Multilevel Functional Principal Component Analysis for High-Dimensional Data

We propose fast and scalable statistical methods for the analysis of hundreds or thousands of high-dimensional vectors observed at multiple visits. The proposed inferential methods do not require loading the entire dataset at once in the computer memory and instead use only sequential access to data...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational and graphical statistics Vol. 20; no. 4; pp. 852 - 873
Main Authors Zipunnikov, Vadim, Caffo, Brian, Yousem, David M., Davatzikos, Christos, Schwartz, Brian S., Crainiceanu, Ciprian
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 01.01.2011
JCGS Management Committee of the American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN1061-8600
1537-2715
DOI10.1198/jcgs.2011.10122

Cover

Abstract We propose fast and scalable statistical methods for the analysis of hundreds or thousands of high-dimensional vectors observed at multiple visits. The proposed inferential methods do not require loading the entire dataset at once in the computer memory and instead use only sequential access to data. This allows deployment of our methodology on low-resource computers where computations can be done in minutes on extremely large datasets. Our methods are motivated by and applied to a study where hundreds of subjects were scanned using Magnetic Resonance Imaging (MRI) at two visits roughly five years apart. The original data possess over ten billion measurements. The approach can be applied to any type of study where data can be unfolded into a long vector including densely observed functions and images. Supplemental materials are provided with source code for simulations, some technical details and proofs, and additional imaging results of the brain study.
AbstractList We propose fast and scalable statistical methods for the analysis of hundreds or thousands of high dimensional vectors observed at multiple visits. The proposed inferential methods do not require loading the entire data set at once in the computer memory and instead use only sequential access to data. This allows deployment of our methodology on low-resource computers where computations can be done in minutes on extremely large data sets. Our methods are motivated by and applied to a study where hundreds of subjects were scanned using Magnetic Resonance Imaging (MRI) at two visits roughly five years apart. The original data possesses over ten billion measurements. The approach can be applied to any type of study where data can be unfolded into a long vector including densely observed functions and images. Supplemental materials are provided with source code for simulations, some technical details and proofs, and additional imaging results of the brain study.We propose fast and scalable statistical methods for the analysis of hundreds or thousands of high dimensional vectors observed at multiple visits. The proposed inferential methods do not require loading the entire data set at once in the computer memory and instead use only sequential access to data. This allows deployment of our methodology on low-resource computers where computations can be done in minutes on extremely large data sets. Our methods are motivated by and applied to a study where hundreds of subjects were scanned using Magnetic Resonance Imaging (MRI) at two visits roughly five years apart. The original data possesses over ten billion measurements. The approach can be applied to any type of study where data can be unfolded into a long vector including densely observed functions and images. Supplemental materials are provided with source code for simulations, some technical details and proofs, and additional imaging results of the brain study.
We propose fast and scalable statistical methods for the analysis of hundreds or thousands of high-dimensional vectors observed at multiple visits. The proposed inferential methods do not require loading the entire dataset at once in the computer memory and instead use only sequential access to data. This allows deployment of our methodology on low-resource computers where computations can be done in minutes on extremely large datasets. Our methods are motivated by and applied to a study where hundreds of subjects were scanned using Magnetic Resonance Imaging (MRI) at two visits roughly five years apart. The original data possess over ten billion measurements. The approach can be applied to any type of study where data can be unfolded into a long vector including densely observed functions and images. Supplemental materials are provided with source code for simulations, some technical details and proofs, and additional imaging results of the brain study. [PUBLICATION ABSTRACT]
We propose fast and scalable statistical methods for the analysis of hundreds or thousands of high-dimensional vectors observed at multiple visits. The proposed inferential methods do not require loading the entire dataset at once in the computer memory and instead use only sequential access to data. This allows deployment of our methodology on low-resource computers where computations can be done in minutes on extremely large datasets. Our methods are motivated by and applied to a study where hundreds of subjects were scanned using Magnetic Resonance Imaging (MRI) at two visits roughly five years apart. The original data possess over ten billion measurements. The approach can be applied to any type of study where data can be unfolded into a long vector including densely observed functions and images. Supplemental materials are provided with source code for simulations, some technical details and proofs, and additional imaging results of the brain study.
