 start-page: 385 issue: 02 year: 2017 ident: 1966_CR12 publication-title: Math Models Methods Appl Sci doi: 10.1142/S0218202517500051 – volume: 126 start-page: 219 issue: 3 year: 1997 ident: 1966_CR27 publication-title: Stud Math doi: 10.4064/sm-126-3-219-233 – volume: 4 start-page: 169 year: 1999 ident: 1966_CR14 publication-title: Abstr Appl Anal doi: 10.1155/S1085337599000214 – volume-title: Vector-valued Laplace transforms and Cauchy problems year: 2011 ident: 1966_CR3 doi: 10.1007/978-3-0348-0087-7 – volume: 53 start-page: 421 issue: 3 year: 2006 ident: 1966_CR5 publication-title: J Math Biol doi: 10.1007/s00285-006-0015-0 – ident: 1966_CR25 doi: 10.1007/978-3-030-01506-0 – volume: 33 start-page: 458 issue: 6 year: 2018 ident: 1966_CR21 publication-title: Trends Ecol Evol doi: 10.1016/j.tree.2018.02.004 – volume: 28 start-page: 365 issue: 4 year: 1990 ident: 1966_CR8 publication-title: J Math Biol doi: 10.1007/BF00178324 – volume: 65 start-page: 309 issue: 2 year: 2012 ident: 1966_CR18 publication-title: J Math Biol doi: 10.1007/s00285-011-0463-z – volume: 31 start-page: 1247 issue: 3 year: 2019 ident: 1966_CR20 publication-title: J Dyn Differ Equ doi: 10.1007/s10884-017-9601-7 – ident: 1966_CR24 doi: 10.1090/S0065-9266-09-00568-7 – volume: 210 start-page: 647 issue: 2 year: 2007 ident: 1966_CR6 publication-title: Math Biosci doi: 10.1016/j.mbs.2007.07.005 – volume: 20 start-page: 699 issue: 3 year: 2008 ident: 1966_CR32 publication-title: J Dyn Differ Equ doi: 10.1007/s10884-008-9111-8 – ident: 1966_CR4 doi: 10.1007/s00285-010-0354-8 – volume-title: Infectious diseases of humans, dynamics and control year: 1991 ident: 1966_CR1 doi: 10.1093/oso/9780198545996.001.0001 – ident: 1966_CR7 doi: 10.1090/surv/070 – ident: 1966_CR10 – volume: 73 start-page: 1347 issue: 5 year: 2021 ident: 1966_CR26 publication-title: Can J Math doi: 10.4153/S0008414X20000541 – volume: 244 start-page: 1784 issue: 7 year: 2008 ident: 1966_CR22 publication-title: J Differ Equ doi: 10.1016/j.jde.2008.01.007 – volume: 3 start-page: 1035 issue: 6 year: 1990 ident: 1966_CR29 publication-title: Differ Integr Equ |
SSID | ssj0017591 |
Score | 2.3914318 |
Snippet | We propose a general framework for simultaneously calculating the threshold value for population growth and determining the sign of the growth bound of the... |
SourceID | unpaywall hal proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 32 |
