Comparison of four Adaboost algorithm based artificial neural networks in wind speed predictions
[Display omitted] •Four hybrid algorithms are proposed for the wind speed decomposition.•Adaboost algorithm is adopted to provide a hybrid training framework.•MLP neural networks are built to do the forecasting computation.•Four important network training algorithms are included in the MLP networks....
Saved in:
| Published in | Energy conversion and management Vol. 92; pp. 67 - 81 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.03.2015
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0196-8904 1879-2227 |
| DOI | 10.1016/j.enconman.2014.12.053 |
Cover
| Abstract | [Display omitted]
•Four hybrid algorithms are proposed for the wind speed decomposition.•Adaboost algorithm is adopted to provide a hybrid training framework.•MLP neural networks are built to do the forecasting computation.•Four important network training algorithms are included in the MLP networks.•All the proposed hybrid algorithms are suitable for the wind speed predictions.
The technology of wind speed prediction is important to guarantee the safety of wind power utilization. In this paper, four different hybrid methods are proposed for the high-precision multi-step wind speed predictions based on the Adaboost (Adaptive Boosting) algorithm and the MLP (Multilayer Perceptron) neural networks. In the hybrid Adaboost–MLP forecasting architecture, four important algorithms are adopted for the training and modeling of the MLP neural networks, including GD-ALR-BP algorithm, GDM-ALR-BP algorithm, CG-BP-FR algorithm and BFGS algorithm. The aim of the study is to investigate the promoted forecasting percentages of the MLP neural networks by the Adaboost algorithm’ optimization under various training algorithms. The hybrid models in the performance comparison include Adaboost–GD-ALR-BP–MLP, Adaboost–GDM-ALR-BP–MLP, Adaboost–CG-BP-FR–MLP, Adaboost–BFGS–MLP, GD-ALR-BP–MLP, GDM-ALR-BP–MLP, CG-BP-FR–MLP and BFGS–MLP. Two experimental results show that: (1) the proposed hybrid Adaboost–MLP forecasting architecture is effective for the wind speed predictions; (2) the Adaboost algorithm has promoted the forecasting performance of the MLP neural networks considerably; (3) among the proposed Adaboost–MLP forecasting models, the Adaboost–CG-BP-FR–MLP model has the best performance; and (4) the improved percentages of the MLP neural networks by the Adaboost algorithm decrease step by step with the following sequence of training algorithms as: GD-ALR-BP, GDM-ALR-BP, CG-BP-FR and BFGS. |
|---|---|
| AbstractList | The technology of wind speed prediction is important to guarantee the safety of wind power utilization. In this paper, four different hybrid methods are proposed for the high-precision multi-step wind speed predictions based on the Adaboost (Adaptive Boosting) algorithm and the MLP (Multilayer Perceptron) neural networks. In the hybrid Adaboost–MLP forecasting architecture, four important algorithms are adopted for the training and modeling of the MLP neural networks, including GD-ALR-BP algorithm, GDM-ALR-BP algorithm, CG-BP-FR algorithm and BFGS algorithm. The aim of the study is to investigate the promoted forecasting percentages of the MLP neural networks by the Adaboost algorithm’ optimization under various training algorithms. The hybrid models in the performance comparison include Adaboost–GD-ALR-BP–MLP, Adaboost–GDM-ALR-BP–MLP, Adaboost–CG-BP-FR–MLP, Adaboost–BFGS–MLP, GD-ALR-BP–MLP, GDM-ALR-BP–MLP, CG-BP-FR–MLP and BFGS–MLP. Two experimental results show that: (1) the proposed hybrid Adaboost–MLP forecasting architecture is effective for the wind speed predictions; (2) the Adaboost algorithm has promoted the forecasting performance of the MLP neural networks considerably; (3) among the proposed Adaboost–MLP forecasting models, the Adaboost–CG-BP-FR–MLP model has the best performance; and (4) the improved percentages of the MLP neural networks by the Adaboost algorithm decrease step by step with the following sequence of training algorithms as: GD-ALR-BP, GDM-ALR-BP, CG-BP-FR and BFGS. [Display omitted] •Four hybrid algorithms are proposed for the wind speed decomposition.•Adaboost algorithm is adopted to provide a hybrid training framework.•MLP neural networks are built to do the forecasting computation.•Four important network training algorithms are included in the MLP networks.