A multi-voxel-activity-based feature selection method for human cognitive states classification by functional magnetic resonance imaging data
Nowadays, various kinds of signals and data were collected to investigate human brain’s activities for disease detection. In particular, the functional magnetic resonance imaging (fMRI) provides a powerful tool for enquiring the brain functions. Learning the activity patterns that are related to the...
Saved in:
| Published in | Cluster computing Vol. 18; no. 1; pp. 199 - 208 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Boston
Springer US
01.03.2015
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1386-7857 1573-7543 |
| DOI | 10.1007/s10586-014-0369-9 |
Cover
| Abstract | Nowadays, various kinds of signals and data were collected to investigate human brain’s activities for disease detection. In particular, the functional magnetic resonance imaging (fMRI) provides a powerful tool for enquiring the brain functions. Learning the activity patterns that are related to the specific cognitive states from fMRI data is one of the most critical challenges for neuroscientists. The high dimensional property and noises make fMRI data become difficulty for mining and unfamiliar with conventional approaches. In this paper, we propose a new feature selection method for classifying human cognitive states from fMRI data. The fisher discriminant ratio (FDR) between classes and zero condition is used to measure the activity of voxels. We then choose the most active voxels from the most active regions of interest (ROIs) as the most informative features for Gaussian naïve bayes (GNB) classifier. The proposed method can be used to boost the whole system because it will exclude the non-task-related components and therefore, reduce the processing time and increase the accuracy. The StarPlus dataset and Visual object recognition dataset are used to investigate the performance of the proposed method. The experimental results show that our proposed method has better performance compared to other systems. The accuracy is
∼
96.45 % for StarPlus dataset and 88.4 % for Visual Object Recognition dataset. |
|---|---|
| AbstractList | Nowadays, various kinds of signals and data were collected to investigate human brain’s activities for disease detection. In particular, the functional magnetic resonance imaging (fMRI) provides a powerful tool for enquiring the brain functions. Learning the activity patterns that are related to the specific cognitive states from fMRI data is one of the most critical challenges for neuroscientists. The high dimensional property and noises make fMRI data become difficulty for mining and unfamiliar with conventional approaches. In this paper, we propose a new feature selection method for classifying human cognitive states from fMRI data. The fisher discriminant ratio (FDR) between classes and zero condition is used to measure the activity of voxels. We then choose the most active voxels from the most active regions of interest (ROIs) as the most informative features for Gaussian naïve bayes (GNB) classifier. The proposed method can be used to boost the whole system because it will exclude the non-task-related components and therefore, reduce the processing time and increase the accuracy. The StarPlus dataset and Visual object recognition dataset are used to investigate the performance of the proposed method. The experimental results show that our proposed method has better performance compared to other systems. The accuracy is
∼