SubjectTerms | Analysis of PDEs Applications of Mathematics Banach spaces Dynamical Systems Epidemiology Evolution Linear operators Malaria Mathematical and Computational Biology Mathematics Mathematics and Statistics Operators (mathematics) Pathogens Population genetics Population growth Topology |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB7RIEQ5IF6lLgUtiBtd1fZ67fhUVVXTCAEnKkVcrH2qhyhNsZMo_54Ze-MUVYp6yMHJ-pGZ2dlvPDvzAXzFVVxnicHopLSGZz4xXMXW8cIbheZSGOkpUPz5Kx9fZ98nchJeuNVhW-XGJ7aO2t4aekd-im6UqsmlFGfzO06sUZRdDRQae_A0SdGSqFJ8dNVnEQrZMeahm-bUZysUzbSlcxRsUG0y7SZCyM9X_y1Meze0LfIh5ryXL30BzxezuVqv1HR6b0kavYKXAUuy8075r-GJm72BZx275Pot_LnCELu5YZqYk5jCT4OKqynfxGxHRM8QsrIZgvFFQ8UNt4uajtAV1W66ZtZ5xKCWuWWwTxboZ-p3cD26_H0x5oFKgZtMiobjNPZ6qHOZ-iKXKrEm0Tk1exOuzE1cWBUrbeOhMVaqEmMOJXKppS8RkcRSenEAA7y_OwSGJ-GaVgydz1UmrEMAKJwp0E9lLs10HEGykWNlQp9xoruYVn2H5Fb2Fcq-amVfrSL41p8z77ps7Bz9BdXTD6QG2ePzHxV9R71tRBoPl2kExxvtVWFa1tXWiCL43P-ME4qyJGrmUMw0hujO0ySL4H2n9f5WAoOvEiPUCE42ZrC9-K4HPulN5RH_72j3o3-A_bS1W9qFeAyD5u_CfURk1OhPrfn_A_aLBm0 priority: 102 providerName: ProQuest |
Title | Growth bound and threshold dynamic for nonautonomous nondensely defined evolution problems |
URI | https://link.springer.com/article/10.1007/s00285-023-01966-w https://www.ncbi.nlm.nih.gov/pubmed/37479899 https://www.proquest.com/docview/2840415553 https://www.proquest.com/docview/2841021214 https://hal.science/hal-03883208 |
UnpaywallVersion | submittedVersion |
Volume | 87 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1432-1416 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017591 issn: 1432-1416 databaseCode: AFBBN dateStart: 19740501 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1432-1416 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0017591 issn: 1432-1416 databaseCode: 8FG dateStart: 19971101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1432-1416 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017591 issn: 1432-1416 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1432-1416 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017591 issn: 1432-1416 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9NAEB6RVAj6wFGgGEq0IN6oK1_r4zFBOQQ0QohIgRdrL6sSUVphu1H49czEa1MOVfQhjhyv19n1tzszmplvAF6jFJeRr9A6ybRyo8JXrvC0cZNCCYRLonhBhuLpPJ4tondLvrRJYWUb7d66JHc7dZfsRuYBZRNT_A8q6e6mB3ucDJQ-7A2nX96PO-9BwptKebg9u8SvZZNl_t3LbwKpd0bhkH_rmlf8pPtwp15fiO1GrFZXRNHkPizaQTQRKN9O6kqeqB9_8DvedJQP4J7VTdmwAdNDuGXWB3C7qVa5PYD9047itXwEX6dowFdnTFJdJibwUyEsSvJmMd2UuWeoELM1qvp1RakT53VJZ7jRlWa1ZdoUqOFqZi4t-pktblM-hsVk_PntzLWFGlwV8bBycZMoZCpjHhRJzIWvlS9jopILTRYrL9HCE1J7qVKaiwwtGhHGXPIiQ33H47wIn0