•All the proposed hybrid algorithms are suitable for the wind speed predictions. The technology of wind speed prediction is important to guarantee the safety of wind power utilization. In this paper, four different hybrid methods are proposed for the high-precision multi-step wind speed predictions based on the Adaboost (Adaptive Boosting) algorithm and the MLP (Multilayer Perceptron) neural networks. In the hybrid Adaboost–MLP forecasting architecture, four important algorithms are adopted for the training and modeling of the MLP neural networks, including GD-ALR-BP algorithm, GDM-ALR-BP algorithm, CG-BP-FR algorithm and BFGS algorithm. The aim of the study is to investigate the promoted forecasting percentages of the MLP neural networks by the Adaboost algorithm’ optimization under various training algorithms. The hybrid models in the performance comparison include Adaboost–GD-ALR-BP–MLP, Adaboost–GDM-ALR-BP–MLP, Adaboost–CG-BP-FR–MLP, Adaboost–BFGS–MLP, GD-ALR-BP–MLP, GDM-ALR-BP–MLP, CG-BP-FR–MLP and BFGS–MLP. Two experimental results show that: (1) the proposed hybrid Adaboost–MLP forecasting architecture is effective for the wind speed predictions; (2) the Adaboost algorithm has promoted the forecasting performance of the MLP neural networks considerably; (3) among the proposed Adaboost–MLP forecasting models, the Adaboost–CG-BP-FR–MLP model has the best performance; and (4) the improved percentages of the MLP neural networks by the Adaboost algorithm decrease step by step with the following sequence of training algorithms as: GD-ALR-BP, GDM-ALR-BP, CG-BP-FR and BFGS. |
| Author | Liu, Hui Li, Yan-fei Tian, Hong-qi Zhang, Lei |
| Author_xml | – sequence: 1 givenname: Hui surname: Liu fullname: Liu, Hui email: csuliuhui@csu.edu.cn organization: Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic and Transportation Engineering, Central South University, Changsha 410075, Hunan, China – sequence: 2 givenname: Hong-qi surname: Tian fullname: Tian, Hong-qi organization: Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic and Transportation Engineering, Central South University, Changsha 410075, Hunan, China – sequence: 3 givenname: Yan-fei surname: Li fullname: Li, Yan-fei organization: Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic and Transportation Engineering, Central South University, Changsha 410075, Hunan, China – sequence: 4 givenname: Lei surname: Zhang fullname: Zhang, Lei organization: Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic and Transportation Engineering, Central South University, Changsha 410075, Hunan, China |
| BookMark | eNqNkTGP1DAQhS10SOwd_AXkkibBYyd2IlFwWnGAdBIN1GbiTMBLYgfby4l_T5aFhmappvne0-h91-wqxECMPQdRgwD98lBTcDEsGGopoKlB1qJVj9gOOtNXUkpzxXYCel11vWiesOucD0II1Qq9Y5_3cVkx-RwDjxOf4jHx2xGHGHPhOH-JyZevCx8w08gxFT9553HmgY7p9ykPMX3L3Af-4MPI80obuCYavSs-hvyUPZ5wzvTsz71hn-7efNy_q-4_vH2_v72vXNPKUo0Ct39aJ3si2epuNIIMYtOiRqXJDWgGEpOaBhx7IxtwiNRJM6AyU2ekumEvzr1rit-PlItdfHY0zxgoHrOVoLY9dA_tRRSMkh00CuA_UOh6paU4PfDqjLoUc040WecLnjYoCf1sQdiTLnuwf3XZky4L0m66trj-J74mv2D6eTn4-hykbd0fnpLNzm_kZiCRK3aM_lLFL5cFt00 |
| CitedBy_id | crossref_primary_10_1007_s12667_019_00338_y crossref_primary_10_1016_j_egyr_2021_12_062 crossref_primary_10_1016_j_chaos_2022_112524 crossref_primary_10_1016_j_renene_2018_12_035 crossref_primary_10_1002_joc_6037 crossref_primary_10_1016_j_artmed_2017_10_002 crossref_primary_10_3390_app132312961 crossref_primary_10_1016_j_cep_2025_110163 crossref_primary_10_1016_j_enconman_2017_11_049 crossref_primary_10_3390_computers12040082 crossref_primary_10_1080_21642583_2022_2110539 crossref_primary_10_1155_2019_1279565 crossref_primary_10_1109_JSEN_2023_3307560 crossref_primary_10_3390_ai4030027 crossref_primary_10_3390_act10080188 crossref_primary_10_3390_en16041963 crossref_primary_10_2478_amns_2023_1_00102 crossref_primary_10_1016_j_enconman_2018_01_038 crossref_primary_10_1007_s12243_024_01059_9 crossref_primary_10_1016_j_enconman_2018_04_082 crossref_primary_10_1007_s11042_019_7548_x crossref_primary_10_1016_j_geomorph_2020_107333 crossref_primary_10_1016_j_renene_2019_04_157 crossref_primary_10_1016_j_jweia_2023_105499 crossref_primary_10_1016_j_energy_2018_04_175 crossref_primary_10_3390_jmse8040249 crossref_primary_10_3390_su8030235 crossref_primary_10_1016_j_enconman_2015_05_065 crossref_primary_10_2166_wst_2023_396 crossref_primary_10_1016_j_energy_2018_07_084 crossref_primary_10_3390_s19071623 crossref_primary_10_1016_j_apenergy_2024_124798 crossref_primary_10_1016_j_ijhydene_2025_01_034 