The KdmB-EcoA-RpdA-SntB (KERS) chromatin regulatory complex controls development, secondary metabolism and pathogenicity in Aspergillus flavus
•KdmB-EcoA-RpdA-SntB complex was identified and characterized in A. flavus.•ecoA deletion is lethal whereas rpdA deletion is not lethal in A. flavus.•Similar to sntB, both kdmB and rpdA are essential for aflatoxin B1 production.•KERS is required for sclerotia formation, sporulation and expression of...
Saved in:
Published in | Fungal genetics and biology Vol. 169; p. 103836 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.12.2023
|
Online Access | Get full text |
ISSN | 1087-1845 1096-0937 1096-0937 |
DOI | 10.1016/j.fgb.2023.103836 |
Cover
Abstract | •KdmB-EcoA-RpdA-SntB complex was identified and characterized in A. flavus.•ecoA deletion is lethal whereas rpdA deletion is not lethal in A. flavus.•Similar to sntB, both kdmB and rpdA are essential for aflatoxin B1 production.•KERS is required for sclerotia formation, sporulation and expression of secondary metabolite gene clusters.•kdmB and rpdA control histone modifications.
The filamentous fungus Aspergillus flavus is a plant and human pathogen predominantly found in the soil as spores or sclerotia and is capable of producing various secondary metabolites (SM) such as the carcinogenic mycotoxin aflatoxin. Recently, we have discovered a novel nuclear chromatin binding complex (KERS) that contains the JARID1-type histone demethylase KdmB, a putative cohesion acetyl transferase EcoA, a class I type histone deacetylase RpdA and the PHD ring finger reader protein SntB in the model filamentous fungus Aspergillus nidulans. Here, we show the presence of the KERS complex in A. flavus by immunoprecipitation-coupled mass spectrometry and constructed kdmBΔ and rpdAΔ strains to study their roles in fungal development, SM production and histone post-translational modifications (HPTMs). We found that KdmB and RpdA couple the regulation of SM gene clusters with fungal light-responses and HPTMs. KdmB and RpdA have opposing roles in light-induced asexual conidiation, while both factors are positive regulators of sclerotia development through the nsdC and nsdD pathway. KdmB and RpdA are essential for the productions of aflatoxin (similar to findings for SntB) as well as cyclopiazonic acid, ditryptophenaline and leporin B through controlling the respective SM biosynthetic gene clusters. We further show that both KdmB and RpdA regulate H3K4me3 and H3K9me3 levels, while RpdA also acts on H3K14ac levels in nuclear extracts. Therefore, the chromatin modifiers KdmB and RpdA of the KERS complex are key regulators for fungal development and SM metabolism in A. flavus. |
---|---|
AbstractList | The filamentous fungus Aspergillus flavus is a plant and human pathogen predominantly found in the soil as spores or sclerotia and is capable of producing various secondary metabolites (SM) such as the carcinogenic mycotoxin aflatoxin. Recently, we have discovered a novel nuclear chromatin binding complex (KERS) that contains the JARID1-type histone demethylase KdmB, a putative cohesion acetyl transferase EcoA, a class I type histone deacetylase RpdA and the PHD ring finger reader protein SntB in the model filamentous fungus Aspergillus nidulans. Here, we show the presence of the KERS complex in A. flavus by immunoprecipitation-coupled mass spectrometry and constructed kdmBΔ and rpdAΔ strains to study their roles in fungal development, SM production and histone post-translational modifications (HPTMs). We found that KdmB and RpdA couple the regulation of SM gene clusters with fungal light-responses and HPTMs. KdmB and RpdA have opposing roles in light-induced asexual conidiation, while both factors are positive regulators of sclerotia development through the nsdC and nsdD pathway. KdmB and RpdA are essential for the productions of aflatoxin (similar to findings for SntB) as well as cyclopiazonic acid, ditryptophenaline and leporin B through controlling the respective SM biosynthetic gene clusters. We further show that both KdmB and RpdA regulate H3K4me3 and H3K9me3 levels, while RpdA also acts on H3K14ac levels in nuclear extracts. Therefore, the chromatin modifiers KdmB and RpdA of the KERS complex are key regulators for fungal development and SM metabolism in A. flavus. The filamentous fungus Aspergillus flavus is a plant and human pathogen predominantly found in the soil as spores or sclerotia and is capable of producing various secondary metabolites (SM) such as the carcinogenic mycotoxin aflatoxin. Recently, we have discovered a novel nuclear chromatin binding complex (KERS) that contains the JARID1-type histone demethylase KdmB, a putative cohesion acetyl transferase EcoA, a class I type histone deacetylase RpdA and the PHD ring finger reader protein SntB in the model filamentous fungus Aspergillus nidulans. Here, we show the presence of the KERS complex in A. flavus by immunoprecipitation-coupled mass spectrometry and constructed kdmBΔ and rpdAΔ strains to study their roles in fungal development, SM production and histone post-translational modifications (HPTMs). We found that KdmB and RpdA couple the regulation of SM gene clusters with fungal light-responses and HPTMs. KdmB and RpdA have opposing roles in light-induced asexual conidiation, while both factors are positive regulators of sclerotia development through the nsdC and nsdD pathway. KdmB and RpdA are essential for the productions of aflatoxin (similar to findings for SntB) as well as cyclopiazonic acid, ditryptophenaline and leporin B through controlling the respective SM biosynthetic gene clusters. We further show that both KdmB and RpdA regulate H3K4me3 and H3K9me3 levels, while RpdA also acts on H3K14ac levels in nuclear extracts. Therefore, the chromatin modifiers KdmB and RpdA of the KERS complex are key regulators for fungal development and SM metabolism in A. flavus.The filamentous fungus Aspergillus flavus is a plant and human pathogen predominantly found in the soil as spores or sclerotia and is capable of producing various secondary metabolites (SM) such as the carcinogenic mycotoxin aflatoxin. Recently, we have discovered a novel nuclear chromatin binding complex (KERS) that contains the JARID1-type histone demethylase KdmB, a putative cohesion acetyl transferase EcoA, a class I type histone deacetylase RpdA and the PHD ring finger reader protein SntB in the model filamentous fungus Aspergillus nidulans. Here, we show the presence of the KERS complex in A. flavus by immunoprecipitation-coupled mass spectrometry and constructed kdmBΔ and rpdAΔ strains to study their roles in fungal development, SM production and histone post-translational modifications (HPTMs). We found that KdmB and RpdA couple the regulation of SM gene clusters with fungal light-responses and HPTMs. KdmB and RpdA have opposing roles in light-induced asexual conidiation, while both factors are positive regulators of sclerotia development through the nsdC and nsdD pathway. KdmB and RpdA are essential for the productions of aflatoxin (similar to findings for SntB) as well as cyclopiazonic acid, ditryptophenaline and leporin B through controlling the respective SM biosynthetic gene clusters. We further show that both KdmB and RpdA regulate H3K4me3 and H3K9me3 levels, while RpdA also acts on H3K14ac levels in nuclear extracts. Therefore, the chromatin modifiers KdmB and RpdA of the KERS complex are key regulators for fungal development and SM metabolism in A. flavus. The filamentous fungus Aspergillus flavus is a plant and human pathogen predominantly found in the soil as spores or sclerotia and is capable of producing various secondary metabolites (SM) such as the carcinogenic mycotoxin aflatoxin. Recently, we have discovered a novel nuclear chromatin binding complex (KERS) that contains the JARID1-type histone demethylase KdmB, a putative cohesion acetyl transferase EcoA, a class I type histone deacetylase RpdA and the PHD ring finger reader protein SntB in the model filamentous fungus Aspergillus nidulans . Here, we show the presence of the KERS complex in A. flavus by immunoprecipitation-coupled mass spectrometry and constructed kdmB Δ and rpdA Δ strains to study their roles in fungal development, SM production and histone post-translational modifications (HPTMs). We found that KdmB and RpdA couple the regulation of SM gene clusters with fungal light-responses and HPTMs. KdmB and RpdA have opposing roles in light-induced asexual conidiation, while both factors are positive regulators of sclerotia development through the nsdC and nsdD pathway. KdmB and RpdA are essential for the productions of aflatoxin (similar to findings for SntB) as well as cyclopiazonic acid, ditryptophenaline and leporin B through controlling the respective SM biosynthetic gene clusters. We further show that both KdmB and RpdA regulate H3K4me3 and H3K9me3 levels, while RpdA also acts on H3K14ac levels in nuclear extracts. Therefore, the chromatin modifiers KdmB and RpdA of the KERS complex are key regulators for fungal development and SM metabolism in A. flavus . •KdmB-EcoA-RpdA-SntB complex was identified and characterized in A. flavus.•ecoA deletion is lethal whereas rpdA deletion is not lethal in A. flavus.•Similar to sntB, both kdmB and rpdA are essential for aflatoxin B1 production.•KERS is required for sclerotia formation, sporulation and expression of secondary metabolite gene clusters.•kdmB and rpdA control histone modifications. The filamentous fungus Aspergillus flavus is a plant and human pathogen predominantly found in the soil as spores or sclerotia and is capable of producing various secondary metabolites (SM) such as the carcinogenic mycotoxin aflatoxin. Recently, we have discovered a novel nuclear chromatin binding complex (KERS) that contains the JARID1-type histone demethylase KdmB, a putative cohesion acetyl transferase EcoA, a class I type histone deacetylase RpdA and the PHD ring finger reader protein SntB in the model filamentous fungus Aspergillus nidulans. Here, we show the presence of the KERS complex in A. flavus by immunoprecipitation-coupled mass spectrometry and constructed kdmBΔ and rpdAΔ strains to study their roles in fungal development, SM production and histone post-translational modifications (HPTMs). We found that KdmB and RpdA couple the regulation of SM gene clusters with fungal light-responses and HPTMs. KdmB and RpdA have opposing roles in light-induced asexual conidiation, while both factors are positive regulators of sclerotia development through the nsdC and nsdD pathway. KdmB and RpdA are essential for the productions of aflatoxin (similar to findings for SntB) as well as cyclopiazonic acid, ditryptophenaline and leporin B through controlling the respective SM biosynthetic gene clusters. We further show that both KdmB and RpdA regulate H3K4me3 and H3K9me3 levels, while RpdA also acts on H3K14ac levels in nuclear extracts. Therefore, the chromatin modifiers KdmB and RpdA of the KERS complex are key regulators for fungal development and SM metabolism in A. flavus. |
ArticleNumber | 103836 |
Author | Bayram, Özgür Sarikaya-Bayram, Özlem Ho Wong, Koon Dong, Zhiqiang Pfannenstiel, Brandon T. Fleming, Alastair B. Karahoda, Betim Keller, Nancy P. |
AuthorAffiliation | a Biology Department, Maynooth University, Maynooth, Co. Kildare, Ireland c Faculty of Health Sciences, University of Macau, Macau b Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, USA f Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland e Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau d Institute of Translational Medicine, University of Macau, Macau |
AuthorAffiliation_xml | – name: d Institute of Translational Medicine, University of Macau, Macau – name: a Biology Department, Maynooth University, Maynooth, Co. Kildare, Ireland – name: c Faculty of Health Sciences, University of Macau, Macau – name: b Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, USA – name: e Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau – name: f Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland |
Author_xml | – sequence: 1 givenname: Betim surname: Karahoda fullname: Karahoda, Betim organization: Biology Department, Maynooth University, Maynooth, Co. Kildare, Ireland – sequence: 2 givenname: Brandon T. surname: Pfannenstiel fullname: Pfannenstiel, Brandon T. organization: Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, USA – sequence: 3 givenname: Özlem surname: Sarikaya-Bayram fullname: Sarikaya-Bayram, Özlem organization: Biology Department, Maynooth University, Maynooth, Co. Kildare, Ireland – sequence: 4 givenname: Zhiqiang surname: Dong fullname: Dong, Zhiqiang organization: Faculty of Health Sciences, University of Macau, Macau – sequence: 5 givenname: Koon surname: Ho Wong fullname: Ho Wong, Koon organization: Faculty of Health Sciences, University of Macau, Macau – sequence: 6 givenname: Alastair B. surname: Fleming fullname: Fleming, Alastair B. organization: Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland – sequence: 7 givenname: Nancy P. surname: Keller fullname: Keller, Nancy P. organization: Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, USA – sequence: 8 givenname: Özgür surname: Bayram fullname: Bayram, Özgür email: ozgur.bayram@mu.ie organization: Biology Department, Maynooth University, Maynooth, Co. Kildare, Ireland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37666447$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uctu1DAUjVARfcAHsEFeFokMduzEGbFA02p4qJWQ2rK2HPsm45FjB9sZ0Z_gm_FoWgQsurp-nMfVOafFkfMOiuI1wQuCSfN-u-iHblHhiuY7bWnzrDgheNmUeEn50f7c8pK0rD4uTmPcYkxIzciL4pjypmkY4yfFr7sNoCs9XpRr5VflzaRX5a1LF-j8an1z-xapTfCjTMahAMNsZfLhHik_ThZ-5ulS8DYiDTuwfhrBpXcoQn7XMuNGSLLz1sQRSafRJNPGD-CMMukeZclVnCAMxto5ot7K3RxfFs97aSO8ephnxfdP67vLL-X1t89fL1fXpWJ1lUqt5VLRileKMtKwrlnyVvVtRTTjqmo7ypnSXEmOcdVXssec9V2-gZQS18uenhUfD7rT3I2gVV48SCumYMa8uPDSiH9_nNmIwe9EjpSRmtZZ4fxBIfgfM8QkRhMVWCsd-DmKqm0IxTQ7Z-ibv83-uDy2kAH8AFDBxxigFzmhHPo-XmlsNhX7vsVW5L7Fvm9x6DszyX_MR_GnOB8OHMgB7wwEEZUBp0CbACoJ7c0T7N-ehsV2 |
CitedBy_id | crossref_primary_10_1007_s00203_025_04300_8 crossref_primary_10_7554_eLife_94743 crossref_primary_10_3390_ijms26010025 crossref_primary_10_1016_j_micres_2024_127981 crossref_primary_10_3390_jof10090648 crossref_primary_10_7554_eLife_94743_5 |
Cites_doi | 10.1073/pnas.2021683118 10.1099/mic.0.2007/007641-0 10.1016/j.fgb.2018.08.004 10.1016/j.fgb.2014.01.001 10.1128/am.14.1.139-.1966 10.1128/genomeA.00278-16 10.1161/CIRCRESAHA.116.303630 10.1016/S0166-6851(97)00089-3 10.1111/j.1365-2958.2012.08195.x 10.1038/350427a0 10.1128/EC.00186-07 10.1371/journal.pgen.1006222 10.3389/fmicb.2020.00043 10.21769/BioProtoc.424 10.1016/j.fgb.2015.05.010 10.1073/pnas.93.25.14503 10.1371/journal.pgen.1010502 10.1111/mmi.12977 10.1016/j.fgb.2013.08.009 10.1111/j.1364-3703.2010.00683.x 10.1007/BF00683969 10.1007/978-1-62703-122-6_14 10.1111/j.1365-2958.2007.05952.x 10.1093/g3journal/jkab213 10.1128/AEM.01241-12 10.1016/j.fgb.2014.02.008 10.1074/jbc.M209562200 10.1016/j.bbrc.2010.03.125 10.1128/AEM.02146-08 10.1021/acschembio.5b00025 10.1186/s13072-016-0053-9 10.3389/fpls.2018.00355 10.1073/pnas.1103523108 10.1128/EC.00092-15 10.1002/cbic.201300751 10.1016/0076-6879(92)16041-H 10.1111/1462-2920.16198 10.1534/genetics.119.302277 10.1080/15548627.2018.1458171 10.3390/toxins8020046 10.1091/mbc.e09-08-0750 10.1016/j.fgb.2008.11.002 10.1111/j.1365-2958.2010.07051.x 10.3390/toxins10070301 10.1186/s43008-021-00060-4 10.1128/MCB.00025-13 10.3114/sim.2007.59.02 10.1128/EC.00071-07 10.1016/j.fgb.2023.103837 10.1038/nchembio.177 10.1111/1462-2920.16034 10.3390/molecules23102614 10.1046/j.1365-2958.1998.00907.x 10.1039/B819208A 10.1093/nar/gkac744 10.3389/fmicb.2016.01324 10.1128/AEM.70.3.1253-1262.2004 10.1101/gad.1341105 10.1128/mBio.03146-20 10.1080/19440049.2016.1138545 10.1371/journal.pgen.1010001 10.1371/journal.pgen.1008053 10.3390/toxins4111024 10.1038/s41576-018-0089-8 10.1016/j.fgb.2018.04.009 10.1371/journal.pgen.1004676 10.1128/EC.00088-09 10.3390/toxins6061916 10.1074/mcp.M300081-MCP200 10.1016/j.fgb.2017.04.006 10.1074/jbc.M114.573725 10.1128/mBio.01246-17 |
ContentType | Journal Article |
Copyright | 2023 The Authors Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2023 The Authors – notice: Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1016/j.fgb.2023.103836 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1096-0937 |
EndPage | 103836 |
ExternalDocumentID | PMC10841535 37666447 10_1016_j_fgb_2023_103836 S1087184523000671 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 186 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ AAAJQ AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AAXUO ABFNM ABFRF ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADFGL ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG CJTIS COF CS3 DM4 DOVZS DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM LG5 LUGTX M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPCBC SSI SSU SSZ T5K UNMZH XPP ZCG ZMT ZU3 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN ADXHL AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS NPM 7X8 ACLOT ~HD 5PM |
ID | FETCH-LOGICAL-c452t-dda9c3272c34164b6978cf821d47c28b374cd7ca7002f2af074fba70eaaa059f3 |
IEDL.DBID | AIKHN |
ISSN | 1087-1845 1096-0937 |
IngestDate | Thu Aug 21 18:35:32 EDT 2025 Sat Sep 27 19:37:35 EDT 2025 Mon Jul 21 06:01:08 EDT 2025 Tue Jul 01 01:06:21 EDT 2025 Thu Apr 24 23:10:50 EDT 2025 Fri Feb 23 02:34:39 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c452t-dda9c3272c34164b6978cf821d47c28b374cd7ca7002f2af074fba70eaaa059f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1087184523000671 |
PMID | 37666447 |
PQID | 2861303074 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10841535 proquest_miscellaneous_2861303074 pubmed_primary_37666447 crossref_citationtrail_10_1016_j_fgb_2023_103836 crossref_primary_10_1016_j_fgb_2023_103836 elsevier_sciencedirect_doi_10_1016_j_fgb_2023_103836 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Fungal genetics and biology |
PublicationTitleAlternate | Fungal Genet Biol |
PublicationYear | 2023 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Yu (b0385) 2012; 4 Nutzmann (b0250) 2011; 108 Soukup, Keller (b0345) 2013; 3 Bauer (b0025) 2020; 11 Faustinelli, P. C., et al., 2016. Genome Sequences of Eight Aspergillus flavus spp. and One A. parasiticus sp., Isolated from Peanut Seeds in Georgia. Genome Announc. 4. Bayram (b0030) 2012; 944 Pfannenstiel (b0260) 2018 Yang (b0375) 2022; 24 Bok (b0040) 2009; 5 Ramirez-Prado (b0280) 2018; 9 Prochasson (b0270) 2005; 19 Skerker, J. M., et al., 2021. Chromosome assembled and annotated genome sequence of Aspergillus flavus NRRL 3357. G3 (Bethesda). 11. Amaike, Keller (b0010) 2009; 8 Lan (b0215) 2016; 7 Luciano-Rosario (b0230) 2023 Bayram (b0035) 2019; 212 Roguev (b0295) 2004; 3 Elramli (b0115) 2019; 15 Weaver (b0365) 2018; 23 Gacek-Matthews (b0140) 2016; 12 Hedayati (b0170) 2007; 153 Cary (b0050) 2015; 14 Parrish (b0255) 1966; 14 Choi (b0080) 2010; 394 Soukup (b0340) 2012; 86 Roze (b0305) 2007; 66 Gacek-Matthews (b0135) 2015; 96 Reyes-Dominguez (b0285) 2010; 76 Hsu (b0185) 1991; 350 Chang (b0070) 2013; 58–59 Amare, Keller (b0015) 2014; 66 Hu, Y., et al., 2018. The PHD Transcription Factor Rum1 Regulates Morphogenesis and Aflatoxin Biosynthesis in Aspergillus flavus. Toxins (Basel). 10. Lebar (b0220) 2018; 116 Sun (b0350) 2021; 12 He (b0165) 2018; 14 Graessle (b0160) 2000; 1492 Christensen (b0085) 2012 Punt, van den Hondel (b0275) 1992; 216 Gallagher, Wilson (b0150) 1979; 66 Wang (b0360) 2016; 8 Albright (b0005) 2015; 10 Klemm (b0210) 2019; 20 Fernandes (b0125) 1998; 28 Helmstaedt (b0175) 2008; 7 Henrikson (b0180) 2009; 7 Rokas (b0300) 2007; 59 Ji, Arnot (b0195) 1997; 88 Keller (b0205) 2018 Tribus (b0355) 2010; 21 Cary (b0055) 2015; 81 Pfannenstiel, B. T., et al., 2017. Revitalization of a Forward Genetic Screen Identifies Three New Regulators of Fungal Secondary Metabolism in the Genus Aspergillus. MBio. 8. Gillette, Hill (b0155) 2015; 116 Nishibuchi (b0245) 2014; 289 Wen (b0370) 2022; 24 Liu (b0225) 2014; 10 Sarikaya Bayram (b0320) 2022; 18 Yu (b0380) 2004; 70 Karahoda (b0200) 2022; 50 Cary (b0045) 2014; 64 Chang (b0060) 2009; 46 Gajan (b0145) 2016; 9 Sarikaya Bayram (b0315) 2019 Mitchell (b0235) 2016; 33 Chang (b0065) 2012; 78 Drott (b0105) 2021; 118 Rundlett (b0310) 1996; 93 Nicholson (b0240) 2009; 75 Roguev (b0290) 2003; 278 Chang (b0075) 2017; 104 Colabardini (b0090) 2022; 18 Saruwatari (b0325) 2014; 15 Fountain (b0130) 2020; G3 (Bethesda). 10 Shwab (b0330) 2007; 6 Baker (b0020) 2013; 33 de Assis, L. J., et al., 2021. Carbon Catabolite Repression in Filamentous Fungi Is Regulated by Phosphorylation of the Transcription Factor CreA. mBio. 12. Denisov (b0100) 2011; 12 Ehrlich, Mack (b0110) 2014; 6 Chang (10.1016/j.fgb.2023.103836_b0060) 2009; 46 Gallagher (10.1016/j.fgb.2023.103836_b0150) 1979; 66 Cary (10.1016/j.fgb.2023.103836_b0050) 2015; 14 Klemm (10.1016/j.fgb.2023.103836_b0210) 2019; 20 Gacek-Matthews (10.1016/j.fgb.2023.103836_b0135) 2015; 96 Yang (10.1016/j.fgb.2023.103836_b0375) 2022; 24 Baker (10.1016/j.fgb.2023.103836_b0020) 2013; 33 Fernandes (10.1016/j.fgb.2023.103836_b0125) 1998; 28 Bayram (10.1016/j.fgb.2023.103836_b0035) 2019; 212 10.1016/j.fgb.2023.103836_b0190 Helmstaedt (10.1016/j.fgb.2023.103836_b0175) 2008; 7 Bauer (10.1016/j.fgb.2023.103836_b0025) 2020; 11 Bok (10.1016/j.fgb.2023.103836_b0040) 2009; 5 Chang (10.1016/j.fgb.2023.103836_b0065) 2012; 78 Henrikson (10.1016/j.fgb.2023.103836_b0180) 2009; 7 Roze (10.1016/j.fgb.2023.103836_b0305) 2007; 66 Albright (10.1016/j.fgb.2023.103836_b0005) 2015; 10 Weaver (10.1016/j.fgb.2023.103836_b0365) 2018; 23 Graessle (10.1016/j.fgb.2023.103836_b0160) 2000; 1492 Nishibuchi (10.1016/j.fgb.2023.103836_b0245) 2014; 289 Rundlett (10.1016/j.fgb.2023.103836_b0310) 1996; 93 Soukup (10.1016/j.fgb.2023.103836_b0345) 2013; 3 Yu (10.1016/j.fgb.2023.103836_b0385) 2012; 4 Gajan (10.1016/j.fgb.2023.103836_b0145) 2016; 9 Bayram (10.1016/j.fgb.2023.103836_b0030) 2012; 944 He (10.1016/j.fgb.2023.103836_b0165) 2018; 14 Parrish (10.1016/j.fgb.2023.103836_b0255) 1966; 14 Nicholson (10.1016/j.fgb.2023.103836_b0240) 2009; 75 Tribus (10.1016/j.fgb.2023.103836_b0355) 2010; 21 10.1016/j.fgb.2023.103836_b0265 Cary (10.1016/j.fgb.2023.103836_b0055) 2015; 81 Drott (10.1016/j.fgb.2023.103836_b0105) 2021; 118 Chang (10.1016/j.fgb.2023.103836_b0070) 2013; 58–59 Wen (10.1016/j.fgb.2023.103836_b0370) 2022; 24 Sun (10.1016/j.fgb.2023.103836_b0350) 2021; 12 Elramli (10.1016/j.fgb.2023.103836_b0115) 2019; 15 Karahoda (10.1016/j.fgb.2023.103836_b0200) 2022; 50 Wang (10.1016/j.fgb.2023.103836_b0360) 2016; 8 Yu (10.1016/j.fgb.2023.103836_b0380) 2004; 70 Reyes-Dominguez (10.1016/j.fgb.2023.103836_b0285) 2010; 76 Sarikaya Bayram (10.1016/j.fgb.2023.103836_b0320) 2022; 18 Denisov (10.1016/j.fgb.2023.103836_b0100) 2011; 12 Roguev (10.1016/j.fgb.2023.103836_b0290) 2003; 278 Roguev (10.1016/j.fgb.2023.103836_b0295) 2004; 3 Mitchell (10.1016/j.fgb.2023.103836_b0235) 2016; 33 Hedayati (10.1016/j.fgb.2023.103836_b0170) 2007; 153 Nutzmann (10.1016/j.fgb.2023.103836_b0250) 2011; 108 Lebar (10.1016/j.fgb.2023.103836_b0220) 2018; 116 Fountain (10.1016/j.fgb.2023.103836_b0130) 2020; G3 (Bethesda). 10 10.1016/j.fgb.2023.103836_b0335 Keller (10.1016/j.fgb.2023.103836_b0205) 2018 Prochasson (10.1016/j.fgb.2023.103836_b0270) 2005; 19 Sarikaya Bayram (10.1016/j.fgb.2023.103836_b0315) 2019 10.1016/j.fgb.2023.103836_b0095 Ramirez-Prado (10.1016/j.fgb.2023.103836_b0280) 2018; 9 Ehrlich (10.1016/j.fgb.2023.103836_b0110) 2014; 6 Ji (10.1016/j.fgb.2023.103836_b0195) 1997; 88 Cary (10.1016/j.fgb.2023.103836_b0045) 2014; 64 Christensen (10.1016/j.fgb.2023.103836_b0085) 2012 Pfannenstiel (10.1016/j.fgb.2023.103836_b0260) 2018 Chang (10.1016/j.fgb.2023.103836_b0075) 2017; 104 Shwab (10.1016/j.fgb.2023.103836_b0330) 2007; 6 Amaike (10.1016/j.fgb.2023.103836_b0010) 2009; 8 Soukup (10.1016/j.fgb.2023.103836_b0340) 2012; 86 Luciano-Rosario (10.1016/j.fgb.2023.103836_b0230) 2023 Hsu (10.1016/j.fgb.2023.103836_b0185) 1991; 350 Liu (10.1016/j.fgb.2023.103836_b0225) 2014; 10 Choi (10.1016/j.fgb.2023.103836_b0080) 2010; 394 Amare (10.1016/j.fgb.2023.103836_b0015) 2014; 66 Colabardini (10.1016/j.fgb.2023.103836_b0090) 2022; 18 Rokas (10.1016/j.fgb.2023.103836_b0300) 2007; 59 Punt (10.1016/j.fgb.2023.103836_b0275) 1992; 216 10.1016/j.fgb.2023.103836_b0120 Gillette (10.1016/j.fgb.2023.103836_b0155) 2015; 116 Lan (10.1016/j.fgb.2023.103836_b0215) 2016; 7 Saruwatari (10.1016/j.fgb.2023.103836_b0325) 2014; 15 Gacek-Matthews (10.1016/j.fgb.2023.103836_b0140) 2016; 12 |
References_xml | – volume: 118 year: 2021 ident: b0105 article-title: Microevolution in the pansecondary metabolome of Aspergillus flavus and its potential macroevolutionary implications for filamentous fungi publication-title: PNAS – volume: 350 start-page: 427 year: 1991 end-page: 428 ident: b0185 article-title: Mutational hotspot in the p53 gene in human hepatocellular carcinomas publication-title: Nature – volume: 14 start-page: 983 year: 2015 end-page: 997 ident: b0050 article-title: Transcriptome Analysis of Aspergillus flavus Reveals veA-Dependent Regulation of Secondary Metabolite Gene Clusters, Including the Novel Aflavarin Cluster publication-title: Eukaryot. Cell – volume: 7 start-page: 435 year: 2009 end-page: 438 ident: b0180 article-title: A chemical epigenetics approach for engineering the in situ biosynthesis of a cryptic natural product from Aspergillus niger publication-title: Org. Biomol. Chem. – volume: 18 start-page: e1010001 year: 2022 ident: b0090 article-title: Chromatin profiling reveals heterogeneity in clinical isolates of the human pathogen Aspergillus fumigatus publication-title: PLoS Genet. – volume: 14 start-page: 1543 year: 2018 end-page: 1561 ident: b0165 article-title: MoSnt2-dependent deacetylation of histone H3 mediates MoTor-dependent autophagy and plant infection by the rice blast fungus Magnaporthe oryzae publication-title: Autophagy – volume: 10 start-page: 1535 year: 2015 end-page: 1541 ident: b0005 article-title: Large-scale metabolomics reveals a complex response of Aspergillus nidulans to epigenetic perturbation publication-title: ACS Chem. Biol. – volume: 10 start-page: e1004676 year: 2014 ident: b0225 article-title: KDM5 interacts with Foxo to modulate cellular levels of oxidative stress publication-title: PLoS Genet. – volume: 15 start-page: e1008053 year: 2019 ident: b0115 article-title: Assembly of a heptameric STRIPAK complex is required for coordination of light-dependent multicellular fungal development with secondary metabolism in Aspergillus nidulans publication-title: PLoS Genet. – volume: 9 start-page: 355 year: 2018 ident: b0280 article-title: Modify the Histone to Win the Battle: Chromatin Dynamics in Plant-Pathogen Interactions publication-title: Front. Plant Sci. – reference: Faustinelli, P. C., et al., 2016. Genome Sequences of Eight Aspergillus flavus spp. and One A. parasiticus sp., Isolated from Peanut Seeds in Georgia. Genome Announc. 4. – volume: 289 start-page: 28956 year: 2014 end-page: 28970 ident: b0245 article-title: Physical and functional interactions between the histone H3K4 demethylase KDM5A and the nucleosome remodeling and deacetylase (NuRD) complex publication-title: J. Biol. Chem. – volume: 212 start-page: 691 year: 2019 end-page: 710 ident: b0035 article-title: Control of Development, Secondary Metabolism and Light-Dependent Carotenoid Biosynthesis by the Velvet Complex of Neurospora crassa publication-title: Genetics – volume: 75 start-page: 7469 year: 2009 end-page: 7481 ident: b0240 article-title: Identification of two aflatrem biosynthesis gene loci in Aspergillus flavus and metabolic engineering of Penicillium paxilli to elucidate their function publication-title: Appl. Environ. Microbiol. – volume: 23 year: 2018 ident: b0365 article-title: Reading More than Histones: The Prevalence of Nucleic Acid Binding among Reader Domains publication-title: Molecules – volume: 70 start-page: 1253 year: 2004 end-page: 1262 ident: b0380 article-title: Clustered pathway genes in aflatoxin biosynthesis publication-title: Appl. Environ. Microbiol. – volume: G3 (Bethesda). 10 start-page: 3515 year: 2020 end-page: 3531 ident: b0130 publication-title: Two New Aspergillus flavus Reference Genomes Reveal a Large Insertion Potentially Contributing to Isolate Stress Tolerance and Aflatoxin Production. – year: 2012 ident: b0085 article-title: Quantification of fungal colonization, sporogenesis, and production of mycotoxins using kernel bioassays – volume: 46 start-page: 176 year: 2009 end-page: 182 ident: b0060 article-title: Clustered genes involved in cyclopiazonic acid production are next to the aflatoxin biosynthesis gene cluster in Aspergillus flavus publication-title: Fungal Genet. Biol. – volume: 6 start-page: 1656 year: 2007 end-page: 1664 ident: b0330 article-title: Histone deacetylase activity regulates chemical diversity in Aspergillus publication-title: Eukaryot. Cell – reference: Skerker, J. M., et al., 2021. Chromosome assembled and annotated genome sequence of Aspergillus flavus NRRL 3357. G3 (Bethesda). 11. – volume: 59 start-page: 11 year: 2007 end-page: 17 ident: b0300 article-title: What can comparative genomics tell us about species concepts in the genus Aspergillus? publication-title: Stud. Mycol. – year: 2018 ident: b0205 article-title: Fungal secondary metabolism: regulation, function and drug discovery publication-title: Nat. Rev. Microbiol. – volume: 153 start-page: 1677 year: 2007 end-page: 1692 ident: b0170 article-title: Aspergillus flavus: human pathogen, allergen and mycotoxin producer publication-title: Microbiology – volume: 1492 start-page: 120 year: 2000 end-page: 126 ident: b0160 article-title: Characterization of two putative histone deacetylase genes from Aspergillus nidulans publication-title: BBA – volume: 88 start-page: 151 year: 1997 end-page: 162 ident: b0195 article-title: A Plasmodium falciparum homologue of the ATPase subunit of a multi-protein complex involved in chromatin remodelling for transcription publication-title: Mol. Biochem. Parasitol. – volume: 7 start-page: 1041 year: 2008 end-page: 1052 ident: b0175 article-title: The nuclear migration protein NUDF/LIS1 forms a complex with NUDC and BNFA at spindle pole bodies publication-title: Eukaryot. Cell – volume: 76 start-page: 1376 year: 2010 end-page: 1386 ident: b0285 article-title: Heterochromatic marks are associated with the repression of secondary metabolism clusters in Aspergillus nidulans publication-title: Mol. Microbiol. – volume: 8 start-page: 1051 year: 2009 end-page: 1060 ident: b0010 article-title: Distinct roles for VeA and LaeA in development and pathogenesis of Aspergillus flavus publication-title: Eukaryot. Cell – volume: 66 start-page: 183 year: 1979 end-page: 185 ident: b0150 article-title: Aflatrem, the tremorgenic mycotoxin from Aspergillus flavus publication-title: Mycopathologia – volume: 33 start-page: 540 year: 2016 end-page: 550 ident: b0235 article-title: Potential economic losses to the US corn industry from aflatoxin contamination publication-title: Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. – volume: 11 start-page: 43 year: 2020 ident: b0025 article-title: RcLS2F - A Novel Fungal Class 1 KDAC Co-repressor Complex in Aspergillus nidulans publication-title: Front. Microbiol. – volume: 50 start-page: 9797 year: 2022 end-page: 9813 ident: b0200 article-title: The KdmB-EcoA-RpdA-SntB chromatin complex binds regulatory genes and coordinates fungal development with mycotoxin synthesis publication-title: Nucleic Acids Res. – volume: 216 start-page: 447 year: 1992 end-page: 457 ident: b0275 article-title: Transformation of filamentous fungi based on hygromycin B and phleomycin resistance markers publication-title: Methods Enzymol. – volume: 3 start-page: 125 year: 2004 end-page: 132 ident: b0295 