Afn2-eAsObUGImqSliEYXaoHoZGpXgLhiZIJKeA377tnJlWcypmMYq7_iXdzOY4wzmuxnMNw686e65aDg8rm39CkHQNST67dnwQ06_EXNOGHjpZeDAUYuR3C76MkdJT4QHnIcOvOwu43IlH4xYG5xmakPF1AM_cuCwwVb3qBBNuwztXweOW2z86vy6P3zcAfI_xvfsZr0_h7vBDo0U83gE_ep7bV6gHlbJAfSSZYLHdDId4BKcjEbzgV2K-D0azz9-wquLYPgTeTsrgg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB61Raj0UPHGbYEFwYla2N5dOz4gVAElpWlPrRRxMftUD1EasNMof4rfyIxfLUKKuPTgg-31a_bbeXh35gN4g1Zci9hgdJJbEwofm1BF1oWZNwrhkhnpKVA8OU2H5-LbWI7X4HeXC0PLKjudWCtqe2noH_l7VKOUTS4l_zj7GRJrFM2udhQaDSyO3XKBIVv54egz9u_bJDn8cvZpGLasAqERklchItrrgU5l4rNUqtiaWKdU94y7PDVRZlWktI0GxlipcnS_FU-llj5H4xxJ6Tnedx3uCB4JqtWfjfsADy1xw9CHZiGkul5tkk6dqkfBDeVC0-olDDHCxV-GcP2ClmH-6-PemJ_dgs35dKaWCzWZ3DCBh_dhu_Vd2UEDtgew5qYP4W7DZrl8BN-_YkhfXTBNTE1M4VYhUEqa32K2Ib5n6CKzKTr_84qSKS7nJe2h6ivdZMms8-jzWuau2vHAWrqb8jGc34qQn8AGPt89A4YXoQ3NBs6nSnDr0OHkzmSoF4VLhI4CiDs5Fqata070GpOir8hcy75A2Re17ItFAO_6a2ZNVY-VrV9j9_QNqSD38GBU0DGqpcOTaHCVBLDX9V7RqoGyuAZtAK_60ziAaVZGTR2KmdoQvXoSiwCeNr3eP4pjsJdjRBzAfgeD65uveuH9Hir_8X07q1_9JWwOz05Gxejo9HgX7iU1hmkF5B5sVL_m7jl6ZZV-UQ8FBj9ue-z9AWW2Qp0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEC0lQWwHxI4hQIPgRFqx3W57fEAoIgwTEiIORBrlYtq9KEiDM2BPRv41vo4qbwlCGnHJwQfb7a26tueuBeAVWvE8CjSik9RoHrlAc-UbyxOnFbJLoqUjoPj5MJ4cRZ-mcroGv_tcGAqr7HVio6jNqaZ_5NuoRimbXEqx7bqwiC-743fzn5w6SNFKa99Oo2WRfVsvEb6Vb_d2ca5fh-H4w9f3E951GOA6kqLiyN0uH-WxDF0SSxUYHeQx1UATNo21nxjlq9z4I62NVCm64krEMpcuRUPtS-kE3ncdriQiEhROlkwHsIdWue3WhyaCU42vLmGnSdsjoEN50RTJhHCDL_8yiusnFJL5r797Ya32JlxfFHNVL9VsdsEcjm_Drc6PZTst492BNVvchattZ8v6Hhx_RHhfnbCcujYxhVuFTFPSWhczdaF-fNcM3WVWIBBYVJRYcbooaQ_VYGlnNTPWof9rmD3rZIN1rW_K-3B0KUR-ABv4fPsIGF6E9jQZWRerSBiLzqewOkEdGdkwyn0Pgp6Ome5qnFOrjVk2VGduaJ8h7bOG9tnSgzfDNfO2wsfK0S9xeoaBVJx7snOQ0TGqqyNCf3QWerDZz17WqYQyO2dgD14Mp1GYaYVGFRbJTGOo1XoYRB48bGd9eJRA4JciOvZgq2eD85uveuGtgVX-4_ser37153ANpS472DvcfwI3woaFKRhyEzaqXwv7FB20Kn_WSAKDb5cten8A1FJG2A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Growth+bound+and+threshold+dynamic+for+nonautonomous+nondensely+defined+evolution+problems&rft.jtitle=Journal+of+mathematical+biology&rft.au=Djidjou-Demasse%2C+Rams%C3%A8s&rft.au=Goudiaby%2C+Ibou&rft.au=Seydi%2C+Ousmane&rft.date=2023-08-01&rft.eissn=1432-1416&rft.volume=87&rft.issue=2&rft.spage=32&rft_id=info:doi/10.1007%2Fs00285-023-01966-w&rft_id=info%3Apmid%2F37479899&rft.externalDocID=37479899 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0303-6812&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0303-6812&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0303-6812&client=summon |