crossref_primary_10_3390_en11102623 crossref_primary_10_1177_0309524X21998263 crossref_primary_10_1007_s00500_019_03917_4 crossref_primary_10_1016_j_enconman_2015_10_066 crossref_primary_10_1016_j_biosystemseng_2015_11_005 crossref_primary_10_1155_2016_8760780 crossref_primary_10_1155_2021_6643763 crossref_primary_10_1155_2016_4896854 crossref_primary_10_3390_math12081137 crossref_primary_10_1016_j_idairyj_2021_105172 crossref_primary_10_1007_s11517_021_02430_x crossref_primary_10_1007_s11063_019_10021_z crossref_primary_10_1007_s40745_021_00333_0 crossref_primary_10_1016_j_enconman_2017_04_064 crossref_primary_10_3390_su11030650 crossref_primary_10_3390_e23091113 crossref_primary_10_1155_2015_714605 crossref_primary_10_3390_su14084832 crossref_primary_10_3390_su10103693 crossref_primary_10_1016_j_renene_2019_01_018 crossref_primary_10_1016_j_renene_2017_10_075 crossref_primary_10_3390_en12030337 crossref_primary_10_1016_j_neucom_2019_04_061 crossref_primary_10_1109_ACCESS_2024_3425727 crossref_primary_10_1016_j_ijepes_2016_03_012 crossref_primary_10_3390_a17050173 crossref_primary_10_3390_en9080585 crossref_primary_10_1016_j_apenergy_2017_04_039 crossref_primary_10_3390_toxics12100698 crossref_primary_10_3390_app8060915 crossref_primary_10_1016_j_enconman_2016_01_007 crossref_primary_10_1155_2020_7212368 crossref_primary_10_1108_IJWIS_02_2022_0036 crossref_primary_10_1007_s11356_022_21414_4 crossref_primary_10_1177_0958305X251315408 crossref_primary_10_1016_j_ijdrr_2019_101121 crossref_primary_10_3390_ijms23063044 crossref_primary_10_1016_j_enconman_2017_09_034 crossref_primary_10_1109_ACCESS_2021_3129883 crossref_primary_10_1016_j_asoc_2023_110873 crossref_primary_10_1016_j_enconman_2021_115189 crossref_primary_10_1016_j_renene_2015_06_004 crossref_primary_10_1016_j_renene_2017_09_052 crossref_primary_10_1007_s00521_021_05995_8 crossref_primary_10_1016_j_enconman_2018_02_030 crossref_primary_10_1016_j_asoc_2019_105799 crossref_primary_10_1049_iet_ipr_2017_0365 crossref_primary_10_1007_s11042_021_11553_0 crossref_primary_10_1007_s42690_021_00574_9 crossref_primary_10_3390_diagnostics13040658 crossref_primary_10_1016_j_engappai_2020_104133 crossref_primary_10_1177_1460458220901889 crossref_primary_10_3390_en14164733 crossref_primary_10_1016_j_rcim_2022_102456 crossref_primary_10_1155_2019_8275491 crossref_primary_10_1016_j_enconman_2016_02_022 crossref_primary_10_1016_j_ijepes_2022_108243 crossref_primary_10_1590_1809_4430_eng_agric_v37n6p1116_1125_2017 crossref_primary_10_1007_s00202_024_02821_x crossref_primary_10_1007_s10462_019_09768_7 crossref_primary_10_1016_j_buildenv_2022_109738 crossref_primary_10_1080_19942060_2024_2422060 crossref_primary_10_3390_atmos14020395 crossref_primary_10_1016_j_egyr_2022_04_045 crossref_primary_10_1016_j_jweia_2018_01_020 crossref_primary_10_1063_5_0226213 crossref_primary_10_1186_s40807_024_00115_1 crossref_primary_10_2339_politeknik_1511303 crossref_primary_10_1016_j_rser_2018_05_060 crossref_primary_10_1016_j_enconman_2016_02_013 crossref_primary_10_1080_10916466_2015_1098669 crossref_primary_10_31590_ejosat_785699 crossref_primary_10_1088_1742_6596_1613_1_012019 crossref_primary_10_1016_j_bspc_2023_104729 crossref_primary_10_1109_ACCESS_2019_2940266 crossref_primary_10_1016_j_enconman_2017_03_056 crossref_primary_10_1016_j_jcsr_2024_108903 crossref_primary_10_1016_j_measurement_2023_113485 crossref_primary_10_1016_j_rser_2016_08_028 crossref_primary_10_1007_s42835_023_01378_2 crossref_primary_10_1109_ACCESS_2019_2892780 crossref_primary_10_3390_su151411408 crossref_primary_10_1016_j_apenergy_2019_03_088 crossref_primary_10_1016_j_rinp_2021_103813 crossref_primary_10_3390_s21186260 crossref_primary_10_1016_j_inffus_2016_08_001 crossref_primary_10_1016_j_enconman_2017_04_012 crossref_primary_10_1016_j_enconman_2017_10_085 crossref_primary_10_1016_j_enconman_2017_09_029 crossref_primary_10_1080_01431161_2023_2208712 crossref_primary_10_1088_1361_6501_ad4d12 crossref_primary_10_1016_j_enconman_2015_04_057 crossref_primary_10_1016_j_apenergy_2015_08_014 crossref_primary_10_1016_j_engappai_2025_110218 crossref_primary_10_1016_j_supflu_2015_08_010 crossref_primary_10_3390_en10122001 crossref_primary_10_1016_j_rse_2019_111358 |
| Cites_doi | 10.1016/j.apenergy.2012.09.055 10.1016/j.renene.2013.08.011 10.1016/j.apenergy.2014.05.026 10.1016/j.apenergy.2012.04.001 10.1006/inco.1995.1136 10.1016/j.enpol.2013.08.050 10.1016/j.apenergy.2012.03.054 10.1016/j.eswa.2011.09.106 10.1016/j.apenergy.2013.02.002 10.1016/j.ijepes.2013.03.034 10.1016/j.renene.2012.07.041 10.14311/NNW.2014.24.002 10.1016/j.asoc.2013.02.016 10.1016/j.enpol.2014.02.014 10.1016/j.enconman.2014.09.060 10.1016/j.renene.2012.06.012 10.1016/j.enconman.2013.06.062 10.1016/j.enconman.2014.04.028 10.1016/j.enconman.2014.04.010 10.1016/j.apenergy.2012.05.029 10.1016/j.enconman.2013.04.018 10.1016/j.neucom.2013.06.008 10.1016/j.apenergy.2013.08.025 10.1016/j.renene.2014.03.068 10.1016/j.ins.2014.02.159 10.1016/j.apenergy.2011.01.037 10.1016/j.knosys.2013.11.015 10.1016/j.enconman.2014.02.017 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier Ltd |
| Copyright_xml | – notice: 2014 Elsevier Ltd |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 L7M L~C L~D 7ST 7T2 7U6 C1K 7S9 L.6 |
| DOI | 10.1016/j.enconman.2014.12.053 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Environment Abstracts Health and Safety Science Abstracts (Full archive) Sustainability Science Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Health & Safety Science Abstracts Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Health & Safety Science Abstracts Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Architecture |
| EISSN | 1879-2227 |
| EndPage | 81 |
| ExternalDocumentID | 10_1016_j_enconman_2014_12_053 S0196890414010929 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABFRF ABJNI ABMAC ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSR SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 8WZ A6W AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SAC SEW WUQ ~HD 7SC 7TB 8FD FR3 JQ2 L7M L~C L~D 7ST 7T2 7U6 C1K 7S9 L.6 |
| ID | FETCH-LOGICAL-c452t-d0a5065c29ee2568d70e7aa45a6a36ecba7be0f3fbad97241caae827ba37f8723 |
| IEDL.DBID | .~1 |
| ISSN | 0196-8904 |
| IngestDate | Sat Sep 27 17:01:45 EDT 2025 Tue Oct 07 09:52:32 EDT 2025 Wed Oct 01 14:43:04 EDT 2025 Wed Oct 01 01:59:38 EDT 2025 Thu Apr 24 23:01:57 EDT 2025 Fri Feb 23 02:20:58 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | ANN KRRM BSBM Adaboost algorithm BI GD-ALR-BP ALS SVM SVR BP GDM-ALR-BP Wind speed forecasting MLP BT MLR Wind energy RBF OFM WDF CG-BP-FR GA EMD WT ESM KSF SBM Adaboost AA MSM NWP FAC PSO PCA BFGS AR UKF Wind speed predictions SAA SAC Neural networks ARIMA PM MAS |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c452t-d0a5065c29ee2568d70e7aa45a6a36ecba7be0f3fbad97241caae827ba37f8723 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1718936202 |
| PQPubID | 23500 |
| PageCount | 15 |
| ParticipantIDs | proquest_miscellaneous_2131876915 proquest_miscellaneous_1732814311 proquest_miscellaneous_1718936202 crossref_citationtrail_10_1016_j_enconman_2014_12_053 crossref_primary_10_1016_j_enconman_2014_12_053 elsevier_sciencedirect_doi_10_1016_j_enconman_2014_12_053 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2015-03-01 |
| PublicationDateYYYYMMDD | 2015-03-01 |
| PublicationDate_xml | – month: 03 year: 2015 text: 2015-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Energy conversion and management |
| PublicationYear | 2015 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Cassola, Burlando (b0070) 2012; 99 Gnana Sheela, Deepa (b0095) 2013; 122 Liu, Tian, Li (b0030) 2012; 98 Liu, Tian, Chen, Li (b0075) 2013; 52 Bouzgou, Benoudjit (b0125) 2011; 88 Liu, Tian, Pan, Li (b0035) 2013; 107 Liu, Chen, Tian, Li (b0100) 2012; 48 Liu, Tian, Li (b0025) 2015; 89 Velo, López, Maseda (b0065) 2014; 81 Petković, Shamshirband, Anuar, Saboohi, Abdul Wahab, Protić (b0045) 2014; 84 Ren, An, Wang, Li, Hu, Shang (b0105) 2014; 56 Borchers, Xiarchos, Beckman (b0010) 2014; 69 Guo, Ge, Zhang, Li, Zhao (b0140) 2012; 39 Guo, Chi, Wu, Zhang (b0040) 2014; 84 Dang, Chen, Jin (b0115) 2013; 392 Mostafaeipour (b0015) 2013; 73 Skittides, Früh (b0080) 2014; 69 Douak, Melgani, Benoudjit (b0055) 2013; 103 Liu, Niu, Wang, Fan (b0110) 2014; 62 Hou, Sun, Huang, Jiang, Zhang (b0120) 2014; 8 Freund (b0135) 1995; 121 Nolden (b0020) 2013; 63 Song, Jiang, Zhang (b0050) 2014; 130 Wang, Zhang, Wang, Han, Kong (b0060) 2014; 273 Jiang, Song, Kusiak (b0085) 2013; 50 Zhang, Wu, Wang, Zhao, Shen (b0130) 2012; 99 Rafei, Sorkhabi, Mosavi (b0145) 2014; 24 Chen, Yu (b0090) 2014; 113 Zhang, Wang, Wang, Zhao, Tian (b0150) 2013; 13 Khahro, Tabbassum, Soomro, Dong, Liao (b0005) 2014; 78 Guo (10.1016/j.enconman.2014.12.053_b0040) 2014; 84 Borchers (10.1016/j.enconman.2014.12.053_b0010) 2014; 69 Nolden (10.1016/j.enconman.2014.12.053_b0020) 