Growth bound and threshold dynamic for nonautonomous nondensely defined evolution problems

We propose a general framework for simultaneously calculating the threshold value for population growth and determining the sign of the growth bound of the evolution family generated by the problem below d v ( t ) d t = A v ( t ) + F ( t ) v ( t ) - V ( t ) v ( t ) , where A : D ( A ) ⊂ X → X is a H...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical biology Vol. 87; no. 2; p. 32
Main Authors Djidjou-Demasse, Ramsès, Goudiaby, Ibou, Seydi, Ousmane
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2023
Springer Nature B.V
Springer
Subjects
Online AccessGet full text
ISSN0303-6812
1432-1416
1432-1416
DOI10.1007/s00285-023-01966-w

Cover

Abstract We propose a general framework for simultaneously calculating the threshold value for population growth and determining the sign of the growth bound of the evolution family generated by the problem below d v ( t ) d t = A v ( t ) + F ( t ) v ( t ) - V ( t ) v ( t ) , where A : D ( A ) ⊂ X → X is a Hille–Yosida linear operator (possibly unbounded, non-densely defined) on a Banach space ( X , ‖ · ‖ ) , and the maps t ∈ R ↦ V ( t ) ∈ L ( X 0 , X ) , t ∈ R ↦ F ( t ) ∈ L ( X 0 , X ) are p -periodic in time and continuous in the operator norm topology. We give applications of our approach for two general examples of an age-structured model, and a delay differential system. Other examples concern the dynamics of a nonlocal problem arising in population genetics and the dynamics of a structured human-vector malaria model.
AbstractList We propose a general framework for simultaneously calculating the threshold value for population growth and determining the sign of the growth bound of the evolution family generated by the problem below dv(t)dt=Av(t)+F(t)v(t)-V(t)v(t),where A:D(A)⊂X→X is a Hille–Yosida linear operator (possibly unbounded, non-densely defined) on a Banach space (X,‖·‖), and the maps t∈R↦V(t)∈L(X0,X), t∈R↦F(t)∈L(X0,X) are p-periodic in time and continuous in the operator norm topology. We give applications of our approach for two general examples of an age-structured model, and a delay differential system. Other examples concern the dynamics of a nonlocal problem arising in population genetics and the dynamics of a structured human-vector malaria model.
We propose a general framework for simultaneously calculating the threshold value for population growth and determining the sign of the growth bound of the evolution family generated by the problem below [Formula: see text]where [Formula: see text] is a Hille-Yosida linear operator (possibly unbounded, non-densely defined) on a Banach space [Formula: see text], and the maps [Formula: see text], [Formula: see text] are p-periodic in time and continuous in the operator norm topology. We give applications of our approach for two general examples of an age-structured model, and a delay differential system. Other examples concern the dynamics of a nonlocal problem arising in population genetics and the dynamics of a structured human-vector malaria model.
We propose a general framework for simultaneously calculating the threshold value for population growth and determining the sign of the growth bound of the evolution family generated by the problem below d v ( t ) d t = A v ( t ) + F ( t ) v ( t ) - V ( t ) v ( t ) , where A : D ( A ) ⊂ X → X is a Hille–Yosida linear operator (possibly unbounded, non-densely defined) on a Banach space ( X , ‖ · ‖ ) , and the maps t ∈ R ↦ V ( t ) ∈ L ( X 0 , X ) , t ∈ R ↦ F ( t ) ∈ L ( X 0 , X ) are p -periodic in time and continuous in the operator norm topology. We give applications of our approach for two general examples of an age-structured model, and a delay differential system. Other examples concern the dynamics of a nonlocal problem arising in population genetics and the dynamics of a structured human-vector malaria model.
We propose a general framework for simultaneously calculating the threshold value for population growth and determining the sign of the growth bound of the evolution family generated by the problem below dv(t) dt = Av(t) + F(t)v(t) − V(t)v(t), where A : D(A) ⊂ X → X is a Hille-Yosida linear operator (possibly unbounded, non-densely defined) on a Banach space (X, ∥ • ∥), and the maps t ∈ R → V(t) ∈ L(X 0 , X), t ∈ R → F(t) ∈ L(X 0 , X) are p-periodic in time and continuous in the operator norm topology. We give applications of our approach for two general examples of an age-structured model, and a delay differential system. Other examples concern the dynamics of a nonlocal problem arising in population genetics and the dynamics of a structured human-vector malaria model.
We propose a general framework for simultaneously calculating the threshold value for population growth and determining the sign of the growth bound of the evolution family generated by the problem below [Formula: see text]where [Formula: see text] is a Hille-Yosida linear operator (possibly unbounded, non-densely defined) on a Banach space [Formula: see text], and the maps [Formula: see text], [Formula: see text] are p-periodic in time and continuous in the operator norm topology. We give applications of our approach for two general examples of an age-structured model, and a delay differential system. Other examples concern the dynamics of a nonlocal problem arising in population genetics and the dynamics of a structured human-vector malaria model.We propose a general framework for simultaneously calculating the threshold value for population growth and determining the sign of the growth bound of the evolution family generated by the problem below [Formula: see text]where [Formula: see text] is a Hille-Yosida linear operator (possibly unbounded, non-densely defined) on a Banach space [Formula: see text], and the maps [Formula: see text], [Formula: see text] are p-periodic in time and continuous in the operator norm topology. We give applications of our approach for two general examples of an age-structured model, and a delay differential system. Other examples concern the dynamics of a nonlocal problem arising in population genetics and the dynamics of a structured human-vector malaria model.
ArticleNumber 32
Author Seydi, Ousmane
Djidjou-Demasse, Ramsès
Goudiaby, Ibou
Author_xml – sequence: 1
  givenname: Ramsès
  surname: Djidjou-Demasse
  fullname: Djidjou-Demasse, Ramsès
  organization: MIVEGEC, CNRS, IRD, University of Montpellier, Département Tronc Commun, École Polytechnique de Thiès
– sequence: 2
  givenname: Ibou
  surname: Goudiaby
  fullname: Goudiaby, Ibou
  organization: LMA, Université Assane Seck de Ziguinchor
– sequence: 3
  givenname: Ousmane
  orcidid: 0000-0001-5702-2575
  surname: Seydi
  fullname: Seydi, Ousmane
  email: oseydi@ept.sn
  organization: Département Tronc Commun, École Polytechnique de Thiès
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37479899$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03883208$$DView record in HAL
BookMark eNqNkcFu3CAQhlGVqtls-wI9VJZ6aQ9OBjAYH6OoTSqtlEtz6QVhwF1HGLZgZ7VvX1xvEimHqAeEQN_PzHycoRMfvEXoI4ZzDFBfJAAiWAmEloAbzsv9G7TCFSUlrjA_QSugQEsuMDlFZyndA-CaNfgdOqV1VTeiaVbo13UM-3FbtGHyplB5jdto0zY4U5iDV0Oviy7EIpdW0xh8GMKU5pOxPll3KIztem9NYR-Cm8Y--GIXQ-vskN6jt51yyX447mt09_3bz6ubcnN7_ePqclPqitGxpIC7VrScka7mTGGjcctxwypqG66hNgpUa0BobZhqsCCKctayrgHOgbGOrhFd3p38Th32yjm5i_2g4kFikLMpuZiS2ZT8Z0ruc-rrktqqZz6oXt5cbuR8B1QISkA8kMx-Wdg82p_JplEOfdLWOeVt1iGJqDAQTLL7Nfr8Ar0PU_R5_pmCCjPGaKY-HampHax5qv_4LxkQC6BjSCnaTup-VLPeMarevT4YeRH9LxtHhynD_reNz22_kvoLkenBiA
CitedBy_id crossref_primary_10_1016_j_jmaa_2025_129251
crossref_primary_10_1007_s10884_025_10424_8
Cites_doi 10.1007/978-3-031-04616-2_4
10.1126/science.7063839
10.1111/j.1467-9574.1996.tb01482.x
10.1007/s00285-019-01375-y
10.1007/s10884-015-9425-2
10.1016/S0025-5564(02)00108-6
10.1007/BFb0089647
10.1137/080732870
10.1016/j.nonrwa.2021.103393
10.1142/S0218202517500051
10.4064/sm-126-3-219-233
10.1155/S1085337599000214
10.1007/978-3-0348-0087-7
10.1007/s00285-006-0015-0
10.1007/978-3-030-01506-0
10.1016/j.tree.2018.02.004
10.1007/BF00178324
10.1007/s00285-011-0463-z
10.1007/s10884-017-9601-7
10.1090/S0065-9266-09-00568-7
10.1016/j.mbs.2007.07.005
10.1007/s10884-008-9111-8
10.1007/s00285-010-0354-8
10.1093/oso/9780198545996.001.0001
10.1090/surv/070
10.4153/S0008414X20000541
10.1016/j.jde.2008.01.007
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
NPM
3V.
7TK
7TM
7U9
7X7
7XB
88A
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
JQ2
K7-
K9.
L6V
LK8
M0S
M1P
M7N
M7P
M7S
M7Z
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
1XC
VOOES
ADTOC
UNPAY
DOI 10.1007/s00285-023-01966-w
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ProQuest Biological Science
Engineering Database
Biochemistry Abstracts 1
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Computer Science Database
PubMed


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Mathematics
EISSN 1432-1416
ExternalDocumentID oai:HAL:hal-03883208v1
oai_HAL_hal_03883208v2
37479899
10_1007_s00285_023_01966_w
Genre Journal Article
GrantInformation_xml – fundername: ANR
  grantid: ANR-21-CE45-000
GroupedDBID ---
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
06D
0R~
0VY
186
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
3-Y
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
78A
7X7
88A
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAGAY
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
D0L
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
L6V
LAS
LK8
LLZTM
M0L
M1P
M4Y
M7P
M7S
MA-
MQGED
MVM
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WIP
WJK
WK6
WK8
YLTOR
YQT
Z45
Z7U
ZMTXR
ZWQNP
ZXP
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
NPM
7TK
7TM
7U9
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
H94
JQ2
K9.
