A multi-voxel-activity-based feature selection method for human cognitive states classification by functional magnetic resonance imaging data

Nowadays, various kinds of signals and data were collected to investigate human brain’s activities for disease detection. In particular, the functional magnetic resonance imaging (fMRI) provides a powerful tool for enquiring the brain functions. Learning the activity patterns that are related to the...

Full description

Saved in:
Bibliographic Details
Published inCluster computing Vol. 18; no. 1; pp. 199 - 208
Main Authors Do, Luu-Ngoc, Yang, Hyung-Jeong, Kim, Soo-Hyung, Lee, Guee-Sang, Kim, Sun-Hee
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.03.2015
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1386-7857
1573-7543
DOI10.1007/s10586-014-0369-9

Cover

Abstract Nowadays, various kinds of signals and data were collected to investigate human brain’s activities for disease detection. In particular, the functional magnetic resonance imaging (fMRI) provides a powerful tool for enquiring the brain functions. Learning the activity patterns that are related to the specific cognitive states from fMRI data is one of the most critical challenges for neuroscientists. The high dimensional property and noises make fMRI data become difficulty for mining and unfamiliar with conventional approaches. In this paper, we propose a new feature selection method for classifying human cognitive states from fMRI data. The fisher discriminant ratio (FDR) between classes and zero condition is used to measure the activity of voxels. We then choose the most active voxels from the most active regions of interest (ROIs) as the most informative features for Gaussian naïve bayes (GNB) classifier. The proposed method can be used to boost the whole system because it will exclude the non-task-related components and therefore, reduce the processing time and increase the accuracy. The StarPlus dataset and Visual object recognition dataset are used to investigate the performance of the proposed method. The experimental results show that our proposed method has better performance compared to other systems. The accuracy is ∼ 96.45 % for StarPlus dataset and 88.4 % for Visual Object Recognition dataset.
AbstractList Nowadays, various kinds of signals and data were collected to investigate human brain’s activities for disease detection. In particular, the functional magnetic resonance imaging (fMRI) provides a powerful tool for enquiring the brain functions. Learning the activity patterns that are related to the specific cognitive states from fMRI data is one of the most critical challenges for neuroscientists. The high dimensional property and noises make fMRI data become difficulty for mining and unfamiliar with conventional approaches. In this paper, we propose a new feature selection method for classifying human cognitive states from fMRI data. The fisher discriminant ratio (FDR) between classes and zero condition is used to measure the activity of voxels. We then choose the most active voxels from the most active regions of interest (ROIs) as the most informative features for Gaussian naïve bayes (GNB) classifier. The proposed method can be used to boost the whole system because it will exclude the non-task-related components and therefore, reduce the processing time and increase the accuracy. The StarPlus dataset and Visual object recognition dataset are used to investigate the performance of the proposed method. The experimental results show that our proposed method has better performance compared to other systems. The accuracy is ∼ 96.45 % for StarPlus dataset and 88.4 % for Visual Object Recognition dataset.
Nowadays, various kinds of signals and data were collected to investigate human brain’s activities for disease detection. In particular, the functional magnetic resonance imaging (fMRI) provides a powerful tool for enquiring the brain functions. Learning the activity patterns that are related to the specific cognitive states from fMRI data is one of the most critical challenges for neuroscientists. The high dimensional property and noises make fMRI data become difficulty for mining and unfamiliar with conventional approaches. In this paper, we propose a new feature selection method for classifying human cognitive states from fMRI data. The fisher discriminant ratio (FDR) between classes and zero condition is used to measure the activity of voxels. We then choose the most active voxels from the most active regions of interest (ROIs) as the most informative features for Gaussian naïve bayes (GNB) classifier. The proposed method can be used to boost the whole system because it will exclude the non-task-related components and therefore, reduce the processing time and increase the accuracy. The StarPlus dataset and Visual object recognition dataset are used to investigate the performance of the proposed method. The experimental results show that our proposed method has better performance compared to other systems. The accuracy is ∼96.45 % for StarPlus dataset and 88.4 % for Visual Object Recognition dataset.
Author Do, Luu-Ngoc
Kim, Sun-Hee
Yang, Hyung-Jeong
Kim, Soo-Hyung
Lee, Guee-Sang
Author_xml – sequence: 1
  givenname: Luu-Ngoc
  surname: Do
  fullname: Do, Luu-Ngoc
  organization: Department of Electronics and Computer Engineering, Chonnam National University
– sequence: 2
  givenname: Hyung-Jeong
  surname: Yang
  fullname: Yang, Hyung-Jeong
  email: hjyang@jnu.ac.kr
  organization: Department of Electronics and Computer Engineering, Chonnam National University
– sequence: 3
  givenname: Soo-Hyung
  surname: Kim
  fullname: Kim, Soo-Hyung
  organization: Department of Electronics and Computer Engineering, Chonnam National University
– sequence: 4
  givenname: Guee-Sang
  surname: Lee
  fullname: Lee, Guee-Sang
  organization: Department of Electronics and Computer Engineering, Chonnam National University
– sequence: 5
  givenname: Sun-Hee
  surname: Kim
  fullname: Kim, Sun-Hee
  organization: Department of Electronics and Computer Engineering, Chonnam National University
BookMark eNp9kM-KFDEQxoOs4O7qA3gLeI4m6e6kc1wW_8GCFz2HSroym6UnWZP04jyE72xmRhAEPVVR3_crqr4rcpFyQkJeC_5WcK7fVcGnWTEuRsYHZZh5Ri7FpAemp3G46P3QVT1P-gW5qvWBc260NJfk5w3db2uL7Cn_wJWBb_EptgNzUHGhAaFtBWnFFbuSE91ju89dyIXeb3tI1Oddih3qpgYNK_Ur1BpD9HAC3IGGLZ1gWOkedglb9LRg7YPkkcY-i2lHF2jwkjwPsFZ89btek28f3n-9_cTuvnz8fHtzx_w4ycaQAwSlQuDSOIdezYsJo5fcBZSL8GaA2WkVRqfcHJQfuRiEXhCcAvCzG67Jm_Pex5K_b1ibfchb6QdWK42YpeTTZLpLn12-5FoLButjO33VCsTVCm6P2dtz9rZnb4_Z2yMp_iIfS_-zHP7LyDNTuzftsPy56d_QL7fqnaE
CitedBy_id crossref_primary_10_1007_s10586_017_0806_7
crossref_primary_10_3233_XST_160565
crossref_primary_10_1007_s10586_014_0398_4
crossref_primary_10_1007_s10586_016_0648_8
crossref_primary_10_1111_exsy_12644
crossref_primary_10_20965_jaciii_2019_p0465
crossref_primary_10_1007_s12021_018_9371_3
crossref_primary_10_1016_j_cmpb_2019_04_004
crossref_primary_10_1155_2017_5109530
Cites_doi 10.1214/09-STS282
10.1023/B:MACH.0000035475.85309.1b
10.1007/s10586-011-0175-6
10.1016/j.tics.2006.07.005
10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1
10.1162/jocn.1992.4.4.352
10.1016/S1053-8119(03)00049-1
10.1002/hbm.460020402
10.1126/science.1063736
10.1038/9224
10.1016/j.brainres.2009.05.090
10.1007/s10586-007-0048-1
10.1007/s10586-005-4095-1
10.1007/978-3-642-15948-0_14
10.1007/s10586-013-0289-0
10.1109/ICCSA.2007.58
10.1523/JNEUROSCI.17-11-04302.1997
10.1109/5.939827
10.1109/CVPRW.2006.64
ContentType Journal Article
Copyright Springer Science+Business Media New York 2014
Springer Science+Business Media New York 2014.