2013; 63 Liu (10.1016/j.enconman.2014.12.053_b0110) 2014; 62 Liu (10.1016/j.enconman.2014.12.053_b0025) 2015; 89 Velo (10.1016/j.enconman.2014.12.053_b0065) 2014; 81 Liu (10.1016/j.enconman.2014.12.053_b0100) 2012; 48 Cassola (10.1016/j.enconman.2014.12.053_b0070) 2012; 99 Liu (10.1016/j.enconman.2014.12.053_b0035) 2013; 107 Skittides (10.1016/j.enconman.2014.12.053_b0080) 2014; 69 Gnana Sheela (10.1016/j.enconman.2014.12.053_b0095) 2013; 122 Dang (10.1016/j.enconman.2014.12.053_b0115) 2013; 392 Khahro (10.1016/j.enconman.2014.12.053_b0005) 2014; 78 Guo (10.1016/j.enconman.2014.12.053_b0140) 2012; 39 Liu (10.1016/j.enconman.2014.12.053_b0075) 2013; 52 Ren (10.1016/j.enconman.2014.12.053_b0105) 2014; 56 Chen (10.1016/j.enconman.2014.12.053_b0090) 2014; 113 Zhang (10.1016/j.enconman.2014.12.053_b0130) 2012; 99 Liu (10.1016/j.enconman.2014.12.053_b0030) 2012; 98 Rafei (10.1016/j.enconman.2014.12.053_b0145) 2014; 24 Jiang (10.1016/j.enconman.2014.12.053_b0085) 2013; 50 Petković (10.1016/j.enconman.2014.12.053_b0045) 2014; 84 Song (10.1016/j.enconman.2014.12.053_b0050) 2014; 130 Wang (10.1016/j.enconman.2014.12.053_b0060) 2014; 273 Douak (10.1016/j.enconman.2014.12.053_b0055) 2013; 103 Zhang (10.1016/j.enconman.2014.12.053_b0150) 2013; 13 Bouzgou (10.1016/j.enconman.2014.12.053_b0125) 2011; 88 Hou (10.1016/j.enconman.2014.12.053_b0120) 2014; 8 Mostafaeipour (10.1016/j.enconman.2014.12.053_b0015) 2013; 73 Freund (10.1016/j.enconman.2014.12.053_b0135) 1995; 121 |
| References_xml | – volume: 62 start-page: 592 year: 2014 end-page: 597 ident: b0110 article-title: Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm publication-title: Renew. Energy – volume: 81 start-page: 1 year: 2014 end-page: 9 ident: b0065 article-title: Wind speed estimation using multilayer perceptron publication-title: Energy Convers. Manage – volume: 73 start-page: 214 year: 2013 end-page: 225 ident: b0015 article-title: Economic evaluation of small wind turbine utilization in Kerman, Iran publication-title: Energy Convers. Manage – volume: 88 start-page: 2463 year: 2011 end-page: 2471 ident: b0125 article-title: Multiple architecture system for wind speed prediction publication-title: Appl Energy – volume: 50 start-page: 637 year: 2013 end-page: 647 ident: b0085 article-title: Very short-term wind speed forecasting with Bayesian structural break model publication-title: Renew. Energy – volume: 69 start-page: 365 year: 2014 end-page: 374 ident: b0080 article-title: Wind forecasting using Principal Component Analysis publication-title: Renew. Energy – volume: 56 start-page: 226 year: 2014 end-page: 239 ident: b0105 article-title: Optimal parameters selection for BP neural network based on particle swarm optimization: a case study of wind speed forecasting publication-title: Knowl-Based Syst – volume: 99 start-page: 324 year: 2012 end-page: 333 ident: b0130 article-title: Performance analysis of four modified approaches for wind speed forecasting publication-title: Appl Energy – volume: 122 start-page: 425 year: 2013 end-page: 429 ident: b0095 article-title: Neural network based hybrid computing model for wind speed prediction publication-title: Neurocomputing – volume: 107 start-page: 191 year: 2013 end-page: 208 ident: b0035 article-title: Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks publication-title: Appl Energy – volume: 121 start-page: 256 year: 1995 end-page: 285 ident: b0135 article-title: Boosting a weak learning algorithm by majority publication-title: Inf Comput – volume: 78 start-page: 956 year: 2014 end-page: 967 ident: b0005 article-title: Evaluation of wind power production prospective and Weibull parameter estimation methods for Babaurband, Sindh Pakistan publication-title: Energy Convers Manage – volume: 130 start-page: 103 year: 2014 end-page: 112 ident: b0050 article-title: Short-term wind speed forecasting with Markov-switching model publication-title: Appl Energy – volume: 98 start-page: 415 year: 2012 end-page: 424 ident: b0030 article-title: Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction publication-title: Appl Energy – volume: 103 start-page: 328 year: 2013 end-page: 340 ident: b0055 article-title: Kernel ridge regression with active learning for wind speed prediction publication-title: Appl Energy – volume: 8 start-page: 867 year: 2014 end-page: 874 ident: b0120 article-title: Short-term wind speed prediction based on BP neural network with wavelet and time-series