M7N
M7Z
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
1XC
VOOES
ADTOC
UNPAY
ID FETCH-LOGICAL-c453t-301fb8b652f765a1dc1b619543e96c07da0abd08ccd5a9182a365b5f9066055f3
IEDL.DBID AGYKE
ISSN 0303-6812
1432-1416
IngestDate Sun Sep 07 11:22:54 EDT 2025
Fri Sep 12 12:36:49 EDT 2025
Thu Sep 04 23:56:20 EDT 2025
Fri Jul 25 19:22:42 EDT 2025
Mon Jul 21 05:53:44 EDT 2025
Wed Oct 01 02:44:43 EDT 2025
Thu Apr 24 23:02:04 EDT 2025
Fri Feb 21 02:43:24 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Threshold dynamics
Evolutionary systems
47N60
92D25
37B55
47D62
Reproduction number
Growth bound
34K20
Reproduction number Growth bound Threshold dynamics evolutionary systems Mathematics Subject Classification 34K20 37B55 47D62 47N60 92D25
evolutionary systems
Language English
License 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c453t-301fb8b652f765a1dc1b619543e96c07da0abd08ccd5a9182a365b5f9066055f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5702-2575
0000-0003-1684-5190
OpenAccessLink https://hal.science/hal-03883208
PMID 37479899
PQID 2840415553
PQPubID 54026
ParticipantIDs unpaywall_primary_10_1007_s00285_023_01966_w
hal_primary_oai_HAL_hal_03883208v2
proquest_miscellaneous_2841021214
proquest_journals_2840415553
pubmed_primary_37479899
crossref_citationtrail_10_1007_s00285_023_01966_w
crossref_primary_10_1007_s00285_023_01966_w
springer_journals_10_1007_s00285_023_01966_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Journal of mathematical biology
PublicationTitleAbbrev J. Math. Biol
PublicationTitleAlternate J Math Biol
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Springer
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: Springer
References AndersonRMMayRInfectious diseases of humans, dynamics and control1991OxfordOxford University Press
ArendtWBattyCJHieberMNeubranderFVector-valued Laplace transforms and Cauchy problems2011BaselSpringer10.1007/978-3-0348-0087-71226.34002
BacaërNGuernaouiSThe epidemic threshold of vector-borne diseases with seasonalityJ Math Biol2006533421436225177910.1007/s00285-006-0015-01098.92056
WangWZhaoX-QThreshold dynamics for compartmental epidemic models in periodic environmentsJ Dyn Differ Equ2008203699717242944210.1007/s10884-008-9111-81157.34041
RhandiAExtrapolation methods to solve non-autonomous retarded partial differential equationsStud Math19971263219233147592010.4064/sm-126-3-219-2330907.47041
MacdonaldGThe analysis of the sporozoite rateTrop Dis Bull1952496569586
RichardQChoisyMLefèvreTDjidjou-DemasseRHuman-vector malaria transmission model structured by age, time since infection and waning immunityNonlinear Anal Real World Appl202263429030310.1016/j.nonrwa.2021.1033931480.92212
Djidjou-DemasseRDucrotAFabreFSteady state concentration for a phenotypic structured problem modeling the evolutionary epidemiology of spore producing pathogensMath Models Methods Appl Sci20172702385426360696010.1142/S02182025175000511360.92077
Bacaër N, Ait Dads EH (2011) Genealogy with seasonality, the basic reproduction number, and the influenza pandemic. J Math Biol 62(5):741–762
Dietz K (1975) Transmission and control of arbovirus diseases. In: Transmission and control of arbovirus diseases. Society for Industrial and Applied Mathematics, Philadelphia
ZhaoX-QBasic reproduction ratios for periodic compartmental models with time delayJ Dyn Differ Equ20172916782361296610.1007/s10884-015-9425-21365.34145
Magal P, Ruan S (2018) Theory and applications of abstract semilinear Cauchy problems, vol 201. Applied Mathematical Sciences. Springer International Publishing, Cham
BacaërNOuifkiRGrowth rate and basic reproduction number for population models with a simple periodic factorMath Biosci20072102647658237448610.1016/j.mbs.2007.07.0051133.92023
GühringGRäbigerFAsymptotic properties of mild solutions of nonautonomous evolution equations with applications to retarded differential equationsAbstr Appl Anal19994169194181123410.1155/S10853375990002140987.34062
Magal P, Ruan S (2009) Center manifolds for semilinear equations with non-dense domain and applications to Hopf bifurcation in age structured models. American Mathematical Society
LiangXZhangLZhaoX-QBasic reproduction ratios for periodic abstract functional differential equations (with application to a spatial model for Lyme disease)J Dyn Differ Equ201931312471278399207110.1007/s10884-017-9601-71425.34086
DiekmannOHeesterbeekJAPMathematical epidemiology of infectious diseases: model building, analysis and interpretation2000ChichesterWiley-Blackwell0997.92505