We propose fast and scalable statistical methods for the analysis of hundreds or thousands of high dimensional vectors observed at multiple visits. The proposed inferential methods do not require loading the entire data set at once in the computer memory and instead use only sequential access to data. This allows deployment of our methodology on low-resource computers where computations can be done in minutes on extremely large data sets. Our methods are motivated by and applied to a study where hundreds of subjects were scanned using Magnetic Resonance Imaging (MRI) at two visits roughly five years apart. The original data possesses over ten billion measurements. The approach can be applied to any type of study where data can be unfolded into a long vector including densely observed functions and images. Supplemental materials are provided with source code for simulations, some technical details and proofs, and additional imaging results of the brain study.
Author Davatzikos, Christos
Zipunnikov, Vadim
Schwartz, Brian S.
Caffo, Brian
Crainiceanu, Ciprian
Yousem, David M.
Author_xml – sequence: 1
  givenname: Vadim
  surname: Zipunnikov
  fullname: Zipunnikov, Vadim
– sequence: 2
  givenname: Brian
  surname: Caffo
  fullname: Caffo, Brian
– sequence: 3
  givenname: David M.
  surname: Yousem
  fullname: Yousem, David M.
– sequence: 4
  givenname: Christos
  surname: Davatzikos
  fullname: Davatzikos, Christos
– sequence: 5
  givenname: Brian S.
  surname: Schwartz
  fullname: Schwartz, Brian S.
– sequence: 6
  givenname: Ciprian
  surname: Crainiceanu
  fullname: Crainiceanu, Ciprian
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25960627$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtv1DAUhS1URB-wZgWKWLHJ1I_4xQKpmlJaaSpYwNpyPM7UI8ce7KRo_j0O6QMqdWVL95zjz_ccg4MQgwXgLYILhKQ43ZpNXmCI0AJBhPELcIQo4TXmiB6UO2SoFgzCQ3Cc8xZCiJjkr8AhppJBhvkRWF2PfnDe3lpfXYzBDC4G7avvyQXjduW2jP2uvBmG6qwM9tnlqoupunSbm_rc9Tbk2XGuB_0avOy0z_bN3XkCfl58-bG8rFffvl4tz1a1aSge6jWVpmOFmuKWaYaIbbmhrGWskxBD3iJIhGhkKzjrKOe6k5oKLVraEMFIR07A5zl3N7a9XZtCl7RXu-R6nfYqaqf-nwR3ozbxVjUNpoTiEvDxLiDFX6PNg-pdNtZ7HWwcs0KCUFoWSmGRfngi3cYxlR9nJREUUBA85b3_F-iB5H7PRUBngUkx52Q7Zdygp2UXPucVgmrqU019qqlP9bfP4jt94ruPft7xbnZs8xDTIwnBjZBkIvk0z10oPfb6d0x-rQa99zF1SZfWsyLPhf8Boxi_dQ
CitedBy_id crossref_primary_10_1080_01621459_2015_1062383
crossref_primary_10_1080_10618600_2022_2035738
crossref_primary_10_3758_s13415_013_0196_0
crossref_primary_10_1093_biostatistics_kxab018
crossref_primary_10_1080_01621459_2018_1476242
crossref_primary_10_1080_03610926_2020_1818097
crossref_primary_10_1007_s11222_014_9485_x
crossref_primary_10_1111_anzs_12363
crossref_primary_10_1080_01621459_2018_1482750
crossref_primary_10_1146_annurev_statistics_010814_020413
crossref_primary_10_1002_sim_9342
crossref_primary_10_1007_s12561_022_09354_6
crossref_primary_10_1111_rssb_12007
crossref_primary_10_1177_1471082X16681317
crossref_primary_10_1111_bdi_12963
crossref_primary_10_1177_1471082X16681875
crossref_primary_10_3389_fnins_2015_00368
crossref_primary_10_1080_03610918_2022_2087878
crossref_primary_10_3390_jimaging9040086
crossref_primary_10_1080_03610918_2019_1639735
crossref_primary_10_1093_biostatistics_kxv015
crossref_primary_10_6339_23_JDS1085
crossref_primary_10_1016_j_neuroimage_2014_05_043
crossref_primary_10_1093_biostatistics_kxu045
crossref_primary_10_1080_01621459_2019_1686391
crossref_primary_10_1080_01621459_2020_1820344
crossref_primary_10_1080_02664763_2019_1572718
crossref_primary_10_1146_annurev_neuro_100119_110036
crossref_primary_10_1080_01621459_2016_1164050
crossref_primary_10_1093_biostatistics_kxaa023
crossref_primary_10_1016_j_ijforecast_2015_10_002
crossref_primary_10_1007_s00180_016_0675_1
crossref_primary_10_1002_sta4_438
crossref_primary_10_1002_sim_9445
crossref_primary_10_1111_insr_12591
crossref_primary_10_1177_20556683211067362
crossref_primary_10_1002_sim_9007
crossref_primary_10_1080_10618600_2024_2374584
crossref_primary_10_1038_s41386_020_00830_5
crossref_primary_10_1007_s11222_016_9679_5
crossref_primary_10_1016_j_jmva_2021_104806
crossref_primary_10_1371_journal_pone_0319396
crossref_primary_10_1007_s00362_015_0695_x
crossref_primary_10_1007_s10182_013_0213_1
crossref_primary_10_1093_biostatistics_kxaa016
crossref_primary_10_1214_14_AOAS748
crossref_primary_10_1007_s00362_023_01518_w
crossref_primary_10_1214_12_AOAS565
crossref_primary_10_1111_biom_12635
crossref_primary_10_1111_biom_12236
crossref_primary_10_1007_s12561_018_09229_9
crossref_primary_10_1016_j_csda_2023_107900
crossref_primary_10_3390_e24030390
crossref_primary_10_1007_s00357_018_9256_z
Cites_doi 10.1214/08-AOAS206
10.1016/j.neuroimage.2005.09.054
10.1016/j.neuroimage.2007.05.035
10.1006/nimg.2001.0937
10.1111/j.1541-0420.2009.01233.x
10.1212/WNL.52.8.1610
10.1016/j.csda.2004.07.008
10.1198/016214503000000422
10.1111/j.1467-9868.2008.00656.x
10.1198/jasa.2011.ap10089
10.1214/10-EJS575
10.1006/nimg.1995.1012
10.1006/nimg.2000.0582
10.1289/ehp.00108199
10.1038/sj.jcbfm.9591524.0635
10.1093/biostatistics/kxp058
10.1016/j.neuroimage.2011.05.085
10.1093/aje/kwm326
10.1198/jasa.2009.tm08564
10.1111/j.1467-9868.2006.00539.x
10.1212/WNL.55.8.1144
10.1002/hbm.20669
ContentType Journal Article
Copyright 2011 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2011
2011 American Statistical Association, the Institute of Mathematical Statistics, and the Interface Foundation of North America
Copyright American Statistical Association Dec 2011
Copyright_xml – notice: 2011 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2011
– notice: 2011 American Statistical Association, the Institute of Mathematical Statistics, and the Interface Foundation of North America
– notice: Copyright American Statistical Association Dec 2011
DBID AAYXX
CITATION
NPM
JQ2
7X8
5PM
DOI 10.1198/jcgs.2011.10122
DatabaseName CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Computer Science Collection



PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1537-2715
EndPage 873
ExternalDocumentID PMC4425352
2536414391
25960627
10_1198_jcgs_2011_10122
23248937
10712142
Genre Research Article
Journal Article
Feature
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS060910
– fundername: NIBIB NIH HHS
  grantid: R01 EB012547
GroupedDBID -~X
.4S
.7F
.DC
.QJ
0BK
0R~
2AX
30N
4.4
5GY
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
AAWIL
ABAWQ
ABBHK
ABCCY
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABQDR
ABTAI
ABXSQ
ABXUL
ABXYU
ABYWD
ACDIW
ACGFO
ACGFS
ACHJO
ACIWK
ACMTB
ACTCW
ACTIO
ACTMH
ADCVX
ADGTB
ADODI
ADULT
ADXHL
AEGXH
AELLO
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFRVT
AFVYC
AGCQS
AGDLA
AGLNM
AGMYJ
AHDZW
AIAGR
AIHAF
AIJEM
AKBRZ
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CS3
D0L
DGEBU
DKSSO
DQDLB
DSRWC
DU5
EBS
ECEWR
EJD
E~A
E~B
F5P
GTTXZ
H13
HQ6
HZ~
H~P
IPNFZ
IPSME
J.P
JAA
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
KYCEM
M4Z
MS~
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SA0
SNACF
TAE
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
UT5
UU3
WZA
XWC
ZGOLN
~S~
ADYSH
AMPGV
07G
29K
AAIKQ
AAKBW
AAYXX