publication-title: ICIC Express Lett. – volume: 69 start-page: 106 year: 2014 end-page: 115 ident: b0010 article-title: Determinants of wind and solar energy system adoption by U.S. farms: a multilevel modeling approach publication-title: Energy Policy – volume: 24 start-page: 31 year: 2014 end-page: 56 ident: b0145 article-title: Multi-objective optimization by means of multi-dimensional mlp neural networks publication-title: Neural Netw. World – volume: 48 start-page: 545 year: 2012 end-page: 556 ident: b0100 article-title: A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks publication-title: Renew. Energy – volume: 84 start-page: 133 year: 2014 end-page: 139 ident: b0045 article-title: An appraisal of wind speed distribution prediction by soft computing methodologies: a comparative study publication-title: Energy Convers. Manage – volume: 113 start-page: 690 year: 2014 end-page: 705 ident: b0090 article-title: Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach publication-title: Appl Energy – volume: 89 start-page: 1 year: 2015 end-page: 11 ident: b0025 article-title: Comparison of new hybrid FEEMD-MLP, FEEMD-ANFIS, Wavelet Packet-MLP and Wavelet Packet-ANFIS for wind speed predictions publication-title: Energy Convers Manage – volume: 84 start-page: 140 year: 2014 end-page: 151 ident: b0040 article-title: A new wind speed forecasting strategy based on the chaotic time series modelling technique and the Apriori algorithm publication-title: Energy Convers. Manage – volume: 13 start-page: 3225 year: 2013 end-page: 3233 ident: b0150 article-title: Short-term wind speed forecasting based on a hybrid model publication-title: Appl. Soft Comput. – volume: 63 start-page: 543 year: 2013 end-page: 552 ident: b0020 article-title: Governing community energy-Feed-in tariffs and the development of community wind energy schemes in the United Kingdom and Germany publication-title: Energy Policy – volume: 392 year: 2013 ident: b0115 publication-title: A method for forecasting short-term wind speed based on EMD and SVM – volume: 273 start-page: 304 year: 2014 end-page: 318 ident: b0060 article-title: A novel hybrid approach for wind speed prediction publication-title: Inf Sci – volume: 52 start-page: 161 year: 2013 end-page: 173 ident: b0075 article-title: An experimental investigation of two Wavelet–MLP hybrid frameworks for wind speed prediction using GA and PSO optimization publication-title: Int J Electr Power Energy Syst – volume: 39 start-page: 4274 year: 2012 end-page: 4286 ident: b0140 article-title: Pedestrian detection for intelligent transportation systems combining AdaBoost algorithm and support vector machine publication-title: Expert Syst Appl – volume: 99 start-page: 154 year: 2012 end-page: 166 ident: b0070 article-title: Wind speed and wind energy forecast through Kalman filtering of Numerical Weather Prediction model output publication-title: Appl Energy – volume: 103 start-page: 328 year: 2013 ident: 10.1016/j.enconman.2014.12.053_b0055 article-title: Kernel ridge regression with active learning for wind speed prediction publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.09.055 – volume: 62 start-page: 592 year: 2014 ident: 10.1016/j.enconman.2014.12.053_b0110 article-title: Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm publication-title: Renew. Energy doi: 10.1016/j.renene.2013.08.011 – volume: 130 start-page: 103 year: 2014 ident: 10.1016/j.enconman.2014.12.053_b0050 article-title: Short-term wind speed forecasting with Markov-switching model publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.05.026 – volume: 98 start-page: 415 year: 2012 ident: 10.1016/j.enconman.2014.12.053_b0030 article-title: Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.04.001 – volume: 121 start-page: 256 issue: 2 year: 1995 ident: 10.1016/j.enconman.2014.12.053_b0135 article-title: Boosting a weak learning algorithm by majority publication-title: Inf Comput doi: 10.1006/inco.1995.1136 – volume: 63 start-page: 543 year: 2013 ident: 10.1016/j.enconman.2014.12.053_b0020 article-title: Governing community energy-Feed-in tariffs and the development of community wind energy schemes in the United Kingdom and Germany publication-title: Energy Policy doi: 10.1016/j.enpol.2013.08.050 – volume: 99 start-page: 154 year: 2012 ident: 10.1016/j.enconman.2014.12.053_b0070 article-title: Wind speed and wind energy forecast through Kalman filtering of Numerical Weather Prediction model output publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.03.054 – volume: 39 start-page: 4274 issue: 4 year: 2012 ident: 10.1016/j.enconman.2014.12.053_b0140 article-title: Pedestrian detection for intelligent transportation systems combining AdaBoost algorithm and support vector machine publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.09.106 – volume: 107 start-page: 191 year: 2013 ident: 10.1016/j.enconman.2014.12.053_b0035 article-title: Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks publication-title: Appl Energy doi: 10.1016/j.apenergy.2013.02.002 – volume: 52 start-page: 161 year: 2013 ident: 10.1016/j.enconman.2014.12.053_b0075 article-title: An experimental investigation of two Wavelet–MLP hybrid frameworks for wind speed prediction using GA and PSO optimization publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2013.03.034 – volume: 50 start-page: 637 year: 2013 ident: 10.1016/j.enconman.2014.12.053_b0085 article-title: Very short-term wind speed forecasting with Bayesian structural break model publication-title: Renew. Energy doi: 10.1016/j.renene.2012.07.041 – volume: 24 start-page: 31 issue: 1 year: 2014 ident: 10.1016/j.enconman.2014.12.053_b0145 article-title: Multi-objective optimization by means of multi-dimensional mlp neural networks publication-title: Neural Netw. World doi: 10.14311/NNW.2014.24.002 – volume: 13 start-page: 3225 issue: 7 year: 2013 ident: 10.1016/j.enconman.2014.12.053_b0150 article-title: Short-term wind speed forecasting based on a hybrid model publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2013.02.016 – volume: 69 start-page: 106 year: 2014 ident: 10.1016/j.enconman.2014.12.053_b0010 article-title: Determinants of wind and solar energy system adoption by U.S. farms: a multilevel modeling approach publication-title: Energy Policy doi: 10.1016/j.enpol.2014.02.014 – volume: 89 start-page: 1 year: 2015 ident: 10.1016/j.enconman.2014.12.053_b0025 article-title: Comparison of new hybrid FEEMD-MLP, FEEMD-ANFIS, Wavelet Packet-MLP and Wavelet Packet-ANFIS for wind speed predictions publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2014.09.060 – volume: 48 start-page: 545 year: 2012 ident: 10.1016/j.enconman.2014.12.053_b0100 article-title: A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks publication-title: Renew. Energy doi: 10.1016/j.renene.2012.06.012 – volume: 78 start-page: 956 year: 2014 ident: 10.1016/j.enconman.2014.12.053_b0005 article-title: Evaluation of wind power production prospective and Weibull parameter estimation methods for Babaurband, Sindh Pakistan publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2013.06.062 – volume: 84 start-page: 140 year: 2014 ident: 10.1016/j.enconman.2014.12.053_b0040 article-title: A new wind speed forecasting strategy based on the chaotic time series modelling technique and the Apriori algorithm publication-title: Energy Convers. Manage doi: 10.1016/j.enconman.2014.04.028 – volume: 84 start-page: 133 year: 2014 ident: 10.1016/j.enconman.2014.12.053_b0045 article-title: An appraisal of wind speed distribution prediction by soft computing methodologies: a comparative study publication-title: Energy Convers. Manage doi: 10.1016/j.enconman.2014.04.010 – volume: 99 start-page: 324 year: 2012 ident: 10.1016/j.enconman.2014.12.053_b0130 article-title: Performance analysis of four modified approaches for wind speed forecasting publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.05.029 – volume: 73 start-page: 214 year: 2013 ident: 10.1016/j.enconman.2014.12.053_b0015 article-title: Economic evaluation of small wind turbine utilization in Kerman, Iran publication-title: Energy Convers. Manage doi: 10.1016/j.enconman.2013.04.018 – volume: 122 start-page: 425 year: 2013 ident: 10.1016/j.enconman.2014.12.053_b0095 article-title: Neural network based hybrid computing model for wind speed prediction publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.06.008 – volume: 113 start-page: 690 year: 2014 ident: 10.1016/j.enconman.2014.12.053_b0090 article-title: Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach publication-title: Appl Energy doi: 10.1016/j.apenergy.2013.08.025 – volume: 69 start-page: 365 year: 2014 ident: 10.1016/j.enconman.2014.12.053_b0080 article-title: Wind forecasting using Principal Component Analysis publication-title: Renew. Energy doi: 10.1016/j.renene.2014.03.068 – volume: 273 start-page: 304 year: 2014 ident: 10.1016/j.enconman.2014.12.053_b0060 