Comparison of four Adaboost algorithm based artificial neural networks in wind speed predictions

[Display omitted] •Four hybrid algorithms are proposed for the wind speed decomposition.•Adaboost algorithm is adopted to provide a hybrid training framework.•MLP neural networks are built to do the forecasting computation.•Four important network training algorithms are included in the MLP networks....

Full description

Saved in:
Bibliographic Details
Published inEnergy conversion and management Vol. 92; pp. 67 - 81
Main Authors Liu, Hui, Tian, Hong-qi, Li, Yan-fei, Zhang, Lei
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2015
Subjects
Online AccessGet full text
ISSN0196-8904
1879-2227
DOI10.1016/j.enconman.2014.12.053

Cover

Abstract [Display omitted] •Four hybrid algorithms are proposed for the wind speed decomposition.•Adaboost algorithm is adopted to provide a hybrid training framework.•MLP neural networks are built to do the forecasting computation.•Four important network training algorithms are included in the MLP networks.•All the proposed hybrid algorithms are suitable for the wind speed predictions. The technology of wind speed prediction is important to guarantee the safety of wind power utilization. In this paper, four different hybrid methods are proposed for the high-precision multi-step wind speed predictions based on the Adaboost (Adaptive Boosting) algorithm and the MLP (Multilayer Perceptron) neural networks. In the hybrid Adaboost–MLP forecasting architecture, four important algorithms are adopted for the training and modeling of the MLP neural networks, including GD-ALR-BP algorithm, GDM-ALR-BP algorithm, CG-BP-FR algorithm and BFGS algorithm. The aim of the study is to investigate the promoted forecasting percentages of the MLP neural networks by the Adaboost algorithm’ optimization under various training algorithms. The hybrid models in the performance comparison include Adaboost–GD-ALR-BP–MLP, Adaboost–GDM-ALR-BP–MLP, Adaboost–CG-BP-FR–MLP, Adaboost–BFGS–MLP, GD-ALR-BP–MLP, GDM-ALR-BP–MLP, CG-BP-FR–MLP and BFGS–MLP. Two experimental results show that: (1) the proposed hybrid Adaboost–MLP forecasting architecture is effective for the wind speed predictions; (2) the Adaboost algorithm has promoted the forecasting performance of the MLP neural networks considerably; (3) among the proposed Adaboost–MLP forecasting models, the Adaboost–CG-BP-FR–MLP model has the best performance; and (4) the improved percentages of the MLP neural networks by the Adaboost algorithm decrease step by step with the following sequence of training algorithms as: GD-ALR-BP, GDM-ALR-BP, CG-BP-FR and BFGS.
AbstractList The technology of wind speed prediction is important to guarantee the safety of wind power utilization. In this paper, four different hybrid methods are proposed for the high-precision multi-step wind speed predictions based on the Adaboost (Adaptive Boosting) algorithm and the MLP (Multilayer Perceptron) neural networks. In the hybrid Adaboost–MLP forecasting architecture, four important algorithms are adopted for the training and modeling of the MLP neural networks, including GD-ALR-BP algorithm, GDM-ALR-BP algorithm, CG-BP-FR algorithm and BFGS algorithm. The aim of the study is to investigate the promoted forecasting percentages of the MLP neural networks by the Adaboost algorithm’ optimization under various training algorithms. The hybrid models in the performance comparison include Adaboost–GD-ALR-BP–MLP, Adaboost–GDM-ALR-BP–MLP, Adaboost–CG-BP-FR–MLP, Adaboost–BFGS–MLP, GD-ALR-BP–MLP, GDM-ALR-BP–MLP, CG-BP-FR–MLP and BFGS–MLP. Two experimental results show that: (1) the proposed hybrid Adaboost–MLP forecasting architecture is effective for the wind speed predictions; (2) the Adaboost algorithm has promoted the forecasting performance of the MLP neural networks considerably; (3) among the proposed Adaboost–MLP forecasting models, the Adaboost–CG-BP-FR–MLP model has the best performance; and (4) the improved percentages of the MLP neural networks by the Adaboost algorithm decrease step by step with the following sequence of training algorithms as: GD-ALR-BP, GDM-ALR-BP, CG-BP-FR and BFGS.
[Display omitted] •Four hybrid algorithms are proposed for the wind speed decomposition.•Adaboost algorithm is adopted to provide a hybrid training framework.•MLP neural networks are built to do the forecasting computation.•Four important network training algorithms are included in the MLP networks.•All the proposed hybrid algorithms are suitable for the wind speed predictions. The technology of wind speed prediction is important to guarantee the safety of wind power utilization. In this paper, four different hybrid methods are proposed for the high-precision multi-step wind speed predictions based on the Adaboost (Adaptive Boosting) algorithm and the MLP (Multilayer Perceptron) neural networks. In the hybrid Adaboost–MLP forecasting architecture, four important algorithms are adopted for the training and modeling of the MLP neural networks, including GD-ALR-BP algorithm, GDM-ALR-BP algorithm, CG-BP-FR algorithm and BFGS algorithm. The aim of the study is to investigate the promoted forecasting percentages of the MLP neural networks by the Adaboost algorithm’ optimization under various training algorithms. The hybrid models in the performance comparison include Adaboost–GD-ALR-BP–MLP, Adaboost–GDM-ALR-BP–MLP, Adaboost–CG-BP-FR–MLP, Adaboost–BFGS–MLP, GD-ALR-BP–MLP, GDM-ALR-BP–MLP, CG-BP-FR–MLP and BFGS–MLP. Two experimental results show that: (1) the proposed hybrid Adaboost–MLP forecasting architecture is effective for the wind speed predictions; (2) the Adaboost algorithm has promoted the forecasting performance of the MLP neural networks considerably; (3) among the proposed Adaboost–MLP forecasting models, the Adaboost–CG-BP-FR–MLP model has the best performance; and (4) the improved percentages of the MLP neural networks by the Adaboost algorithm decrease step by step with the following sequence of training algorithms as: GD-ALR-BP, GDM-ALR-BP, CG-BP-FR and BFGS.
Author Liu, Hui
Li, Yan-fei
Tian, Hong-qi
Zhang, Lei
Author_xml – sequence: 1
  givenname: Hui
  surname: Liu
  fullname: Liu, Hui
  email: csuliuhui@csu.edu.cn
  organization: Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic and Transportation Engineering, Central South University, Changsha 410075, Hunan, China
– sequence: 2
  givenname: Hong-qi
  surname: Tian
  fullname: Tian, Hong-qi
  organization: Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic and Transportation Engineering, Central South University, Changsha 410075, Hunan, China
– sequence: 3
  givenname: Yan-fei
  surname: Li
  fullname: Li, Yan-fei
  organization: Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic and Transportation Engineering, Central South University, Changsha 410075, Hunan, China
– sequence: 4
  givenname: Lei
  surname: Zhang
  fullname: Zhang, Lei
  organization: Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic and Transportation Engineering, Central South University, Changsha 410075, Hunan, China
BookMark eNqNkTGP1DAQhS10SOwd_AXkkibBYyd2IlFwWnGAdBIN1GbiTMBLYgfby4l_T5aFhmappvne0-h91-wqxECMPQdRgwD98lBTcDEsGGopoKlB1qJVj9gOOtNXUkpzxXYCel11vWiesOucD0II1Qq9Y5_3cVkx-RwDjxOf4jHx2xGHGHPhOH-JyZevCx8w08gxFT9553HmgY7p9ykPMX3L3Af-4MPI80obuCYavSs-hvyUPZ5wzvTsz71hn-7efNy_q-4_vH2_v72vXNPKUo0Ct39aJ3si2epuNIIMYtOiRqXJDWgGEpOaBhx7IxtwiNRJM6AyU2ekumEvzr1rit-PlItdfHY0zxgoHrOVoLY9dA_tRRSMkh00CuA_UOh6paU4PfDqjLoUc040WecLnjYoCf1sQdiTLnuwf3XZky4L0m66trj-J74mv2D6eTn4-hykbd0fnpLNzm_kZiCRK3aM_lLFL5cFt00
CitedBy_id crossref_primary_10_1007_s12667_019_00338_y
crossref_primary_10_1016_j_egyr_2021_12_062
crossref_primary_10_1016_j_chaos_2022_112524
crossref_primary_10_1016_j_renene_2018_12_035
crossref_primary_10_1002_joc_6037
crossref_primary_10_1016_j_artmed_2017_10_002
crossref_primary_10_3390_app132312961
crossref_primary_10_1016_j_cep_2025_110163
crossref_primary_10_1016_j_enconman_2017_11_049
crossref_primary_10_3390_computers12040082
crossref_primary_10_1080_21642583_2022_2110539
crossref_primary_10_1155_2019_1279565
crossref_primary_10_1109_JSEN_2023_3307560
crossref_primary_10_3390_ai4030027
crossref_primary_10_3390_act10080188
crossref_primary_10_3390_en16041963
crossref_primary_10_2478_amns_2023_1_00102
crossref_primary_10_1016_j_enconman_2018_01_038
crossref_primary_10_1007_s12243_024_01059_9
crossref_primary_10_1016_j_enconman_2018_04_082
crossref_primary_10_1007_s11042_019_7548_x
crossref_primary_10_1016_j_geomorph_2020_107333
crossref_primary_10_1016_j_renene_2019_04_157
crossref_primary_10_1016_j_jweia_2023_105499
crossref_primary_10_1016_j_energy_2018_04_175
crossref_primary_10_3390_jmse8040249
crossref_primary_10_3390_su8030235
crossref_primary_10_1016_j_enconman_2015_05_065
crossref_primary_10_2166_wst_2023_396
crossref_primary_10_1016_j_energy_2018_07_084
crossref_primary_10_3390_s19071623
crossref_primary_10_1016_j_apenergy_2024_124798
crossref_primary_10_1016_j_ijhydene_2025_01_034
crossref_primary_10_3390_en11102623
crossref_primary_10_1177_0309524X21998263
crossref_primary_10_1007_s00500_019_03917_4
crossref_primary_10_1016_j_enconman_2015_10_066
crossref_primary_10_1016_j_biosystemseng_2015_11_005
crossref_primary_10_1155_2016_8760780
crossref_primary_10_1155_2021_6643763
crossref_primary_10_1155_2016_4896854
crossref_primary_10_3390_math12081137
crossref_primary_10_1016_j_idairyj_2021_105172
crossref_primary_10_1007_s11517_021_02430_x
crossref_primary_10_1007_s11063_019_10021_z
crossref_primary_10_1007_s40745_021_00333_0
crossref_primary_10_1016_j_enconman_2017_04_064
crossref_primary_10_3390_su11030650
crossref_primary_10_3390_e23091113
crossref_primary_10_1155_2015_714605
crossref_primary_10_3390_su14084832
crossref_primary_10_3390_su10103693
crossref_primary_10_1016_j_renene_2019_01_018
crossref_primary_10_1016_j_renene_2017_10_075
crossref_primary_10_3390_en12030337
crossref_primary_10_1016_j_neucom_2019_04_061
crossref_primary_10_1109_ACCESS_2024_3425727
crossref_primary_10_1016_j_ijepes_2016_03_012
crossref_primary_10_3390_a17050173
crossref_primary_10_3390_en9080585
crossref_primary_10_1016_j_apenergy_2017_04_039
crossref_primary_10_3390_toxics12100698
crossref_primary_10_3390_app8060915
crossref_primary_10_1016_j_enconman_2016_01_007
crossref_primary_10_1155_2020_7212368
crossref_primary_10_1108_IJWIS_02_2022_0036
crossref_primary_10_1007_s11356_022_21414_4
crossref_primary_10_1177_0958305X251315408
crossref_primary_10_1016_j_ijdrr_2019_101121
crossref_primary_10_3390_ijms23063044
crossref_primary_10_1016_j_enconman_2017_09_034
crossref_primary_10_1109_ACCESS_2021_3129883
crossref_primary_10_1016_j_asoc_2023_110873
crossref_primary_10_1016_j_enconman_2021_115189
crossref_primary_10_1016_j_renene_2015_06_004
crossref_primary_10_1016_j_renene_2017_09_052
crossref_primary_10_1007_s00521_021_05995_8
crossref_primary_10_1016_j_enconman_2018_02_030
crossref_primary_10_1016_j_asoc_2019_105799
crossref_primary_10_1049_iet_ipr_2017_0365
crossref_primary_10_1007_s11042_021_11553_0
crossref_primary_10_1007_s42690_021_00574_9
crossref_primary_10_3390_diagnostics13040658
crossref_primary_10_1016_j_engappai_2020_104133
crossref_primary_10_1177_1460458220901889
crossref_primary_10_3390_en14164733
crossref_primary_10_1016_j_rcim_2022_102456
crossref_primary_10_1155_2019_8275491
crossref_primary_10_1016_j_enconman_2016_02_022
crossref_primary_10_1016_j_ijepes_2022_108243
crossref_primary_10_1590_1809_4430_eng_agric_v37n6p1116_1125_2017
crossref_primary_10_1007_s00202_024_02821_x
crossref_primary_10_1007_s10462_019_09768_7
crossref_primary_10_1016_j_buildenv_2022_109738
crossref_primary_10_1080_19942060_2024_2422060
crossref_primary_10_3390_atmos14020395
crossref_primary_10_1016_j_egyr_2022_04_045
crossref_primary_10_1016_j_jweia_2018_01_020
crossref_primary_10_1063_5_0226213
crossref_primary_10_1186_s40807_024_00115_1
crossref_primary_10_2339_politeknik_1511303
crossref_primary_10_1016_j_rser_2018_05_060
crossref_primary_10_1016_j_enconman_2016_02_013
crossref_primary_10_1080_10916466_2015_1098669
crossref_primary_10_31590_ejosat_785699
crossref_primary_10_1088_1742_6596_1613_1_012019
crossref_primary_10_1016_j_bspc_2023_104729
crossref_primary_10_1109_ACCESS_2019_2940266
crossref_primary_10_1016_j_enconman_2017_03_056
crossref_primary_10_1016_j_jcsr_2024_108903
crossref_primary_10_1016_j_measurement_2023_113485
crossref_primary_10_1016_j_rser_2016_08_028
crossref_primary_10_1007_s42835_023_01378_2
crossref_primary_10_1109_ACCESS_2019_2892780
crossref_primary_10_3390_su151411408
crossref_primary_10_1016_j_apenergy_2019_03_088
crossref_primary_10_1016_j_rinp_2021_103813
crossref_primary_10_3390_s21186260
crossref_primary_10_1016_j_inffus_2016_08_001
crossref_primary_10_1016_j_enconman_2017_04_012
crossref_primary_10_1016_j_enconman_2017_10_085
crossref_primary_10_1016_j_enconman_2017_09_029
crossref_primary_10_1080_01431161_2023_2208712
crossref_primary_10_1088_1361_6501_ad4d12
crossref_primary_10_1016_j_enconman_2015_04_057
crossref_primary_10_1016_j_apenergy_2015_08_014
crossref_primary_10_1016_j_engappai_2025_110218
crossref_primary_10_1016_j_supflu_2015_08_010
crossref_primary_10_3390_en10122001
crossref_primary_10_1016_j_rse_2019_111358
Cites_doi 10.1016/j.apenergy.2012.09.055
10.1016/j.renene.2013.08.011
10.1016/j.apenergy.2014.05.026
10.1016/j.apenergy.2012.04.001
10.1006/inco.1995.1136
10.1016/j.enpol.2013.08.050
10.1016/j.apenergy.2012.03.054
10.1016/j.eswa.2011.09.106
10.1016/j.apenergy.2013.02.002
10.1016/j.ijepes.2013.03.034
10.1016/j.renene.2012.07.041
10.14311/NNW.2014.24.002
10.1016/j.asoc.2013.02.016
10.1016/j.enpol.2014.02.014
10.1016/j.enconman.2014.09.060
10.1016/j.renene.2012.06.012
10.1016/j.enconman.2013.06.062
10.1016/j.enconman.2014.04.028
10.1016/j.enconman.2014.04.010
10.1016/j.apenergy.2012.05.029
10.1016/j.enconman.2013.04.018
10.1016/j.neucom.2013.06.008
10.1016/j.apenergy.2013.08.025
10.1016/j.renene.2014.03.068
10.1016/j.ins.2014.02.159
10.1016/j.apenergy.2011.01.037
10.1016/j.knosys.2013.11.015
10.1016/j.enconman.2014.02.017
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright_xml – notice: 2014 Elsevier Ltd
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
7ST
7T2
7U6
C1K
7S9
L.6
DOI 10.1016/j.enconman.2014.12.053
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Environment Abstracts
Health and Safety Science Abstracts (Full archive)
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Health & Safety Science Abstracts
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Health & Safety Science Abstracts

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Architecture
EISSN 1879-2227
EndPage 81
ExternalDocumentID 10_1016_j_enconman_2014_12_053
S0196890414010929
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
8WZ
A6W
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SAC
SEW
WUQ
~HD
7SC
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
7ST
7T2
7U6
C1K
7S9
L.6
ID FETCH-LOGICAL-c452t-d0a5065c29ee2568d70e7aa45a6a36ecba7be0f3fbad97241caae827ba37f8723
IEDL.DBID .~1
ISSN 0196-8904
IngestDate Sat Sep 27 17:01:45 EDT 2025
Tue Oct 07 09:52:32 EDT 2025
Wed Oct 01 14:43:04 EDT 2025
Wed Oct 01 01:59:38 EDT 2025
Thu Apr 24 23:01:57 EDT 2025
Fri Feb 23 02:20:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords ANN
KRRM
BSBM
Adaboost algorithm
BI
GD-ALR-BP
ALS
SVM
SVR
BP
GDM-ALR-BP
Wind speed forecasting
MLP
BT
MLR
Wind energy
RBF
OFM
WDF
CG-BP-FR
GA
EMD
WT
ESM
KSF
SBM
Adaboost
AA
MSM
NWP
FAC
PSO
PCA
BFGS
AR
UKF
Wind speed predictions
SAA
SAC
Neural networks
ARIMA
PM
MAS
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c452t-d0a5065c29ee2568d70e7aa45a6a36ecba7be0f3fbad97241caae827ba37f8723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1718936202
PQPubID 23500
PageCount 15
ParticipantIDs proquest_miscellaneous_2131876915
proquest_miscellaneous_1732814311
proquest_miscellaneous_1718936202
crossref_citationtrail_10_1016_j_enconman_2014_12_053
crossref_primary_10_1016_j_enconman_2014_12_053
elsevier_sciencedirect_doi_10_1016_j_enconman_2014_12_053
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-03-01
PublicationDateYYYYMMDD 2015-03-01
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Energy conversion and management
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Cassola, Burlando (b0070) 2012; 99
Gnana Sheela, Deepa (b0095) 2013; 122
Liu, Tian, Li (b0030) 2012; 98
Liu, Tian, Chen, Li (b0075) 2013; 52
Bouzgou, Benoudjit (b0125) 2011; 88
Liu, Tian, Pan, Li (b0035) 2013; 107
Liu, Chen, Tian, Li (b0100) 2012; 48
Liu, Tian, Li (b0025) 2015; 89
Velo, López, Maseda (b0065) 2014; 81
Petković, Shamshirband, Anuar, Saboohi, Abdul Wahab, Protić (b0045) 2014; 84
Ren, An, Wang, Li, Hu, Shang (b0105) 2014; 56
Borchers, Xiarchos, Beckman (b0010) 2014; 69
Guo, Ge, Zhang, Li, Zhao (b0140) 2012; 39
Guo, Chi, Wu, Zhang (b0040) 2014; 84
Dang, Chen, Jin (b0115) 2013; 392
Mostafaeipour (b0015) 2013; 73
Skittides, Früh (b0080) 2014; 69
Douak, Melgani, Benoudjit (b0055) 2013; 103
Liu, Niu, Wang, Fan (b0110) 2014; 62
Hou, Sun, Huang, Jiang, Zhang (b0120) 2014; 8
Freund (b0135) 1995; 121
Nolden (b0020) 2013; 63
Song, Jiang, Zhang (b0050) 2014; 130
Wang, Zhang, Wang, Han, Kong (b0060) 2014; 273
Jiang, Song, Kusiak (b0085) 2013; 50
Zhang, Wu, Wang, Zhao, Shen (b0130) 2012; 99
Rafei, Sorkhabi, Mosavi (b0145) 2014; 24
Chen, Yu (b0090) 2014; 113
Zhang, Wang, Wang, Zhao, Tian (b0150) 2013; 13
Khahro, Tabbassum, Soomro, Dong, Liao (b0005) 2014; 78
Guo (10.1016/j.enconman.2014.12.053_b0040) 2014; 84
Borchers (10.1016/j.enconman.2014.12.053_b0010) 2014; 69
Nolden (10.1016/j.enconman.2014.12.053_b0020) 2013; 63
Liu (10.1016/j.enconman.2014.12.053_b0110) 2014; 62
Liu (10.1016/j.enconman.2014.12.053_b0025) 2015; 89
Velo (10.1016/j.enconman.2014.12.053_b0065) 2014; 81
Liu (10.1016/j.enconman.2014.12.053_b0100) 2012; 48
Cassola (10.1016/j.enconman.2014.12.053_b0070) 2012; 99
Liu (10.1016/j.enconman.2014.12.053_b0035) 2013; 107
Skittides (10.1016/j.enconman.2014.12.053_b0080) 2014; 69
Gnana Sheela (10.1016/j.enconman.2014.12.053_b0095) 2013; 122
Dang (10.1016/j.enconman.2014.12.053_b0115) 2013; 392
Khahro (10.1016/j.enconman.2014.12.053_b0005) 2014; 78
Guo (10.1016/j.enconman.2014.12.053_b0140) 2012; 39
Liu (10.1016/j.enconman.2014.12.053_b0075) 2013; 52
Ren (10.1016/j.enconman.2014.12.053_b0105) 2014; 56
Chen (10.1016/j.enconman.2014.12.053_b0090) 2014; 113
Zhang (10.1016/j.enconman.2014.12.053_b0130) 2012; 99
Liu (10.1016/j.enconman.2014.12.053_b0030) 2012; 98
Rafei (10.1016/j.enconman.2014.12.053_b0145) 2014; 24
Jiang (10.1016/j.enconman.2014.12.053_b0085) 2013; 50
Petković (10.1016/j.enconman.2014.12.053_b0045) 2014; 84
Song (10.1016/j.enconman.2014.12.053_b0050) 2014; 130
Wang (10.1016/j.enconman.2014.12.053_b0060) 2014; 273
Douak (10.1016/j.enconman.2014.12.053_b0055) 2013; 103
Zhang (10.1016/j.enconman.2014.12.053_b0150) 2013; 13
Bouzgou (10.1016/j.enconman.2014.12.053_b0125) 2011; 88
Hou (10.1016/j.enconman.2014.12.053_b0120) 2014; 8
Mostafaeipour (10.1016/j.enconman.2014.12.053_b0015) 2013; 73
Freund (10.1016/j.enconman.2014.12.053_b0135) 1995; 121
References_xml – volume: 62
  start-page: 592
  year: 2014
  end-page: 597
  ident: b0110
  article-title: Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm
  publication-title: Renew. Energy
– volume: 81
  start-page: 1
  year: 2014
  end-page: 9
  ident: b0065
  article-title: Wind speed estimation using multilayer perceptron
  publication-title: Energy Convers. Manage
– volume: 73
  start-page: 214
  year: 2013
  end-page: 225
  ident: b0015
  article-title: Economic evaluation of small wind turbine utilization in Kerman, Iran
  publication-title: Energy Convers. Manage
– volume: 88
  start-page: 2463
  year: 2011
  end-page: 2471
  ident: b0125
  article-title: Multiple architecture system for wind speed prediction
  publication-title: Appl Energy
– volume: 50
  start-page: 637
  year: 2013
  end-page: 647
  ident: b0085
  article-title: Very short-term wind speed forecasting with Bayesian structural break model
  publication-title: Renew. Energy
– volume: 69
  start-page: 365
  year: 2014
  end-page: 374
  ident: b0080
  article-title: Wind forecasting using Principal Component Analysis
  publication-title: Renew. Energy
– volume: 56
  start-page: 226
  year: 2014
  end-page: 239
  ident: b0105
  article-title: Optimal parameters selection for BP neural network based on particle swarm optimization: a case study of wind speed forecasting
  publication-title: Knowl-Based Syst
– volume: 99
  start-page: 324
  year: 2012
  end-page: 333
  ident: b0130
  article-title: Performance analysis of four modified approaches for wind speed forecasting
  publication-title: Appl Energy
– volume: 122
  start-page: 425
  year: 2013
  end-page: 429
  ident: b0095
  article-title: Neural network based hybrid computing model for wind speed prediction
  publication-title: Neurocomputing
– volume: 107
  start-page: 191
  year: 2013
  end-page: 208
  ident: b0035
  article-title: Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks
  publication-title: Appl Energy
– volume: 121
  start-page: 256
  year: 1995
  end-page: 285
  ident: b0135
  article-title: Boosting a weak learning algorithm by majority
  publication-title: Inf Comput
– volume: 78
  start-page: 956
  year: 2014
  end-page: 967
  ident: b0005
  article-title: Evaluation of wind power production prospective and Weibull parameter estimation methods for Babaurband, Sindh Pakistan
  publication-title: Energy Convers Manage
– volume: 130
  start-page: 103
  year: 2014
  end-page: 112
  ident: b0050
  article-title: Short-term wind speed forecasting with Markov-switching model
  publication-title: Appl Energy
– volume: 98
  start-page: 415
  year: 2012
  end-page: 424
  ident: b0030
  article-title: Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction
  publication-title: Appl Energy
– volume: 103
  start-page: 328
  year: 2013
  end-page: 340
  ident: b0055
  article-title: Kernel ridge regression with active learning for wind speed prediction
  publication-title: Appl Energy
– volume: 8
  start-page: 867
  year: 2014
  end-page: 874
  ident: b0120
  article-title: Short-term wind speed prediction based on BP neural network with wavelet and time-series
  publication-title: ICIC Express Lett.
– volume: 69
  start-page: 106
  year: 2014
  end-page: 115
  ident: b0010
  article-title: Determinants of wind and solar energy system adoption by U.S. farms: a multilevel modeling approach
  publication-title: Energy Policy
– volume: 24
  start-page: 31
  year: 2014
  end-page: 56
  ident: b0145
  article-title: Multi-objective optimization by means of multi-dimensional mlp neural networks
  publication-title: Neural Netw. World
– volume: 48
  start-page: 545
  year: 2012
  end-page: 556
  ident: b0100
  article-title: A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks
  publication-title: Renew. Energy
– volume: 84
  start-page: 133
  year: 2014
  end-page: 139
  ident: b0045
  article-title: An appraisal of wind speed distribution prediction by soft computing methodologies: a comparative study
  publication-title: Energy Convers. Manage
– volume: 113
  start-page: 690
  year: 2014
  end-page: 705
  ident: b0090
  article-title: Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach
  publication-title: Appl Energy
– volume: 89
  start-page: 1
  year: 2015
  end-page: 11
  ident: b0025
  article-title: Comparison of new hybrid FEEMD-MLP, FEEMD-ANFIS, Wavelet Packet-MLP and Wavelet Packet-ANFIS for wind speed predictions
  publication-title: Energy Convers Manage
– volume: 84
  start-page: 140
  year: 2014
  end-page: 151
  ident: b0040
  article-title: A new wind speed forecasting strategy based on the chaotic time series modelling technique and the Apriori algorithm
  publication-title: Energy Convers. Manage
– volume: 13
  start-page: 3225
  year: 2013
  end-page: 3233
  ident: b0150
  article-title: Short-term wind speed forecasting based on a hybrid model
  publication-title: Appl. Soft Comput.
– volume: 63
  start-page: 543
  year: 2013
  end-page: 552
  ident: b0020
  article-title: Governing community energy-Feed-in tariffs and the development of community wind energy schemes in the United Kingdom and Germany
  publication-title: Energy Policy
– volume: 392
  year: 2013
  ident: b0115
  publication-title: A method for forecasting short-term wind speed based on EMD and SVM
– volume: 273
  start-page: 304
  year: 2014
  end-page: 318
  ident: b0060
  article-title: A novel hybrid approach for wind speed prediction
  publication-title: Inf Sci
– volume: 52
  start-page: 161
  year: 2013
  end-page: 173
  ident: b0075
  article-title: An experimental investigation of two Wavelet–MLP hybrid frameworks for wind speed prediction using GA and PSO optimization
  publication-title: Int J Electr Power Energy Syst
– volume: 39
  start-page: 4274
  year: 2012
  end-page: 4286
  ident: b0140
  article-title: Pedestrian detection for intelligent transportation systems combining AdaBoost algorithm and support vector machine
  publication-title: Expert Syst Appl
– volume: 99
  start-page: 154
  year: 2012
  end-page: 166
  ident: b0070
  article-title: Wind speed and wind energy forecast through Kalman filtering of Numerical Weather Prediction model output
  publication-title: Appl Energy
– volume: 103
  start-page: 328
  year: 2013
  ident: 10.1016/j.enconman.2014.12.053_b0055
  article-title: Kernel ridge regression with active learning for wind speed prediction
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.09.055
– volume: 62
  start-page: 592
  year: 2014
  ident: 10.1016/j.enconman.2014.12.053_b0110
  article-title: Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2013.08.011
– volume: 130
  start-page: 103
  year: 2014
  ident: 10.1016/j.enconman.2014.12.053_b0050
  article-title: Short-term wind speed forecasting with Markov-switching model
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.05.026
– volume: 98
  start-page: 415
  year: 2012
  ident: 10.1016/j.enconman.2014.12.053_b0030
  article-title: Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.04.001
– volume: 121
  start-page: 256
  issue: 2
  year: 1995
  ident: 10.1016/j.enconman.2014.12.053_b0135
  article-title: Boosting a weak learning algorithm by majority
  publication-title: Inf Comput
  doi: 10.1006/inco.1995.1136
– volume: 63
  start-page: 543
  year: 2013
  ident: 10.1016/j.enconman.2014.12.053_b0020
  article-title: Governing community energy-Feed-in tariffs and the development of community wind energy schemes in the United Kingdom and Germany
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2013.08.050
– volume: 99
  start-page: 154
  year: 2012
  ident: 10.1016/j.enconman.2014.12.053_b0070
  article-title: Wind speed and wind energy forecast through Kalman filtering of Numerical Weather Prediction model output
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.03.054
– volume: 39
  start-page: 4274
  issue: 4
  year: 2012
  ident: 10.1016/j.enconman.2014.12.053_b0140
  article-title: Pedestrian detection for intelligent transportation systems combining AdaBoost algorithm and support vector machine
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.09.106
– volume: 107
  start-page: 191
  year: 2013
  ident: 10.1016/j.enconman.2014.12.053_b0035
  article-title: Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.02.002
– volume: 52
  start-page: 161
  year: 2013
  ident: 10.1016/j.enconman.2014.12.053_b0075
  article-title: An experimental investigation of two Wavelet–MLP hybrid frameworks for wind speed prediction using GA and PSO optimization
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2013.03.034
– volume: 50
  start-page: 637
  year: 2013
  ident: 10.1016/j.enconman.2014.12.053_b0085
  article-title: Very short-term wind speed forecasting with Bayesian structural break model
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2012.07.041
– volume: 24
  start-page: 31
  issue: 1
  year: 2014
  ident: 10.1016/j.enconman.2014.12.053_b0145
  article-title: Multi-objective optimization by means of multi-dimensional mlp neural networks
  publication-title: Neural Netw. World
  doi: 10.14311/NNW.2014.24.002
– volume: 13
  start-page: 3225
  issue: 7
  year: 2013
  ident: 10.1016/j.enconman.2014.12.053_b0150
  article-title: Short-term wind speed forecasting based on a hybrid model
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2013.02.016
– volume: 69
  start-page: 106
  year: 2014
  ident: 10.1016/j.enconman.2014.12.053_b0010
  article-title: Determinants of wind and solar energy system adoption by U.S. farms: a multilevel modeling approach
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2014.02.014
– volume: 89
  start-page: 1
  year: 2015
  ident: 10.1016/j.enconman.2014.12.053_b0025
  article-title: Comparison of new hybrid FEEMD-MLP, FEEMD-ANFIS, Wavelet Packet-MLP and Wavelet Packet-ANFIS for wind speed predictions
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2014.09.060
– volume: 48
  start-page: 545
  year: 2012
  ident: 10.1016/j.enconman.2014.12.053_b0100
  article-title: A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2012.06.012
– volume: 78
  start-page: 956
  year: 2014
  ident: 10.1016/j.enconman.2014.12.053_b0005
  article-title: Evaluation of wind power production prospective and Weibull parameter estimation methods for Babaurband, Sindh Pakistan
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2013.06.062
– volume: 84
  start-page: 140
  year: 2014
  ident: 10.1016/j.enconman.2014.12.053_b0040
  article-title: A new wind speed forecasting strategy based on the chaotic time series modelling technique and the Apriori algorithm
  publication-title: Energy Convers. Manage
  doi: 10.1016/j.enconman.2014.04.028
– volume: 84
  start-page: 133
  year: 2014
  ident: 10.1016/j.enconman.2014.12.053_b0045
  article-title: An appraisal of wind speed distribution prediction by soft computing methodologies: a comparative study
  publication-title: Energy Convers. Manage
  doi: 10.1016/j.enconman.2014.04.010
– volume: 99
  start-page: 324
  year: 2012
  ident: 10.1016/j.enconman.2014.12.053_b0130
  article-title: Performance analysis of four modified approaches for wind speed forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.05.029
– volume: 73
  start-page: 214
  year: 2013
  ident: 10.1016/j.enconman.2014.12.053_b0015
  article-title: Economic evaluation of small wind turbine utilization in Kerman, Iran
  publication-title: Energy Convers. Manage
  doi: 10.1016/j.enconman.2013.04.018
– volume: 122
  start-page: 425
  year: 2013
  ident: 10.1016/j.enconman.2014.12.053_b0095
  article-title: Neural network based hybrid computing model for wind speed prediction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.06.008
– volume: 113
  start-page: 690
  year: 2014
  ident: 10.1016/j.enconman.2014.12.053_b0090
  article-title: Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.08.025
– volume: 69
  start-page: 365
  year: 2014
  ident: 10.1016/j.enconman.2014.12.053_b0080
  article-title: Wind forecasting using Principal Component Analysis
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2014.03.068
– volume: 273
  start-page: 304
  year: 2014
  ident: 10.1016/j.enconman.2014.12.053_b0060
  article-title: A novel hybrid approach for wind speed prediction
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2014.02.159
– volume: 8
  start-page: 867
  issue: 3
  year: 2014
  ident: 10.1016/j.enconman.2014.12.053_b0120
  article-title: Short-term wind speed prediction based on BP neural network with wavelet and time-series
  publication-title: ICIC Express Lett.
– volume: 392
  year: 2013
  ident: 10.1016/j.enconman.2014.12.053_b0115
  publication-title: A method for forecasting short-term wind speed based on EMD and SVM
– volume: 88
  start-page: 2463
  issue: 7
  year: 2011
  ident: 10.1016/j.enconman.2014.12.053_b0125
  article-title: Multiple architecture system for wind speed prediction
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.01.037
– volume: 56
  start-page: 226
  year: 2014
  ident: 10.1016/j.enconman.2014.12.053_b0105
  article-title: Optimal parameters selection for BP neural network based on particle swarm optimization: a case study of wind speed forecasting
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2013.11.015
– volume: 81
  start-page: 1
  year: 2014
  ident: 10.1016/j.enconman.2014.12.053_b0065
  article-title: Wind speed estimation using multilayer perceptron
  publication-title: Energy Convers. Manage
  doi: 10.1016/j.enconman.2014.02.017
SSID ssj0003506
Score 2.5170105
Snippet [Display omitted] •Four hybrid algorithms are proposed for the wind speed decomposition.•Adaboost algorithm is adopted to provide a hybrid training...
The technology of wind speed prediction is important to guarantee the safety of wind power utilization. In this paper, four different hybrid methods are...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 67
SubjectTerms Adaboost algorithm
Algorithms
Architecture
Forecasting
Machine learning
Mathematical models
Neural networks
prediction
Training
Wind energy
wind power
Wind speed
Wind speed forecasting
Wind speed predictions
Title Comparison of four Adaboost algorithm based artificial neural networks in wind speed predictions
URI https://dx.doi.org/10.1016/j.enconman.2014.12.053
https://www.proquest.com/docview/1718936202
https://www.proquest.com/docview/1732814311
https://www.proquest.com/docview/2131876915
Volume 92
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2227
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003506
  issn: 0196-8904
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-2227
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003506
  issn: 0196-8904
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1879-2227
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003506
  issn: 0196-8904
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Journal Collection
  customDbUrl:
  eissn: 1879-2227
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003506
  issn: 0196-8904
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2227
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003506
  issn: 0196-8904
  databaseCode: AKRWK
  dateStart: 19800101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQvcChoqVVeRS5Uq9h43dyXK2KtlTl0iJxc53YposgWe0G9dbfzoyTUFoJOPSUh2Yke8aZbxzPg5CPClwA8ItV5pkuMxngDvzmkInKRO10rF1qyfL1TM_P5emFutggszEXBsMqB9vf2_RkrYc3k0Gak-ViMfmGlV2KMpe4RcgB5TGDXRrsYnD8-0-Yh1CpvyYSZ0j9IEv46hhrRTY3DuugMpl-CyrxGED9Y6oT_pzskJeD40in_dhekY3QvCbbD8oJ7pIfs_umgrSNNAILnXrQcrvuqLu-bFeL7ucNReDyFCfZV4-gWNMyXVJE-JouGvoLtup0vQRoo8sVnuWk5fmGnJ98-j6bZ0MHhayWineZzx1MX9W8DAF8m8KbPBjnpHLaCR3qypkq5FHEyvnSAJjXzoWCm8oJEwvDxVuy2bRNeEeo5rXChEvJg5Y-eOfr6EGfsmDRV17sETWKzdZDeXHscnFtxziyKzuK26K4LeMWxL1HJvd8y77AxrMc5agV-9dSsYACz_J-GNVo4TvCwxHXhPZ2bRmAdAlonvOnaAQvwMFk7HEazsBKGl0ytf8f4zwgW_Ck-mC3Q7LZrW7De_B-uuooLe8j8mL6-cv87A49CweS
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELaAHkoPiFJQebQ1Uq9h43dyRCvQtgUuBYmbcWIbdgXJajeIG7-dsZNQigQcOCVKxpI948w3jsffIPRTQAgAcbFILJF5wh3cQdzsElYoL430pYklWY5P5OiM_z4X5wto2J-FCWmVne9vfXr01t2TQafNwXQ8HvwNzC5ZnvKwREgB5RfRBy6oCiuwvft_eR5MxAKbQToJ4k-OCU_2AllkdWMCESrh8b-gYC8h1DNfHQHocBWtdJEj3m879xktuGoNfXrCJ_gFXQwfqwri2mMPTfC-BTPX8wab68t6Nm6ubnBALovDKFv6CBxILeMlpoTP8bjCd7BWx_MpYBuezsJmTpyf6-js8OB0OEq6EgpJCbpoEpsaGL4oae4cBDeZValTxnBhpGHSlYVRhUs984WxuQI0L41xGVWFYcpnirINtFTVlfuKsKSlCCcuOXWSW2eNLb0Fg_KMeFtYtolErzZddvzioczFte4TySa6V7cO6taEalD3Jho8tpu2DBtvtsh7q-j_5ooGGHiz7W5vRg0fUtgdMZWrb-eaAErnAOcpfU2G0QwiTEJelqEE3KSSORFb7-jnD_RxdHp8pI9-nfzZRsvwRrSZbztoqZndum8QCjXF9zjVHwA8WAkn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+four+Adaboost+algorithm+based+artificial+neural+networks+in+wind+speed+predictions&rft.jtitle=Energy+conversion+and+management&rft.au=Liu%2C+Hui&rft.au=Tian%2C+Hong-qi&rft.au=Li%2C+Yan-fei&rft.au=Zhang%2C+Lei&rft.date=2015-03-01&rft.issn=0196-8904&rft.volume=92&rft.spage=67&rft.epage=81&rft_id=info:doi/10.1016%2Fj.enconman.2014.12.053&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon