Multilevel Functional Principal Component Analysis for High-Dimensional Data
We propose fast and scalable statistical methods for the analysis of hundreds or thousands of high-dimensional vectors observed at multiple visits. The proposed inferential methods do not require loading the entire dataset at once in the computer memory and instead use only sequential access to data...
Saved in:
| Published in | Journal of computational and graphical statistics Vol. 20; no. 4; pp. 852 - 873 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Taylor & Francis
01.01.2011
JCGS Management Committee of the American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America Taylor & Francis Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1061-8600 1537-2715 |
| DOI | 10.1198/jcgs.2011.10122 |
Cover
| Abstract | We propose fast and scalable statistical methods for the analysis of hundreds or thousands of high-dimensional vectors observed at multiple visits. The proposed inferential methods do not require loading the entire dataset at once in the computer memory and instead use only sequential access to data. This allows deployment of our methodology on low-resource computers where computations can be done in minutes on extremely large datasets. Our methods are motivated by and applied to a study where hundreds of subjects were scanned using Magnetic Resonance Imaging (MRI) at two visits roughly five years apart. The original data possess over ten billion measurements. The approach can be applied to any type of study where data can be unfolded into a long vector including densely observed functions and images. Supplemental materials are provided with source code for simulations, some technical details and proofs, and additional imaging results of the brain study. |
|---|---|
| AbstractList | We propose fast and scalable statistical methods for the analysis of hundreds or thousands of high dimensional vectors observed at multiple visits. The proposed inferential methods do not require loading the entire data set at once in the computer memory and instead use only sequential access to data. This allows deployment of our methodology on low-resource computers where computations can be done in minutes on extremely large data sets. Our methods are motivated by and applied to a study where hundreds of subjects were scanned using Magnetic Resonance Imaging (MRI) at two visits roughly five years apart. The original data possesses over ten billion measurements. The approach can be applied to any type of study where data can be unfolded into a long vector including densely observed functions and images. Supplemental materials are provided with source code for simulations, some technical details and proofs, and additional imaging results of the brain study.We propose fast and scalable statistical methods for the analysis of hundreds or thousands of high dimensional vectors observed at multiple visits. The proposed inferential methods do not require loading the entire data set at once in the computer memory and instead use only sequential access to data. This allows deployment of our methodology on low-resource computers where computations can be done in minutes on extremely large data sets. Our methods are motivated by and applied to a study where hundreds of subjects were scanned using Magnetic Resonance Imaging (MRI) at two visits roughly five years apart. The original data possesses over ten billion measurements. The approach can be applied to any type