article-title: A comparative analysis of an orthologous proteomic environment in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe publication-title: Mol. Cell. Proteomics – volume: 58–59 start-page: 71 year: 2013 end-page: 79 ident: b0070 article-title: Aspergillus flavus VelB acts distinctly from VeA in conidiation and may coordinate with FluG to modulate sclerotial production publication-title: Fungal Genet. Biol. – volume: 15 start-page: 656 year: 2014 end-page: 659 ident: b0325 article-title: Cytochrome P450 as dimerization catalyst in diketopiperazine alkaloid biosynthesis publication-title: Chembiochem – volume: 116 start-page: 1245 year: 2015 end-page: 1253 ident: b0155 article-title: Readers, writers, and erasers: chromatin as the whiteboard of heart disease publication-title: Circ. Res. – volume: 93 start-page: 14503 year: 1996 end-page: 14508 ident: b0310 article-title: HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription publication-title: PNAS – volume: 12 start-page: 449 year: 2011 end-page: 461 ident: b0100 article-title: Inactivation of Snt2, a BAH/PHD-containing transcription factor, impairs pathogenicity and increases autophagosome abundance in Fusarium oxysporum publication-title: Mol. Plant Pathol – year: 2018 ident: b0260 article-title: The epigenetic reader SntB regulates secondary metabolism, development and global histone modifications in Aspergillus flavus publication-title: Fungal Genet. Biol. – volume: 96 start-page: 839 year: 2015 end-page: 860 ident: b0135 article-title: KdmA, a histone H3 demethylase with bipartite function, differentially regulates primary and secondary metabolism in Aspergillus nidulans publication-title: Mol. Microbiol. – volume: 4 start-page: 1024 year: 2012 end-page: 1057 ident: b0385 article-title: Current understanding on aflatoxin biosynthesis and future perspective in reducing aflatoxin contamination publication-title: Toxins (Basel). – year: 2023 ident: b0230 article-title: The histone demethylase KdmB is part of a trimeric protein complex and mediates virulence and patulin production in Penicillium expansum publication-title: Fungal Genet. Biol. – volume: 3 year: 2013 ident: b0345 article-title: Western Analysis of Histone Modifications (Aspergillus nidulans) publication-title: Bio Protoc. – volume: 24 start-page: 2857 year: 2022 end-page: 2881 ident: b0375 article-title: Post-translational modifications drive secondary metabolite biosynthesis in Aspergillus: a review publication-title: Environ. Microbiol. – volume: 5 start-page: 462 year: 2009 end-page: 464 ident: b0040 article-title: Chromatin-level regulation of biosynthetic gene clusters publication-title: Nat. Chem. Biol. – reference: de Assis, L. J., et al., 2021. Carbon Catabolite Repression in Filamentous Fungi Is Regulated by Phosphorylation of the Transcription Factor CreA. mBio. 12. – volume: 6 start-page: 1916 year: 2014 end-page: 1928 ident: b0110 article-title: Comparison of expression of secondary metabolite biosynthesis cluster genes in Aspergillus flavus, A. parasiticus, and A. oryzae publication-title: Toxins (Basel). – volume: 19 start-page: 2534 year: 2005 end-page: 2539 ident: b0270 article-title: The HIR corepressor complex binds to nucleosomes generating a distinct protein/DNA complex resistant to remodeling by SWI/SNF publication-title: Genes Dev. – volume: 21 start-page: 345 year: 2010 end-page: 353 ident: b0355 article-title: A novel motif in fungal class 1 histone deacetylases is essential for growth and development of Aspergillus publication-title: Mol. Biol. Cell – volume: 66 start-page: 713 year: 2007 end-page: 726 ident: b0305 article-title: The initiation and pattern of spread of histone H4 acetylation parallel the order of transcriptional activation of genes in the aflatoxin cluster publication-title: Mol. Microbiol. – volume: 12 start-page: e1006222 year: 2016 ident: b0140 article-title: KdmB, a Jumonji Histone H3 Demethylase, Regulates Genome-Wide H3K4 Trimethylation and Is Required for Normal Induction of Secondary Metabolism in Aspergillus nidulans publication-title: PLoS Genet. – volume: 66 start-page: 11 year: 2014 end-page: 18 ident: b0015 article-title: Molecular mechanisms of Aspergillus flavus secondary metabolism and development publication-title: Fungal Genet. Biol. – volume: 81 start-page: 88 year: 2015 end-page: 97 ident: b0055 article-title: An Aspergillus flavus secondary metabolic gene cluster containing a hybrid PKS-NRPS is necessary for synthesis of the 2-pyridones, leporins publication-title: Fungal Genet. Biol. – volume: 394 start-page: 1063 year: 2010 end-page: 1068 ident: b0080 article-title: Cohesion establishment factor, Eco1 represses transcription via association with histone demethylase, LSD1 publication-title: Biochem. Biophys. Res. Commun. – volume: 116 start-page: 14 year: 2018 end-page: 23 ident: b0220 article-title: Identification and functional analysis of the aspergillic acid gene cluster in Aspergillus flavus publication-title: Fungal Genet. Biol. – volume: 8 start-page: 46 year: 2016 ident: b0360 article-title: Functional Genomic Analysis of Aspergillus flavus Interacting with Resistant and Susceptible Peanut publication-title: Toxins (Basel). – volume: 108 start-page: 14282 year: 2011 end-page: 14287 ident: b0250 article-title: Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation publication-title: PNAS – volume: 7 start-page: 1324 year: 2016 ident: b0215 article-title: The Aspergillus flavus Histone Acetyltransferase AflGcnE Regulates Morphogenesis, Aflatoxin Biosynthesis, and Pathogenicity publication-title: Front. Microbiol. – volume: 278 start-page: 8487 year: 2003 end-page: 8493 ident: b0290 article-title: High conservation of the Set1/Rad6 axis of histone 3 lysine 4 methylation in budding and fission yeasts publication-title: J. Biol. Chem. – volume: 18 start-page: e1010502 year: 2022 ident: b0320 article-title: F-box receptor mediated control of substrate stability and subcellular location organizes cellular development of Aspergillus nidulans publication-title: PLoS Genet. – volume: 12 start-page: 9 year: 2021 ident: b0350 article-title: The Fungi-specific histone Acetyltransferase Rtt109 mediates morphogenesis, Aflatoxin synthesis and pathogenicity in Aspergillus flavus by acetylating H3K9 publication-title: IMA Fungus. – volume: 86 start-page: 314 year: 2012 end-page: 330 ident: b0340 article-title: Overexpression of the Aspergillus nidulans histone 4 acetyltransferase EsaA increases activation of secondary metabolite production publication-title: Mol. Microbiol. – volume: 104 start-page: 29 year: 2017 end-page: 37 ident: b0075 article-title: Aspergillus flavus aswA, a gene homolog of Aspergillus nidulans oefC, regulates sclerotial development and biosynthesis of sclerotium-associated secondary metabolites publication-title: Fungal Genet. Biol. – volume: 64 start-page: 25 year: 2014 end-page: 35 ident: b0045 article-title: Functional characterization of a veA-dependent polyketide synthase gene in Aspergillus flavus necessary for the synthesis of asparasone, a sclerotium-specific pigment publication-title: Fungal Genet. Biol. – volume: 9 start-page: 4 year: 2016 ident: b0145 article-title: The histone demethylase dKDM5/LID interacts with the SIN3 histone deacetylase complex and shares functional similarities with SIN3 publication-title: Epigenetics Chromatin – reference: Pfannenstiel, B. T., et al., 2017. Revitalization of a Forward Genetic Screen Identifies Three New Regulators of Fungal Secondary Metabolism in the Genus Aspergillus. MBio. 8. – year: 2019 ident: b0315 article-title: Control of Development, Secondary Metabolism and Light-Dependent Carotenoid Biosynthesis by the Velvet Complex of Neurospora crassa publication-title: Genetics – volume: 33 start-page: 3735 year: 2013 end-page: 3748 ident: b0020 article-title: The yeast Snt2 protein coordinates the transcriptional response to hydrogen peroxide-mediated oxidative stress publication-title: Mol. Cell Biol. – volume: 14 start-page: 139 year: 1966 ident: b0255 article-title: Production of aflatoxins and kojic acid by species of Aspergillus and Penicillium publication-title: Appl. Microbiol. – volume: 24 start-page: 5596 year: 2022 end-page: 5610 ident: b0370 article-title: Histone deacetylase SirE regulates development, DNA damage response and aflatoxin production in Aspergillus flavus publication-title: Environ. Microbiol. – volume: 20 start-page: 207 year: 2019 end-page: 220 ident: b0210 article-title: Chromatin accessibility and the regulatory epigenome publication-title: Nat. Rev. Genet. – volume: 944 start-page: 191 year: 2012 end-page: 205 ident: b0030 article-title: Identification of protein complexes from filamentous fungi with tandem affinity purification publication-title: Methods Mol. Biol. – reference: Hu, Y., et al., 2018. The PHD Transcription Factor Rum1 Regulates Morphogenesis and Aflatoxin Biosynthesis in Aspergillus flavus. Toxins (Basel). 10. – volume: 78 start-page: 7557 year: 2012 end-page: 7563 ident: b0065 article-title: Deletion of the Aspergillus flavus orthologue of A. nidulans fluG reduces conidiation and promotes production of sclerotia but does not abolish aflatoxin biosynthesis publication-title: Appl. Environ. Microbiol. – volume: 28 start-page: 1355 year: 1998 end-page: 1365 ident: b0125 article-title: Sequence-specific binding by Aspergillus nidulans AflR, a C6 zinc cluster protein regulating mycotoxin biosynthesis publication-title: Mol. Microbiol. – volume: 118 year: 2021 ident: 10.1016/j.fgb.2023.103836_b0105 article-title: Microevolution in the pansecondary metabolome of Aspergillus flavus and its potential macroevolutionary implications for filamentous fungi publication-title: PNAS doi: 10.1073/pnas.2021683118 – volume: 153 start-page: 1677 year: 2007 ident: 10.1016/j.fgb.2023.103836_b0170 article-title: Aspergillus flavus: human pathogen, allergen and mycotoxin producer publication-title: Microbiology doi: 10.1099/mic.0.2007/007641-0 – year: 2018 ident: 10.1016/j.fgb.2023.103836_b0260 article-title: The epigenetic reader SntB regulates secondary metabolism, development and global histone modifications in Aspergillus flavus publication-title: Fungal Genet. Biol. doi: 10.1016/j.fgb.2018.08.004 – volume: 64 start-page: 25 year: 2014 ident: 10.1016/j.fgb.2023.103836_b0045 article-title: Functional characterization of a veA-dependent polyketide synthase gene in Aspergillus flavus necessary for the synthesis of asparasone, a sclerotium-specific pigment publication-title: Fungal Genet. Biol. doi: 10.1016/j.fgb.2014.01.001 – volume: 14 start-page: 139 year: 1966 ident: 10.1016/j.fgb.2023.103836_b0255 article-title: Production of aflatoxins and kojic acid by species of Aspergillus and Penicillium publication-title: Appl. Microbiol. doi: 10.1128/am.14.1.139-.1966 – ident: 10.1016/j.fgb.2023.103836_b0120 doi: 10.1128/genomeA.00278-16 – volume: 116 start-page: 1245 year: 2015 ident: 10.1016/j.fgb.2023.103836_b0155 article-title: Readers, writers, and erasers: chromatin as the whiteboard of heart disease publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.116.303630 – volume: 88 start-page: 151 year: 1997 ident: 10.1016/j.fgb.2023.103836_b0195 article-title: A Plasmodium falciparum homologue of the ATPase subunit of a multi-protein complex involved in chromatin remodelling for transcription publication-title: Mol. Biochem. Parasitol. doi: 10.1016/S0166-6851(97)00089-3 – volume: 86 start-page: 314 year: 2012 ident: 10.1016/j.fgb.2023.103836_b0340 article-title: Overexpression of the Aspergillus nidulans histone 4 acetyltransferase EsaA increases activation of secondary metabolite production publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2012.08195.x – volume: 350 start-page: 427 year: 1991 ident: 10.1016/j.fgb.2023.103836_b0185 article-title: Mutational hotspot in the p53 gene in human hepatocellular carcinomas publication-title: Nature doi: 10.1038/350427a0 – volume: 6 start-page: 1656 year: 2007 ident: 10.1016/j.fgb.2023.103836_b0330 article-title: Histone deacetylase activity regulates chemical diversity in Aspergillus publication-title: Eukaryot. Cell doi: 10.1128/EC.00186-07 – volume: 12 start-page: e1006222 year: 2016 ident: 10.1016/j.fgb.2023.103836_b0140 article-title: KdmB, a Jumonji Histone H3 Demethylase, Regulates Genome-Wide H3K4 Trimethylation and Is Required for Normal Induction of Secondary Metabolism in Aspergillus nidulans publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1006222 – volume: 11 start-page: 43 year: 2020 ident: 10.1016/j.fgb.2023.103836_b0025 article-title: RcLS2F - A Novel Fungal Class 1 KDAC Co-repressor Complex in Aspergillus nidulans publication-title: Front. Microbiol. doi: 10.3389/fmicb.2020.00043 – volume: 3 year: 2013 ident: 10.1016/j.fgb.2023.103836_b0345 article-title: Western Analysis of Histone Modifications (Aspergillus nidulans) publication-title: Bio Protoc. doi: 10.21769/BioProtoc.424 – volume: 81 start-page: 88 year: 2015 ident: 10.1016/j.fgb.2023.103836_b0055 article-title: An Aspergillus flavus secondary metabolic gene cluster containing a hybrid PKS-NRPS is necessary for synthesis of the 2-pyridones, leporins publication-title: Fungal Genet. Biol. doi: 10.1016/j.fgb.2015.05.010 – volume: 93 start-page: 14503 year: 1996 ident: 10.1016/j.fgb.2023.103836_b0310 article-title: HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription publication-title: PNAS doi: 10.1073/pnas.93.25.14503 – volume: 18 start-page: e1010502 year: 2022 ident: 10.1016/j.fgb.2023.103836_b0320 article-title: F-box receptor mediated control of substrate stability and subcellular location organizes cellular development of Aspergillus nidulans publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1010502 – volume: 96 start-page: 839 year: 2015 ident: 10.1016/j.fgb.2023.103836_b0135 article-title: KdmA, a histone H3 demethylase with bipartite function, differentially regulates primary and secondary metabolism in Aspergillus nidulans publication-title: Mol. Microbiol. doi: 10.1111/mmi.12977 – volume: 58–59 start-page: 71 year: 2013 ident: 10.1016/j.fgb.2023.103836_b0070 article-title: Aspergillus flavus VelB acts distinctly from VeA in conidiation and may coordinate with FluG to modulate sclerotial production publication-title: Fungal Genet. Biol. doi: 10.1016/j.fgb.2013.08.009 – volume: 12 start-page: 449 year: 2011 ident: 10.1016/j.fgb.2023.103836_b0100 article-title: Inactivation of Snt2, a BAH/PHD-containing transcription factor, impairs pathogenicity and increases autophagosome abundance in Fusarium oxysporum publication-title: Mol. Plant Pathol doi: 10.1111/j.1364-3703.2010.00683.x – volume: 66 start-page: 183 year: 1979 ident: 10.1016/j.fgb.2023.103836_b0150 article-title: Aflatrem, the tremorgenic mycotoxin from Aspergillus flavus publication-title: Mycopathologia doi: 10.1007/BF00683969 – volume: 944 start-page: 191 year: 2012 ident: 10.1016/j.fgb.2023.103836_b0030 article-title: Identification of protein complexes from filamentous fungi with tandem affinity purification publication-title: Methods Mol. Biol. doi: 10.1007/978-1-62703-122-6_14 – volume: 66 start-page: 713 year: 2007 ident: 10.1016/j.fgb.2023.103836_b0305 article-title: The initiation and pattern of spread of histone H4 acetylation parallel the order of transcriptional activation of genes in the aflatoxin cluster publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2007.05952.x – ident: 10.1016/j.fgb.2023.103836_b0335 doi: 10.1093/g3journal/jkab213 – year: 2012 ident: 10.1016/j.fgb.2023.103836_b0085 – volume: 78 start-page: 7557 year: 2012 ident: 10.1016/j.fgb.2023.103836_b0065 article-title: Deletion of the Aspergillus flavus orthologue of A. nidulans fluG reduces conidiation and promotes production of sclerotia but does not abolish aflatoxin biosynthesis publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01241-12 – volume: 66 start-page: 11 year: 2014 ident: 10.1016/j.fgb.2023.103836_b0015 article-title: Molecular mechanisms of Aspergillus flavus secondary metabolism and development publication-title: Fungal Genet. Biol. doi: 10.1016/j.fgb.2014.02.008 – volume: 278 start-page: 8487 year: 2003 ident: 10.1016/j.fgb.2023.103836_b0290 article-title: High conservation of the Set1/Rad6 axis of histone 3 lysine 4 methylation in budding and fission yeasts publication-title: J. Biol. Chem. doi: 10.1074/jbc.M209562200 – volume: 394 start-page: 1063 year: 2010 ident: 10.1016/j.fgb.2023.103836_b0080 article-title: Cohesion establishment factor, Eco1 represses transcription via association with histone demethylase, LSD1 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2010.03.125 – volume: 75 start-page: 7469 year: 2009 ident: 10.1016/j.fgb.2023.103836_b0240 article-title: Identification of two aflatrem biosynthesis gene loci in Aspergillus flavus and metabolic engineering of Penicillium paxilli to elucidate their function publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02146-08 – volume: 10 start-page: 1535 year: 2015 ident: 10.1016/j.fgb.2023.103836_b0005 article-title: Large-scale metabolomics reveals a complex response of Aspergillus nidulans to epigenetic perturbation publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.5b00025 – volume: 9 start-page: 4 year: 2016 ident: 10.1016/j.fgb.2023.103836_b0145 article-title: The histone demethylase dKDM5/LID interacts with the SIN3 histone deacetylase complex and shares functional similarities with SIN3 publication-title: Epigenetics Chromatin doi: 10.1186/s13072-016-0053-9 – volume: 9 start-page: 355 year: 2018 ident: 10.1016/j.fgb.2023.103836_b0280 article-title: Modify the Histone to Win the Battle: Chromatin Dynamics in Plant-Pathogen Interactions publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.00355 – volume: 108 start-page: 14282 year: 2011 ident: 10.1016/j.fgb.2023.103836_b0250 article-title: Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation publication-title: PNAS doi: 10.1073/pnas.1103523108 – volume: 14 start-page: 983 year: 2015 ident: 10.1016/j.fgb.2023.103836_b0050 article-title: Transcriptome Analysis of Aspergillus flavus Reveals veA-Dependent Regulation of Secondary Metabolite Gene Clusters, Including the Novel Aflavarin Cluster publication-title: Eukaryot. Cell doi: 10.1128/EC.00092-15 – volume: 15 start-page: 656 year: 2014 ident: 10.1016/j.fgb.2023.103836_b0325 article-title: Cytochrome P450 as dimerization catalyst in diketopiperazine alkaloid biosynthesis publication-title: Chembiochem doi: 10.1002/cbic.201300751 – volume: 216 start-page: 447 year: 1992 ident: 10.1016/j.fgb.2023.103836_b0275 article-title: Transformation of filamentous fungi based on hygromycin B and phleomycin resistance markers publication-title: Methods Enzymol. doi: 10.1016/0076-6879(92)16041-H – volume: 24 start-page: 5596 year: 2022 ident: 10.1016/j.fgb.2023.103836_b0370 article-title: Histone deacetylase SirE regulates development, DNA damage response and aflatoxin production in Aspergillus flavus publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.16198 – volume: 212 start-page: 691 year: 2019 ident: 10.1016/j.fgb.2023.103836_b0035 article-title: Control of Development, Secondary Metabolism and Light-Dependent Carotenoid Biosynthesis by the Velvet Complex of Neurospora crassa publication-title: Genetics doi: 10.1534/genetics.119.302277 – volume: 14 start-page: 1543 year: 2018 ident: 10.1016/j.fgb.2023.103836_b0165 article-title: MoSnt2-dependent deacetylation of histone H3 mediates MoTor-dependent autophagy and plant infection by the rice blast fungus Magnaporthe oryzae publication-title: Autophagy doi: 10.1080/15548627.2018.1458171 – volume: 8 start-page: 46 year: 2016 ident: 10.1016/j.fgb.2023.103836_b0360 article-title: Functional Genomic Analysis of Aspergillus flavus Interacting with Resistant and Susceptible Peanut publication-title: Toxins (Basel). doi: 10.3390/toxins8020046 – volume: 21 start-page: 345 year: 2010 ident: 10.1016/j.fgb.2023.103836_b0355 article-title: A novel motif in fungal class 1 histone deacetylases is essential for growth and development of Aspergillus publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e09-08-0750 – volume: 46 start-page: 176 year: 2009 ident: 10.1016/j.fgb.2023.103836_b0060 article-title: Clustered genes involved in cyclopiazonic acid production are next to the aflatoxin biosynthesis gene cluster in Aspergillus flavus publication-title: Fungal Genet. Biol. doi: 10.1016/j.fgb.2008.11.002 – volume: 76 start-page: 1376 year: 2010 ident: 10.1016/j.fgb.2023.103836_b0285 article-title: Heterochromatic marks are associated with the repression of secondary metabolism clusters in Aspergillus nidulans publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2010.07051.x – ident: 10.1016/j.fgb.2023.103836_b0190 doi: 10.3390/toxins10070301 – volume: 12 start-page: 9 year: 2021 ident: 10.1016/j.fgb.2023.103836_b0350 article-title: The Fungi-specific histone Acetyltransferase Rtt109 mediates morphogenesis, Aflatoxin synthesis and pathogenicity in Aspergillus flavus by acetylating H3K9 publication-title: IMA Fungus. doi: 10.1186/s43008-021-00060-4 – volume: 33 start-page: 3735 year: 2013 ident: 10.1016/j.fgb.2023.103836_b0020 article-title: The yeast Snt2 protein coordinates the transcriptional response to hydrogen peroxide-mediated oxidative stress publication-title: Mol. Cell Biol. doi: 10.1128/MCB.00025-13 – year: 2019 ident: 10.1016/j.fgb.2023.103836_b0315 article-title: Control of Development, Secondary Metabolism and Light-Dependent Carotenoid Biosynthesis by the Velvet Complex of Neurospora crassa publication-title: Genetics – volume: 1492 start-page: 120 year: 2000 ident: 10.1016/j.fgb.2023.103836_b0160 article-title: Characterization of two putative histone deacetylase genes from Aspergillus nidulans publication-title: BBA – volume: 59 start-page: 11 year: 2007 ident: 10.1016/j.fgb.2023.103836_b0300 article-title: What can comparative genomics tell us about species concepts in the genus Aspergillus? publication-title: Stud. Mycol. doi: 10.3114/sim.2007.59.02 – volume: 7 start-page: 1041 year: 2008 ident: 10.1016/j.fgb.2023.103836_b0175 article-title: The nuclear migration protein NUDF/LIS1 forms a complex with NUDC and BNFA at spindle pole bodies publication-title: Eukaryot. Cell doi: 10.1128/EC.00071-07 – year: 2018 ident: 10.1016/j.fgb.2023.103836_b0205 article-title: Fungal secondary metabolism: regulation, function and drug discovery publication-title: Nat. Rev. Microbiol. – year: 2023 ident: 10.1016/j.fgb.2023.103836_b0230 article-title: The histone demethylase KdmB is part of a trimeric protein complex and mediates virulence and patulin production in Penicillium expansum publication-title: Fungal Genet. Biol. doi: 10.1016/j.fgb.2023.103837 – volume: 5 start-page: 462 year: 2009 ident: 10.1016/j.fgb.2023.103836_b0040 article-title: Chromatin-level regulation of biosynthetic gene clusters publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.177 – volume: 24 start-page: 2857 year: 2022 ident: 10.1016/j.fgb.2023.103836_b0375 article-title: Post-translational modifications drive secondary metabolite biosynthesis in Aspergillus: a review publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.16034 – volume: 23 year: 2018 ident: 10.1016/j.fgb.2023.103836_b0365 article-title: Reading More than Histones: The Prevalence of Nucleic Acid Binding among Reader Domains publication-title: Molecules doi: 10.3390/molecules23102614 – volume: 28 start-page: 1355 year: 1998 ident: 10.1016/j.fgb.2023.103836_b0125 article-title: Sequence-specific binding by Aspergillus nidulans AflR, a C6 zinc cluster protein regulating mycotoxin biosynthesis publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.1998.00907.x – volume: 7 start-page: 435 year: 2009 ident: 10.1016/j.fgb.2023.103836_b0180 article-title: A chemical epigenetics approach for engineering the in situ biosynthesis of a cryptic natural product from Aspergillus niger publication-title: Org. Biomol. Chem. doi: 10.1039/B819208A – volume: 50 start-page: 9797 year: 2022 ident: 10.1016/j.fgb.2023.103836_b0200 article-title: The KdmB-EcoA-RpdA-SntB chromatin complex binds regulatory genes and coordinates fungal development with mycotoxin synthesis publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkac744 – volume: 7 start-page: 1324 year: 2016 ident: 10.1016/j.fgb.2023.103836_b0215 article-title: The Aspergillus flavus Histone Acetyltransferase AflGcnE Regulates Morphogenesis, Aflatoxin Biosynthesis, and Pathogenicity publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.01324 – volume: 70 start-page: 1253 year: 2004 ident: 10.1016/j.fgb.2023.103836_b0380 article-title: Clustered pathway genes in aflatoxin biosynthesis publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.70.3.1253-1262.2004 – volume: 19 start-page: 2534 year: 2005 ident: 10.1016/j.fgb.2023.103836_b0270 article-title: The HIR corepressor complex binds to nucleosomes generating a distinct protein/DNA complex resistant to remodeling by SWI/SNF publication-title: Genes Dev. doi: 10.1101/gad.1341105 – ident: 10.1016/j.fgb.2023.103836_b0095 doi: 10.1128/mBio.03146-20 – volume: 33 start-page: 540 year: 2016 ident: 10.1016/j.fgb.2023.103836_b0235 article-title: Potential economic losses to the US corn industry from aflatoxin contamination publication-title: Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. doi: 10.1080/19440049.2016.1138545 – volume: 18 start-page: e1010001 year: 2022 ident: 10.1016/j.fgb.2023.103836_b0090 article-title: Chromatin profiling reveals heterogeneity in clinical isolates of the human pathogen Aspergillus fumigatus publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1010001 – volume: 15 start-page: e1008053 year: 2019 ident: 10.1016/j.fgb.2023.103836_b0115 article-title: Assembly of a heptameric STRIPAK complex is required for coordination of light-dependent multicellular fungal development with secondary metabolism in Aspergillus nidulans publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1008053 – volume: 4 start-page: 1024 year: 2012 ident: 10.1016/j.fgb.2023.103836_b0385 article-title: Current understanding on aflatoxin biosynthesis and future perspective in reducing aflatoxin contamination publication-title: Toxins (Basel). doi: 10.3390/toxins4111024 – volume: 20 start-page: 207 year: 2019 ident: 10.1016/j.fgb.2023.103836_b0210 article-title: Chromatin accessibility and the regulatory epigenome publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-018-0089-8 – volume: 116 start-page: 14 year: 2018 ident: 10.1016/j.fgb.2023.103836_b0220 article-title: Identification and functional analysis of the aspergillic acid gene cluster in Aspergillus flavus publication-title: Fungal Genet. Biol. doi: 10.1016/j.fgb.2018.04.009 – volume: 10 start-page: e1004676 year: 2014 ident: 10.1016/j.fgb.2023.103836_b0225 article-title: KDM5 interacts with Foxo to modulate cellular levels of oxidative stress publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1004676 – volume: 8 start-page: 1051 year: 2009 ident: 10.1016/j.fgb.2023.103836_b0010 article-title: Distinct roles for VeA and LaeA in development and pathogenesis of Aspergillus flavus publication-title: Eukaryot. Cell doi: 10.1128/EC.00088-09 – volume: 6 start-page: 1916 year: 2014 ident: 10.1016/j.fgb.2023.103836_b0110 article-title: Comparison of expression of secondary metabolite biosynthesis cluster genes in Aspergillus flavus, A. parasiticus, and A. oryzae publication-title: Toxins (Basel). doi: 10.3390/toxins6061916 – volume: 3 start-page: 125 year: 2004 ident: 10.1016/j.fgb.2023.103836_b0295 article-title: A comparative analysis of an orthologous proteomic environment in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M300081-MCP200 – volume: G3 (Bethesda). 10 start-page: 3515 year: 2020 ident: 10.1016/j.fgb.2023.103836_b0130 publication-title: Two New Aspergillus flavus Reference Genomes Reveal a Large Insertion Potentially Contributing to Isolate Stress Tolerance and Aflatoxin Production. – volume: 104 start-page: 29 year: 2017 ident: 10.1016/j.fgb.2023.103836_b0075 article-title: Aspergillus flavus aswA, a gene homolog of Aspergillus nidulans oefC, regulates sclerotial development and biosynthesis of sclerotium-associated secondary metabolites publication-title: Fungal Genet. Biol. doi: 10.1016/j.fgb.2017.04.006 – volume: 289 start-page: 28956 year: 2014 ident: 10.1016/j.fgb.2023.103836_b0245 article-title: Physical and functional interactions between the histone H3K4 demethylase KDM5A and the nucleosome remodeling and deacetylase (NuRD) complex publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.573725 – ident: 10.1016/j.fgb.2023.103836_b0265 doi: 10.1128/mBio.01246-17 |
SSID | ssj0011541 |
Score | 2.4374185 |
Snippet | •KdmB-EcoA-RpdA-SntB complex was identified and characterized in A. flavus.•ecoA deletion is lethal whereas rpdA deletion is not lethal in A. flavus.•Similar... The filamentous fungus Aspergillus flavus is a plant and human pathogen predominantly found in the soil as spores or sclerotia and is capable of producing... The filamentous fungus Aspergillus flavus is a plant and human pathogen predominantly found in the soil as spores or sclerotia and is capable of producing... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 103836 |
Title | The KdmB-EcoA-RpdA-SntB (KERS) chromatin regulatory complex controls development, secondary metabolism and pathogenicity in Aspergillus flavus |
URI | https://dx.doi.org/10.1016/j.fgb.2023.103836 https://www.ncbi.nlm.nih.gov/pubmed/37666447 https://www.proquest.com/docview/2861303074 https://pubmed.ncbi.nlm.nih.gov/PMC10841535 |
Volume | 169 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaWLgcuaHmXhcpIHADhbeO4iXNsq64KhRVqWWlvkZ-7QWlSNSliL_wEfjPjPAoFtAeOSexo5BnPfBN_mUHopTY28qSOiI0CRpiKFHFlvolvhoJbbXxakWg-ngWzc_b-YnhxgCbtvzCOVtn4_tqnV966udNvVrO_TpL-0hsA2OfMfdZ0PhdSoEMK0Z530OHo3Xx2tjtMAJTg1Tz7kLgJ7eFmRfOyl_LEtRCvKoVXhZr_GZ7-hp9_sih_C0unR-hugyfxqBb5Hjow2X10e5wD5rt-gH6AFeC5Xo3JVOUjsljrEVlm5Ri_mk8Xy9dYXW1yB1kzvKl70ueba1yxzM033LDYC6x_EYve4sJl0FrAuJUpwYLSpFhhkWnsehvnYI6JAmCP4ZUjV4T8MknTbYFtKr5ui4fo_HT6eTIjTQcGomBdS6K1iBSoiyoIdgGTAeScynLqaRYqyqUfMqVDJULwq5YKC3jESrgyQgjAbdZ_hDpZnpknCHMqqOfbQEjPMkkHXEeREFwGwVBSY1kXDdqFj1VTntx1yUjjlof2JQZdxU5Xca2rLnqzm7Kua3PcNJi12oz3DCyG2HHTtBet5mPYeO40RWQm3xYx5S71AhcJoj-uLWEnBXjtAIBm2EV8z0Z2A1xR7_0nWXJVFfcGKwVM5Q-f_p-8x-iOu6oJN89Qp9xszXOATaXsoVsn370ebI7J4sOnXrNJfgLraRqB |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamgQQviPvK1Ug8AMJr47iJ89hOnQrd9rBu0t4sX7egNKmaFLEXfgK_meNcCgW0Bx6THEeWz_Hx5_jLdxB6a6xLAmUS4pKIEaYTTbzMNwntUHJnbEhrEs3xSTQ9Z58vhhc76KD7F8bTKtvc3-T0Olu3d_rtaPaXadqfBwMA-5z5z5o-58IW6BbzZQ4gqPe_b3geXm4maFj2MfHm3dFmTfJyl2rfFxCvdcJrmeZ_Lk5_g88_OZS_LUqH99G9Fk3iUdPhB2jH5g_R7XEBiO_6EfoBMYBnZjEmE12MyOnSjMg8r8b43WxyOn-P9dWq8IA1x6umIn2xusY1x9x-wy2HvcTmF63oIy79_tlIsFvYCuInS8sFlrnBvrJxAcGYaoD1GF458hLkl2mWrUvsMvl1XT5G54eTs4MpaesvEA2jWhFjZKLBWVTDUhcxFcGOUztOA8NiTbkKY6ZNrGUMWdVR6QCNOAVXVkoJqM2FT9BuXuR2D2FOJQ1CF0kVOKbogJskkZKrKBoqah3roUE38EK34uS-RkYmOhbaFwG-Et5XovFVD33YNFk2yhw3GbPOm2IrvASsHDc1e9N5XsC082cpMrfFuhSU-40XJEjo-tMmEja9gJwdAcyMe4hvxcjGwEt6bz_J06ta2huiFBBVOHz2f_19je5Mz46PxNGnk9lzdNc_aag3L9ButVrblwCgKvWqniA_AWoHGa4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+KdmB-EcoA-RpdA-SntB+%28KERS%29+chromatin+regulatory+complex+controls+development%2C+secondary+metabolism+and+pathogenicity+in+Aspergillus+flavus&rft.jtitle=Fungal+genetics+and+biology&rft.au=Karahoda%2C+Betim&rft.au=Pfannenstiel%2C+Brandon+T.&rft.au=Sarikaya-Bayram%2C+%C3%96zlem&rft.au=Dong%2C+Zhiqiang&rft.date=2023-12-01&rft.pub=Elsevier+Inc&rft.issn=1087-1845&rft.eissn=1096-0937&rft.volume=169&rft_id=info:doi/10.1016%2Fj.fgb.2023.103836&rft.externalDocID=S1087184523000671 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1087-1845&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1087-1845&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1087-1845&client=summon |