The KdmB-EcoA-RpdA-SntB (KERS) chromatin regulatory complex controls development, secondary metabolism and pathogenicity in Aspergillus flavus

•KdmB-EcoA-RpdA-SntB complex was identified and characterized in A. flavus.•ecoA deletion is lethal whereas rpdA deletion is not lethal in A. flavus.•Similar to sntB, both kdmB and rpdA are essential for aflatoxin B1 production.•KERS is required for sclerotia formation, sporulation and expression of...

Full description

Saved in:
Bibliographic Details
Published inFungal genetics and biology Vol. 169; p. 103836
Main Authors Karahoda, Betim, Pfannenstiel, Brandon T., Sarikaya-Bayram, Özlem, Dong, Zhiqiang, Ho Wong, Koon, Fleming, Alastair B., Keller, Nancy P., Bayram, Özgür
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.12.2023
Online AccessGet full text
ISSN1087-1845
1096-0937
1096-0937
DOI10.1016/j.fgb.2023.103836

Cover

Abstract •KdmB-EcoA-RpdA-SntB complex was identified and characterized in A. flavus.•ecoA deletion is lethal whereas rpdA deletion is not lethal in A. flavus.•Similar to sntB, both kdmB and rpdA are essential for aflatoxin B1 production.•KERS is required for sclerotia formation, sporulation and expression of secondary metabolite gene clusters.•kdmB and rpdA control histone modifications. The filamentous fungus Aspergillus flavus is a plant and human pathogen predominantly found in the soil as spores or sclerotia and is capable of producing various secondary metabolites (SM) such as the carcinogenic mycotoxin aflatoxin. Recently, we have discovered a novel nuclear chromatin binding complex (KERS) that contains the JARID1-type histone demethylase KdmB, a putative cohesion acetyl transferase EcoA, a class I type histone deacetylase RpdA and the PHD ring finger reader protein SntB in the model filamentous fungus Aspergillus nidulans. Here, we show the presence of the KERS complex in A. flavus by immunoprecipitation-coupled mass spectrometry and constructed kdmBΔ and rpdAΔ strains to study their roles in fungal development, SM production and histone post-translational modifications (HPTMs). We found that KdmB and RpdA couple the regulation of SM gene clusters with fungal light-responses and HPTMs. KdmB and RpdA have opposing roles in light-induced asexual conidiation, while both factors are positive regulators of sclerotia development through the nsdC and nsdD pathway. KdmB and RpdA are essential for the productions of aflatoxin (similar to findings for SntB) as well as cyclopiazonic acid, ditryptophenaline and leporin B through controlling the respective SM biosynthetic gene clusters. We further show that both KdmB and RpdA regulate H3K4me3 and H3K9me3 levels, while RpdA also acts on H3K14ac levels in nuclear extracts. Therefore, the chromatin modifiers KdmB and RpdA of the KERS complex are key regulators for fungal development and SM metabolism in A. flavus.
AbstractList The filamentous fungus Aspergillus flavus is a plant and human pathogen predominantly found in the soil as spores or sclerotia and is capable of producing various secondary metabolites (SM) such as the carcinogenic mycotoxin aflatoxin. Recently, we have discovered a novel nuclear chromatin binding complex (KERS) that contains the JARID1-type histone demethylase KdmB, a putative cohesion acetyl transferase EcoA, a class I type histone deacetylase RpdA and the PHD ring finger reader protein SntB in the model filamentous fungus Aspergillus nidulans. Here, we show the presence of the KERS complex in A. flavus by immunoprecipitation-coupled mass spectrometry and constructed kdmBΔ and rpdAΔ strains to study their roles in fungal development, SM production and histone post-translational modifications (HPTMs). We found that KdmB and RpdA couple the regulation of SM gene clusters with fungal light-responses and HPTMs. KdmB and RpdA have opposing roles in light-induced asexual conidiation, while both factors are positive regulators of sclerotia development through the nsdC and nsdD pathway. KdmB and RpdA are essential for the productions of aflatoxin (similar to findings for SntB) as well as cyclopiazonic acid, ditryptophenaline and leporin B through controlling the respective SM biosynthetic gene clusters. We further show that both KdmB and RpdA regulate H3K4me3 and H3K9me3 levels, while RpdA also acts on H3K14ac levels in nuclear extracts. Therefore, the chromatin modifiers KdmB and RpdA of the KERS complex are key regulators for fungal development and SM metabolism in A. flavus.
The filamentous fungus Aspergillus flavus is a plant and human pathogen predominantly found in the soil as spores or sclerotia and is capable of producing various secondary metabolites (SM) such as the carcinogenic mycotoxin aflatoxin. Recently, we have discovered a novel nuclear chromatin binding complex (KERS) that contains the JARID1-type histone demethylase KdmB, a putative cohesion acetyl transferase EcoA, a class I type histone deacetylase RpdA and the PHD ring finger reader protein SntB in the model filamentous fungus Aspergillus nidulans. Here, we show the presence of the KERS complex in A. flavus by immunoprecipitation-coupled mass spectrometry and constructed kdmBΔ and rpdAΔ strains to study their roles in fungal development, SM production and histone post-translational modifications (HPTMs). We found that KdmB and RpdA couple the regulation of SM gene clusters with fungal light-responses and HPTMs. KdmB and RpdA have opposing roles in light-induced asexual conidiation, while both factors are positive regulators of sclerotia development through the nsdC and nsdD pathway. KdmB and RpdA are essential for the productions of aflatoxin (similar to findings for SntB) as well as cyclopiazonic acid, ditryptophenaline and leporin B through controlling the respective SM biosynthetic gene clusters. We further show that both KdmB and RpdA regulate H3K4me3 and H3K9me3 levels, while RpdA also acts on H3K14ac levels in nuclear extracts. Therefore, the chromatin modifiers KdmB and RpdA of the KERS complex are key regulators for fungal development and SM metabolism in A. flavus.The filamentous fungus Aspergillus flavus is a plant and human pathogen predominantly found in the soil as spores or sclerotia and is capable of producing various secondary metabolites (SM) such as the carcinogenic mycotoxin aflatoxin. Recently, we have discovered a novel nuclear chromatin binding complex (KERS) that contains the JARID1-type histone demethylase KdmB, a putative cohesion acetyl transferase EcoA, a class I type histone deacetylase RpdA and the PHD ring finger reader protein SntB in the model filamentous fungus Aspergillus nidulans. Here, we show the presence of the KERS complex in A. flavus by immunoprecipitation-coupled mass spectrometry and constructed kdmBΔ and rpdAΔ strains to study their roles in fungal development, SM production and histone post-translational modifications (HPTMs). We found that KdmB and RpdA couple the regulation of SM gene clusters with fungal light-responses and HPTMs. KdmB and RpdA have opposing roles in light-induced asexual conidiation, while both factors are positive regulators of sclerotia development through the nsdC and nsdD pathway. KdmB and RpdA are essential for the productions of aflatoxin (similar to findings for SntB) as well as cyclopiazonic acid, ditryptophenaline and leporin B through controlling the respective SM biosynthetic gene clusters. We further show that both KdmB and RpdA regulate H3K4me3 and H3K9me3 levels, while RpdA also acts on H3K14ac levels in nuclear extracts. Therefore, the chromatin modifiers KdmB and RpdA of the KERS complex are key regulators for fungal development and SM metabolism in A. flavus.
The filamentous fungus Aspergillus flavus is a plant and human pathogen predominantly found in the soil as spores or sclerotia and is capable of producing various secondary metabolites (SM) such as the carcinogenic mycotoxin aflatoxin. Recently, we have discovered a novel nuclear chromatin binding complex (KERS) that contains the JARID1-type histone demethylase KdmB, a putative cohesion acetyl transferase EcoA, a class I type histone deacetylase RpdA and the PHD ring finger reader protein SntB in the model filamentous fungus Aspergillus nidulans . Here, we show the presence of the KERS complex in A. flavus by immunoprecipitation-coupled mass spectrometry and constructed kdmB Δ and rpdA Δ strains to study their roles in fungal development, SM production and histone post-translational modifications (HPTMs). We found that KdmB and RpdA couple the regulation of SM gene clusters with fungal light-responses and HPTMs. KdmB and RpdA have opposing roles in light-induced asexual conidiation, while both factors are positive regulators of sclerotia development through the nsdC and nsdD pathway. KdmB and RpdA are essential for the productions of aflatoxin (similar to findings for SntB) as well as cyclopiazonic acid, ditryptophenaline and leporin B through controlling the respective SM biosynthetic gene clusters. We further show that both KdmB and RpdA regulate H3K4me3 and H3K9me3 levels, while RpdA also acts on H3K14ac levels in nuclear extracts. Therefore, the chromatin modifiers KdmB and RpdA of the KERS complex are key regulators for fungal development and SM metabolism in A. flavus .
•KdmB-EcoA-RpdA-SntB complex was identified and characterized in A. flavus.•ecoA deletion is lethal whereas rpdA deletion is not lethal in A. flavus.•Similar to sntB, both kdmB and rpdA are essential for aflatoxin B1 production.•KERS is required for sclerotia formation, sporulation and expression of secondary metabolite gene clusters.•kdmB and rpdA control histone modifications. The filamentous fungus Aspergillus flavus is a plant and human pathogen predominantly found in the soil as spores or sclerotia and is capable of producing various secondary metabolites (SM) such as the carcinogenic mycotoxin aflatoxin. Recently, we have discovered a novel nuclear chromatin binding complex (KERS) that contains the JARID1-type histone demethylase KdmB, a putative cohesion acetyl transferase EcoA, a class I type histone deacetylase RpdA and the PHD ring finger reader protein SntB in the model filamentous fungus Aspergillus nidulans. Here, we show the presence of the KERS complex in A. flavus by immunoprecipitation-coupled mass spectrometry and constructed kdmBΔ and rpdAΔ strains to study their roles in fungal development, SM production and histone post-translational modifications (HPTMs). We found that KdmB and RpdA couple the regulation of SM gene clusters with fungal light-responses and HPTMs. KdmB and RpdA have opposing roles in light-induced asexual conidiation, while both factors are positive regulators of sclerotia development through the nsdC and nsdD pathway. KdmB and RpdA are essential for the productions of aflatoxin (similar to findings for SntB) as well as cyclopiazonic acid, ditryptophenaline and leporin B through controlling the respective SM biosynthetic gene clusters. We further show that both KdmB and RpdA regulate H3K4me3 and H3K9me3 levels, while RpdA also acts on H3K14ac levels in nuclear extracts. Therefore, the chromatin modifiers KdmB and RpdA of the KERS complex are key regulators for fungal development and SM metabolism in A. flavus.
ArticleNumber 103836
Author Bayram, Özgür
Sarikaya-Bayram, Özlem
Ho Wong, Koon
Dong, Zhiqiang
Pfannenstiel, Brandon T.
Fleming, Alastair B.
Karahoda, Betim
Keller, Nancy P.
AuthorAffiliation a Biology Department, Maynooth University, Maynooth, Co. Kildare, Ireland
c Faculty of Health Sciences, University of Macau, Macau
b Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, USA
f Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
e Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau
d Institute of Translational Medicine, University of Macau, Macau
AuthorAffiliation_xml – name: d Institute of Translational Medicine, University of Macau, Macau
– name: a Biology Department, Maynooth University, Maynooth, Co. Kildare, Ireland
– name: c Faculty of Health Sciences, University of Macau, Macau
– name: b Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, USA
– name: e Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau
– name: f Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
Author_xml – sequence: 1
  givenname: Betim
  surname: Karahoda
  fullname: Karahoda, Betim
  organization: Biology Department, Maynooth University, Maynooth, Co. Kildare, Ireland
– sequence: 2
  givenname: Brandon T.
  surname: Pfannenstiel
  fullname: Pfannenstiel, Brandon T.
  organization: Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, USA
– sequence: 3
  givenname: Özlem
  surname: Sarikaya-Bayram
  fullname: Sarikaya-Bayram, Özlem
  organization: Biology Department, Maynooth University, Maynooth, Co. Kildare, Ireland
– sequence: 4
  givenname: Zhiqiang
  surname: Dong
  fullname: Dong, Zhiqiang
  organization: Faculty of Health Sciences, University of Macau, Macau
– sequence: 5
  givenname: Koon
  surname: Ho Wong
  fullname: Ho Wong, Koon
  organization: Faculty of Health Sciences, University of Macau, Macau
– sequence: 6
  givenname: Alastair B.
  surname: Fleming
  fullname: Fleming, Alastair B.
  organization: Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
– sequence: 7
  givenname: Nancy P.
  surname: Keller
  fullname: Keller, Nancy P.
  organization: Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, USA
– sequence: 8
  givenname: Özgür
  surname: Bayram
  fullname: Bayram, Özgür
  email: ozgur.bayram@mu.ie
  organization: Biology Department, Maynooth University, Maynooth, Co. Kildare, Ireland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37666447$$D View this record in MEDLINE/PubMed
BookMark eNp9Uctu1DAUjVARfcAHsEFeFokMduzEGbFA02p4qJWQ2rK2HPsm45FjB9sZ0Z_gm_FoWgQsurp-nMfVOafFkfMOiuI1wQuCSfN-u-iHblHhiuY7bWnzrDgheNmUeEn50f7c8pK0rD4uTmPcYkxIzciL4pjypmkY4yfFr7sNoCs9XpRr5VflzaRX5a1LF-j8an1z-xapTfCjTMahAMNsZfLhHik_ThZ-5ulS8DYiDTuwfhrBpXcoQn7XMuNGSLLz1sQRSafRJNPGD-CMMukeZclVnCAMxto5ot7K3RxfFs97aSO8ephnxfdP67vLL-X1t89fL1fXpWJ1lUqt5VLRileKMtKwrlnyVvVtRTTjqmo7ypnSXEmOcdVXssec9V2-gZQS18uenhUfD7rT3I2gVV48SCumYMa8uPDSiH9_nNmIwe9EjpSRmtZZ4fxBIfgfM8QkRhMVWCsd-DmKqm0IxTQ7Z-ibv83-uDy2kAH8AFDBxxigFzmhHPo-XmlsNhX7vsVW5L7Fvm9x6DszyX_MR_GnOB8OHMgB7wwEEZUBp0CbACoJ7c0T7N-ehsV2
CitedBy_id crossref_primary_10_1007_s00203_025_04300_8
crossref_primary_10_7554_eLife_94743
crossref_primary_10_3390_ijms26010025
crossref_primary_10_1016_j_micres_2024_127981
crossref_primary_10_3390_jof10090648
crossref_primary_10_7554_eLife_94743_5
Cites_doi 10.1073/pnas.2021683118
10.1099/mic.0.2007/007641-0
10.1016/j.fgb.2018.08.004
10.1016/j.fgb.2014.01.001
10.1128/am.14.1.139-.1966
10.1128/genomeA.00278-16
10.1161/CIRCRESAHA.116.303630
10.1016/S0166-6851(97)00089-3
10.1111/j.1365-2958.2012.08195.x
10.1038/350427a0
10.1128/EC.00186-07
10.1371/journal.pgen.1006222
10.3389/fmicb.2020.00043
10.21769/BioProtoc.424
10.1016/j.fgb.2015.05.010
10.1073/pnas.93.25.14503
10.1371/journal.pgen.1010502
10.1111/mmi.12977
10.1016/j.fgb.2013.08.009
10.1111/j.1364-3703.2010.00683.x
10.1007/BF00683969
10.1007/978-1-62703-122-6_14
10.1111/j.1365-2958.2007.05952.x
10.1093/g3journal/jkab213
10.1128/AEM.01241-12
10.1016/j.fgb.2014.02.008
10.1074/jbc.M209562200
10.1016/j.bbrc.2010.03.125
10.1128/AEM.02146-08
10.1021/acschembio.5b00025
10.1186/s13072-016-0053-9
10.3389/fpls.2018.00355
10.1073/pnas.1103523108
10.1128/EC.00092-15
10.1002/cbic.201300751
10.1016/0076-6879(92)16041-H
10.1111/1462-2920.16198
10.1534/genetics.119.302277
10.1080/15548627.2018.1458171
10.3390/toxins8020046
10.1091/mbc.e09-08-0750
10.1016/j.fgb.2008.11.002
10.1111/j.1365-2958.2010.07051.x
10.3390/toxins10070301
10.1186/s43008-021-00060-4
10.1128/MCB.00025-13
10.3114/sim.2007.59.02
10.1128/EC.00071-07
10.1016/j.fgb.2023.103837
10.1038/nchembio.177
10.1111/1462-2920.16034
10.3390/molecules23102614
10.1046/j.1365-2958.1998.00907.x
10.1039/B819208A
10.1093/nar/gkac744
10.3389/fmicb.2016.01324
10.1128/AEM.70.3.1253-1262.2004
10.1101/gad.1341105
10.1128/mBio.03146-20
10.1080/19440049.2016.1138545
10.1371/journal.pgen.1010001
10.1371/journal.pgen.1008053
10.3390/toxins4111024
10.1038/s41576-018-0089-8
10.1016/j.fgb.2018.04.009
10.1371/journal.pgen.1004676
10.1128/EC.00088-09
10.3390/toxins6061916
10.1074/mcp.M300081-MCP200
10.1016/j.fgb.2017.04.006
10.1074/jbc.M114.573725
10.1128/mBio.01246-17
ContentType Journal Article
Copyright 2023 The Authors
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2023 The Authors
– notice: Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1016/j.fgb.2023.103836
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1096-0937
EndPage 103836
ExternalDocumentID PMC10841535
37666447
10_1016_j_fgb_2023_103836
S1087184523000671
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
186
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
AAAJQ
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
CJTIS
COF
CS3
DM4
DOVZS
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
LG5
LUGTX
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPCBC
SSI
SSU
SSZ
T5K
UNMZH
XPP
ZCG
ZMT
ZU3
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
NPM
7X8
ACLOT
~HD
5PM
ID FETCH-LOGICAL-c452t-dda9c3272c34164b6978cf821d47c28b374cd7ca7002f2af074fba70eaaa059f3
IEDL.DBID AIKHN
ISSN 1087-1845
1096-0937
IngestDate Thu Aug 21 18:35:32 EDT 2025
Sat Sep 27 19:37:35 EDT 2025
Mon Jul 21 06:01:08 EDT 2025
Tue Jul 01 01:06:21 EDT 2025
Thu Apr 24 23:10:50 EDT 2025
Fri Feb 23 02:34:39 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article under the CC BY license.
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c452t-dda9c3272c34164b6978cf821d47c28b374cd7ca7002f2af074fba70eaaa059f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1087184523000671
PMID 37666447
PQID 2861303074
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10841535
proquest_miscellaneous_2861303074
pubmed_primary_37666447
crossref_citationtrail_10_1016_j_fgb_2023_103836
crossref_primary_10_1016_j_fgb_2023_103836
elsevier_sciencedirect_doi_10_1016_j_fgb_2023_103836
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Fungal genetics and biology
PublicationTitleAlternate Fungal Genet Biol
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Yu (b0385) 2012; 4
Nutzmann (b0250) 2011; 108
Soukup, Keller (b0345) 2013; 3
Bauer (b0025) 2020; 11
Faustinelli, P. C., et al., 2016. Genome Sequences of Eight Aspergillus flavus spp. and One A. parasiticus sp., Isolated from Peanut Seeds in Georgia. Genome Announc. 4.
Bayram (b0030) 2012; 944
Pfannenstiel (b0260) 2018
Yang (b0375) 2022; 24
Bok (b0040) 2009; 5
Ramirez-Prado (b0280) 2018; 9
Prochasson (b0270) 2005; 19
Skerker, J. M., et al., 2021. Chromosome assembled and annotated genome sequence of Aspergillus flavus NRRL 3357. G3 (Bethesda). 11.
Amaike, Keller (b0010) 2009; 8
Lan (b0215) 2016; 7
Luciano-Rosario (b0230) 2023
Bayram (b0035) 2019; 212
Roguev (b0295) 2004; 3
Elramli (b0115) 2019; 15
Weaver (b0365) 2018; 23
Gacek-Matthews (b0140) 2016; 12
Hedayati (b0170) 2007; 153
Cary (b0050) 2015; 14
Parrish (b0255) 1966; 14
Choi (b0080) 2010; 394
Soukup (b0340) 2012; 86
Roze (b0305) 2007; 66
Gacek-Matthews (b0135) 2015; 96
Reyes-Dominguez (b0285) 2010; 76
Hsu (b0185) 1991; 350
Chang (b0070) 2013; 58–59
Amare, Keller (b0015) 2014; 66
Hu, Y., et al., 2018. The PHD Transcription Factor Rum1 Regulates Morphogenesis and Aflatoxin Biosynthesis in Aspergillus flavus. Toxins (Basel). 10.
Lebar (b0220) 2018; 116
Sun (b0350) 2021; 12
He (b0165) 2018; 14
Graessle (b0160) 2000; 1492
Christensen (b0085) 2012
Punt, van den Hondel (b0275) 1992; 216
Gallagher, Wilson (b0150) 1979; 66
Wang (b0360) 2016; 8
Albright (b0005) 2015; 10
Klemm (b0210) 2019; 20
Fernandes (b0125) 1998; 28
Helmstaedt (b0175) 2008; 7
Henrikson (b0180) 2009; 7
Rokas (b0300) 2007; 59
Ji, Arnot (b0195) 1997; 88
Keller (b0205) 2018
Tribus (b0355) 2010; 21
Cary (b0055) 2015; 81
Pfannenstiel, B. T., et al., 2017. Revitalization of a Forward Genetic Screen Identifies Three New Regulators of Fungal Secondary Metabolism in the Genus Aspergillus. MBio. 8.
Gillette, Hill (b0155) 2015; 116
Nishibuchi (b0245) 2014; 289
Wen (b0370) 2022; 24
Liu (b0225) 2014; 10
Sarikaya Bayram (b0320) 2022; 18
Yu (b0380) 2004; 70
Karahoda (b0200) 2022; 50
Cary (b0045) 2014; 64
Chang (b0060) 2009; 46
Gajan (b0145) 2016; 9
Sarikaya Bayram (b0315) 2019
Mitchell (b0235) 2016; 33
Chang (b0065) 2012; 78
Drott (b0105) 2021; 118
Rundlett (b0310) 1996; 93
Nicholson (b0240) 2009; 75
Roguev (b0290) 2003; 278
Chang (b0075) 2017; 104
Colabardini (b0090) 2022; 18
Saruwatari (b0325) 2014; 15
Fountain (b0130) 2020; G3 (Bethesda). 10
Shwab (b0330) 2007; 6
Baker (b0020) 2013; 33
de Assis, L. J., et al., 2021. Carbon Catabolite Repression in Filamentous Fungi Is Regulated by Phosphorylation of the Transcription Factor CreA. mBio. 12.
Denisov (b0100) 2011; 12
Ehrlich, Mack (b0110) 2014; 6
Chang (10.1016/j.fgb.2023.103836_b0060) 2009; 46
Gallagher (10.1016/j.fgb.2023.103836_b0150) 1979; 66
Cary (10.1016/j.fgb.2023.103836_b0050) 2015; 14
Klemm (10.1016/j.fgb.2023.103836_b0210) 2019; 20
Gacek-Matthews (10.1016/j.fgb.2023.103836_b0135) 2015; 96
Yang (10.1016/j.fgb.2023.103836_b0375) 2022; 24
Baker (10.1016/j.fgb.2023.103836_b0020) 2013; 33
Fernandes (10.1016/j.fgb.2023.103836_b0125) 1998; 28
Bayram (10.1016/j.fgb.2023.103836_b0035) 2019; 212
10.1016/j.fgb.2023.103836_b0190
Helmstaedt (10.1016/j.fgb.2023.103836_b0175) 2008; 7
Bauer (10.1016/j.fgb.2023.103836_b0025) 2020; 11
Bok (10.1016/j.fgb.2023.103836_b0040) 2009; 5
Chang (10.1016/j.fgb.2023.103836_b0065) 2012; 78
Henrikson (10.1016/j.fgb.2023.103836_b0180) 2009; 7
Roze (10.1016/j.fgb.2023.103836_b0305) 2007; 66
Albright (10.1016/j.fgb.2023.103836_b0005) 2015; 10
Weaver (10.1016/j.fgb.2023.103836_b0365) 2018; 23
Graessle (10.1016/j.fgb.2023.103836_b0160) 2000; 1492
Nishibuchi (10.1016/j.fgb.2023.103836_b0245) 2014; 289
Rundlett (10.1016/j.fgb.2023.103836_b0310) 1996; 93
Soukup (10.1016/j.fgb.2023.103836_b0345) 2013; 3
Yu (10.1016/j.fgb.2023.103836_b0385) 2012; 4
Gajan (10.1016/j.fgb.2023.103836_b0145) 2016; 9
Bayram (10.1016/j.fgb.2023.103836_b0030) 2012; 944
He (10.1016/j.fgb.2023.103836_b0165) 2018; 14
Parrish (10.1016/j.fgb.2023.103836_b0255) 1966; 14
Nicholson (10.1016/j.fgb.2023.103836_b0240) 2009; 75
Tribus (10.1016/j.fgb.2023.103836_b0355) 2010; 21
10.1016/j.fgb.2023.103836_b0265
Cary (10.1016/j.fgb.2023.103836_b0055) 2015; 81
Drott (10.1016/j.fgb.2023.103836_b0105) 2021; 118
Chang (10.1016/j.fgb.2023.103836_b0070) 2013; 58–59
Wen (10.1016/j.fgb.2023.103836_b0370) 2022; 24
Sun (10.1016/j.fgb.2023.103836_b0350) 2021; 12
Elramli (10.1016/j.fgb.2023.103836_b0115) 2019; 15
Karahoda (10.1016/j.fgb.2023.103836_b0200) 2022; 50
Wang (10.1016/j.fgb.2023.103836_b0360) 2016; 8
Yu (10.1016/j.fgb.2023.103836_b0380) 2004; 70
Reyes-Dominguez (10.1016/j.fgb.2023.103836_b0285) 2010; 76
Sarikaya Bayram (10.1016/j.fgb.2023.103836_b0320) 2022; 18
Denisov (10.1016/j.fgb.2023.103836_b0100) 2011; 12
Roguev (10.1016/j.fgb.2023.103836_b0290) 2003; 278
Roguev (10.1016/j.fgb.2023.103836_b0295) 2004; 3
Mitchell (10.1016/j.fgb.2023.103836_b0235) 2016; 33
Hedayati (10.1016/j.fgb.2023.103836_b0170) 2007; 153
Nutzmann (10.1016/j.fgb.2023.103836_b0250) 2011; 108
Lebar (10.1016/j.fgb.2023.103836_b0220) 2018; 116
Fountain (10.1016/j.fgb.2023.103836_b0130) 2020; G3 (Bethesda). 10
10.1016/j.fgb.2023.103836_b0335
Keller (10.1016/j.fgb.2023.103836_b0205) 2018
Prochasson (10.1016/j.fgb.2023.103836_b0270) 2005; 19
Sarikaya Bayram (10.1016/j.fgb.2023.103836_b0315) 2019
10.1016/j.fgb.2023.103836_b0095
Ramirez-Prado (10.1016/j.fgb.2023.103836_b0280) 2018; 9
Ehrlich (10.1016/j.fgb.2023.103836_b0110) 2014; 6
Ji (10.1016/j.fgb.2023.103836_b0195) 1997; 88
Cary (10.1016/j.fgb.2023.103836_b0045) 2014; 64
Christensen (10.1016/j.fgb.2023.103836_b0085) 2012
Pfannenstiel (10.1016/j.fgb.2023.103836_b0260) 2018
Chang (10.1016/j.fgb.2023.103836_b0075) 2017; 104
Shwab (10.1016/j.fgb.2023.103836_b0330) 2007; 6
Amaike (10.1016/j.fgb.2023.103836_b0010) 2009; 8
Soukup (10.1016/j.fgb.2023.103836_b0340) 2012; 86
Luciano-Rosario (10.1016/j.fgb.2023.103836_b0230) 2023
Hsu (10.1016/j.fgb.2023.103836_b0185) 1991; 350
Liu (10.1016/j.fgb.2023.103836_b0225) 2014; 10
Choi (10.1016/j.fgb.2023.103836_b0080) 2010; 394
Amare (10.1016/j.fgb.2023.103836_b0015) 2014; 66
Colabardini (10.1016/j.fgb.2023.103836_b0090) 2022; 18
Rokas (10.1016/j.fgb.2023.103836_b0300) 2007; 59
Punt (10.1016/j.fgb.2023.103836_b0275) 1992; 216
10.1016/j.fgb.2023.103836_b0120
Gillette (10.1016/j.fgb.2023.103836_b0155) 2015; 116
Lan (10.1016/j.fgb.2023.103836_b0215) 2016; 7
Saruwatari (10.1016/j.fgb.2023.103836_b0325) 2014; 15
Gacek-Matthews (10.1016/j.fgb.2023.103836_b0140) 2016; 12
References_xml – volume: 118
  year: 2021
  ident: b0105
  article-title: Microevolution in the pansecondary metabolome of Aspergillus flavus and its potential macroevolutionary implications for filamentous fungi
  publication-title: PNAS
– volume: 350
  start-page: 427
  year: 1991
  end-page: 428
  ident: b0185
  article-title: Mutational hotspot in the p53 gene in human hepatocellular carcinomas
  publication-title: Nature
– volume: 14
  start-page: 983
  year: 2015
  end-page: 997
  ident: b0050
  article-title: Transcriptome Analysis of Aspergillus flavus Reveals veA-Dependent Regulation of Secondary Metabolite Gene Clusters, Including the Novel Aflavarin Cluster
  publication-title: Eukaryot. Cell
– volume: 7
  start-page: 435
  year: 2009
  end-page: 438
  ident: b0180
  article-title: A chemical epigenetics approach for engineering the in situ biosynthesis of a cryptic natural product from Aspergillus niger
  publication-title: Org. Biomol. Chem.
– volume: 18
  start-page: e1010001
  year: 2022
  ident: b0090
  article-title: Chromatin profiling reveals heterogeneity in clinical isolates of the human pathogen Aspergillus fumigatus
  publication-title: PLoS Genet.
– volume: 14
  start-page: 1543
  year: 2018
  end-page: 1561
  ident: b0165
  article-title: MoSnt2-dependent deacetylation of histone H3 mediates MoTor-dependent autophagy and plant infection by the rice blast fungus Magnaporthe oryzae
  publication-title: Autophagy
– volume: 10
  start-page: 1535
  year: 2015
  end-page: 1541
  ident: b0005
  article-title: Large-scale metabolomics reveals a complex response of Aspergillus nidulans to epigenetic perturbation
  publication-title: ACS Chem. Biol.
– volume: 10
  start-page: e1004676
  year: 2014
  ident: b0225
  article-title: KDM5 interacts with Foxo to modulate cellular levels of oxidative stress
  publication-title: PLoS Genet.
– volume: 15
  start-page: e1008053
  year: 2019
  ident: b0115
  article-title: Assembly of a heptameric STRIPAK complex is required for coordination of light-dependent multicellular fungal development with secondary metabolism in Aspergillus nidulans
  publication-title: PLoS Genet.
– volume: 9
  start-page: 355
  year: 2018
  ident: b0280
  article-title: Modify the Histone to Win the Battle: Chromatin Dynamics in Plant-Pathogen Interactions
  publication-title: Front. Plant Sci.
– reference: Faustinelli, P. C., et al., 2016. Genome Sequences of Eight Aspergillus flavus spp. and One A. parasiticus sp., Isolated from Peanut Seeds in Georgia. Genome Announc. 4.
– volume: 289
  start-page: 28956
  year: 2014
  end-page: 28970
  ident: b0245
  article-title: Physical and functional interactions between the histone H3K4 demethylase KDM5A and the nucleosome remodeling and deacetylase (NuRD) complex
  publication-title: J. Biol. Chem.
– volume: 212
  start-page: 691
  year: 2019
  end-page: 710
  ident: b0035
  article-title: Control of Development, Secondary Metabolism and Light-Dependent Carotenoid Biosynthesis by the Velvet Complex of Neurospora crassa
  publication-title: Genetics
– volume: 75
  start-page: 7469
  year: 2009
  end-page: 7481
  ident: b0240
  article-title: Identification of two aflatrem biosynthesis gene loci in Aspergillus flavus and metabolic engineering of Penicillium paxilli to elucidate their function
  publication-title: Appl. Environ. Microbiol.
– volume: 23
  year: 2018
  ident: b0365
  article-title: Reading More than Histones: The Prevalence of Nucleic Acid Binding among Reader Domains
  publication-title: Molecules
– volume: 70
  start-page: 1253
  year: 2004
  end-page: 1262
  ident: b0380
  article-title: Clustered pathway genes in aflatoxin biosynthesis
  publication-title: Appl. Environ. Microbiol.
– volume: G3 (Bethesda). 10
  start-page: 3515
  year: 2020
  end-page: 3531
  ident: b0130
  publication-title: Two New Aspergillus flavus Reference Genomes Reveal a Large Insertion Potentially Contributing to Isolate Stress Tolerance and Aflatoxin Production.
– year: 2012
  ident: b0085
  article-title: Quantification of fungal colonization, sporogenesis, and production of mycotoxins using kernel bioassays
– volume: 46
  start-page: 176
  year: 2009
  end-page: 182
  ident: b0060
  article-title: Clustered genes involved in cyclopiazonic acid production are next to the aflatoxin biosynthesis gene cluster in Aspergillus flavus
  publication-title: Fungal Genet. Biol.
– volume: 6
  start-page: 1656
  year: 2007
  end-page: 1664
  ident: b0330
  article-title: Histone deacetylase activity regulates chemical diversity in Aspergillus
  publication-title: Eukaryot. Cell
– reference: Skerker, J. M., et al., 2021. Chromosome assembled and annotated genome sequence of Aspergillus flavus NRRL 3357. G3 (Bethesda). 11.
– volume: 59
  start-page: 11
  year: 2007
  end-page: 17
  ident: b0300
  article-title: What can comparative genomics tell us about species concepts in the genus Aspergillus?
  publication-title: Stud. Mycol.
– year: 2018
  ident: b0205
  article-title: Fungal secondary metabolism: regulation, function and drug discovery
  publication-title: Nat. Rev. Microbiol.
– volume: 153
  start-page: 1677
  year: 2007
  end-page: 1692
  ident: b0170
  article-title: Aspergillus flavus: human pathogen, allergen and mycotoxin producer
  publication-title: Microbiology
– volume: 1492
  start-page: 120
  year: 2000
  end-page: 126
  ident: b0160
  article-title: Characterization of two putative histone deacetylase genes from Aspergillus nidulans
  publication-title: BBA
– volume: 88
  start-page: 151
  year: 1997
  end-page: 162
  ident: b0195
  article-title: A Plasmodium falciparum homologue of the ATPase subunit of a multi-protein complex involved in chromatin remodelling for transcription
  publication-title: Mol. Biochem. Parasitol.
– volume: 7
  start-page: 1041
  year: 2008
  end-page: 1052
  ident: b0175
  article-title: The nuclear migration protein NUDF/LIS1 forms a complex with NUDC and BNFA at spindle pole bodies
  publication-title: Eukaryot. Cell
– volume: 76
  start-page: 1376
  year: 2010
  end-page: 1386
  ident: b0285
  article-title: Heterochromatic marks are associated with the repression of secondary metabolism clusters in Aspergillus nidulans
  publication-title: Mol. Microbiol.
– volume: 8
  start-page: 1051
  year: 2009
  end-page: 1060
  ident: b0010
  article-title: Distinct roles for VeA and LaeA in development and pathogenesis of Aspergillus flavus
  publication-title: Eukaryot. Cell
– volume: 66
  start-page: 183
  year: 1979
  end-page: 185
  ident: b0150
  article-title: Aflatrem, the tremorgenic mycotoxin from Aspergillus flavus
  publication-title: Mycopathologia
– volume: 33
  start-page: 540
  year: 2016
  end-page: 550
  ident: b0235
  article-title: Potential economic losses to the US corn industry from aflatoxin contamination
  publication-title: Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess.
– volume: 11
  start-page: 43
  year: 2020
  ident: b0025
  article-title: RcLS2F - A Novel Fungal Class 1 KDAC Co-repressor Complex in Aspergillus nidulans
  publication-title: Front. Microbiol.
– volume: 50
  start-page: 9797
  year: 2022
  end-page: 9813
  ident: b0200
  article-title: The KdmB-EcoA-RpdA-SntB chromatin complex binds regulatory genes and coordinates fungal development with mycotoxin synthesis
  publication-title: Nucleic Acids Res.
– volume: 216
  start-page: 447
  year: 1992
  end-page: 457
  ident: b0275
  article-title: Transformation of filamentous fungi based on hygromycin B and phleomycin resistance markers
  publication-title: Methods Enzymol.
– volume: 3
  start-page: 125
  year: 2004
  end-page: 132
  ident: b0295
  article-title: A comparative analysis of an orthologous proteomic environment in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe
  publication-title: Mol. Cell. Proteomics
– volume: 58–59
  start-page: 71
  year: 2013
  end-page: 79
  ident: b0070
  article-title: Aspergillus flavus VelB acts distinctly from VeA in conidiation and may coordinate with FluG to modulate sclerotial production
  publication-title: Fungal Genet. Biol.
– volume: 15
  start-page: 656
  year: 2014
  end-page: 659
  ident: b0325
  article-title: Cytochrome P450 as dimerization catalyst in diketopiperazine alkaloid biosynthesis
  publication-title: Chembiochem
– volume: 116
  start-page: 1245
  year: 2015
  end-page: 1253
  ident: b0155
  article-title: Readers, writers, and erasers: chromatin as the whiteboard of heart disease
  publication-title: Circ. Res.
– volume: 93
  start-page: 14503
  year: 1996
  end-page: 14508
  ident: b0310
  article-title: HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription
  publication-title: PNAS
– volume: 12
  start-page: 449
  year: 2011
  end-page: 461
  ident: b0100
  article-title: Inactivation of Snt2, a BAH/PHD-containing transcription factor, impairs pathogenicity and increases autophagosome abundance in Fusarium oxysporum
  publication-title: Mol. Plant Pathol
– year: 2018
  ident: b0260
  article-title: The epigenetic reader SntB regulates secondary metabolism, development and global histone modifications in Aspergillus flavus
  publication-title: Fungal Genet. Biol.
– volume: 96
  start-page: 839
  year: 2015
  end-page: 860
  ident: b0135
  article-title: KdmA, a histone H3 demethylase with bipartite function, differentially regulates primary and secondary metabolism in Aspergillus nidulans
  publication-title: Mol. Microbiol.
– volume: 4
  start-page: 1024
  year: 2012
  end-page: 1057
  ident: b0385
  article-title: Current understanding on aflatoxin biosynthesis and future perspective in reducing aflatoxin contamination
  publication-title: Toxins (Basel).
– year: 2023
  ident: b0230
  article-title: The histone demethylase KdmB is part of a trimeric protein complex and mediates virulence and patulin production in Penicillium expansum
  publication-title: Fungal Genet. Biol.
– volume: 3
  year: 2013
  ident: b0345
  article-title: Western Analysis of Histone Modifications (Aspergillus nidulans)
  publication-title: Bio Protoc.
– volume: 24
  start-page: 2857
  year: 2022
  end-page: 2881
  ident: b0375
  article-title: Post-translational modifications drive secondary metabolite biosynthesis in Aspergillus: a review
  publication-title: Environ. Microbiol.
– volume: 5
  start-page: 462
  year: 2009
  end-page: 464
  ident: b0040
  article-title: Chromatin-level regulation of biosynthetic gene clusters
  publication-title: Nat. Chem. Biol.
– reference: de Assis, L. J., et al., 2021. Carbon Catabolite Repression in Filamentous Fungi Is Regulated by Phosphorylation of the Transcription Factor CreA. mBio. 12.
– volume: 6
  start-page: 1916
  year: 2014
  end-page: 1928
  ident: b0110
  article-title: Comparison of expression of secondary metabolite biosynthesis cluster genes in Aspergillus flavus, A. parasiticus, and A. oryzae
  publication-title: Toxins (Basel).
– volume: 19
  start-page: 2534
  year: 2005
  end-page: 2539
  ident: b0270
  article-title: The HIR corepressor complex binds to nucleosomes generating a distinct protein/DNA complex resistant to remodeling by SWI/SNF
  publication-title: Genes Dev.
– volume: 21
  start-page: 345
  year: 2010
  end-page: 353
  ident: b0355
  article-title: A novel motif in fungal class 1 histone deacetylases is essential for growth and development of Aspergillus
  publication-title: Mol. Biol. Cell
– volume: 66
  start-page: 713
  year: 2007
  end-page: 726
  ident: b0305
  article-title: The initiation and pattern of spread of histone H4 acetylation parallel the order of transcriptional activation of genes in the aflatoxin cluster
  publication-title: Mol. Microbiol.
– volume: 12
  start-page: e1006222
  year: 2016
  ident: b0140
  article-title: KdmB, a Jumonji Histone H3 Demethylase, Regulates Genome-Wide H3K4 Trimethylation and Is Required for Normal Induction of Secondary Metabolism in Aspergillus nidulans
  publication-title: PLoS Genet.
– volume: 66
  start-page: 11
  year: 2014
  end-page: 18
  ident: b0015
  article-title: Molecular mechanisms of Aspergillus flavus secondary metabolism and development
  publication-title: Fungal Genet. Biol.
– volume: 81
  start-page: 88
  year: 2015
  end-page: 97
  ident: b0055
  article-title: An Aspergillus flavus secondary metabolic gene cluster containing a hybrid PKS-NRPS is necessary for synthesis of the 2-pyridones, leporins
  publication-title: Fungal Genet. Biol.
– volume: 394
  start-page: 1063
  year: 2010
  end-page: 1068
  ident: b0080
  article-title: Cohesion establishment factor, Eco1 represses transcription via association with histone demethylase, LSD1
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 116
  start-page: 14
  year: 2018
  end-page: 23
  ident: b0220
  article-title: Identification and functional analysis of the aspergillic acid gene cluster in Aspergillus flavus
  publication-title: Fungal Genet. Biol.
– volume: 8
  start-page: 46
  year: 2016
  ident: b0360
  article-title: Functional Genomic Analysis of Aspergillus flavus Interacting with Resistant and Susceptible Peanut
  publication-title: Toxins (Basel).
– volume: 108
  start-page: 14282
  year: 2011
  end-page: 14287
  ident: b0250
  article-title: Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation
  publication-title: PNAS
– volume: 7
  start-page: 1324
  year: 2016
  ident: b0215
  article-title: The Aspergillus flavus Histone Acetyltransferase AflGcnE Regulates Morphogenesis, Aflatoxin Biosynthesis, and Pathogenicity
  publication-title: Front. Microbiol.
– volume: 278
  start-page: 8487
  year: 2003
  end-page: 8493
  ident: b0290
  article-title: High conservation of the Set1/Rad6 axis of histone 3 lysine 4 methylation in budding and fission yeasts
  publication-title: J. Biol. Chem.
– volume: 18
  start-page: e1010502
  year: 2022
  ident: b0320
  article-title: F-box receptor mediated control of substrate stability and subcellular location organizes cellular development of Aspergillus nidulans
  publication-title: PLoS Genet.
– volume: 12
  start-page: 9
  year: 2021
  ident: b0350
  article-title: The Fungi-specific histone Acetyltransferase Rtt109 mediates morphogenesis, Aflatoxin synthesis and pathogenicity in Aspergillus flavus by acetylating H3K9
  publication-title: IMA Fungus.
– volume: 86
  start-page: 314
  year: 2012
  end-page: 330
  ident: b0340
  article-title: Overexpression of the Aspergillus nidulans histone 4 acetyltransferase EsaA increases activation of secondary metabolite production
  publication-title: Mol. Microbiol.
– volume: 104
  start-page: 29
  year: 2017
  end-page: 37
  ident: b0075
  article-title: Aspergillus flavus aswA, a gene homolog of Aspergillus nidulans oefC, regulates sclerotial development and biosynthesis of sclerotium-associated secondary metabolites
  publication-title: Fungal Genet. Biol.
– volume: 64
  start-page: 25
  year: 2014
  end-page: 35
  ident: b0045
  article-title: Functional characterization of a veA-dependent polyketide synthase gene in Aspergillus flavus necessary for the synthesis of asparasone, a sclerotium-specific pigment
  publication-title: Fungal Genet. Biol.
– volume: 9
  start-page: 4
  year: 2016
  ident: b0145
  article-title: The histone demethylase dKDM5/LID interacts with the SIN3 histone deacetylase complex and shares functional similarities with SIN3
  publication-title: Epigenetics Chromatin
– reference: Pfannenstiel, B. T., et al., 2017. Revitalization of a Forward Genetic Screen Identifies Three New Regulators of Fungal Secondary Metabolism in the Genus Aspergillus. MBio. 8.
– year: 2019
  ident: b0315
  article-title: Control of Development, Secondary Metabolism and Light-Dependent Carotenoid Biosynthesis by the Velvet Complex of Neurospora crassa
  publication-title: Genetics
– volume: 33
  start-page: 3735
  year: 2013
  end-page: 3748
  ident: b0020
  article-title: The yeast Snt2 protein coordinates the transcriptional response to hydrogen peroxide-mediated oxidative stress
  publication-title: Mol. Cell Biol.
– volume: 14
  start-page: 139
  year: 1966
  ident: b0255
  article-title: Production of aflatoxins and kojic acid by species of Aspergillus and Penicillium
  publication-title: Appl. Microbiol.
– volume: 24
  start-page: 5596
  year: 2022
  end-page: 5610
  ident: b0370
  article-title: Histone deacetylase SirE regulates development, DNA damage response and aflatoxin production in Aspergillus flavus
  publication-title: Environ. Microbiol.
– volume: 20
  start-page: 207
  year: 2019
  end-page: 220
  ident: b0210
  article-title: Chromatin accessibility and the regulatory epigenome
  publication-title: Nat. Rev. Genet.
– volume: 944
  start-page: 191
  year: 2012
  end-page: 205
  ident: b0030
  article-title: Identification of protein complexes from filamentous fungi with tandem affinity purification
  publication-title: Methods Mol. Biol.
– reference: Hu, Y., et al., 2018. The PHD Transcription Factor Rum1 Regulates Morphogenesis and Aflatoxin Biosynthesis in Aspergillus flavus. Toxins (Basel). 10.
– volume: 78
  start-page: 7557
  year: 2012
  end-page: 7563
  ident: b0065
  article-title: Deletion of the Aspergillus flavus orthologue of A. nidulans fluG reduces conidiation and promotes production of sclerotia but does not abolish aflatoxin biosynthesis
  publication-title: Appl. Environ. Microbiol.
– volume: 28
  start-page: 1355
  year: 1998
  end-page: 1365
  ident: b0125
  article-title: Sequence-specific binding by Aspergillus nidulans AflR, a C6 zinc cluster protein regulating mycotoxin biosynthesis
  publication-title: Mol. Microbiol.
– volume: 118
  year: 2021
  ident: 10.1016/j.fgb.2023.103836_b0105
  article-title: Microevolution in the pansecondary metabolome of Aspergillus flavus and its potential macroevolutionary implications for filamentous fungi
  publication-title: PNAS
  doi: 10.1073/pnas.2021683118
– volume: 153
  start-page: 1677
  year: 2007
  ident: 10.1016/j.fgb.2023.103836_b0170
  article-title: Aspergillus flavus: human pathogen, allergen and mycotoxin producer
  publication-title: Microbiology
  doi: 10.1099/mic.0.2007/007641-0
– year: 2018
  ident: 10.1016/j.fgb.2023.103836_b0260
  article-title: The epigenetic reader SntB regulates secondary metabolism, development and global histone modifications in Aspergillus flavus
  publication-title: Fungal Genet. Biol.
  doi: 10.1016/j.fgb.2018.08.004
– volume: 64
  start-page: 25
  year: 2014
  ident: 10.1016/j.fgb.2023.103836_b0045
  article-title: Functional characterization of a veA-dependent polyketide synthase gene in Aspergillus flavus necessary for the synthesis of asparasone, a sclerotium-specific pigment
  publication-title: Fungal Genet. Biol.
  doi: 10.1016/j.fgb.2014.01.001
– volume: 14
  start-page: 139
  year: 1966
  ident: 10.1016/j.fgb.2023.103836_b0255
  article-title: Production of aflatoxins and kojic acid by species of Aspergillus and Penicillium
  publication-title: Appl. Microbiol.
  doi: 10.1128/am.14.1.139-.1966
– ident: 10.1016/j.fgb.2023.103836_b0120
  doi: 10.1128/genomeA.00278-16
– volume: 116
  start-page: 1245
  year: 2015
  ident: 10.1016/j.fgb.2023.103836_b0155
  article-title: Readers, writers, and erasers: chromatin as the whiteboard of heart disease
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.116.303630
– volume: 88
  start-page: 151
  year: 1997
  ident: 10.1016/j.fgb.2023.103836_b0195
  article-title: A Plasmodium falciparum homologue of the ATPase subunit of a multi-protein complex involved in chromatin remodelling for transcription
  publication-title: Mol. Biochem. Parasitol.
  doi: 10.1016/S0166-6851(97)00089-3
– volume: 86
  start-page: 314
  year: 2012
  ident: 10.1016/j.fgb.2023.103836_b0340
  article-title: Overexpression of the Aspergillus nidulans histone 4 acetyltransferase EsaA increases activation of secondary metabolite production
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2012.08195.x
– volume: 350
  start-page: 427
  year: 1991
  ident: 10.1016/j.fgb.2023.103836_b0185
  article-title: Mutational hotspot in the p53 gene in human hepatocellular carcinomas
  publication-title: Nature
  doi: 10.1038/350427a0
– volume: 6
  start-page: 1656
  year: 2007
  ident: 10.1016/j.fgb.2023.103836_b0330
  article-title: Histone deacetylase activity regulates chemical diversity in Aspergillus
  publication-title: Eukaryot. Cell
  doi: 10.1128/EC.00186-07
– volume: 12
  start-page: e1006222
  year: 2016
  ident: 10.1016/j.fgb.2023.103836_b0140
  article-title: KdmB, a Jumonji Histone H3 Demethylase, Regulates Genome-Wide H3K4 Trimethylation and Is Required for Normal Induction of Secondary Metabolism in Aspergillus nidulans
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1006222
– volume: 11
  start-page: 43
  year: 2020
  ident: 10.1016/j.fgb.2023.103836_b0025
  article-title: RcLS2F - A Novel Fungal Class 1 KDAC Co-repressor Complex in Aspergillus nidulans
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2020.00043
– volume: 3
  year: 2013
  ident: 10.1016/j.fgb.2023.103836_b0345
  article-title: Western Analysis of Histone Modifications (Aspergillus nidulans)
  publication-title: Bio Protoc.
  doi: 10.21769/BioProtoc.424
– volume: 81
  start-page: 88
  year: 2015
  ident: 10.1016/j.fgb.2023.103836_b0055
  article-title: An Aspergillus flavus secondary metabolic gene cluster containing a hybrid PKS-NRPS is necessary for synthesis of the 2-pyridones, leporins
  publication-title: Fungal Genet. Biol.
  doi: 10.1016/j.fgb.2015.05.010
– volume: 93
  start-page: 14503
  year: 1996
  ident: 10.1016/j.fgb.2023.103836_b0310
  article-title: HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription
  publication-title: PNAS
  doi: 10.1073/pnas.93.25.14503
– volume: 18
  start-page: e1010502
  year: 2022
  ident: 10.1016/j.fgb.2023.103836_b0320
  article-title: F-box receptor mediated control of substrate stability and subcellular location organizes cellular development of Aspergillus nidulans
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1010502
– volume: 96
  start-page: 839
  year: 2015
  ident: 10.1016/j.fgb.2023.103836_b0135
  article-title: KdmA, a histone H3 demethylase with bipartite function, differentially regulates primary and secondary metabolism in Aspergillus nidulans
  publication-title: Mol. Microbiol.
  doi: 10.1111/mmi.12977
– volume: 58–59
  start-page: 71
  year: 2013
  ident: 10.1016/j.fgb.2023.103836_b0070
  article-title: Aspergillus flavus VelB acts distinctly from VeA in conidiation and may coordinate with FluG to modulate sclerotial production
  publication-title: Fungal Genet. Biol.
  doi: 10.1016/j.fgb.2013.08.009
– volume: 12
  start-page: 449
  year: 2011
  ident: 10.1016/j.fgb.2023.103836_b0100
  article-title: Inactivation of Snt2, a BAH/PHD-containing transcription factor, impairs pathogenicity and increases autophagosome abundance in Fusarium oxysporum
  publication-title: Mol. Plant Pathol
  doi: 10.1111/j.1364-3703.2010.00683.x
– volume: 66
  start-page: 183
  year: 1979
  ident: 10.1016/j.fgb.2023.103836_b0150
  article-title: Aflatrem, the tremorgenic mycotoxin from Aspergillus flavus
  publication-title: Mycopathologia
  doi: 10.1007/BF00683969
– volume: 944
  start-page: 191
  year: 2012
  ident: 10.1016/j.fgb.2023.103836_b0030
  article-title: Identification of protein complexes from filamentous fungi with tandem affinity purification
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-62703-122-6_14
– volume: 66
  start-page: 713
  year: 2007
  ident: 10.1016/j.fgb.2023.103836_b0305
  article-title: The initiation and pattern of spread of histone H4 acetylation parallel the order of transcriptional activation of genes in the aflatoxin cluster
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2007.05952.x
– ident: 10.1016/j.fgb.2023.103836_b0335
  doi: 10.1093/g3journal/jkab213
– year: 2012
  ident: 10.1016/j.fgb.2023.103836_b0085
– volume: 78
  start-page: 7557
  year: 2012
  ident: 10.1016/j.fgb.2023.103836_b0065
  article-title: Deletion of the Aspergillus flavus orthologue of A. nidulans fluG reduces conidiation and promotes production of sclerotia but does not abolish aflatoxin biosynthesis
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01241-12
– volume: 66
  start-page: 11
  year: 2014
  ident: 10.1016/j.fgb.2023.103836_b0015
  article-title: Molecular mechanisms of Aspergillus flavus secondary metabolism and development
  publication-title: Fungal Genet. Biol.
  doi: 10.1016/j.fgb.2014.02.008
– volume: 278
  start-page: 8487
  year: 2003
  ident: 10.1016/j.fgb.2023.103836_b0290
  article-title: High conservation of the Set1/Rad6 axis of histone 3 lysine 4 methylation in budding and fission yeasts
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M209562200
– volume: 394
  start-page: 1063
  year: 2010
  ident: 10.1016/j.fgb.2023.103836_b0080
  article-title: Cohesion establishment factor, Eco1 represses transcription via association with histone demethylase, LSD1
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2010.03.125
– volume: 75
  start-page: 7469
  year: 2009
  ident: 10.1016/j.fgb.2023.103836_b0240
  article-title: Identification of two aflatrem biosynthesis gene loci in Aspergillus flavus and metabolic engineering of Penicillium paxilli to elucidate their function
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02146-08
– volume: 10
  start-page: 1535
  year: 2015
  ident: 10.1016/j.fgb.2023.103836_b0005
  article-title: Large-scale metabolomics reveals a complex response of Aspergillus nidulans to epigenetic perturbation
  publication-title: ACS Chem. Biol.
  doi: 10.1021/acschembio.5b00025
– volume: 9
  start-page: 4
  year: 2016
  ident: 10.1016/j.fgb.2023.103836_b0145
  article-title: The histone demethylase dKDM5/LID interacts with the SIN3 histone deacetylase complex and shares functional similarities with SIN3
  publication-title: Epigenetics Chromatin
  doi: 10.1186/s13072-016-0053-9
– volume: 9
  start-page: 355
  year: 2018
  ident: 10.1016/j.fgb.2023.103836_b0280
  article-title: Modify the Histone to Win the Battle: Chromatin Dynamics in Plant-Pathogen Interactions
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.00355
– volume: 108
  start-page: 14282
  year: 2011
  ident: 10.1016/j.fgb.2023.103836_b0250
  article-title: Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation
  publication-title: PNAS
  doi: 10.1073/pnas.1103523108
– volume: 14
  start-page: 983
  year: 2015
  ident: 10.1016/j.fgb.2023.103836_b0050
  article-title: Transcriptome Analysis of Aspergillus flavus Reveals veA-Dependent Regulation of Secondary Metabolite Gene Clusters, Including the Novel Aflavarin Cluster
  publication-title: Eukaryot. Cell
  doi: 10.1128/EC.00092-15
– volume: 15
  start-page: 656
  year: 2014
  ident: 10.1016/j.fgb.2023.103836_b0325
  article-title: Cytochrome P450 as dimerization catalyst in diketopiperazine alkaloid biosynthesis
  publication-title: Chembiochem
  doi: 10.1002/cbic.201300751
– volume: 216
  start-page: 447
  year: 1992
  ident: 10.1016/j.fgb.2023.103836_b0275
  article-title: Transformation of filamentous fungi based on hygromycin B and phleomycin resistance markers
  publication-title: Methods Enzymol.
  doi: 10.1016/0076-6879(92)16041-H
– volume: 24
  start-page: 5596
  year: 2022
  ident: 10.1016/j.fgb.2023.103836_b0370
  article-title: Histone deacetylase SirE regulates development, DNA damage response and aflatoxin production in Aspergillus flavus
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.16198
– volume: 212
  start-page: 691
  year: 2019
  ident: 10.1016/j.fgb.2023.103836_b0035
  article-title: Control of Development, Secondary Metabolism and Light-Dependent Carotenoid Biosynthesis by the Velvet Complex of Neurospora crassa
  publication-title: Genetics
  doi: 10.1534/genetics.119.302277
– volume: 14
  start-page: 1543
  year: 2018
  ident: 10.1016/j.fgb.2023.103836_b0165
  article-title: MoSnt2-dependent deacetylation of histone H3 mediates MoTor-dependent autophagy and plant infection by the rice blast fungus Magnaporthe oryzae
  publication-title: Autophagy
  doi: 10.1080/15548627.2018.1458171
– volume: 8
  start-page: 46
  year: 2016
  ident: 10.1016/j.fgb.2023.103836_b0360
  article-title: Functional Genomic Analysis of Aspergillus flavus Interacting with Resistant and Susceptible Peanut
  publication-title: Toxins (Basel).
  doi: 10.3390/toxins8020046
– volume: 21
  start-page: 345
  year: 2010
  ident: 10.1016/j.fgb.2023.103836_b0355
  article-title: A novel motif in fungal class 1 histone deacetylases is essential for growth and development of Aspergillus
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e09-08-0750
– volume: 46
  start-page: 176
  year: 2009
  ident: 10.1016/j.fgb.2023.103836_b0060
  article-title: Clustered genes involved in cyclopiazonic acid production are next to the aflatoxin biosynthesis gene cluster in Aspergillus flavus
  publication-title: Fungal Genet. Biol.
  doi: 10.1016/j.fgb.2008.11.002
– volume: 76
  start-page: 1376
  year: 2010
  ident: 10.1016/j.fgb.2023.103836_b0285
  article-title: Heterochromatic marks are associated with the repression of secondary metabolism clusters in Aspergillus nidulans
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2010.07051.x
– ident: 10.1016/j.fgb.2023.103836_b0190
  doi: 10.3390/toxins10070301
– volume: 12
  start-page: 9
  year: 2021
  ident: 10.1016/j.fgb.2023.103836_b0350
  article-title: The Fungi-specific histone Acetyltransferase Rtt109 mediates morphogenesis, Aflatoxin synthesis and pathogenicity in Aspergillus flavus by acetylating H3K9
  publication-title: IMA Fungus.
  doi: 10.1186/s43008-021-00060-4
– volume: 33
  start-page: 3735
  year: 2013
  ident: 10.1016/j.fgb.2023.103836_b0020
  article-title: The yeast Snt2 protein coordinates the transcriptional response to hydrogen peroxide-mediated oxidative stress
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.00025-13
– year: 2019
  ident: 10.1016/j.fgb.2023.103836_b0315
  article-title: Control of Development, Secondary Metabolism and Light-Dependent Carotenoid Biosynthesis by the Velvet Complex of Neurospora crassa
  publication-title: Genetics
– volume: 1492
  start-page: 120
  year: 2000
  ident: 10.1016/j.fgb.2023.103836_b0160
  article-title: Characterization of two putative histone deacetylase genes from Aspergillus nidulans
  publication-title: BBA
– volume: 59
  start-page: 11
  year: 2007
  ident: 10.1016/j.fgb.2023.103836_b0300
  article-title: What can comparative genomics tell us about species concepts in the genus Aspergillus?
  publication-title: Stud. Mycol.
  doi: 10.3114/sim.2007.59.02
– volume: 7
  start-page: 1041
  year: 2008
  ident: 10.1016/j.fgb.2023.103836_b0175
  article-title: The nuclear migration protein NUDF/LIS1 forms a complex with NUDC and BNFA at spindle pole bodies
  publication-title: Eukaryot. Cell
  doi: 10.1128/EC.00071-07
– year: 2018
  ident: 10.1016/j.fgb.2023.103836_b0205
  article-title: Fungal secondary metabolism: regulation, function and drug discovery
  publication-title: Nat. Rev. Microbiol.
– year: 2023
  ident: 10.1016/j.fgb.2023.103836_b0230
  article-title: The histone demethylase KdmB is part of a trimeric protein complex and mediates virulence and patulin production in Penicillium expansum
  publication-title: Fungal Genet. Biol.
  doi: 10.1016/j.fgb.2023.103837
– volume: 5
  start-page: 462
  year: 2009
  ident: 10.1016/j.fgb.2023.103836_b0040
  article-title: Chromatin-level regulation of biosynthetic gene clusters
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.177
– volume: 24
  start-page: 2857
  year: 2022
  ident: 10.1016/j.fgb.2023.103836_b0375
  article-title: Post-translational modifications drive secondary metabolite biosynthesis in Aspergillus: a review
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.16034
– volume: 23
  year: 2018
  ident: 10.1016/j.fgb.2023.103836_b0365
  article-title: Reading More than Histones: The Prevalence of Nucleic Acid Binding among Reader Domains
  publication-title: Molecules
  doi: 10.3390/molecules23102614
– volume: 28
  start-page: 1355
  year: 1998
  ident: 10.1016/j.fgb.2023.103836_b0125
  article-title: Sequence-specific binding by Aspergillus nidulans AflR, a C6 zinc cluster protein regulating mycotoxin biosynthesis
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.1998.00907.x
– volume: 7
  start-page: 435
  year: 2009
  ident: 10.1016/j.fgb.2023.103836_b0180
  article-title: A chemical epigenetics approach for engineering the in situ biosynthesis of a cryptic natural product from Aspergillus niger
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/B819208A
– volume: 50
  start-page: 9797
  year: 2022
  ident: 10.1016/j.fgb.2023.103836_b0200
  article-title: The KdmB-EcoA-RpdA-SntB chromatin complex binds regulatory genes and coordinates fungal development with mycotoxin synthesis
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkac744
– volume: 7
  start-page: 1324
  year: 2016
  ident: 10.1016/j.fgb.2023.103836_b0215
  article-title: The Aspergillus flavus Histone Acetyltransferase AflGcnE Regulates Morphogenesis, Aflatoxin Biosynthesis, and Pathogenicity
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2016.01324
– volume: 70
  start-page: 1253
  year: 2004
  ident: 10.1016/j.fgb.2023.103836_b0380
  article-title: Clustered pathway genes in aflatoxin biosynthesis
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.70.3.1253-1262.2004
– volume: 19
  start-page: 2534
  year: 2005
  ident: 10.1016/j.fgb.2023.103836_b0270
  article-title: The HIR corepressor complex binds to nucleosomes generating a distinct protein/DNA complex resistant to remodeling by SWI/SNF
  publication-title: Genes Dev.
  doi: 10.1101/gad.1341105
– ident: 10.1016/j.fgb.2023.103836_b0095
  doi: 10.1128/mBio.03146-20
– volume: 33
  start-page: 540
  year: 2016
  ident: 10.1016/j.fgb.2023.103836_b0235
  article-title: Potential economic losses to the US corn industry from aflatoxin contamination
  publication-title: Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess.
  doi: 10.1080/19440049.2016.1138545
– volume: 18
  start-page: e1010001
  year: 2022
  ident: 10.1016/j.fgb.2023.103836_b0090
  article-title: Chromatin profiling reveals heterogeneity in clinical isolates of the human pathogen Aspergillus fumigatus
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1010001
– volume: 15
  start-page: e1008053
  year: 2019
  ident: 10.1016/j.fgb.2023.103836_b0115
  article-title: Assembly of a heptameric STRIPAK complex is required for coordination of light-dependent multicellular fungal development with secondary metabolism in Aspergillus nidulans
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1008053
– volume: 4
  start-page: 1024
  year: 2012
  ident: 10.1016/j.fgb.2023.103836_b0385
  article-title: Current understanding on aflatoxin biosynthesis and future perspective in reducing aflatoxin contamination
  publication-title: Toxins (Basel).
  doi: 10.3390/toxins4111024
– volume: 20
  start-page: 207
  year: 2019
  ident: 10.1016/j.fgb.2023.103836_b0210
  article-title: Chromatin accessibility and the regulatory epigenome
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-018-0089-8
– volume: 116
  start-page: 14
  year: 2018
  ident: 10.1016/j.fgb.2023.103836_b0220
  article-title: Identification and functional analysis of the aspergillic acid gene cluster in Aspergillus flavus
  publication-title: Fungal Genet. Biol.
  doi: 10.1016/j.fgb.2018.04.009
– volume: 10
  start-page: e1004676
  year: 2014
  ident: 10.1016/j.fgb.2023.103836_b0225
  article-title: KDM5 interacts with Foxo to modulate cellular levels of oxidative stress
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1004676
– volume: 8
  start-page: 1051
  year: 2009
  ident: 10.1016/j.fgb.2023.103836_b0010
  article-title: Distinct roles for VeA and LaeA in development and pathogenesis of Aspergillus flavus
  publication-title: Eukaryot. Cell
  doi: 10.1128/EC.00088-09
– volume: 6
  start-page: 1916
  year: 2014
  ident: 10.1016/j.fgb.2023.103836_b0110
  article-title: Comparison of expression of secondary metabolite biosynthesis cluster genes in Aspergillus flavus, A. parasiticus, and A. oryzae
  publication-title: Toxins (Basel).
  doi: 10.3390/toxins6061916
– volume: 3
  start-page: 125
  year: 2004
  ident: 10.1016/j.fgb.2023.103836_b0295
  article-title: A comparative analysis of an orthologous proteomic environment in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M300081-MCP200
– volume: G3 (Bethesda). 10
  start-page: 3515
  year: 2020
  ident: 10.1016/j.fgb.2023.103836_b0130
  publication-title: Two New Aspergillus flavus Reference Genomes Reveal a Large Insertion Potentially Contributing to Isolate Stress Tolerance and Aflatoxin Production.
– volume: 104
  start-page: 29
  year: 2017
  ident: 10.1016/j.fgb.2023.103836_b0075
  article-title: Aspergillus flavus aswA, a gene homolog of Aspergillus nidulans oefC, regulates sclerotial development and biosynthesis of sclerotium-associated secondary metabolites
  publication-title: Fungal Genet. Biol.
  doi: 10.1016/j.fgb.2017.04.006
– volume: 289
  start-page: 28956
  year: 2014
  ident: 10.1016/j.fgb.2023.103836_b0245
  article-title: Physical and functional interactions between the histone H3K4 demethylase KDM5A and the nucleosome remodeling and deacetylase (NuRD) complex
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.573725
– ident: 10.1016/j.fgb.2023.103836_b0265
  doi: 10.1128/mBio.01246-17
SSID ssj0011541
Score 2.4374185
Snippet •KdmB-EcoA-RpdA-SntB complex was identified and characterized in A. flavus.•ecoA deletion is lethal whereas rpdA deletion is not lethal in A. flavus.•Similar...
The filamentous fungus Aspergillus flavus is a plant and human pathogen predominantly found in the soil as spores or sclerotia and is capable of producing...
The filamentous fungus Aspergillus flavus is a plant and human pathogen predominantly found in the soil as spores or sclerotia and is capable of producing...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 103836
Title The KdmB-EcoA-RpdA-SntB (KERS) chromatin regulatory complex controls development, secondary metabolism and pathogenicity in Aspergillus flavus
URI https://dx.doi.org/10.1016/j.fgb.2023.103836
https://www.ncbi.nlm.nih.gov/pubmed/37666447
https://www.proquest.com/docview/2861303074
https://pubmed.ncbi.nlm.nih.gov/PMC10841535
Volume 169
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaWLgcuaHmXhcpIHADhbeO4iXNsq64KhRVqWWlvkZ-7QWlSNSliL_wEfjPjPAoFtAeOSexo5BnPfBN_mUHopTY28qSOiI0CRpiKFHFlvolvhoJbbXxakWg-ngWzc_b-YnhxgCbtvzCOVtn4_tqnV966udNvVrO_TpL-0hsA2OfMfdZ0PhdSoEMK0Z530OHo3Xx2tjtMAJTg1Tz7kLgJ7eFmRfOyl_LEtRCvKoVXhZr_GZ7-hp9_sih_C0unR-hugyfxqBb5Hjow2X10e5wD5rt-gH6AFeC5Xo3JVOUjsljrEVlm5Ri_mk8Xy9dYXW1yB1kzvKl70ueba1yxzM033LDYC6x_EYve4sJl0FrAuJUpwYLSpFhhkWnsehvnYI6JAmCP4ZUjV4T8MknTbYFtKr5ui4fo_HT6eTIjTQcGomBdS6K1iBSoiyoIdgGTAeScynLqaRYqyqUfMqVDJULwq5YKC3jESrgyQgjAbdZ_hDpZnpknCHMqqOfbQEjPMkkHXEeREFwGwVBSY1kXDdqFj1VTntx1yUjjlof2JQZdxU5Xca2rLnqzm7Kua3PcNJi12oz3DCyG2HHTtBet5mPYeO40RWQm3xYx5S71AhcJoj-uLWEnBXjtAIBm2EV8z0Z2A1xR7_0nWXJVFfcGKwVM5Q-f_p-8x-iOu6oJN89Qp9xszXOATaXsoVsn370ebI7J4sOnXrNJfgLraRqB
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamgQQviPvK1Ug8AMJr47iJ89hOnQrd9rBu0t4sX7egNKmaFLEXfgK_meNcCgW0Bx6THEeWz_Hx5_jLdxB6a6xLAmUS4pKIEaYTTbzMNwntUHJnbEhrEs3xSTQ9Z58vhhc76KD7F8bTKtvc3-T0Olu3d_rtaPaXadqfBwMA-5z5z5o-58IW6BbzZQ4gqPe_b3geXm4maFj2MfHm3dFmTfJyl2rfFxCvdcJrmeZ_Lk5_g88_OZS_LUqH99G9Fk3iUdPhB2jH5g_R7XEBiO_6EfoBMYBnZjEmE12MyOnSjMg8r8b43WxyOn-P9dWq8IA1x6umIn2xusY1x9x-wy2HvcTmF63oIy79_tlIsFvYCuInS8sFlrnBvrJxAcGYaoD1GF458hLkl2mWrUvsMvl1XT5G54eTs4MpaesvEA2jWhFjZKLBWVTDUhcxFcGOUztOA8NiTbkKY6ZNrGUMWdVR6QCNOAVXVkoJqM2FT9BuXuR2D2FOJQ1CF0kVOKbogJskkZKrKBoqah3roUE38EK34uS-RkYmOhbaFwG-Et5XovFVD33YNFk2yhw3GbPOm2IrvASsHDc1e9N5XsC082cpMrfFuhSU-40XJEjo-tMmEja9gJwdAcyMe4hvxcjGwEt6bz_J06ta2huiFBBVOHz2f_19je5Mz46PxNGnk9lzdNc_aag3L9ButVrblwCgKvWqniA_AWoHGa4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+KdmB-EcoA-RpdA-SntB+%28KERS%29+chromatin+regulatory+complex+controls+development%2C+secondary+metabolism+and+pathogenicity+in+Aspergillus+flavus&rft.jtitle=Fungal+genetics+and+biology&rft.au=Karahoda%2C+Betim&rft.au=Pfannenstiel%2C+Brandon+T.&rft.au=Sarikaya-Bayram%2C+%C3%96zlem&rft.au=Dong%2C+Zhiqiang&rft.date=2023-12-01&rft.pub=Elsevier+Inc&rft.issn=1087-1845&rft.eissn=1096-0937&rft.volume=169&rft_id=info:doi/10.1016%2Fj.fgb.2023.103836&rft.externalDocID=S1087184523000671
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1087-1845&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1087-1845&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1087-1845&client=summon