InabaHThe basic reproduction number R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_0$$\end{document} in time-heterogeneous environmentsJ Math Biol2019792731764398271010.1007/s00285-019-01375-y1418.92170
Chicone C, Latushkin Y (1999) Evolution semigroups in dynamical systems and differential equations, vol 70. mathematical surveys and monographs. American Mathematical Society, Providence, Rhode Island
Anderson RM, May RM (1982) Directly transmitted infections diseases: Control by vaccination. Science 215(4536):1053–1060
GühringGRuessWMRäbigerFLinearized stability for semilinear non-autonomous evolution equations with applications to retarded differential equationsDiffer Integr Equ2000134–650352717500380990.34068
LionSMetzJAJBeyond R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_0$$\end{document} maximisation: on pathogen evolution and environmental dimensionsTrends Ecol Evol201833645847310.1016/j.tree.2018.02.004
ThiemeHRSpectral bound and reproduction number for infinite-dimensional population structure and time heterogeneitySIAM J Appl Math2009701188211250508510.1137/0807328701191.47089
HeesterbeekJPDietzKThe concept of R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_0$$\end{document} in epidemic theoryStat Neerl19965018911010.1111/j.1467-9574.1996.tb01482.x0854.92018
DiekmannOHeesterbeekJAMetzJAOn the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populationsJ Math Biol1990284365382105704410.1007/BF001783240726.92018
InabaHOn a new perspective of the basic reproduction number in heterogeneous environmentsJ Math Biol2012652309348294451310.1007/s00285-011-0463-z1303.92117
van den DriesschePWatmoughJReproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmissionMath Biosci200218012948195074710.1016/S0025-5564(02)00108-61015.92036
Djidjou-Demasse R, Lemdjo C, Seydi O (2022) Global dynamics of a spore producing pathogens epidemic system with nonlocal diffusion process. In: Seck D, Kangni K, Nang P, Salomon Sambou M (eds) Nonlinear analysis. Geometry and Applications, Trends in Mathematics. Springer International Publishing, Cham, pp 83–120
Henry D (1981) geometric theory of semilinear parabolic equations, vol 840. Lecture Notes in Mathematics. Springer, Berlin
ThiemeHRSemiflows generated by Lipschitz perturbations of non-densely defined operatorsDiffer Integr Equ1990361035106610730560734.34059
LiuZMagalPRuanSProjectors on the generalized eigenspaces for functional differential equations using integrated semigroupsJ Differ Equ2008244717841809240443910.1016/j.jde.2008.01.0071178.34072
MagalPSeydiOVariation of constants formula and exponential dichotomy for nonautonomous non-densely defined Cauchy problemsCan J Math202173513471389432586810.4153/S0008414X200005411496.34096
Dieye M, Djidjou-Demasse R, Seydi O (2022) Flow invariance for non densely defined Cauchy problems
1966_CR17
HR Thieme (1966_CR29) 1990; 3
G Gühring (1966_CR15) 2000; 13
P van den Driessche (1966_CR31) 2002; 180
1966_CR13
JP Heesterbeek (1966_CR16) 1996; 50
1966_CR10
H Inaba (1966_CR19) 2019; 79
1966_CR11
G Macdonald (1966_CR23) 1952; 49
P Magal (1966_CR26) 2021; 73
N Bacaër (1966_CR6) 2007; 210
N Bacaër (1966_CR5) 2006; 53
RM Anderson (1966_CR1) 1991
W Arendt (1966_CR3) 2011
S Lion (1966_CR21) 2018; 33
G Gühring (1966_CR14) 1999; 4
H Inaba (1966_CR18) 2012; 65
X-Q Zhao (1966_CR33) 2017; 29
Q Richard (1966_CR28) 2022; 63
1966_CR24
1966_CR25
Z Liu (1966_CR22) 2008; 244
R Djidjou-Demasse (1966_CR12) 2017; 27
1966_CR4
O Diekmann (1966_CR9) 2000
1966_CR2
W Wang (1966_CR32) 2008; 20
A Rhandi (1966_CR27) 1997; 126
X Liang (1966_CR20) 2019; 31
1966_CR7
O Diekmann (1966_CR8) 1990; 28
HR Thieme (1966_CR30) 2009; 70
References_xml – reference: InabaHThe basic reproduction number R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_0$$\end{document} in time-heterogeneous environmentsJ Math Biol2019792731764398271010.1007/s00285-019-01375-y1418.92170
– reference: BacaërNOuifkiRGrowth rate and basic reproduction number for population models with a simple periodic factorMath Biosci20072102647658237448610.1016/j.mbs.2007.07.0051133.92023
– reference: DiekmannOHeesterbeekJAPMathematical epidemiology of infectious diseases: model building, analysis and interpretation2000ChichesterWiley-Blackwell0997.92505
– reference: RhandiAExtrapolation methods to solve non-autonomous retarded partial differential equationsStud Math19971263219233147592010.4064/sm-126-3-219-2330907.47041
– reference: GühringGRäbigerFAsymptotic properties of mild solutions of nonautonomous evolution equations with applications to retarded differential equationsAbstr Appl Anal19994169194181123410.1155/S10853375990002140987.34062
– reference: van den DriesschePWatmoughJReproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmissionMath Biosci200218012948195074710.1016/S0025-5564(02)00108-61015.92036
– reference: ArendtWBattyCJHieberMNeubranderFVector-valued Laplace transforms and Cauchy problems2011BaselSpringer10.1007/978-3-0348-0087-71226.34002
– reference: Djidjou-DemasseRDucrotAFabreFSteady state concentration for a phenotypic structured problem modeling the evolutionary epidemiology of spore producing pathogensMath Models Methods Appl Sci20172702385426360696010.1142/S02182025175000511360.92077
– reference: RichardQChoisyMLefèvreTDjidjou-DemasseRHuman-vector malaria transmission model structured by age, time since infection and waning immunityNonlinear Anal Real World Appl202263429030310.1016/j.nonrwa.2021.1033931480.92212
– reference: ThiemeHRSemiflows generated by Lipschitz perturbations of non-densely defined operatorsDiffer Integr Equ1990361035106610730560734.34059
– reference: MacdonaldGThe analysis of the sporozoite rateTrop Dis Bull1952496569586
– reference: BacaërNGuernaouiSThe epidemic threshold of vector-borne diseases with seasonalityJ Math Biol2006533421436225177910.1007/s00285-006-0015-01098.92056
– reference: GühringGRuessWMRäbigerFLinearized stability for semilinear non-autonomous evolution equations with applications to retarded differential equationsDiffer Integr Equ2000134–650352717500380990.34068
– reference: WangWZhaoX-QThreshold dynamics for compartmental epidemic models in periodic environmentsJ Dyn Differ Equ2008203699717242944210.1007/s10884-008-9111-81157.34041
– reference: ZhaoX-QBasic reproduction ratios for periodic compartmental models with time delayJ Dyn Differ Equ20172916782361296610.1007/s10884-015-9425-21365.34145
– reference: LiangXZhangLZhaoX-QBasic reproduction ratios for periodic abstract functional differential equations (with application to a spatial model for Lyme disease)J Dyn Differ Equ201931312471278399207110.1007/s10884-017-9601-71425.34086
– reference: AndersonRMMayRInfectious diseases of humans, dynamics and control1991OxfordOxford University Press
– reference: Anderson RM, May RM (1982) Directly transmitted infections diseases: Control by vaccination. Science 215(4536):1053–1060
– reference: Dietz K (1975) Transmission and control of arbovirus diseases. In: Transmission and control of arbovirus diseases. Society for Industrial and Applied Mathematics, Philadelphia
– reference: InabaHOn a new perspective of the basic reproduction number in heterogeneous environmentsJ Math Biol2012652309348294451310.1007/s00285-011-0463-z1303.92117
– reference: ThiemeHRSpectral bound and reproduction number for infinite-dimensional population structure and time heterogeneitySIAM J Appl Math2009701188211250508510.1137/0807328701191.47089
– reference: LiuZMagalPRuanSProjectors on the generalized eigenspaces for functional differential equations using integrated semigroupsJ Differ Equ2008244717841809240443910.1016/j.jde.2008.01.0071178.34072
– reference: Dieye M, Djidjou-Demasse R, Seydi O (2022) Flow invariance for non densely defined Cauchy problems
– reference: MagalPSeydiOVariation of constants formula and exponential dichotomy for nonautonomous non-densely defined Cauchy problemsCan J Math202173513471389432586810.4153/S0008414X200005411496.34096
– reference: Chicone C, Latushkin Y (1999) Evolution semigroups in dynamical systems and differential equations, vol 70. mathematical surveys and monographs. American Mathematical Society, Providence, Rhode Island
– reference: Bacaër N, Ait Dads EH (2011) Genealogy with seasonality, the basic reproduction number, and the influenza pandemic. J Math Biol 62(5):741–762
– reference: LionSMetzJAJBeyond R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_0$$\end{document} maximisation: on pathogen evolution and environmental dimensionsTrends Ecol Evol201833645847310.1016/j.tree.2018.02.004
– reference: Magal P, Ruan S (2009) Center manifolds for semilinear equations with non-dense domain and applications to Hopf bifurcation in age structured models. American Mathematical Society
– reference: Henry D (1981) geometric theory of semilinear parabolic equations, vol 840. Lecture Notes in Mathematics. Springer, Berlin
– reference: Djidjou-Demasse R, Lemdjo C, Seydi O (2022) Global dynamics of a spore producing pathogens epidemic system with nonlocal diffusion process. In: Seck D, Kangni K, Nang P, Salomon Sambou M (eds) Nonlinear analysis. Geometry and Applications, Trends in Mathematics. Springer International Publishing, Cham, pp 83–120