ACAGQ
ACGEE
AEUMN
AGLEN
AGROQ
AHMOU
ALCKM
AMATQ
AMEWO
AMVHM
AMXXU
ARCSS
BCCOT
BPLKW
C06
CITATION
CRFIH
D-I
DMQIW
DWIFK
FEDTE
GIFXF
HF~
HGD
HVGLF
IVXBP
LJTGL
NUSFT
QCRFL
RNS
TAQ
TFMCV
TOXWX
TUS
UB9
NPM
JQ2
7X8
5PM
ID FETCH-LOGICAL-c452t-d59cf620152b6a613eb7c56b66f90207b1038849b876f577af9a58a8b543863f3
ISSN 1061-8600
IngestDate Tue Sep 30 16:56:21 EDT 2025
Thu Oct 02 05:36:19 EDT 2025
Wed Aug 13 05:55:37 EDT 2025
Mon Jul 21 05:44:26 EDT 2025
Wed Oct 01 02:49:35 EDT 2025
Thu Apr 24 22:56:03 EDT 2025
Thu May 29 08:45:22 EDT 2025
Mon Oct 20 23:48:06 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords MRI
brain imaging data
Voxel-based morphometry
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c452t-d59cf620152b6a613eb7c56b66f90207b1038849b876f577af9a58a8b543863f3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 25960627
PQID 910808322
PQPubID 29738
PageCount 22
ParticipantIDs proquest_journals_910808322
pubmed_primary_25960627
jstor_primary_23248937
crossref_primary_10_1198_jcgs_2011_10122
proquest_miscellaneous_1835501250
crossref_citationtrail_10_1198_jcgs_2011_10122
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4425352
informaworld_taylorfrancis_310_1198_jcgs_2011_10122
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20110101
PublicationDateYYYYMMDD 2011-01-01
PublicationDate_xml – month: 1
  year: 2011
  text: 20110101
  day: 1
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Alexandria
PublicationTitle Journal of computational and graphical statistics
PublicationTitleAlternate J Comput Graph Stat
PublicationYear 2011
Publisher Taylor & Francis
JCGS Management Committee of the American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: JCGS Management Committee of the American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America
– name: Taylor & Francis Ltd
References p_16
p_27
p_17
p_28
p_2
p_1
p_19
p_4
p_12
p_23
p_3
p_13
Mohamed A. (p_15) 2004; 3216
p_24
p_6
p_14
p_5
p_9
Schwartz B. (p_22) 2000; 55
Stewart W. (p_25) 1999; 52
p_20
p_10
p_21
References_xml – ident: p_9
  doi: 10.1214/08-AOAS206
– volume: 3216
  start-page: 225
  year: 2004
  ident: p_15
  publication-title: Medical Image Computing and Computer-Assisted Intervention
– ident: p_27
  doi: 10.1016/j.neuroimage.2005.09.054
– ident: p_21
  doi: 10.1016/j.neuroimage.2007.05.035
– ident: p_6
  doi: 10.1006/nimg.2001.0937
– ident: p_19
  doi: 10.1111/j.1541-0420.2009.01233.x
– volume: 52
  start-page: 1610
  year: 1999
  ident: p_25
  publication-title: Neurology
  doi: 10.1212/WNL.52.8.1610
– ident: p_10
  doi: 10.1016/j.csda.2004.07.008
– ident: p_17
  doi: 10.1198/016214503000000422
– ident: p_13
  doi: 10.1111/j.1467-9868.2008.00656.x
– ident: p_4
  doi: 10.1198/jasa.2011.ap10089
– ident: p_12
  doi: 10.1214/10-EJS575
– ident: p_14
  doi: 10.1006/nimg.1995.1012
– ident: p_1
  doi: 10.1006/nimg.2000.0582
– ident: p_23
  doi: 10.1289/ehp.00108199
– ident: p_20
  doi: 10.1038/sj.jcbfm.9591524.0635
– ident: p_24
  doi: 10.1093/biostatistics/kxp058
– ident: p_28
  doi: 10.1016/j.neuroimage.2011.05.085
– ident: p_2
  doi: 10.1093/aje/kwm326
– ident: p_5
  doi: 10.1198/jasa.2009.tm08564
– ident: p_16
  doi: 10.1111/j.1467-9868.2006.00539.x
– volume: 55
  start-page: 1144
  year: 2000
  ident: p_22
  publication-title: Neurology
  doi: 10.1212/WNL.55.8.1144
– ident: p_3
  doi: 10.1002/hbm.20669
SSID ssj0001697
Score 2.1704772
Snippet We propose fast and scalable statistical methods for the analysis of hundreds or thousands of high-dimensional vectors observed at multiple visits. The...
We propose fast and scalable statistical methods for the analysis of hundreds or thousands of high dimensional vectors observed at multiple visits. The...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 852
SubjectTerms Brain imaging data
Covariance
Covariance matrices
Data analysis
Datasets
Eigenvalues
Eigenvectors
High dimensional spaces
Imaging
Mathematical vectors
Matrices
Mining High-Dimensional Data
MRI
NMR
Nuclear magnetic resonance
Principal components analysis
Statistical methods
Studies
Vector space
Voxel-based morphology
Title Multilevel Functional Principal Component Analysis for High-Dimensional Data
URI https://www.tandfonline.com/doi/abs/10.1198/jcgs.2011.10122
https://www.jstor.org/stable/23248937
https://www.ncbi.nlm.nih.gov/pubmed/25960627
https://www.proquest.com/docview/910808322
https://www.proquest.com/docview/1835501250
https://pubmed.ncbi.nlm.nih.gov/PMC4425352
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1537-2715
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001697
  issn: 1061-8600
  databaseCode: AHDZW
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1537-2715
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001697
  issn: 1061-8600
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgXMoBQaEQCihIHJCqlDSxneSIgKpCtEKilXqzbMeGhW52xYYe-uuZsRMnWboScIlWSdaJ8sbz5ZlnQl6VVMvMqjoxNU8TqhhNVJqbREKwYStV6lpj7_DJKT8-px8v2MWwXOC6S1p1oK9v7Cv5H1ThHOCKXbL_gGwYFE7Ab8AXjoAwHP8KY9c9e4llP_tHYJ-6tN5nnz93WYH5ctHgan_gHsGqQqztSN4jrb-n5ADoW7nBS9Vu14c-Y4hZdkdx7Zsp8bzjeQ7p59kSHOLZj8WVq5-V9Ww-LHJYu_DSNJJIUDYrMw_F9fujzPmVbK9hpDEFwiRH4Tr1-hyFV6vgNSQlT9Ox3s3SkXzRkRItPaftn8q9woaF7_rrylOvIjXZ5E5AZzl3WENQx5GAebByofawv3Sb3MnAEuB2H3l6Gqz3YbchT__GHR0UPPvN2pORR7oba-LUTChv-zLXmwKY9TrckWNzdp_c67CO33rxekBumWaH3D0JdL6rHbL9JSD9kHwapC4epC4OUhcHqYt7qYvhTeN1qYtR6h6R86MPZ--Ok25PjkRTlrVJzSpt4auB26e4BF_QqEIzrji3FUQehULC_ZLCLC-4ZUUhbSVZKUtQAnnJc5vvkq0G3uEJiXPDdFmrTBZGU3loFFdUWkMtuJ1cFjoiB_1HFbojrMd9Uy6FC1yrUiAgAgERDpCIvA5_WHquls235mOUROvSY9bvZSPyjf_adWCG0TEcQYc_Ins9uqLTDytRYfkuGsyIvAxXQXnjipxsDMwvAfaUMRiZpRF57GVhGLuTrYgUEykJNyAx_PRKM_vmCOIpGGIIrJ5uHHOPbA_T9BnZan_-Ms_BuW7VCzcbfgNp-dEa