96.45 % for StarPlus dataset and 88.4 % for Visual Object Recognition dataset. Nowadays, various kinds of signals and data were collected to investigate human brain’s activities for disease detection. In particular, the functional magnetic resonance imaging (fMRI) provides a powerful tool for enquiring the brain functions. Learning the activity patterns that are related to the specific cognitive states from fMRI data is one of the most critical challenges for neuroscientists. The high dimensional property and noises make fMRI data become difficulty for mining and unfamiliar with conventional approaches. In this paper, we propose a new feature selection method for classifying human cognitive states from fMRI data. The fisher discriminant ratio (FDR) between classes and zero condition is used to measure the activity of voxels. We then choose the most active voxels from the most active regions of interest (ROIs) as the most informative features for Gaussian naïve bayes (GNB) classifier. The proposed method can be used to boost the whole system because it will exclude the non-task-related components and therefore, reduce the processing time and increase the accuracy. The StarPlus dataset and Visual object recognition dataset are used to investigate the performance of the proposed method. The experimental results show that our proposed method has better performance compared to other systems. The accuracy is ∼96.45 % for StarPlus dataset and 88.4 % for Visual Object Recognition dataset. |
| Author | Do, Luu-Ngoc Kim, Sun-Hee Yang, Hyung-Jeong Kim, Soo-Hyung Lee, Guee-Sang |
| Author_xml | – sequence: 1 givenname: Luu-Ngoc surname: Do fullname: Do, Luu-Ngoc organization: Department of Electronics and Computer Engineering, Chonnam National University – sequence: 2 givenname: Hyung-Jeong surname: Yang fullname: Yang, Hyung-Jeong email: hjyang@jnu.ac.kr organization: Department of Electronics and Computer Engineering, Chonnam National University – sequence: 3 givenname: Soo-Hyung surname: Kim fullname: Kim, Soo-Hyung organization: Department of Electronics and Computer Engineering, Chonnam National University – sequence: 4 givenname: Guee-Sang surname: Lee fullname: Lee, Guee-Sang organization: Department of Electronics and Computer Engineering, Chonnam National University – sequence: 5 givenname: Sun-Hee surname: Kim fullname: Kim, Sun-Hee organization: Department of Electronics and Computer Engineering, Chonnam National University |
| BookMark | eNp9kM-KFDEQxoOs4O7qA3gLeI4m6e6kc1wW_8GCFz2HSroym6UnWZP04jyE72xmRhAEPVVR3_crqr4rcpFyQkJeC_5WcK7fVcGnWTEuRsYHZZh5Ri7FpAemp3G46P3QVT1P-gW5qvWBc260NJfk5w3db2uL7Cn_wJWBb_EptgNzUHGhAaFtBWnFFbuSE91ju89dyIXeb3tI1Oddih3qpgYNK_Ur1BpD9HAC3IGGLZ1gWOkedglb9LRg7YPkkcY-i2lHF2jwkjwPsFZ89btek28f3n-9_cTuvnz8fHtzx_w4ycaQAwSlQuDSOIdezYsJo5fcBZSL8GaA2WkVRqfcHJQfuRiEXhCcAvCzG67Jm_Pex5K_b1ibfchb6QdWK42YpeTTZLpLn12-5FoLButjO33VCsTVCm6P2dtz9rZnb4_Z2yMp_iIfS_-zHP7LyDNTuzftsPy56d_QL7fqnaE |
| CitedBy_id | crossref_primary_10_1007_s10586_017_0806_7 crossref_primary_10_3233_XST_160565 crossref_primary_10_1007_s10586_014_0398_4 crossref_primary_10_1007_s10586_016_0648_8 crossref_primary_10_1111_exsy_12644 crossref_primary_10_20965_jaciii_2019_p0465 crossref_primary_10_1007_s12021_018_9371_3 crossref_primary_10_1016_j_cmpb_2019_04_004 crossref_primary_10_1155_2017_5109530 |
| Cites_doi | 10.1214/09-STS282 10.1023/B:MACH.0000035475.85309.1b 10.1007/s10586-011-0175-6 10.1016/j.tics.2006.07.005 10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1 10.1162/jocn.1992.4.4.352 10.1016/S1053-8119(03)00049-1 10.1002/hbm.460020402 10.1126/science.1063736 10.1038/9224 10.1016/j.brainres.2009.05.090 10.1007/s10586-007-0048-1 10.1007/s10586-005-4095-1 10.1007/978-3-642-15948-0_14 10.1007/s10586-013-0289-0 10.1109/ICCSA.2007.58 10.1523/JNEUROSCI.17-11-04302.1997 10.1109/5.939827 10.1109/CVPRW.2006.64 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media New York 2014 Springer Science+Business Media New York 2014. |
| Copyright_xml | – notice: Springer Science+Business Media New York 2014 – notice: Springer Science+Business Media New York 2014. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s10586-014-0369-9 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7543 |
| EndPage | 208 |
| ExternalDocumentID | 10_1007_s10586_014_0369_9 |
| GroupedDBID | -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29B 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAK LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P9O PF0 PT4 PT5 QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABRTQ ADHKG ADKFA AFDZB AFOHR AGQPQ AHPBZ ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c452t-e0aaf66ff029bbec68d9f4c20bfe2d1c93a8b76f4b6b8f6c401317deab6aac8b3 |
| IEDL.DBID | U2A |
| ISSN | 1386-7857 |
| IngestDate | Fri Jul 25 10:31:13 EDT 2025 Thu Apr 24 22:59:12 EDT 2025 Wed Oct 01 04:11:57 EDT 2025 Fri Feb 21 02:38:42 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | fMRI Fisher discriminant ratio Feature selection Gaussian naïve bayes Regions of interest Multi-voxel activity Cognitive states classification |
| Language | English |
| License | http://www.springer.com/tdm |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c452t-e0aaf66ff029bbec68d9f4c20bfe2d1c93a8b76f4b6b8f6c401317deab6aac8b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2918220559 |
| PQPubID | 2043865 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_2918220559 crossref_citationtrail_10_1007_s10586_014_0369_9 crossref_primary_10_1007_s10586_014_0369_9 springer_journals_10_1007_s10586_014_0369_9 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2015-03-01 |
| PublicationDateYYYYMMDD | 2015-03-01 |
| PublicationDate_xml | – month: 03 year: 2015 text: 2015-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Boston |
| PublicationPlace_xml | – name: Boston – name: Dordrecht |
| PublicationSubtitle | The Journal of Networks, Software Tools and Applications |
| PublicationTitle | Cluster computing |
| PublicationTitleAbbrev | Cluster Comput |
| PublicationYear | 2015 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Etzel, Gazzola, Keysers (CR17) 2009; 1282 Friston, Holmes, Worsley, Poline, Frith, Frackowiak (CR9) 1995; 2 CR4 Gauthier, Tarr, Anderson, Skudlarski, Gore (CR24) 1999; 2 CR8 CR19 CR7 CR16 Lindquist (CR5) 2008; 28 CR15 Mahoui, Lu, Gao, Li, Chen, Bukhres, Miled (CR1) 2005; 8 CR22 CR10 Norman, Polyn, Detre, Haxby (CR6) 2006; 10 Jung, Makeig, McKeown, Bell, Kinderman, Sejnowski (CR12) 1998; 6 CR20 Plaza, Pérez, Plaza, Martínez, Valencia (CR3) 2008; 11 Kanwisher, McDermott, Chun (CR23) 1997; 17 Chen, Lu, Tian, He, Wang, Tian, Cai, Li (CR2) 2013; 16 Mitchell, Hutchinson, Niculescu, Pereira, Wang, Just, Newman (CR18) 2004; 57 Rademacher, Galaburda, Kennedy, Filipek, Caviness (CR21) 1992; 4 Cox, Savoy (CR14) 2003; 19 Jung, Makeig, McKeown, Bell, Lee, Sejnowski (CR11) 2001; 89 Haxby, Gobbini, Furey, Ishai, Astouchen, Pietrini (CR13) 2001; 293 JA Etzel (369_CR17) 2009; 1282 N Kanwisher (369_CR23) 1997; 17 KA Norman (369_CR6) 2006; 10 D Chen (369_CR2) 2013; 16 DD Cox (369_CR14) 2003; 19 JV Haxby (369_CR13) 2001; 293 J Plaza (369_CR3) 2008; 11 MA Lindquist (369_CR5) 2008; 28 KJ Friston (369_CR9) 1995; 2 369_CR19 369_CR7 369_CR4 I Gauthier (369_CR24) 1999; 2 369_CR8 369_CR11 T Jung (369_CR12) 1998; 6 369_CR22 TM Mitchell (369_CR18) 2004; 57 369_CR16 J Rademacher (369_CR21) 1992; 4 369_CR15 M Mahoui (369_CR1) 2005; 8 369_CR10 369_CR20 |
| References_xml | – ident: CR22 – ident: CR19 – volume: 28 start-page: 439 year: 2008 end-page: 464 ident: CR5 article-title: The statistical analysis of fMRI data publication-title: Stat. Sci. doi: 10.1214/09-STS282 – volume: 57 start-page: 145 year: 2004 end-page: 175 ident: CR18 article-title: Learning to decode cognitive states from brain images publication-title: Mach. Learn. doi: 10.1023/B:MACH.0000035475.85309.1b – volume: 16 start-page: 39 issue: 1 year: 2013 end-page: 53 ident: CR2 article-title: Towards energy-efficient parallel analysis of neural signals publication-title: Cluster Comput. doi: 10.1007/s10586-011-0175-6 – ident: CR4 – volume: 10 start-page: 424 issue: 9 year: 2006 end-page: 430 ident: CR6 article-title: Beyond mind-reading: multi-voxel pattern analysis of fMRI data publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2006.07.005 – ident: CR15 – ident: CR16 – volume: 6 start-page: 160 year: 1998 end-page: 188 ident: CR12 article-title: Analysis of fMRI data by blind separation into independent spatial components publication-title: Hum. Brain Mapp. doi: 10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1 – volume: 4 start-page: 352 year: 1992 end-page: 374 ident: CR21 article-title: Human celebral cortex: localization, parcellation, and morphometry with magnetic resonance imaging publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn.1992.4.4.352 – volume: 17 start-page: 4302 issue: 11 year: 1997 end-page: 4311 ident: CR23 article-title: The fusiform face area: a module in human extrastriate cortex specialized for face perception publication-title: J. Neurosci. – volume: 19 start-page: 261 year: 2003 end-page: 270 ident: CR14 article-title: Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex publication-title: NeuroImage doi: 10.1016/S1053-8119(03)00049-1 – volume: 2 start-page: 189 year: 1995 end-page: 210 ident: CR9 article-title: Statistical parametric maps in functional imaging: a general linear approach publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.460020402 – ident: CR10 – volume: 89 start-page: 1107 year: 2001 end-page: 1122 ident: CR11 article-title: Imaging brain dynamics using independent component analysis publication-title: Proc. IEEE – volume: 293 start-page: 2425 year: 2001 end-page: 2430 ident: CR13 article-title: Distributed and overlapping representations of faces and objects in ventral temporal cortex publication-title: Science doi: 10.1126/science.1063736 – volume: 2 start-page: 568 year: 1999 end-page: 573 ident: CR24 article-title: Activation of the middle fusiform ’face area’ increases with expertise in recognizing novel objects publication-title: Nat. Neurosci. doi: 10.1038/9224 – ident: CR7 – ident: CR8 – volume: 1282 start-page: 114 year: 2009 end-page: 125 ident: CR17 article-title: An introduction to anatomical ROI-based fMRI classification analysis publication-title: Brain Res. doi: 10.1016/j.brainres.2009.05.090 – volume: 11 start-page: 17 issue: 1 year: 2008 end-page: 32 ident: CR3 article-title: Parallel morphological/neural processing of hyperspectral images using heterogeneous and homogeneous platforms publication-title: Cluster Comput. doi: 10.1007/s10586-007-0048-1 – ident: CR20 – volume: 8 start-page: 279 issue: 4 year: 2005 end-page: 291 ident: CR1 article-title: A dynamic workflow approach for the integration of bioinformatics services publication-title: Cluster Comput. doi: 10.1007/s10586-005-4095-1 – volume: 11 start-page: 17 issue: 1 year: 2008 ident: 369_CR3 publication-title: Cluster Comput. doi: 10.1007/s10586-007-0048-1 – volume: 8 start-page: 279 issue: 4 year: 2005 ident: 369_CR1 publication-title: Cluster Comput. doi: 10.1007/s10586-005-4095-1 – ident: 369_CR20 doi: 10.1007/978-3-642-15948-0_14 – volume: 19 start-page: 261 year: 2003 ident: 369_CR14 publication-title: NeuroImage doi: 10.1016/S1053-8119(03)00049-1 – ident: 369_CR4 doi: 10.1007/s10586-013-0289-0 – volume: 28 start-page: 439 year: 2008 ident: 369_CR5 publication-title: Stat. Sci. doi: 10.1214/09-STS282 – ident: 369_CR15 doi: 10.1109/ICCSA.2007.58 – ident: 369_CR10 – volume: 293 start-page: 2425 year: 2001 ident: 369_CR13 publication-title: Science doi: 10.1126/science.1063736 – volume: 1282 start-page: 114 year: 2009 ident: 369_CR17 publication-title: Brain Res. doi: 10.1016/j.brainres.2009.05.090 – volume: 4 start-page: 352 year: 1992 ident: 369_CR21 publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn.1992.4.4.352 – volume: 57 start-page: 145 year: 2004 ident: 369_CR18 publication-title: Mach. Learn. doi: 10.1023/B:MACH.0000035475.85309.1b – volume: 17 start-page: 4302 issue: 11 year: 1997 ident: 369_CR23 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.17-11-04302.1997 – ident: 369_CR7 – ident: 369_CR19 – ident: 369_CR8 – volume: 16 start-page: 39 issue: 1 year: 2013 ident: 369_CR2 publication-title: Cluster Comput. doi: 10.1007/s10586-011-0175-6 – volume: 2 start-page: 568 year: 1999 ident: 369_CR24 publication-title: Nat. Neurosci. doi: 10.1038/9224 – ident: 369_CR11 doi: 10.1109/5.939827 – volume: 10 start-page: 424 issue: 9 year: 2006 ident: 369_CR6 publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2006.07.005 – volume: 6 start-page: 160 year: 1998 ident: 369_CR12 publication-title: Hum. Brain Mapp. doi: 10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1 – volume: 2 start-page: 189 year: 1995 ident: 369_CR9 publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.460020402 – ident: 369_CR16 doi: 10.1109/CVPRW.2006.64 – ident: 369_CR22 |
| SSID | ssj0009729 |
| Score | 2.0442364 |
| Snippet | Nowadays, various kinds of signals and data were collected to investigate human brain’s activities for disease detection. In particular, the functional... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 199 |
| SubjectTerms | Accuracy Brain Classification Computer Communication Networks Computer Science Datasets Discriminant analysis Feature selection Generalized linear models Hemoglobin Human subjects Localization Magnetic resonance imaging Medical imaging Neurosciences Object recognition Operating Systems Performance evaluation Processor Architectures Support vector machines |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTxUxFG3wsXEjihofgrkLVpjGmbbTjwUhSCCEhBdiJGE36acxgfeA9zD6I_zP9nZmmGgi65npYk5772l77zmE7AaDBg51TW1QiQobONXCSOobEXnkIjKNDc7nM3l6Kc6umqs1Mht6YbCscoiJJVCHhccz8k_MZCbMqkyAD27vKLpG4e3qYKFhe2uFsF8kxp6RdYbKWBOy_vl4dvFllOFVxbes5lpSpRs13HN2zXSNxt21oDmqG2r-zlQj_fznxrQkopOX5EXPIOGwg_wVWYvzTbIxuDNAv1hfk9-HUKoF6Y_Fz3hNsYEBfSIo5q0AKRZFT1gWH5wMDnRe0pBJLBTjPnisLILSdbQEj0wbS4sKmuB-AWbF7jARbuy3OTZEQt6_L1DFI8L3m2KBBFiF-oZcnhx_PTqlvfkC9aJhKxora5OUKVXMuAy01MEk4VnlUmSh9oZb7ZRMwkmnk_S4T6tViNZJa712_C2ZzBfz-I6A5yrqSqtgWRDMcxfypitynrmhqnJ8nZJq-NGt75XJ0SDjuh01lRGbNmPTIjatmZK9x09uO1mOp17eHtBr-xW6bMf5NCUfB0THx_8dbOvpwd6T55lSNV2V2jaZrO4f4k6mLSv3oZ-LfwAIQe1i priority: 102 providerName: ProQuest |
| Title | A multi-voxel-activity-based feature selection method for human cognitive states classification by functional magnetic resonance imaging data |
| URI | https://link.springer.com/article/10.1007/s10586-014-0369-9 https://www.proquest.com/docview/2918220559 |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ProQuest Central (subscription) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-7543 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0009729 issn: 1386-7857 databaseCode: BENPR dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7543 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009729 issn: 1386-7857 databaseCode: AGYKE dateStart: 19980101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7543 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009729 issn: 1386-7857 databaseCode: U2A dateStart: 19980101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB71ceFCeYotZTUHTiBLie34cVzQbqsiqgqxUjlFfiKkdrdil6r9Ef3P2E7SBQRIPeUQxwd_9sw38cx8AK-9zgIOdU2Ml5Fw4xlRXAviGh5YYDxQlQucP56Iozk_PmvO-jru1ZDtPlxJFkv9S7Fbo3L0y0myuprobdhtcjevtInndLLptCuLNFnN0mCpGjlcZf5tit-d0YZh_nEpWnzN7BE87EkiTjpUH8NWWDyBvUGAAfvz-BRuJ1gSAsnV8jqck1yjkKUgSHZNHmMoTTtxVaRu0vpjJxeNiadi0ebDu-QhLIVFK3SZTOfsoQIY2hvMjq_7X4gX5usi1zxiCtGXuVFHwG8XReUIc6LpM5jPpp_fH5FeX4E43tA1CZUxUYgYK6ptwlIoryN3tLIxUF87zYyyUkRuhVVRuByK1dIHY4UxTln2HHYWy0V4AeiYDKpS0hvqOXXM-hRXBcYS_ZNVMqEjqIaFbl3ffDxrYJy3m7bJGZs2YdNmbFo9gjd3n1x2nTf-N_hgQK_tD-GqpToFT7RKMdMI3g6Ibl7_c7L9e41-CQ8SiWq6vLQD2Fl__xFeJaKytmPYVrPDMexODr98mKbnu-nJ6adx2a4_AZPg54Q |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKe4ALb9SlBeYAF5BFYjuOfahQgVZb2q4QaqXegp8Iqd1tu8ujP4K_xG_D4ySNQKK3npNYSWYy800833yEPPcaBRzKkhpfRyqM51QJLamrROCBi8AUEpz3J3J8KD4cVUdL5HfPhcG2yj4m5kDtZw7_kb9mOiFhViQA_Ob0jKJqFO6u9hIappNW8Bt5xFhH7NgNFz9SCTff2Hmf7P2Cse2tg3dj2qkMUCcqtqChMCZKGWPBtE1PJJXXUThW2BiYL53mRtlaRmGlVVE6LEjK2gdjpTFOWZ7WvUFWBBc6FX8rb7cmHz8NY3_rrJNWciVpraq631dtyXuVwmpe0JRFNNV_Z8YB7v6zQ5sT3_ZdcrtDrLDZutg9shSm98mdXg0CuuDwgPzahNydSL_PfoZjioQJ1KWgmCc9xJAniMI86-4kZ4BWuxoSaIYsFAiXnUyQWU5zcIjssZUpew_YC8As3P68hBPzZYoETDgPWE2kW4CvJ1lyCbDr9SE5vBYzPCLL09k0rBJwvA6qULU3zAvmuPWpyAucJyxaFymej0jRv-jGdZPQUZDjuBlmOKNtmmSbBm3T6BF5eXnJaTsG5KqT13vrNV1EmDeD_47Iq96iw-H_Lvb46sWekZvjg_29Zm9nsrtGbiU4V7UdcutkeXH-LTxJkGlhn3Z-CeTzdX8KfwBGPi19 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWglRAXSvkQC6WdAyeQ1cR2_HFctV21BSoOrNRb5E-E1GYrdkHwI_jPeJykCxVF4hzHhzzb8yaeeY-QV8GggUNdUxtUosIGTrUwkvpGRB65iExjg_P7M3k8F6fnzfngc7ocq93HK8m-pwFVmrrV_lVI-781vjUaM2FB8wlsqLlLNgXqJOQFPWfTtequKjZlNc-DlW7UeK35tyn-DExrtnnjgrTEndlD8mAgjDDtEd4md2L3iGyNZgww7M3H5OcUSnEg_bb4Hi8o9iugLQTFMBUgxSLgCctie5OxgN46GjJnheLTB9eFRFCajJbgkVhjJVEBD9wPwCDY_zuES_upw_5HyOn6AkU7Iny-LI5HgEWnT8h8dvTx4JgOXgvUi4ataKysTVKmVDHjMq5SB5OEZ5VLkYXaG261UzIJJ51O0mNaVqsQrZPWeu34U7LRLbr4jIDnKupKq2BZEMxzF3KOFTnPVFBV-TidkGr80K0fhMjRD-OiXUsoIzZtxqZFbFozIa-vX7nqVTj-NXhnRK8dNuSyZSYnUqzK-dOEvBkRXT--dbLn_zV6j9z7cDhr352cvX1B7mdu1fTlajtkY_Xla3yZ-cvK7ZY1-gvBv-qY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-voxel-activity-based+feature+selection+method+for+human+cognitive+states+classification+by+functional+magnetic+resonance+imaging+data&rft.jtitle=Cluster+computing&rft.au=Do%2C+Luu-Ngoc&rft.au=Yang%2C+Hyung-Jeong&rft.au=Kim%2C+Soo-Hyung&rft.au=Lee%2C+Guee-Sang&rft.date=2015-03-01&rft.issn=1386-7857&rft.eissn=1573-7543&rft.volume=18&rft.issue=1&rft.spage=199&rft.epage=208&rft_id=info:doi/10.1007%2Fs10586-014-0369-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10586_014_0369_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-7857&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-7857&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-7857&client=summon |