– reference: DiekmannOHeesterbeekJAMetzJAOn the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populationsJ Math Biol1990284365382105704410.1007/BF001783240726.92018
– reference: HeesterbeekJPDietzKThe concept of R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_0$$\end{document} in epidemic theoryStat Neerl19965018911010.1111/j.1467-9574.1996.tb01482.x0854.92018
– reference: Magal P, Ruan S (2018) Theory and applications of abstract semilinear Cauchy problems, vol 201. Applied Mathematical Sciences. Springer International Publishing, Cham
– ident: 1966_CR13
  doi: 10.1007/978-3-031-04616-2_4
– ident: 1966_CR2
  doi: 10.1126/science.7063839
– volume: 50
  start-page: 89
  issue: 1
  year: 1996
  ident: 1966_CR16
  publication-title: Stat Neerl
  doi: 10.1111/j.1467-9574.1996.tb01482.x
– volume: 79
  start-page: 731
  issue: 2
  year: 2019
  ident: 1966_CR19
  publication-title: J Math Biol
  doi: 10.1007/s00285-019-01375-y
– volume: 29
  start-page: 67
  issue: 1
  year: 2017
  ident: 1966_CR33
  publication-title: J Dyn Differ Equ
  doi: 10.1007/s10884-015-9425-2
– volume-title: Mathematical epidemiology of infectious diseases: model building, analysis and interpretation
  year: 2000
  ident: 1966_CR9
– volume: 13
  start-page: 503
  issue: 4–6
  year: 2000
  ident: 1966_CR15
  publication-title: Differ Integr Equ
– ident: 1966_CR11
– volume: 180
  start-page: 29
  issue: 1
  year: 2002
  ident: 1966_CR31
  publication-title: Math Biosci
  doi: 10.1016/S0025-5564(02)00108-6
– volume: 49
  start-page: 569
  issue: 6
  year: 1952
  ident: 1966_CR23
  publication-title: Trop Dis Bull
– ident: 1966_CR17
  doi: 10.1007/BFb0089647
– volume: 70
  start-page: 188
  issue: 1
  year: 2009
  ident: 1966_CR30
  publication-title: SIAM J Appl Math
  doi: 10.1137/080732870
– volume: 63
  year: 2022
  ident: 1966_CR28
  publication-title: Nonlinear Anal Real World Appl
  doi: 10.1016/j.nonrwa.2021.103393
– volume: 27
  start-page: 385
  issue: 02
  year: 2017
  ident: 1966_CR12
  publication-title: Math Models Methods Appl Sci
  doi: 10.1142/S0218202517500051
– volume: 126
  start-page: 219
  issue: 3
  year: 1997
  ident: 1966_CR27
  publication-title: Stud Math
  doi: 10.4064/sm-126-3-219-233
– volume: 4
  start-page: 169
  year: 1999
  ident: 1966_CR14
  publication-title: Abstr Appl Anal
  doi: 10.1155/S1085337599000214
– volume-title: Vector-valued Laplace transforms and Cauchy problems
  year: 2011
  ident: 1966_CR3
  doi: 10.1007/978-3-0348-0087-7
– volume: 53
  start-page: 421
  issue: 3
  year: 2006
  ident: 1966_CR5
  publication-title: J Math Biol
  doi: 10.1007/s00285-006-0015-0
– ident: 1966_CR25
  doi: 10.1007/978-3-030-01506-0
– volume: 33
  start-page: 458
  issue: 6
  year: 2018
  ident: 1966_CR21
  publication-title: Trends Ecol Evol
  doi: 10.1016/j.tree.2018.02.004
– volume: 28
  start-page: 365
  issue: 4
  year: 1990
  ident: 1966_CR8
  publication-title: J Math Biol
  doi: 10.1007/BF00178324
– volume: 65
  start-page: 309
  issue: 2
  year: 2012
  ident: 1966_CR18
  publication-title: J Math Biol
  doi: 10.1007/s00285-011-0463-z
– volume: 31
  start-page: 1247
  issue: 3
  year: 2019
  ident: 1966_CR20
  publication-title: J Dyn Differ Equ
  doi: 10.1007/s10884-017-9601-7
– ident: 1966_CR24
  doi: 10.1090/S0065-9266-09-00568-7
– volume: 210
  start-page: 647
  issue: 2
  year: 2007
  ident: 1966_CR6
  publication-title: Math Biosci
  doi: 10.1016/j.mbs.2007.07.005
– volume: 20
  start-page: 699
  issue: 3
  year: 2008
  ident: 1966_CR32
  publication-title: J Dyn Differ Equ
  doi: 10.1007/s10884-008-9111-8
– ident: 1966_CR4
  doi: 10.1007/s00285-010-0354-8
– volume-title: Infectious diseases of humans, dynamics and control
  year: 1991
  ident: 1966_CR1
  doi: 10.1093/oso/9780198545996.001.0001
– ident: 1966_CR7
  doi: 10.1090/surv/070
– ident: 1966_CR10
– volume: 73
  start-page: 1347
  issue: 5
  year: 2021
  ident: 1966_CR26
  publication-title: Can J Math
  doi: 10.4153/S0008414X20000541
– volume: 244
  start-page: 1784
  issue: 7
  year: 2008
  ident: 1966_CR22
  publication-title: J Differ Equ
  doi: 10.1016/j.jde.2008.01.007
– volume: 3
  start-page: 1035
  issue: 6
  year: 1990
  ident: 1966_CR29
  publication-title: Differ Integr Equ
SSID ssj0017591
Score 2.3914318
Snippet We propose a general framework for simultaneously calculating the threshold value for population growth and determining the sign of the growth bound of the...