of study where data can be unfolded into a long vector including densely observed functions and images. Supplemental materials are provided with source code for simulations, some technical details and proofs, and additional imaging results of the brain study. We propose fast and scalable statistical methods for the analysis of hundreds or thousands of high-dimensional vectors observed at multiple visits. The proposed inferential methods do not require loading the entire dataset at once in the computer memory and instead use only sequential access to data. This allows deployment of our methodology on low-resource computers where computations can be done in minutes on extremely large datasets. Our methods are motivated by and applied to a study where hundreds of subjects were scanned using Magnetic Resonance Imaging (MRI) at two visits roughly five years apart. The original data possess over ten billion measurements. The approach can be applied to any type of study where data can be unfolded into a long vector including densely observed functions and images. Supplemental materials are provided with source code for simulations, some technical details and proofs, and additional imaging results of the brain study. [PUBLICATION ABSTRACT] We propose fast and scalable statistical methods for the analysis of hundreds or thousands of high-dimensional vectors observed at multiple visits. The proposed inferential methods do not require loading the entire dataset at once in the computer memory and instead use only sequential access to data. This allows deployment of our methodology on low-resource computers where computations can be done in minutes on extremely large datasets. Our methods are motivated by and applied to a study where hundreds of subjects were scanned using Magnetic Resonance Imaging (MRI) at two visits roughly five years apart. The original data possess over ten billion measurements. The approach can be applied to any type of study where data can be unfolded into a long vector including densely observed functions and images. Supplemental materials are provided with source code for simulations, some technical details and proofs, and additional imaging results of the brain study. We propose fast and scalable statistical methods for the analysis of hundreds or thousands of high dimensional vectors observed at multiple visits. The proposed inferential methods do not require loading the entire data set at once in the computer memory and instead use only sequential access to data. This allows deployment of our methodology on low-resource computers where computations can be done in minutes on extremely large data sets. Our methods are motivated by and applied to a study where hundreds of subjects were scanned using Magnetic Resonance Imaging (MRI) at two visits roughly five years apart. The original data possesses over ten billion measurements. The approach can be applied to any type of study where data can be unfolded into a long vector including densely observed functions and images. Supplemental materials are provided with source code for simulations, some technical details and proofs, and additional imaging results of the brain study. |
| Author | Davatzikos, Christos Zipunnikov, Vadim Schwartz, Brian S. Caffo, Brian Crainiceanu, Ciprian Yousem, David M. |
| Author_xml | – sequence: 1 givenname: Vadim surname: Zipunnikov fullname: Zipunnikov, Vadim – sequence: 2 givenname: Brian surname: Caffo fullname: Caffo, Brian – sequence: 3 givenname: David M. surname: Yousem fullname: Yousem, David M. – sequence: 4 givenname: Christos surname: Davatzikos fullname: Davatzikos, Christos – sequence: 5 givenname: Brian S. surname: Schwartz fullname: Schwartz, Brian S. – sequence: 6 givenname: Ciprian surname: Crainiceanu fullname: Crainiceanu, Ciprian |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25960627$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kUtv1DAUhS1URB-wZgWKWLHJ1I_4xQKpmlJaaSpYwNpyPM7UI8ce7KRo_j0O6QMqdWVL95zjz_ccg4MQgwXgLYILhKQ43ZpNXmCI0AJBhPELcIQo4TXmiB6UO2SoFgzCQ3Cc8xZCiJjkr8AhppJBhvkRWF2PfnDe3lpfXYzBDC4G7avvyQXjduW2jP2uvBmG6qwM9tnlqoupunSbm_rc9Tbk2XGuB_0avOy0z_bN3XkCfl58-bG8rFffvl4tz1a1aSge6jWVpmOFmuKWaYaIbbmhrGWskxBD3iJIhGhkKzjrKOe6k5oKLVraEMFIR07A5zl3N7a9XZtCl7RXu-R6nfYqaqf-nwR3ozbxVjUNpoTiEvDxLiDFX6PNg-pdNtZ7HWwcs0KCUFoWSmGRfngi3cYxlR9nJREUUBA85b3_F-iB5H7PRUBngUkx52Q7Zdygp2UXPucVgmrqU019qqlP9bfP4jt94ruPft7xbnZs8xDTIwnBjZBkIvk0z10oPfb6d0x-rQa99zF1SZfWsyLPhf8Boxi_dQ |
| CitedBy_id | crossref_primary_10_1080_01621459_2015_1062383 crossref_primary_10_1080_10618600_2022_2035738 crossref_primary_10_3758_s13415_013_0196_0 crossref_primary_10_1093_biostatistics_kxab018 crossref_primary_10_1080_01621459_2018_1476242 crossref_primary_10_1080_03610926_2020_1818097 crossref_primary_10_1007_s11222_014_9485_x crossref_primary_10_1111_anzs_12363 crossref_primary_10_1080_01621459_2018_1482750 crossref_primary_10_1146_annurev_statistics_010814_020413 crossref_primary_10_1002_sim_9342 crossref_primary_10_1007_s12561_022_09354_6 crossref_primary_10_1111_rssb_12007 crossref_primary_10_1177_1471082X16681317 crossref_primary_10_1111_bdi_12963 crossref_primary_10_1177_1471082X16681875 crossref_primary_10_3389_fnins_2015_00368 crossref_primary_10_1080_03610918_2022_2087878 crossref_primary_10_3390_jimaging9040086 crossref_primary_10_1080_03610918_2019_1639735 crossref_primary_10_1093_biostatistics_kxv015 crossref_primary_10_6339_23_JDS1085 crossref_primary_10_1016_j_neuroimage_2014_05_043 crossref_primary_10_1093_biostatistics_kxu045 crossref_primary_10_1080_01621459_2019_1686391 crossref_primary_10_1080_01621459_2020_1820344 crossref_primary_10_1080_02664763_2019_1572718 crossref_primary_10_1146_annurev_neuro_100119_110036 crossref_primary_10_1080_01621459_2016_1164050 crossref_primary_10_1093_biostatistics_kxaa023 crossref_primary_10_1016_j_ijforecast_2015_10_002 crossref_primary_10_1007_s00180_016_0675_1 crossref_primary_10_1002_sta4_438 crossref_primary_10_1002_sim_9445 crossref_primary_10_1111_insr_12591 crossref_primary_10_1177_20556683211067362 crossref_primary_10_1002_sim_9007 crossref_primary_10_1080_10618600_2024_2374584 crossref_primary_10_1038_s41386_020_00830_5 crossref_primary_10_1007_s11222_016_9679_5 crossref_primary_10_1016_j_jmva_2021_104806 crossref_primary_10_1371_journal_pone_0319396 crossref_primary_10_1007_s00362_015_0695_x crossref_primary_10_1007_s10182_013_0213_1 crossref_primary_10_1093_biostatistics_kxaa016 crossref_primary_10_1214_14_AOAS748 crossref_primary_10_1007_s00362_023_01518_w crossref_primary_10_1214_12_AOAS565 crossref_primary_10_1111_biom_12635 crossref_primary_10_1111_biom_12236 crossref_primary_10_1007_s12561_018_09229_9 crossref_primary_10_1016_j_csda_2023_107900 crossref_primary_10_3390_e24030390 crossref_primary_10_1007_s00357_018_9256_z |
| Cites_doi | 10.1214/08-AOAS206 10.1016/j.neuroimage.2005.09.054 10.1016/j.neuroimage.2007.05.035 10.1006/nimg.2001.0937 10.1111/j.1541-0420.2009.01233.x 10.1212/WNL.52.8.1610 10.1016/j.csda.2004.07.008 10.1198/016214503000000422 10.1111/j.1467-9868.2008.00656.x 10.1198/jasa.2011.ap10089 10.1214/10-EJS575 10.1006/nimg.1995.1012 10.1006/nimg.2000.0582 10.1289/ehp.00108199 10.1038/sj.jcbfm.9591524.0635 10.1093/biostatistics/kxp058 10.1016/j.neuroimage.2011.05.085 10.1093/aje/kwm326 10.1198/jasa.2009.tm08564 10.1111/j.1467-9868.2006.00539.x 10.1212/WNL.55.8.1144 10.1002/hbm.20669 |
| ContentType | Journal Article |
| Copyright | 2011 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America
2011 2011 American Statistical Association, the Institute of Mathematical Statistics, and the Interface Foundation of North America Copyright American Statistical Association Dec 2011 |
| Copyright_xml | – notice: 2011 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2011 – notice: 2011 American Statistical Association, the Institute of Mathematical Statistics, and the Interface Foundation of North America – notice: Copyright American Statistical Association Dec 2011 |
| DBID | AAYXX CITATION NPM JQ2 7X8 5PM |
| DOI | 10.1198/jcgs.2011.10122 |
| DatabaseName | CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic ProQuest Computer Science Collection PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Mathematics |
| EISSN | 1537-2715 |
| EndPage | 873 |
| ExternalDocumentID | PMC4425352 2536414391 25960627 10_1198_jcgs_2011_10122 23248937 10712142 |
| Genre | Research Article Journal Article Feature |
| GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS060910 – fundername: NIBIB NIH HHS grantid: R01 EB012547 |
| GroupedDBID | -~X .4S .7F .DC .QJ 0BK 0R~ 2AX 30N 4.4 5GY AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR AAWIL ABAWQ ABBHK ABCCY ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABQDR ABTAI ABXSQ ABXUL ABXYU ABYWD ACDIW ACGFO ACGFS ACHJO ACIWK ACMTB ACTCW ACTIO ACTMH ADCVX ADGTB ADODI ADULT ADXHL AEGXH AELLO AENEX AEOZL AEPSL AEUPB AEYOC AFRVT AFVYC AGCQS AGDLA AGLNM AGMYJ AHDZW AIAGR AIHAF AIJEM AKBRZ AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU ALRMG AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CS3 D0L DGEBU DKSSO DQDLB DSRWC DU5 EBS ECEWR EJD E~A E~B F5P GTTXZ H13 HQ6 HZ~ H~P IPNFZ IPSME J.P JAA JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST KYCEM M4Z MS~ NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ RWL RXW S-T SA0 SNACF TAE TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ UT5 UU3 WZA XWC ZGOLN ~S~ ADYSH AMPGV 07G 29K AAIKQ AAKBW AAYXX ACAGQ ACGEE AEUMN AGLEN AGROQ AHMOU ALCKM AMATQ AMEWO AMVHM AMXXU ARCSS BCCOT BPLKW C06 CITATION CRFIH D-I DMQIW DWIFK FEDTE GIFXF HF~ HGD HVGLF IVXBP LJTGL NUSFT QCRFL RNS TAQ TFMCV TOXWX TUS UB9 NPM JQ2 7X8 5PM |
| ID | FETCH-LOGICAL-c452t-d59cf620152b6a613eb7c56b66f90207b1038849b876f577af9a58a8b543863f3 |
| ISSN | 1061-8600 |
| IngestDate | Tue Sep 30 16:56:21 EDT 2025 Thu Oct 02 05:36:19 EDT 2025 Wed Aug 13 05:55:37 EDT 2025 Mon Jul 21 05:44:26 EDT 2025 Wed Oct 01 02:49:35 EDT 2025 Thu Apr 24 22:56:03 EDT 2025 Thu May 29 08:45:22 EDT 2025 Mon Oct 20 23:48:06 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | MRI brain imaging data Voxel-based morphometry |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c452t-d59cf620152b6a613eb7c56b66f90207b1038849b876f577af9a58a8b543863f3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PMID | 25960627 |
| PQID | 910808322 |
| PQPubID | 29738 |
| PageCount | 22 |
| ParticipantIDs | proquest_journals_910808322 pubmed_primary_25960627 jstor_primary_23248937 crossref_primary_10_1198_jcgs_2011_10122 proquest_miscellaneous_1835501250 crossref_citationtrail_10_1198_jcgs_2011_10122 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4425352 informaworld_taylorfrancis_310_1198_jcgs_2011_10122 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20110101 |
| PublicationDateYYYYMMDD | 2011-01-01 |
| PublicationDate_xml | – month: 1 year: 2011 text: 20110101 day: 1 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Alexandria |
| PublicationTitle | Journal of computational and graphical statistics |
| PublicationTitleAlternate | J Comput Graph Stat |
| PublicationYear | 2011 |
| Publisher | Taylor & Francis JCGS Management Committee of the American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: JCGS Management Committee of the American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America – name: Taylor & Francis Ltd |
| References | p_16 p_27 p_17 p_28 p_2 p_1 p_19 p_4 p_12 p_23 p_3 p_13 Mohamed A. (p_15) 2004; 3216 p_24 p_6 p_14 p_5 p_9 Schwartz B. (p_22) 2000; 55 Stewart W. (p_25) 1999; 52 p_20 p_10 p_21 |
| References_xml | – ident: p_9 doi: 10.1214/08-AOAS206 – volume: 3216 start-page: 225 year: 2004 ident: p_15 publication-title: Medical Image Computing and Computer-Assisted Intervention – ident: p_27 doi: 10.1016/j.neuroimage.2005.09.054 – ident: p_21 doi: 10.1016/j.neuroimage.2007.05.035 – ident: p_6 doi: 10.1006/nimg.2001.0937 – ident: p_19 doi: 10.1111/j.1541-0420.2009.01233.x – volume: 52 start-page: 1610 year: 1999 ident: p_25 publication-title: Neurology doi: 10.1212/WNL.52.8.1610 – ident: p_10 doi: 10.1016/j.csda.2004.07.008 – ident: p_17 doi: 10.1198/016214503000000422 – ident: p_13 doi: 10.1111/j.1467-9868.2008.00656.x – ident: p_4 doi: 10.1198/jasa.2011.ap10089 – ident: p_12 doi: 10.1214/10-EJS575 – ident: p_14 doi: 10.1006/nimg.1995.1012 – ident: p_1 doi: 10.1006/nimg.2000.0582 – ident: p_23 doi: 10.1289/ehp.00108199 – ident: p_20 doi: 10.1038/sj.jcbfm.9591524.0635 – ident: p_24 doi: 10.1093/biostatistics/kxp058 – ident: p_28 doi: 10.1016/j.neuroimage.2011.05.085 – ident: p_2 doi: 10.1093/aje/kwm326 – ident: p_5 doi: 10.1198/jasa.2009.tm08564 – ident: p_16 doi: 10.1111/j.1467-9868.2006.00539.x – volume: 55 start-page: 1144 year: 2000 ident: p_22 publication-title: Neurology doi: 10.1212/WNL.55.8.1144 – ident: p_3 doi: 10.1002/hbm.20669 |
| SSID | ssj0001697 |
| Score | 2.1704772 |
| Snippet | We propose fast and scalable statistical methods for the analysis of hundreds or thousands of high-dimensional vectors observed at multiple visits. The... We propose fast and scalable statistical methods for the analysis of hundreds or thousands of high dimensional vectors observed at multiple visits. The... |
| SourceID | pubmedcentral proquest pubmed crossref jstor informaworld |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 852 |
| SubjectTerms | Brain imaging data Covariance Covariance matrices Data analysis Datasets Eigenvalues Eigenvectors High dimensional spaces Imaging Mathematical vectors Matrices Mining High-Dimensional Data MRI NMR Nuclear magnetic resonance Principal components analysis Statistical methods Studies Vector space Voxel-based morphology |
| Title | Multilevel Functional Principal Component Analysis for High-Dimensional Data |
| URI | https://www.tandfonline.com/doi/abs/10.1198/jcgs.2011.10122 https://www.jstor.org/stable/23248937 https://www.ncbi.nlm.nih.gov/pubmed/25960627 https://www.proquest.com/docview/910808322 https://www.proquest.com/docview/1835501250 https://pubmed.ncbi.nlm.nih.gov/PMC4425352 |
| Volume | 20 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1537-2715 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001697 issn: 1061-8600 databaseCode: AHDZW dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1537-2715 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001697 issn: 1061-8600 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgXMoBQaEQCihIHJCqlDSxneSIgKpCtEKilXqzbMeGhW52xYYe-uuZsRMnWboScIlWSdaJ8sbz5ZlnQl6VVMvMqjoxNU8TqhhNVJqbREKwYStV6lpj7_DJKT8-px8v2MWwXOC6S1p1oK9v7Cv5H1ThHOCKXbL_gGwYFE7Ab8AXjoAwHP8KY9c9e4llP_tHYJ-6tN5nnz93WYH5ctHgan_gHsGqQqztSN4jrb-n5ADoW7nBS9Vu14c-Y4hZdkdx7Zsp8bzjeQ7p59kSHOLZj8WVq5-V9Ww-LHJYu_DSNJJIUDYrMw_F9fujzPmVbK9hpDEFwiRH4Tr1-hyFV6vgNSQlT9Ox3s3SkXzRkRItPaftn8q9woaF7_rrylOvIjXZ5E5AZzl3WENQx5GAebByofawv3Sb3MnAEuB2H3l6Gqz3YbchT__GHR0UPPvN2pORR7oba-LUTChv-zLXmwKY9TrckWNzdp_c67CO33rxekBumWaH3D0JdL6rHbL9JSD9kHwapC4epC4OUhcHqYt7qYvhTeN1qYtR6h6R86MPZ--Ok25PjkRTlrVJzSpt4auB26e4BF_QqEIzrji3FUQehULC_ZLCLC-4ZUUhbSVZKUtQAnnJc5vvkq0G3uEJiXPDdFmrTBZGU3loFFdUWkMtuJ1cFjoiB_1HFbojrMd9Uy6FC1yrUiAgAgERDpCIvA5_WHquls235mOUROvSY9bvZSPyjf_adWCG0TEcQYc_Ins9uqLTDytRYfkuGsyIvAxXQXnjipxsDMwvAfaUMRiZpRF57GVhGLuTrYgUEykJNyAx_PRKM_vmCOIpGGIIrJ5uHHOPbA_T9BnZan_-Ms_BuW7VCzcbfgNp-dEa |
| linkProvider | Taylor & Francis |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V7YFyoFAohPIIEgcuXraJ7TgSF0RZLbC74tBKvSDLduzyqFLEZi_99Z2Jk9Ct2kulHCI5sWxnPPPNZPwNwFvFncmCrZiv5JhxKziz49wzg85GKK1ylaOzw_OFnB7zryfiZAM-9GdhKK2SfOgQiSJaXU2bm4LRcYeX6v1vd7qM7JvEToUKeEsgzKf6Bfl4Mejhg660ClosptCud8Q-N3SwZpPWGEv7LMWb8Of1NMordmmyAz_6GcV0lD-jVWNH7uIa2eNdp_wQHnSANf0YJewRbPh6F-7PB7bX5S5sE2KNhM-PYdYe6T2jXKR0gkYzxhrT7zGoj3ekgc5rnEzaE6KkuBIpJZywQ6o1EHlC0kPTmCdwPPl89GnKupINzHGRNawSpQsSxykyKw1CBW8LJ6SVMpQITAtLfOyKoxAUMoiiMKE0QhmFMpIrmYd8DzZrHMMzSHMvnKpsZgrvuDnwVlpugucBUYk0hUtg1H807To-cyqrcaZbv6ZUmtZM05rpds0SeDe88DdSedz-aH5VCnTTRk9CLHWi81vf2muFZeid0CrhwQT2e-nRnYpY6pKyO0mfJvBmaMW9TT9sTO3PV0uN6hYdSISg4wSeRln737cg3zPDvos1KRweIN7w9Zb618-WP5yjnkbc_fxOk3wN96ZH85mefVl824ftGGKn6wVsNv9W_iVitMa-arfiJepXN-s |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0hKiF6aAuUNqW0QeLQi7dLYjuOeqrYrmiBFYcicahk2Y7dLxRQN3vpr-9MnKQsggtSDpFiW7Yznnljj98A7CvuTBZsxXwlx4xbwZkd554ZdDZCaZWrHN0dPp3Jo3P-5UJcrMCH_i4MhVWSDx0iUUSrq2lxX1chLvBSvf_lvs8j-SaRU6H-fSTpPIzub4xngxo-6DKroMFiCs16x-tzRwNLJmmJsLQPUrwLft6OorxhlqZP4Vs_oBiN8nu0aOzI_b3F9fjAET-DJx1cTT9G-dqAFV9vwuPTget1vgnrhFcj3fMWnLQXei8pEimdosmMO43pWdzSxzfSP1c1jiXt6VBSnIiUwk3YhDINRJaQdGIa8xzOp5--Hh6xLmEDc1xkDatE6YLEforMSoNAwdvCCWmlDCXC0sISG7viKAKFDKIoTCiNUEahhORK5iHfhtUa-_AS0twLpyqbmcI7bg68lZab4HlATCJN4RIY9f9Mu47NnJJqXOrWqymVpjnTNGe6nbME3g0VriORx_1F85tCoJt27yTERCc6v7fWdisrQ-uEVQkNJrDTC4_uFMRclxTbSdo0gb3hK65sOq4xtb9azDUqW3QfEYCOE3gRRe1_24I8zwzbLpaEcChArOHLX-qfP1r2cI5aGlH3qwcN8i2snU2m-uTz7HgH1uP-Oj2vYbX5s_C7CNAa-6ZdiP8A-DY2jw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multilevel+Functional+Principal+Component+Analysis+for+High-Dimensional+Data&rft.jtitle=Journal+of+computational+and+graphical+statistics&rft.au=Zipunnikov%2C+Vadim&rft.au=Caffo%2C+Brian&rft.au=Yousem%2C+David+M&rft.au=Davatzikos%2C+Christos&rft.date=2011-01-01&rft.issn=1061-8600&rft.volume=20&rft.issue=4&rft.spage=852&rft_id=info:doi/10.1198%2Fjcgs.2011.10122&rft_id=info%3Apmid%2F25960627&rft.externalDocID=25960627 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-8600&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-8600&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-8600&client=summon |