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V7YFyoFAohPIIEgcuXraJ7TgSF0RZLbC74tBKvSDLduzyqFLEZi_99Z2Jk9Ct2kulHCI5sWxnPPPNZPwNwFvFncmCrZiv5JhxKziz49wzg85GKK1ylaOzw_OFnB7zryfiZAM-9GdhKK2SfOgQiSJaXU2bm4LRcYeX6v1vd7qM7JvEToUKeEsgzKf6Bfl4Mejhg660ClosptCud8Q-N3SwZpPWGEv7LMWb8Of1NMordmmyAz_6GcV0lD-jVWNH7uIa2eNdp_wQHnSANf0YJewRbPh6F-7PB7bX5S5sE2KNhM-PYdYe6T2jXKR0gkYzxhrT7zGoj3ekgc5rnEzaE6KkuBIpJZywQ6o1EHlC0kPTmCdwPPl89GnKupINzHGRNawSpQsSxykyKw1CBW8LJ6SVMpQITAtLfOyKoxAUMoiiMKE0QhmFMpIrmYd8DzZrHMMzSHMvnKpsZgrvuDnwVlpugucBUYk0hUtg1H807To-cyqrcaZbv6ZUmtZM05rpds0SeDe88DdSedz-aH5VCnTTRk9CLHWi81vf2muFZeid0CrhwQT2e-nRnYpY6pKyO0mfJvBmaMW9TT9sTO3PV0uN6hYdSISg4wSeRln737cg3zPDvos1KRweIN7w9Zb618-WP5yjnkbc_fxOk3wN96ZH85mefVl824ftGGKn6wVsNv9W_iVitMa-arfiJepXN-s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0hKiF6aAuUNqW0QeLQi7dLYjuOeqrYrmiBFYcicahk2Y7dLxRQN3vpr-9MnKQsggtSDpFiW7Yznnljj98A7CvuTBZsxXwlx4xbwZkd554ZdDZCaZWrHN0dPp3Jo3P-5UJcrMCH_i4MhVWSDx0iUUSrq2lxX1chLvBSvf_lvs8j-SaRU6H-fSTpPIzub4xngxo-6DKroMFiCs16x-tzRwNLJmmJsLQPUrwLft6OorxhlqZP4Vs_oBiN8nu0aOzI_b3F9fjAET-DJx1cTT9G-dqAFV9vwuPTget1vgnrhFcj3fMWnLQXei8pEimdosmMO43pWdzSxzfSP1c1jiXt6VBSnIiUwk3YhDINRJaQdGIa8xzOp5--Hh6xLmEDc1xkDatE6YLEforMSoNAwdvCCWmlDCXC0sISG7viKAKFDKIoTCiNUEahhORK5iHfhtUa-_AS0twLpyqbmcI7bg68lZab4HlATCJN4RIY9f9Mu47NnJJqXOrWqymVpjnTNGe6nbME3g0VriORx_1F85tCoJt27yTERCc6v7fWdisrQ-uEVQkNJrDTC4_uFMRclxTbSdo0gb3hK65sOq4xtb9azDUqW3QfEYCOE3gRRe1_24I8zwzbLpaEcChArOHLX-qfP1r2cI5aGlH3qwcN8i2snU2m-uTz7HgH1uP-Oj2vYbX5s_C7CNAa-6ZdiP8A-DY2jw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multilevel+Functional+Principal+Component+Analysis+for+High-Dimensional+Data&rft.jtitle=Journal+of+computational+and+graphical+statistics&rft.au=Zipunnikov%2C+Vadim&rft.au=Caffo%2C+Brian&rft.au=Yousem%2C+David+M&rft.au=Davatzikos%2C+Christos&rft.date=2011-01-01&rft.issn=1061-8600&rft.volume=20&rft.issue=4&rft.spage=852&rft_id=info:doi/10.1198%2Fjcgs.2011.10122&rft_id=info%3Apmid%2F25960627&rft.externalDocID=25960627
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-8600&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-8600&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-8600&client=summon