SourceID unpaywall
hal
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 32
SubjectTerms Analysis of PDEs
Applications of Mathematics
Banach spaces
Dynamical Systems
Epidemiology
Evolution
Linear operators
Malaria
Mathematical and Computational Biology
Mathematics
Mathematics and Statistics
Operators (mathematics)
Pathogens
Population genetics
Population growth
Topology
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB7RIEQ5IF6lLgUtiBtd1fZ67fhUVVXTCAEnKkVcrH2qhyhNsZMo_54Ze-MUVYp6yMHJ-pGZ2dlvPDvzAXzFVVxnicHopLSGZz4xXMXW8cIbheZSGOkpUPz5Kx9fZ98nchJeuNVhW-XGJ7aO2t4aekd-im6UqsmlFGfzO06sUZRdDRQae_A0SdGSqFJ8dNVnEQrZMeahm-bUZysUzbSlcxRsUG0y7SZCyM9X_y1Meze0LfIh5ryXL30BzxezuVqv1HR6b0kavYKXAUuy8075r-GJm72BZx275Pot_LnCELu5YZqYk5jCT4OKqynfxGxHRM8QsrIZgvFFQ8UNt4uajtAV1W66ZtZ5xKCWuWWwTxboZ-p3cD26_H0x5oFKgZtMiobjNPZ6qHOZ-iKXKrEm0Tk1exOuzE1cWBUrbeOhMVaqEmMOJXKppS8RkcRSenEAA7y_OwSGJ-GaVgydz1UmrEMAKJwp0E9lLs10HEGykWNlQp9xoruYVn2H5Fb2Fcq-amVfrSL41p8z77ps7Bz9BdXTD6QG2ePzHxV9R71tRBoPl2kExxvtVWFa1tXWiCL43P-ME4qyJGrmUMw0hujO0ySL4H2n9f5WAoOvEiPUCE42ZrC9-K4HPulN5RH_72j3o3-A_bS1W9qFeAyD5u_CfURk1OhPrfn_A_aLBm0
  priority: 102
  providerName: ProQuest
Title Growth bound and threshold dynamic for nonautonomous nondensely defined evolution problems
URI https://link.springer.com/article/10.1007/s00285-023-01966-w
https://www.ncbi.nlm.nih.gov/pubmed/37479899
https://www.proquest.com/docview/2840415553
https://www.proquest.com/docview/2841021214
https://hal.science/hal-03883208
UnpaywallVersion submittedVersion
Volume 87
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1432-1416
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017591
  issn: 1432-1416
  databaseCode: AFBBN
  dateStart: 19740501
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1432-1416
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0017591
  issn: 1432-1416
  databaseCode: 8FG
  dateStart: 19971101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1432-1416
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017591
  issn: 1432-1416
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1432-1416
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017591
  issn: 1432-1416
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9NAEB6RVAj6wFGgGEq0IN6oK1_r4zFBOQQ0QohIgRdrL6sSUVphu1H49czEa1MOVfQhjhyv19n1tzszmplvAF6jFJeRr9A6ybRyo8JXrvC0cZNCCYRLonhBhuLpPJ4tondLvrRJYWUb7d66JHc7dZfsRuYBZRNT_A8q6e6mB3ucDJQ-7A2nX96PO-9BwptKebg9u8SvZZNl_t3LbwKpd0bhkH_rmlf8pPtwp15fiO1GrFZXRNHkPizaQTQRKN9O6kqeqB9_8DvedJQP4J7VTdmwAdNDuGXWB3C7qVa5PYD9047itXwEX6dowFdnTFJdJibwUyEsSvJmMd2UuWeoELM1qvp1RakT53VJZ7jRlWa1ZdoUqOFqZi4t-pktblM-hsVk_PntzLWFGlwV8bBycZMoZCpjHhRJzIWvlS9jopILTRYrL9HCE1J7qVKaiwwtGhHGXPIiQ33H47wIn0Afn2-eAsObUGImqSliEYXaoHoZGpXgLhiZIJKeA377tnJlWcypmMYq7_iXdzOY4wzmuxnMNw686e65aDg8rm39CkHQNST67dnwQ06_EXNOGHjpZeDAUYuR3C76MkdJT4QHnIcOvOwu43IlH4xYG5xmakPF1AM_cuCwwVb3qBBNuwztXweOW2z86vy6P3zcAfI_xvfsZr0_h7vBDo0U83gE_ep7bV6gHlbJAfSSZYLHdDId4BKcjEbzgV2K-D0azz9-wquLYPgTeTsrgg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB61Raj0UPHGbYEFwYla2N5dOz4gVAElpWlPrRRxMftUD1EasNMof4rfyIxfLUKKuPTgg-31a_bbeXh35gN4g1Zci9hgdJJbEwofm1BF1oWZNwrhkhnpKVA8OU2H5-LbWI7X4HeXC0PLKjudWCtqe2noH_l7VKOUTS4l_zj7GRJrFM2udhQaDSyO3XKBIVv54egz9u_bJDn8cvZpGLasAqERklchItrrgU5l4rNUqtiaWKdU94y7PDVRZlWktI0GxlipcnS_FU-llj5H4xxJ6Tnedx3uCB4JqtWfjfsADy1xw9CHZiGkul5tkk6dqkfBDeVC0-olDDHCxV-GcP2ClmH-6-PemJ_dgs35dKaWCzWZ3DCBh_dhu_Vd2UEDtgew5qYP4W7DZrl8BN-_YkhfXTBNTE1M4VYhUEqa32K2Ib5n6CKzKTr_84qSKS7nJe2h6ivdZMms8-jzWuau2vHAWrqb8jGc34qQn8AGPt89A4YXoQ3NBs6nSnDr0OHkzmSoF4VLhI4CiDs5Fqata070GpOir8hcy75A2Re17ItFAO_6a2ZNVY-VrV9j9_QNqSD38GBU0DGqpcOTaHCVBLDX9V7RqoGyuAZtAK_60ziAaVZGTR2KmdoQvXoSiwCeNr3eP4pjsJdjRBzAfgeD65uveuH9Hir_8X07q1_9JWwOz05Gxejo9HgX7iU1hmkF5B5sVL_m7jl6ZZV-UQ8FBj9ue-z9AWW2Qp0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEC0lQWwHxI4hQIPgRFqx3W57fEAoIgwTEiIORBrlYtq9KEiDM2BPRv41vo4qbwlCGnHJwQfb7a26tueuBeAVWvE8CjSik9RoHrlAc-UbyxOnFbJLoqUjoPj5MJ4cRZ-mcroGv_tcGAqr7HVio6jNqaZ_5NuoRimbXEqx7bqwiC-743fzn5w6SNFKa99Oo2WRfVsvEb6Vb_d2ca5fh-H4w9f3E951GOA6kqLiyN0uH-WxDF0SSxUYHeQx1UATNo21nxjlq9z4I62NVCm64krEMpcuRUPtS-kE3ncdriQiEhROlkwHsIdWue3WhyaCU42vLmGnSdsjoEN50RTJhHCDL_8yiusnFJL5r797Ya32JlxfFHNVL9VsdsEcjm_Drc6PZTst492BNVvchattZ8v6Hhx_RHhfnbCcujYxhVuFTFPSWhczdaF-fNcM3WVWIBBYVJRYcbooaQ_VYGlnNTPWof9rmD3rZIN1rW_K-3B0KUR-ABv4fPsIGF6E9jQZWRerSBiLzqewOkEdGdkwyn0Pgp6Ome5qnFOrjVk2VGduaJ8h7bOG9tnSgzfDNfO2wsfK0S9xeoaBVJx7snOQ0TGqqyNCf3QWerDZz17WqYQyO2dgD14Mp1GYaYVGFRbJTGOo1XoYRB48bGd9eJRA4JciOvZgq2eD85uveuGtgVX-4_ser37153ANpS472DvcfwI3woaFKRhyEzaqXwv7FB20Kn_WSAKDb5cten8A1FJG2A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Growth+bound+and+threshold+dynamic+for+nonautonomous+nondensely+defined+evolution+problems&rft.jtitle=Journal+of+mathematical+biology&rft.au=Djidjou-Demasse%2C+Rams%C3%A8s&rft.au=Goudiaby%2C+Ibou&rft.au=Seydi%2C+Ousmane&rft.date=2023-08-01&rft.eissn=1432-1416&rft.volume=87&rft.issue=2&rft.spage=32&rft_id=info:doi/10.1007%2Fs00285-023-01966-w&rft_id=info%3Apmid%2F37479899&rft.externalDocID=37479899
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0303-6812&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0303-6812&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0303-6812&client=summon