Copyright_xml – notice: Springer Science+Business Media New York 2014
– notice: Springer Science+Business Media New York 2014.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s10586-014-0369-9
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7543
EndPage 208
ExternalDocumentID 10_1007_s10586_014_0369_9
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29B
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P9O
PF0
PT4
PT5
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABRTQ
ADHKG
ADKFA
AFDZB
AFOHR
AGQPQ
AHPBZ
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c452t-e0aaf66ff029bbec68d9f4c20bfe2d1c93a8b76f4b6b8f6c401317deab6aac8b3
IEDL.DBID U2A
ISSN 1386-7857
IngestDate Fri Jul 25 10:31:13 EDT 2025
Thu Apr 24 22:59:12 EDT 2025
Wed Oct 01 04:11:57 EDT 2025
Fri Feb 21 02:38:42 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords fMRI
Fisher discriminant ratio
Feature selection
Gaussian naïve bayes
Regions of interest
Multi-voxel activity
Cognitive states classification
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c452t-e0aaf66ff029bbec68d9f4c20bfe2d1c93a8b76f4b6b8f6c401317deab6aac8b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918220559
PQPubID 2043865
PageCount 10
ParticipantIDs proquest_journals_2918220559
crossref_citationtrail_10_1007_s10586_014_0369_9
crossref_primary_10_1007_s10586_014_0369_9
springer_journals_10_1007_s10586_014_0369_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-03-01
PublicationDateYYYYMMDD 2015-03-01
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: Dordrecht
PublicationSubtitle The Journal of Networks, Software Tools and Applications
PublicationTitle Cluster computing
PublicationTitleAbbrev Cluster Comput
PublicationYear 2015
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Etzel, Gazzola, Keysers (CR17) 2009; 1282
Friston, Holmes, Worsley, Poline, Frith, Frackowiak (CR9) 1995; 2
CR4
Gauthier, Tarr, Anderson, Skudlarski, Gore (CR24) 1999; 2
CR8
CR19
CR7
CR16
Lindquist (CR5) 2008; 28
CR15
Mahoui, Lu, Gao, Li, Chen, Bukhres, Miled (CR1) 2005; 8
CR22
CR10
Norman, Polyn, Detre, Haxby (CR6) 2006; 10
Jung, Makeig, McKeown, Bell, Kinderman, Sejnowski (CR12) 1998; 6
CR20
Plaza, Pérez, Plaza, Martínez, Valencia (CR3) 2008; 11
Kanwisher, McDermott, Chun (CR23) 1997; 17
Chen, Lu, Tian, He, Wang, Tian, Cai, Li (CR2) 2013; 16
Mitchell, Hutchinson, Niculescu, Pereira, Wang, Just, Newman (CR18) 2004; 57
Rademacher, Galaburda, Kennedy, Filipek, Caviness (CR21) 1992; 4
Cox, Savoy (CR14) 2003; 19
Jung, Makeig, McKeown, Bell, Lee, Sejnowski (CR11) 2001; 89
Haxby, Gobbini, Furey, Ishai, Astouchen, Pietrini (CR13) 2001; 293
JA Etzel (369_CR17) 2009; 1282
N Kanwisher (369_CR23) 1997; 17
KA Norman (369_CR6) 2006; 10
D Chen (369_CR2) 2013; 16
DD Cox (369_CR14) 2003; 19
JV Haxby (369_CR13) 2001; 293
J Plaza (369_CR3) 2008; 11
MA Lindquist (369_CR5) 2008; 28
KJ Friston (369_CR9) 1995; 2
369_CR19
369_CR7
369_CR4
I Gauthier (369_CR24) 1999; 2
369_CR8
369_CR11
T Jung (369_CR12) 1998; 6
369_CR22
TM Mitchell (369_CR18) 2004; 57
369_CR16
J Rademacher (369_CR21) 1992; 4
369_CR15
M Mahoui (369_CR1) 2005; 8
369_CR10
369_CR20
References_xml – ident: CR22
– ident: CR19
– volume: 28
  start-page: 439
  year: 2008
  end-page: 464
  ident: CR5
  article-title: The statistical analysis of fMRI data
  publication-title: Stat. Sci.
  doi: 10.1214/09-STS282
– volume: 57
  start-page: 145
  year: 2004
  end-page: 175
  ident: CR18
  article-title: Learning to decode cognitive states from brain images
  publication-title: Mach. Learn.
  doi: 10.1023/B:MACH.0000035475.85309.1b
– volume: 16
  start-page: 39
  issue: 1
  year: 2013
  end-page: 53
  ident: CR2
  article-title: Towards energy-efficient parallel analysis of neural signals
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-011-0175-6
– ident: CR4
– volume: 10
  start-page: 424
  issue: 9
  year: 2006
  end-page: 430
  ident: CR6
  article-title: Beyond mind-reading: multi-voxel pattern analysis of fMRI data
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2006.07.005
– ident: CR15
– ident: CR16
– volume: 6
  start-page: 160
  year: 1998
  end-page: 188
  ident: CR12
  article-title: Analysis of fMRI data by blind separation into independent spatial components
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1
– volume: 4
  start-page: 352
  year: 1992
  end-page: 374
  ident: CR21
  article-title: Human celebral cortex: localization, parcellation, and morphometry with magnetic resonance imaging
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn.1992.4.4.352
– volume: 17
  start-page: 4302
  issue: 11
  year: 1997
  end-page: 4311
  ident: CR23
  article-title: The fusiform face area: a module in human extrastriate cortex specialized for face perception
  publication-title: J. Neurosci.
– volume: 19
  start-page: 261
  year: 2003
  end-page: 270
  ident: CR14
  article-title: Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(03)00049-1
– volume: 2
  start-page: 189
  year: 1995
  end-page: 210
  ident: CR9
  article-title: Statistical parametric maps in functional imaging: a general linear approach
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.460020402
– ident: CR10
– volume: 89
  start-page: 1107
  year: 2001
  end-page: 1122
  ident: CR11
  article-title: Imaging brain dynamics using independent component analysis
  publication-title: Proc. IEEE
– volume: 293
  start-page: 2425
  year: 2001
  end-page: 2430
  ident: CR13
  article-title: Distributed and overlapping representations of faces and objects in ventral temporal cortex
  publication-title: Science
  doi: 10.1126/science.1063736
– volume: 2
  start-page: 568
  year: 1999
  end-page: 573
  ident: CR24
  article-title: Activation of the middle fusiform ’face area’ increases with expertise in recognizing novel objects
  publication-title: Nat. Neurosci.
  doi: 10.1038/9224
– ident: CR7
– ident: CR8
– volume: 1282
  start-page: 114
  year: 2009
  end-page: 125
  ident: CR17
  article-title: An introduction to anatomical ROI-based fMRI classification analysis
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2009.05.090
– volume: 11
  start-page: 17
  issue: 1
  year: 2008
  end-page: 32
  ident: CR3
  article-title: Parallel morphological/neural processing of hyperspectral images using heterogeneous and homogeneous platforms
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-007-0048-1
– ident: CR20
– volume: 8
  start-page: 279
  issue: 4
  year: 2005
  end-page: 291
  ident: CR1
  article-title: A dynamic workflow approach for the integration of bioinformatics services
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-005-4095-1
– volume: 11
  start-page: 17
  issue: 1
  year: 2008
  ident: 369_CR3
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-007-0048-1
– volume: 8
  start-page: 279
  issue: 4
  year: 2005
  ident: 369_CR1
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-005-4095-1
– ident: 369_CR20
  doi: 10.1007/978-3-642-15948-0_14
– volume: 19
  start-page: 261
  year: 2003
  ident: 369_CR14
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(03)00049-1
– ident: 369_CR4
  doi: 10.1007/s10586-013-0289-0
– volume: 28
  start-page: 439
  year: 2008
  ident: 369_CR5
  publication-title: Stat. Sci.
  doi: 10.1214/09-STS282
– ident: 369_CR15
  doi: 10.1109/ICCSA.2007.58
– ident: 369_CR10
– volume: 293
  start-page: 2425
  year: 2001
  ident: 369_CR13
  publication-title: Science
  doi: 10.1126/science.1063736
– volume: 1282
  start-page: 114
  year: 2009
  ident: 369_CR17
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2009.05.090
– volume: 4
  start-page: 352
  year: 1992
  ident: 369_CR21
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn.1992.4.4.352
– volume: 57
  start-page: 145
  year: 2004
  ident: 369_CR18
  publication-title: Mach. Learn.
  doi: 10.1023/B:MACH.0000035475.85309.1b
– volume: 17
  start-page: 4302
  issue: 11
  year: 1997
  ident: 369_CR23
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.17-11-04302.1997
– ident: 369_CR7
– ident: 369_CR19
– ident: 369_CR8
– volume: 16
  start-page: 39
  issue: 1
  year: 2013
  ident: 369_CR2
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-011-0175-6
– volume: 2
  start-page: 568
  year: 1999
  ident: 369_CR24
  publication-title: Nat. Neurosci.
  doi: 10.1038/9224
– ident: 369_CR11
  doi: 10.1109/5.939827
– volume: 10
  start-page: 424
  issue: 9
  year: 2006
  ident: 369_CR6
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2006.07.005
– volume: 6
  start-page: 160
  year: 1998
  ident: 369_CR12
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1
– volume: 2
  start-page: 189
  year: 1995
  ident: 369_CR9
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.460020402
– ident: 369_CR16
  doi: 10.1109/CVPRW.2006.64
– ident: 369_CR22
SSID ssj0009729
Score 2.0442364
Snippet Nowadays, various kinds of signals and data were collected to investigate human brain’s activities for disease detection. In particular, the functional...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 199
SubjectTerms Accuracy
Brain
Classification
Computer Communication Networks
Computer Science
Datasets
Discriminant analysis
Feature selection
Generalized linear models
Hemoglobin
Human subjects
Localization
Magnetic resonance imaging
Medical imaging
Neurosciences
Object recognition
Operating Systems
Performance evaluation
Processor Architectures
Support vector machines
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTxUxFG3wsXEjihofgrkLVpjGmbbTjwUhSCCEhBdiJGE36acxgfeA9zD6I_zP9nZmmGgi65npYk5772l77zmE7AaDBg51TW1QiQobONXCSOobEXnkIjKNDc7nM3l6Kc6umqs1Mht6YbCscoiJJVCHhccz8k_MZCbMqkyAD27vKLpG4e3qYKFhe2uFsF8kxp6RdYbKWBOy_vl4dvFllOFVxbes5lpSpRs13HN2zXSNxt21oDmqG2r-zlQj_fznxrQkopOX5EXPIOGwg_wVWYvzTbIxuDNAv1hfk9-HUKoF6Y_Fz3hNsYEBfSIo5q0AKRZFT1gWH5wMDnRe0pBJLBTjPnisLILSdbQEj0wbS4sKmuB-AWbF7jARbuy3OTZEQt6_L1DFI8L3m2KBBFiF-oZcnhx_PTqlvfkC9aJhKxora5OUKVXMuAy01MEk4VnlUmSh9oZb7ZRMwkmnk_S4T6tViNZJa712_C2ZzBfz-I6A5yrqSqtgWRDMcxfypitynrmhqnJ8nZJq-NGt75XJ0SDjuh01lRGbNmPTIjatmZK9x09uO1mOp17eHtBr-xW6bMf5NCUfB0THx_8dbOvpwd6T55lSNV2V2jaZrO4f4k6mLSv3oZ-LfwAIQe1i
  priority: 102
  providerName: ProQuest
Title A multi-voxel-activity-based feature selection method for human cognitive states classification by functional magnetic resonance imaging data
URI https://link.springer.com/article/10.1007/s10586-014-0369-9
https://www.proquest.com/docview/2918220559
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central (subscription)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-7543
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0009729
  issn: 1386-7857
  databaseCode: BENPR
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7543
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009729
  issn: 1386-7857
  databaseCode: AGYKE
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7543
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009729
  issn: 1386-7857
  databaseCode: U2A
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB71ceFCeYotZTUHTiBLie34cVzQbqsiqgqxUjlFfiKkdrdil6r9Ef3P2E7SBQRIPeUQxwd_9sw38cx8AK-9zgIOdU2Ml5Fw4xlRXAviGh5YYDxQlQucP56Iozk_PmvO-jru1ZDtPlxJFkv9S7Fbo3L0y0myuprobdhtcjevtInndLLptCuLNFnN0mCpGjlcZf5tit-d0YZh_nEpWnzN7BE87EkiTjpUH8NWWDyBvUGAAfvz-BRuJ1gSAsnV8jqck1yjkKUgSHZNHmMoTTtxVaRu0vpjJxeNiadi0ebDu-QhLIVFK3SZTOfsoQIY2hvMjq_7X4gX5usi1zxiCtGXuVFHwG8XReUIc6LpM5jPpp_fH5FeX4E43tA1CZUxUYgYK6ptwlIoryN3tLIxUF87zYyyUkRuhVVRuByK1dIHY4UxTln2HHYWy0V4AeiYDKpS0hvqOXXM-hRXBcYS_ZNVMqEjqIaFbl3ffDxrYJy3m7bJGZs2YdNmbFo9gjd3n1x2nTf-N_hgQK_tD-GqpToFT7RKMdMI3g6Ibl7_c7L9e41-CQ8SiWq6vLQD2Fl__xFeJaKytmPYVrPDMexODr98mKbnu-nJ6adx2a4_AZPg54Q
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKe4ALb9SlBeYAF5BFYjuOfahQgVZb2q4QaqXegp8Iqd1tu8ujP4K_xG_D4ySNQKK3npNYSWYy800833yEPPcaBRzKkhpfRyqM51QJLamrROCBi8AUEpz3J3J8KD4cVUdL5HfPhcG2yj4m5kDtZw7_kb9mOiFhViQA_Ob0jKJqFO6u9hIappNW8Bt5xFhH7NgNFz9SCTff2Hmf7P2Cse2tg3dj2qkMUCcqtqChMCZKGWPBtE1PJJXXUThW2BiYL53mRtlaRmGlVVE6LEjK2gdjpTFOWZ7WvUFWBBc6FX8rb7cmHz8NY3_rrJNWciVpraq631dtyXuVwmpe0JRFNNV_Z8YB7v6zQ5sT3_ZdcrtDrLDZutg9shSm98mdXg0CuuDwgPzahNydSL_PfoZjioQJ1KWgmCc9xJAniMI86-4kZ4BWuxoSaIYsFAiXnUyQWU5zcIjssZUpew_YC8As3P68hBPzZYoETDgPWE2kW4CvJ1lyCbDr9SE5vBYzPCLL09k0rBJwvA6qULU3zAvmuPWpyAucJyxaFymej0jRv-jGdZPQUZDjuBlmOKNtmmSbBm3T6BF5eXnJaTsG5KqT13vrNV1EmDeD_47Iq96iw-H_Lvb46sWekZvjg_29Zm9nsrtGbiU4V7UdcutkeXH-LTxJkGlhn3Z-CeTzdX8KfwBGPi19
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWglRAXSvkQC6WdAyeQ1cR2_HFctV21BSoOrNRb5E-E1GYrdkHwI_jPeJykCxVF4hzHhzzb8yaeeY-QV8GggUNdUxtUosIGTrUwkvpGRB65iExjg_P7M3k8F6fnzfngc7ocq93HK8m-pwFVmrrV_lVI-781vjUaM2FB8wlsqLlLNgXqJOQFPWfTtequKjZlNc-DlW7UeK35tyn-DExrtnnjgrTEndlD8mAgjDDtEd4md2L3iGyNZgww7M3H5OcUSnEg_bb4Hi8o9iugLQTFMBUgxSLgCctie5OxgN46GjJnheLTB9eFRFCajJbgkVhjJVEBD9wPwCDY_zuES_upw_5HyOn6AkU7Iny-LI5HgEWnT8h8dvTx4JgOXgvUi4ataKysTVKmVDHjMq5SB5OEZ5VLkYXaG261UzIJJ51O0mNaVqsQrZPWeu34U7LRLbr4jIDnKupKq2BZEMxzF3KOFTnPVFBV-TidkGr80K0fhMjRD-OiXUsoIzZtxqZFbFozIa-vX7nqVTj-NXhnRK8dNuSyZSYnUqzK-dOEvBkRXT--dbLn_zV6j9z7cDhr352cvX1B7mdu1fTlajtkY_Xla3yZ-cvK7ZY1-gvBv-qY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-voxel-activity-based+feature+selection+method+for+human+cognitive+states+classification+by+functional+magnetic+resonance+imaging+data&rft.jtitle=Cluster+computing&rft.au=Do%2C+Luu-Ngoc&rft.au=Yang%2C+Hyung-Jeong&rft.au=Kim%2C+Soo-Hyung&rft.au=Lee%2C+Guee-Sang&rft.date=2015-03-01&rft.issn=1386-7857&rft.eissn=1573-7543&rft.volume=18&rft.issue=1&rft.spage=199&rft.epage=208&rft_id=info:doi/10.1007%2Fs10586-014-0369-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10586_014_0369_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-7857&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-7857&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-7857&client=summon