article-title: A novel hybrid approach for wind speed prediction publication-title: Inf Sci doi: 10.1016/j.ins.2014.02.159 – volume: 8 start-page: 867 issue: 3 year: 2014 ident: 10.1016/j.enconman.2014.12.053_b0120 article-title: Short-term wind speed prediction based on BP neural network with wavelet and time-series publication-title: ICIC Express Lett. – volume: 392 year: 2013 ident: 10.1016/j.enconman.2014.12.053_b0115 publication-title: A method for forecasting short-term wind speed based on EMD and SVM – volume: 88 start-page: 2463 issue: 7 year: 2011 ident: 10.1016/j.enconman.2014.12.053_b0125 article-title: Multiple architecture system for wind speed prediction publication-title: Appl Energy doi: 10.1016/j.apenergy.2011.01.037 – volume: 56 start-page: 226 year: 2014 ident: 10.1016/j.enconman.2014.12.053_b0105 article-title: Optimal parameters selection for BP neural network based on particle swarm optimization: a case study of wind speed forecasting publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2013.11.015 – volume: 81 start-page: 1 year: 2014 ident: 10.1016/j.enconman.2014.12.053_b0065 article-title: Wind speed estimation using multilayer perceptron publication-title: Energy Convers. Manage doi: 10.1016/j.enconman.2014.02.017 |
| SSID | ssj0003506 |
| Score | 2.5170105 |
| Snippet | [Display omitted]
•Four hybrid algorithms are proposed for the wind speed decomposition.•Adaboost algorithm is adopted to provide a hybrid training... The technology of wind speed prediction is important to guarantee the safety of wind power utilization. In this paper, four different hybrid methods are... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 67 |
| SubjectTerms | Adaboost algorithm Algorithms Architecture Forecasting Machine learning Mathematical models Neural networks prediction Training Wind energy wind power Wind speed Wind speed forecasting Wind speed predictions |
| Title | Comparison of four Adaboost algorithm based artificial neural networks in wind speed predictions |
| URI | https://dx.doi.org/10.1016/j.enconman.2014.12.053 https://www.proquest.com/docview/1718936202 https://www.proquest.com/docview/1732814311 https://www.proquest.com/docview/2131876915 |
| Volume | 92 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2227 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-2227 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1879-2227 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Journal Collection customDbUrl: eissn: 1879-2227 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2227 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: AKRWK dateStart: 19800101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQvcChoqVVeRS5Uq9h43dyXK2KtlTl0iJxc53YposgWe0G9dbfzoyTUFoJOPSUh2Yke8aZbxzPg5CPClwA8ItV5pkuMxngDvzmkInKRO10rF1qyfL1TM_P5emFutggszEXBsMqB9vf2_RkrYc3k0Gak-ViMfmGlV2KMpe4RcgB5TGDXRrsYnD8-0-Yh1CpvyYSZ0j9IEv46hhrRTY3DuugMpl-CyrxGED9Y6oT_pzskJeD40in_dhekY3QvCbbD8oJ7pIfs_umgrSNNAILnXrQcrvuqLu-bFeL7ucNReDyFCfZV4-gWNMyXVJE-JouGvoLtup0vQRoo8sVnuWk5fmGnJ98-j6bZ0MHhayWineZzx1MX9W8DAF8m8KbPBjnpHLaCR3qypkq5FHEyvnSAJjXzoWCm8oJEwvDxVuy2bRNeEeo5rXChEvJg5Y-eOfr6EGfsmDRV17sETWKzdZDeXHscnFtxziyKzuK26K4LeMWxL1HJvd8y77AxrMc5agV-9dSsYACz_J-GNVo4TvCwxHXhPZ2bRmAdAlonvOnaAQvwMFk7HEazsBKGl0ytf8f4zwgW_Ck-mC3Q7LZrW7De_B-uuooLe8j8mL6-cv87A49CweS |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELaAHkoPiFJQebQ1Uq9h43dyRCvQtgUuBYmbcWIbdgXJajeIG7-dsZNQigQcOCVKxpI948w3jsffIPRTQAgAcbFILJF5wh3cQdzsElYoL430pYklWY5P5OiM_z4X5wto2J-FCWmVne9vfXr01t2TQafNwXQ8HvwNzC5ZnvKwREgB5RfRBy6oCiuwvft_eR5MxAKbQToJ4k-OCU_2AllkdWMCESrh8b-gYC8h1DNfHQHocBWtdJEj3m879xktuGoNfXrCJ_gFXQwfqwri2mMPTfC-BTPX8wab68t6Nm6ubnBALovDKFv6CBxILeMlpoTP8bjCd7BWx_MpYBuezsJmTpyf6-js8OB0OEq6EgpJCbpoEpsaGL4oae4cBDeZValTxnBhpGHSlYVRhUs984WxuQI0L41xGVWFYcpnirINtFTVlfuKsKSlCCcuOXWSW2eNLb0Fg_KMeFtYtolErzZddvzioczFte4TySa6V7cO6taEalD3Jho8tpu2DBtvtsh7q-j_5ooGGHiz7W5vRg0fUtgdMZWrb-eaAErnAOcpfU2G0QwiTEJelqEE3KSSORFb7-jnD_RxdHp8pI9-nfzZRsvwRrSZbztoqZndum8QCjXF9zjVHwA8WAkn |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+four+Adaboost+algorithm+based+artificial+neural+networks+in+wind+speed+predictions&rft.jtitle=Energy+conversion+and+management&rft.au=Liu%2C+Hui&rft.au=Tian%2C+Hong-qi&rft.au=Li%2C+Yan-fei&rft.au=Zhang%2C+Lei&rft.date=2015-03-01&rft.issn=0196-8904&rft.volume=92&rft.spage=67&rft.epage=81&rft_id=info:doi/10.1016%2Fj.enconman.2014.12.053&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon |