Automatic berthing control under wind disturbances and its implementation in an embedded system
This paper proposes a practical algorithm and its implementation of automatic berthing in wind disturbances environments. Berthing operation is one of the most complex tasks for seafarers. Automation of the highly burdensome berthing maneuver can be used to assist seafarers. In this study, we analyz...
Saved in:
| Published in | Journal of marine science and technology Vol. 28; no. 2; pp. 452 - 470 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Tokyo
Springer Japan
01.06.2023
Springer Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0948-4280 1437-8213 |
| DOI | 10.1007/s00773-023-00934-9 |
Cover
| Abstract | This paper proposes a practical algorithm and its implementation of automatic berthing in wind disturbances environments. Berthing operation is one of the most complex tasks for seafarers. Automation of the highly burdensome berthing maneuver can be used to assist seafarers. In this study, we analyze the effect of wind disturbance on path following and propose a new path following control algorithm using a 2-DoF controller that introduces a feed-forward control. We also propose a method to reduce path deviation by introducing a runway in path planning. The effectiveness of the proposed method is verified by numerical simulations and shipboard tests using an experimental ship, and the proposed method shows higher performance under wind disturbance than the previous methods. The algorithm verified in this study is implemented as a PLC system, AutoBerth PLC. A PLC is an industrial computer, stable in operation. Using the AutoBerth PLC, we conducted an experiment of automatic berthing by an actual ship and confirmed that the system can be controlled faster and more stable than when controlled by a laptop. To realize a practical system, an alert function for the ODD, an alert function for fallback response regarding self-diagnosis of PLCs and communication monitoring functions were implemented as required functions in a maritime autonomous surface ship (MASS), and these functions were verified on the experimental ship. |
|---|---|
| AbstractList | This paper proposes a practical algorithm and its implementation of automatic berthing in wind disturbances environments. Berthing operation is one of the most complex tasks for seafarers. Automation of the highly burdensome berthing maneuver can be used to assist seafarers. In this study, we analyze the effect of wind disturbance on path following and propose a new path following control algorithm using a 2-DoF controller that introduces a feed-forward control. We also propose a method to reduce path deviation by introducing a runway in path planning. The effectiveness of the proposed method is verified by numerical simulations and shipboard tests using an experimental ship, and the proposed method shows higher performance under wind disturbance than the previous methods. The algorithm verified in this study is implemented as a PLC system, AutoBerth PLC. A PLC is an industrial computer, stable in operation. Using the AutoBerth PLC, we conducted an experiment of automatic berthing by an actual ship and confirmed that the system can be controlled faster and more stable than when controlled by a laptop. To realize a practical system, an alert function for the ODD, an alert function for fallback response regarding self-diagnosis of PLCs and communication monitoring functions were implemented as required functions in a maritime autonomous surface ship (MASS), and these functions were verified on the experimental ship. |
| Audience | Academic |
| Author | Sawada, Ryohei Hirata, Koichi Kitagawa, Yasushi |
| Author_xml | – sequence: 1 givenname: Ryohei orcidid: 0000-0002-3910-3731 surname: Sawada fullname: Sawada, Ryohei email: sawada-r@m.mpat.go.jp organization: National Maritime Research Institute, Osaka University – sequence: 2 givenname: Koichi surname: Hirata fullname: Hirata, Koichi organization: National Maritime Research Institute – sequence: 3 givenname: Yasushi surname: Kitagawa fullname: Kitagawa, Yasushi organization: National Maritime Research Institute |
| BookMark | eNp9kUFrHSEUhaUkkJekfyAroetJdRx1XD5C2xQC2SRrcZw7r4YZfVWHkH_f206gkMVDVDieT_GcS3IWUwRCbji75YzprwUXLRrW4mRGdI35RHa8E7rpWy7OyI6Zrm-6tmcX5LKUF8a4lobtiN2vNS2uBk8HyPVXiAfqU6w5zXSNI2T6GuJIx1DqmgcXPRTqUAi10LAcZ1ggVsRTpCHiCYVlgHGEkZa3UmG5JueTmwt8ft-vyPP3b093983D44-fd_uHxneyrY1TTMsBFHRqkgDCS-2M50pq7xRKslNuGFnPJi87L40BrUAMSjuuoBetuCJftnuPOf1eoVT7ktYc8UkrWqW0ZlKfdLUYlJFG9wpdt5vr4GawIU6pZudxjLAEDAemgPpeSy6N4kwg0G-Az6mUDJP1YQsFwTBbzuzfluzWksWW7L-WrEG0_YAec1hcfjsNiQ0qaI4HyP-_cYL6A2ezpo4 |
| CitedBy_id | crossref_primary_10_1016_j_oceaneng_2024_120122 crossref_primary_10_1109_ACCESS_2023_3335912 crossref_primary_10_1038_s41598_024_64225_y crossref_primary_10_3390_sym16121575 crossref_primary_10_1016_j_oceaneng_2024_117641 crossref_primary_10_1016_j_oceaneng_2024_117288 crossref_primary_10_3390_jmse11091824 |
| Cites_doi | 10.1016/S1474-6670(17)51691-2 10.3390/jmse10020279 10.2534/jjasnaoe.14.63 10.2534/jjasnaoe1952.1961.110_31 10.1016/j.ifacol.2015.10.297 10.2534/jjasnaoe1952.1960.a59 10.1016/j.ifacol.2019.12.289 10.3390/jmse7090300 10.2534/jjasnaoe1952.1960.a63 10.1016/j.oceaneng.2022.112553 10.1016/S0167-6105(99)00122-1 10.1007/s00773-014-0256-3 10.1016/j.oceaneng.2021.109352 10.1007/s00773-019-00642-3 10.1007/s00773-020-00758-x 10.1109/ACCESS.2020.3037171 10.1007/s00773-014-0293-y 10.1175/JCLI3640.1 10.1145/3510425 10.1016/j.engappai.2013.08.009 10.1080/17445302.2017.1316556 10.1016/j.oceaneng.2019.106514 10.1016/j.oceaneng.2016.09.037 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to The Japan Society of Naval Architects and Ocean Engineers (JASNAOE) 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. COPYRIGHT 2023 Springer The Author(s), under exclusive licence to The Japan Society of Naval Architects and Ocean Engineers (JASNAOE) 2023. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to The Japan Society of Naval Architects and Ocean Engineers (JASNAOE) 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: COPYRIGHT 2023 Springer – notice: The Author(s), under exclusive licence to The Japan Society of Naval Architects and Ocean Engineers (JASNAOE) 2023. |
| DBID | AAYXX CITATION 7ST 7TB 7TN 8FD C1K F1W FR3 H96 L.G SOI 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO GNUQQ HCIFZ L6V M2P M7S P5Z P62 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U |
| DOI | 10.1007/s00773-023-00934-9 |
| DatabaseName | CrossRef Environment Abstracts Mechanical & Transportation Engineering Abstracts Oceanic Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection ProQuest Earth, Atmospheric & Aquatic Science Database ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection (Proquest) ProQuest Engineering Collection Science Database (Proquest) Engineering Database (Proquest) ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Environmental Science Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Environmental Sciences and Pollution Management ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Oceanography |
| EISSN | 1437-8213 |
| EndPage | 470 |
| ExternalDocumentID | A751596103 10_1007_s00773_023_00934_9 |
| GeographicLocations | Japan |
| GeographicLocations_xml | – name: Japan |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29K 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7XC 88I 8CJ 8FE 8FG 8FH 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D-I D1J D1K DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IEP IHE IJ- IKXTQ ITC IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6- KDC KOV KOW L6V LAS LK5 LLZTM M2P M4Y M7R M7S MA- N2Q NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9P PATMY PCBAR PF0 PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TR2 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z5O Z7R Z7Z Z86 Z8M Z8T ZMTXR _50 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7ST 7TB 7TN 8FD C1K F1W FR3 H96 L.G SOI 7XB 8FK ARAPS P62 PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c452t-a6075be6e46f5ee3c57a9c1657ca66f5546abd080fc54c599e76e3b67a16e8323 |
| IEDL.DBID | AGYKE |
| ISSN | 0948-4280 |
| IngestDate | Thu Oct 30 15:48:40 EDT 2025 Thu Sep 18 00:05:11 EDT 2025 Mon Oct 20 16:59:02 EDT 2025 Wed Oct 01 01:59:53 EDT 2025 Thu Apr 24 23:11:24 EDT 2025 Fri Feb 21 02:43:20 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Operational design domain Automatic berthing Wind disturbance Programmable logic controller Autonomous ship |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c452t-a6075be6e46f5ee3c57a9c1657ca66f5546abd080fc54c599e76e3b67a16e8323 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3910-3731 |
| PQID | 3266770572 |
| PQPubID | 54119 |
| PageCount | 19 |
| ParticipantIDs | proquest_journals_3266770572 proquest_journals_2821959786 gale_infotracacademiconefile_A751596103 crossref_citationtrail_10_1007_s00773_023_00934_9 crossref_primary_10_1007_s00773_023_00934_9 springer_journals_10_1007_s00773_023_00934_9 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-01 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Tokyo |
| PublicationPlace_xml | – name: Tokyo |
| PublicationSubtitle | Official Journal of the Japan Society of Naval Architects and Ocean Engineers (JASNAOE) |
| PublicationTitle | Journal of marine science and technology |
| PublicationTitleAbbrev | J Mar Sci Technol |
| PublicationYear | 2023 |
| Publisher | Springer Japan Springer Springer Nature B.V |
| Publisher_xml | – name: Springer Japan – name: Springer – name: Springer Nature B.V |
| References | MartinsenABBitarGLekkasAMGrosSOptimization-based automatic docking and berthing of asvs using exteroceptive sensors: Theory and experimentsIEEE Access2020810.1109/ACCESS.2020.3037171 Fujii H, Tuda T (1961) Experimental researches on rudder performance (2), Journal of the Society of Naval Architects of Japan pp. 31–42 Fossen T (1994) Guidance and control of ocean vehicles HaneFControl technology for autopilot for vesselsJournal of The Society of Instrument and Control Engineers201251111086 Monahan A.H (2006) The probability distribution of sea surface wind speeds. part I: Theory and seawinds observations, Journal of Climate 19(4), 497 International Electrotechnical Commission (IEC), IEC 61131-3:2013 programmable controllers - part 3: Programming languages. Standard 3.0, International Electrotechnical Commission (IEC) (2013) KitamuraFUenoMFujiwaraTSogiharaNEstimation of above water structural parameters and wind loads on shipsShips and Offshore Structures2017128110010.1080/17445302.2017.1316556 YoshimuraYMatsumotoYHydrodynamic force database with medium high speed merchant ships including fishing vessels and investigation into a manoeuvring prediction methodJournal of the Japan Society of Naval Architects and Ocean Engineers2011146310.2534/jjasnaoe.14.63(in Japanese) Piao Z, Guo C, Sun S (2019) Research into the automatic berthing of underactuated unmanned ships under wind loads based on experiment and numerical analysis, Journal of Marine Science and Engineering 7(9) Inoue S, Mori H (2021) Development of automated ship operation technologies, Class NK Technical Journal (3) AhmedYAHasegawaKAutomatic ship berthing using artificial neural network trained by consistent teaching data using nonlinear programming methodEngineering Applications of Artificial Intelligence20132610228710.1016/j.engappai.2013.08.009 KitagawaYTsukadaYMiyazakiHA study on mathematical models of propeller and rudder under maneuvering with propeller reverse rotationProc. JASNAOE201520117(in Japanese) Mizuno N, Kuboshima R (2019) Implementation and evaluation of non-linear optimal feedback control for ship’s automatic berthing by recurrent neural network, IFAC-PapersOnLine 52(21), 91 (2019), 12th IFAC Conference on Control Applications in Marine Systems, Robotics, and Vehicles CAMS Yoshimura Y, Nakao I, Ishibashi A (2009) Unified mathematical model for ocean and harbour manoeuvring, Proceedings of MARSIM2009 pp. 116–124 International Maritime Organization (IMO). MSC.1/Circ.1638, Outcome of the regulatory scoping exercise for the use of maritime autonomous surface ships (MASS) (2021) Liu Y, Im N.k, Zhang Q, Zhu G (2022) Adaptive auto-berthing control of underactuated vessel based on barrier lyapunov function, Journal of Marine Science and Engineering 10(2) International Electrotechnical Commission (IEC), IEC 62065:2014 Maritime navigation and radiocommunication equipment and systems - Track control systems - Operational and performance requirements, methods of testing and required test results. Standard 2.0, International Electrotechnical Commission (IEC) (2014) Motora S (1960) On the measurement of added mass and added moment of inertia for ship motions, part 3. added mass for the transverse motions, Journal of the Society of Naval Architects of Japan 1960(106), 63 Kose K, Yumuro A, Yoshimura Y (1981) Iii. concrete of mathematical model for ship manoeuvring., Proceedings of the 3rd symposium on ship maneuverability, Society of Naval Architects of Japan pp. 27–80, in Japanese SardaEIQuHBertaskaIRvon EllenriederKDStation-keeping control of an unmanned surface vehicle exposed to current and wind disturbancesOcean Engineering201612730510.1016/j.oceaneng.2016.09.037 HanSWangYWangLHeHAutomatic berthing for an underactuated unmanned surface vehicle: A real-time motion planning approachOcean Engineering202123510.1016/j.oceaneng.2021.109352 SeguroJLambertTModern estimation of the parameters of the weibull wind speed distribution for wind energy analysisJournal of Wind Engineering and Industrial Aerodynamics20008517510.1016/S0167-6105(99)00122-1 YasukawaHYoshimuraYIntroduction of MMG standard method for ship maneuvering predictionsJournal of Marine Science and Technology2014203710.1007/s00773-014-0293-y Okuyama E, Igarashi K, Oda H, Miyazaki K, Ohtsu K, Okazaki T (2007) Guidance control of vessels using minimum time control, 2007 IEEE International Conference on Systems, Man and Cybernetics pp. 3650–3655 Bezanson J, Karpinski S, Shah V.B, Edelman A (2012) Julia: A fast dynamic language for technical computing, CoRR arXiv:abs/1209.5145 MotoraSOn the measurement of added mass and added moment of inertia for ship motionsJournal of the Society of Naval Architects of Japan1959195910583 MizunoNUchidaYOkazakiTQuasi real-time optimal control scheme for automatic berthingIFAC-PapersOnLine2015481630510.1016/j.ifacol.2015.10.297 ShuaiYLiGChengXSkulstadRXuJLiuHZhangHAn efficient neural-network based approach to automatic ship dockingOcean Engineering201919110.1016/j.oceaneng.2019.106514 Motora S (1960) On the measurement of added mass and added moment of inertia for ship motions, part 2. added mass abstract for the longitudinal motions, Journal of the Society of Naval Architects of Japan 1960(106), 59 TsukadaYSuguiNUedaTKadoiHFujiiIExperimentalstudieson improvement of propulsiveperformance for high speed passenger boatPapers of Ship Research Institute199128543(in Japanese) Akimoto Y, Miyauchi Y, Maki A (2022) Saddle point optimization with approximate minimization oracle and its application to robust berthing control, ACM Trans. Evol. Learn. Optim. 2(1) Ohtsu K, Shoji K, Okazaki T (1995) Minimum time maneuvering of ship with wind disturbances, IFAC Proceedings Volumes 28(2), 338, 3rd IFAC Workshop on Control Applications in Marine Systems, Trondheim, Norway, 10-12 May SAE International. SAE J3016:2021, Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles (2021) KimYYChoiKJChungHHanSLeePSA ship-to-ship automatic docking system for ocean cargo transferJournal of Marine Science and Technology20141936010.1007/s00773-014-0256-3 SawadaRHirataKKitagawaYSaitoEUenoMTanizawaKFukutoJPath following algorithm application to automatic berthing controlJournal of Marine Science and Technology20212654110.1007/s00773-020-00758-x Miyoshi S, Ioki T (2021) Development of maneuvering system for realizing autonomous ships, Class NK Technical Journal (3) MakiASakamotoNAkimotoYNishikawaHUmedaNApplication of optimal control theory based on the evolution strategy (CMA-ES) to automatic berthingJournal of Marine Science and Technology202025122110.1007/s00773-019-00642-3 ShimizuSNishiharaKMiyauchiYWakitaKSuyamaRMakiAShirakawaSAutomatic berthing using supervised learning and reinforcement learningOcean Engineering202226510.1016/j.oceaneng.2022.112553 UenoMResearches on advanced technology for initial responses, reproduction, and analysis of marine accidents using the actual sea model basin and the bridge simulator for navigation riskPapers of National Maritime Research Institute20171711(in Japanese) 934_CR14 934_CR36 934_CR12 S Motora (934_CR23) 1959; 1959 934_CR11 934_CR10 934_CR32 N Mizuno (934_CR7) 2015; 48 S Shimizu (934_CR15) 2022; 265 934_CR30 R Sawada (934_CR2) 2021; 26 934_CR18 Y Kitagawa (934_CR27) 2015; 20 934_CR17 934_CR39 934_CR16 Y Tsukada (934_CR35) 1991; 28 934_CR6 AB Martinsen (934_CR8) 2020; 8 934_CR25 934_CR24 H Yasukawa (934_CR22) 2014; 20 934_CR21 934_CR20 EI Sarda (934_CR37) 2016; 127 S Han (934_CR13) 2021; 235 J Seguro (934_CR33) 2000; 85 Y Shuai (934_CR5) 2019; 191 934_CR3 934_CR29 934_CR1 934_CR26 Y Yoshimura (934_CR34) 2011; 14 M Ueno (934_CR28) 2017; 17 F Kitamura (934_CR31) 2017; 12 YA Ahmed (934_CR4) 2013; 26 YY Kim (934_CR19) 2014; 19 F Hane (934_CR38) 2012; 51 A Maki (934_CR9) 2020; 25 |
| References_xml | – reference: Mizuno N, Kuboshima R (2019) Implementation and evaluation of non-linear optimal feedback control for ship’s automatic berthing by recurrent neural network, IFAC-PapersOnLine 52(21), 91 (2019), 12th IFAC Conference on Control Applications in Marine Systems, Robotics, and Vehicles CAMS – reference: Okuyama E, Igarashi K, Oda H, Miyazaki K, Ohtsu K, Okazaki T (2007) Guidance control of vessels using minimum time control, 2007 IEEE International Conference on Systems, Man and Cybernetics pp. 3650–3655 – reference: KitagawaYTsukadaYMiyazakiHA study on mathematical models of propeller and rudder under maneuvering with propeller reverse rotationProc. JASNAOE201520117(in Japanese) – reference: Fujii H, Tuda T (1961) Experimental researches on rudder performance (2), Journal of the Society of Naval Architects of Japan pp. 31–42 – reference: SawadaRHirataKKitagawaYSaitoEUenoMTanizawaKFukutoJPath following algorithm application to automatic berthing controlJournal of Marine Science and Technology20212654110.1007/s00773-020-00758-x – reference: ShuaiYLiGChengXSkulstadRXuJLiuHZhangHAn efficient neural-network based approach to automatic ship dockingOcean Engineering201919110.1016/j.oceaneng.2019.106514 – reference: MartinsenABBitarGLekkasAMGrosSOptimization-based automatic docking and berthing of asvs using exteroceptive sensors: Theory and experimentsIEEE Access2020810.1109/ACCESS.2020.3037171 – reference: HanSWangYWangLHeHAutomatic berthing for an underactuated unmanned surface vehicle: A real-time motion planning approachOcean Engineering202123510.1016/j.oceaneng.2021.109352 – reference: ShimizuSNishiharaKMiyauchiYWakitaKSuyamaRMakiAShirakawaSAutomatic berthing using supervised learning and reinforcement learningOcean Engineering202226510.1016/j.oceaneng.2022.112553 – reference: Miyoshi S, Ioki T (2021) Development of maneuvering system for realizing autonomous ships, Class NK Technical Journal (3) – reference: KitamuraFUenoMFujiwaraTSogiharaNEstimation of above water structural parameters and wind loads on shipsShips and Offshore Structures2017128110010.1080/17445302.2017.1316556 – reference: Bezanson J, Karpinski S, Shah V.B, Edelman A (2012) Julia: A fast dynamic language for technical computing, CoRR arXiv:abs/1209.5145 – reference: MakiASakamotoNAkimotoYNishikawaHUmedaNApplication of optimal control theory based on the evolution strategy (CMA-ES) to automatic berthingJournal of Marine Science and Technology202025122110.1007/s00773-019-00642-3 – reference: KimYYChoiKJChungHHanSLeePSA ship-to-ship automatic docking system for ocean cargo transferJournal of Marine Science and Technology20141936010.1007/s00773-014-0256-3 – reference: SeguroJLambertTModern estimation of the parameters of the weibull wind speed distribution for wind energy analysisJournal of Wind Engineering and Industrial Aerodynamics20008517510.1016/S0167-6105(99)00122-1 – reference: SAE International. SAE J3016:2021, Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles (2021) – reference: Liu Y, Im N.k, Zhang Q, Zhu G (2022) Adaptive auto-berthing control of underactuated vessel based on barrier lyapunov function, Journal of Marine Science and Engineering 10(2) – reference: International Maritime Organization (IMO). MSC.1/Circ.1638, Outcome of the regulatory scoping exercise for the use of maritime autonomous surface ships (MASS) (2021) – reference: UenoMResearches on advanced technology for initial responses, reproduction, and analysis of marine accidents using the actual sea model basin and the bridge simulator for navigation riskPapers of National Maritime Research Institute20171711(in Japanese) – reference: SardaEIQuHBertaskaIRvon EllenriederKDStation-keeping control of an unmanned surface vehicle exposed to current and wind disturbancesOcean Engineering201612730510.1016/j.oceaneng.2016.09.037 – reference: Piao Z, Guo C, Sun S (2019) Research into the automatic berthing of underactuated unmanned ships under wind loads based on experiment and numerical analysis, Journal of Marine Science and Engineering 7(9) – reference: MotoraSOn the measurement of added mass and added moment of inertia for ship motionsJournal of the Society of Naval Architects of Japan1959195910583 – reference: Yoshimura Y, Nakao I, Ishibashi A (2009) Unified mathematical model for ocean and harbour manoeuvring, Proceedings of MARSIM2009 pp. 116–124 – reference: International Electrotechnical Commission (IEC), IEC 62065:2014 Maritime navigation and radiocommunication equipment and systems - Track control systems - Operational and performance requirements, methods of testing and required test results. Standard 2.0, International Electrotechnical Commission (IEC) (2014) – reference: YoshimuraYMatsumotoYHydrodynamic force database with medium high speed merchant ships including fishing vessels and investigation into a manoeuvring prediction methodJournal of the Japan Society of Naval Architects and Ocean Engineers2011146310.2534/jjasnaoe.14.63(in Japanese) – reference: International Electrotechnical Commission (IEC), IEC 61131-3:2013 programmable controllers - part 3: Programming languages. Standard 3.0, International Electrotechnical Commission (IEC) (2013) – reference: Akimoto Y, Miyauchi Y, Maki A (2022) Saddle point optimization with approximate minimization oracle and its application to robust berthing control, ACM Trans. Evol. Learn. Optim. 2(1) – reference: Monahan A.H (2006) The probability distribution of sea surface wind speeds. part I: Theory and seawinds observations, Journal of Climate 19(4), 497 – reference: Ohtsu K, Shoji K, Okazaki T (1995) Minimum time maneuvering of ship with wind disturbances, IFAC Proceedings Volumes 28(2), 338, 3rd IFAC Workshop on Control Applications in Marine Systems, Trondheim, Norway, 10-12 May – reference: TsukadaYSuguiNUedaTKadoiHFujiiIExperimentalstudieson improvement of propulsiveperformance for high speed passenger boatPapers of Ship Research Institute199128543(in Japanese) – reference: MizunoNUchidaYOkazakiTQuasi real-time optimal control scheme for automatic berthingIFAC-PapersOnLine2015481630510.1016/j.ifacol.2015.10.297 – reference: Fossen T (1994) Guidance and control of ocean vehicles – reference: YasukawaHYoshimuraYIntroduction of MMG standard method for ship maneuvering predictionsJournal of Marine Science and Technology2014203710.1007/s00773-014-0293-y – reference: HaneFControl technology for autopilot for vesselsJournal of The Society of Instrument and Control Engineers201251111086 – reference: Motora S (1960) On the measurement of added mass and added moment of inertia for ship motions, part 2. added mass abstract for the longitudinal motions, Journal of the Society of Naval Architects of Japan 1960(106), 59 – reference: Kose K, Yumuro A, Yoshimura Y (1981) Iii. concrete of mathematical model for ship manoeuvring., Proceedings of the 3rd symposium on ship maneuverability, Society of Naval Architects of Japan pp. 27–80, in Japanese – reference: AhmedYAHasegawaKAutomatic ship berthing using artificial neural network trained by consistent teaching data using nonlinear programming methodEngineering Applications of Artificial Intelligence20132610228710.1016/j.engappai.2013.08.009 – reference: Motora S (1960) On the measurement of added mass and added moment of inertia for ship motions, part 3. added mass for the transverse motions, Journal of the Society of Naval Architects of Japan 1960(106), 63 – reference: Inoue S, Mori H (2021) Development of automated ship operation technologies, Class NK Technical Journal (3) – ident: 934_CR12 doi: 10.1016/S1474-6670(17)51691-2 – ident: 934_CR16 doi: 10.3390/jmse10020279 – volume: 28 start-page: 43 issue: 5 year: 1991 ident: 934_CR35 publication-title: Papers of Ship Research Institute – ident: 934_CR29 – volume: 14 start-page: 63 year: 2011 ident: 934_CR34 publication-title: Journal of the Japan Society of Naval Architects and Ocean Engineers doi: 10.2534/jjasnaoe.14.63 – ident: 934_CR21 – ident: 934_CR30 doi: 10.2534/jjasnaoe1952.1961.110_31 – ident: 934_CR36 – volume: 48 start-page: 305 issue: 16 year: 2015 ident: 934_CR7 publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2015.10.297 – ident: 934_CR24 doi: 10.2534/jjasnaoe1952.1960.a59 – volume: 51 start-page: 1086 issue: 11 year: 2012 ident: 934_CR38 publication-title: Journal of The Society of Instrument and Control Engineers – volume: 20 start-page: 117 year: 2015 ident: 934_CR27 publication-title: Proc. JASNAOE – ident: 934_CR6 doi: 10.1016/j.ifacol.2019.12.289 – ident: 934_CR14 doi: 10.3390/jmse7090300 – ident: 934_CR25 doi: 10.2534/jjasnaoe1952.1960.a63 – ident: 934_CR17 – volume: 265 year: 2022 ident: 934_CR15 publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2022.112553 – volume: 17 start-page: 1 issue: 1 year: 2017 ident: 934_CR28 publication-title: Papers of National Maritime Research Institute – volume: 85 start-page: 75 issue: 1 year: 2000 ident: 934_CR33 publication-title: Journal of Wind Engineering and Industrial Aerodynamics doi: 10.1016/S0167-6105(99)00122-1 – ident: 934_CR11 – volume: 1959 start-page: 83 issue: 105 year: 1959 ident: 934_CR23 publication-title: Journal of the Society of Naval Architects of Japan – ident: 934_CR26 – ident: 934_CR1 – volume: 19 start-page: 360 year: 2014 ident: 934_CR19 publication-title: Journal of Marine Science and Technology doi: 10.1007/s00773-014-0256-3 – ident: 934_CR3 – ident: 934_CR20 – volume: 235 year: 2021 ident: 934_CR13 publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2021.109352 – volume: 25 start-page: 221 issue: 1 year: 2020 ident: 934_CR9 publication-title: Journal of Marine Science and Technology doi: 10.1007/s00773-019-00642-3 – volume: 26 start-page: 541 year: 2021 ident: 934_CR2 publication-title: Journal of Marine Science and Technology doi: 10.1007/s00773-020-00758-x – volume: 8 year: 2020 ident: 934_CR8 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3037171 – volume: 20 start-page: 37 year: 2014 ident: 934_CR22 publication-title: Journal of Marine Science and Technology doi: 10.1007/s00773-014-0293-y – ident: 934_CR32 doi: 10.1175/JCLI3640.1 – ident: 934_CR10 doi: 10.1145/3510425 – ident: 934_CR39 – volume: 26 start-page: 2287 issue: 10 year: 2013 ident: 934_CR4 publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2013.08.009 – volume: 12 start-page: 1100 issue: 8 year: 2017 ident: 934_CR31 publication-title: Ships and Offshore Structures doi: 10.1080/17445302.2017.1316556 – ident: 934_CR18 – volume: 191 year: 2019 ident: 934_CR5 publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2019.106514 – volume: 127 start-page: 305 year: 2016 ident: 934_CR37 publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2016.09.037 |
| SSID | ssj0017590 |
| Score | 2.3509412 |
| Snippet | This paper proposes a practical algorithm and its implementation of automatic berthing in wind disturbances environments. Berthing operation is one of the most... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 452 |
| SubjectTerms | Algorithms Automatic control Automation Automotive Engineering Berthing Communication Control algorithms Control theory Controllers Disturbances Embedded systems Engineering Engineering Design Engineering Fluid Dynamics Experiments Feedforward control Mechanical Engineering Methods Neural networks Numerical analysis Offshore Engineering Original Article Path planning Personal computers Programmable logic controllers R&D Research & development Simulation methods Task complexity Trajectory planning User interface Wind Wind effects |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSyMxEB-0voggd6di1TvycOCDLra7-dh9OI4qighWEQXfQr4KBbvVdov_vjPbbMXPh31JNiHMJJNfJpnfAPxNlXRd6QNaP6sS3h10EqOETAJCk1RmuIdZika-7MvzO35xL-6XoN_EwtCzysYm1obajx35yI8QZkilEF2k_x-fEsoaRberTQoNE1Mr-H81xdgyrKTEjNWClePT_vXN4l5BibnXpSA3Wpp3YhhNHUxHzDZ0p4kfHvN5UrzZqt4b7A83p_WGdPYD1iOSZL256n_CUih_wdqVC6aMNNQboHuzalyTsjJ6QE3eJhYfpzOKHpuwZzyTM4-6nk0sTYApM1gwrKZsOGqelpPu2LDEGhZGNqCp8mzOAL0Jd2entyfnSUypkDgu0ioxEiGCDTJwORAhZE4oU6CyhHJGYpHg0liPKHLgBHeiKIKSIbNSma4MuPizLWiV4zJsA1PeIDZy1g5Mzo0vcm85HYby0LG2o4o2dBvpaRf5xintxYNeMCXXEtcocV1LXGObg0Wbxznbxrd_75NSNC1F7NmZGFGA4yNSK91TBNYQH2Zt2Gv0puManWo8bBKzjsrlp9WvE64Nh42qX6u_HtbO973twmpaTzLy5OxBq5rMwm8ENpX9E2frC-we8x8 priority: 102 providerName: ProQuest |
| Title | Automatic berthing control under wind disturbances and its implementation in an embedded system |
| URI | https://link.springer.com/article/10.1007/s00773-023-00934-9 https://www.proquest.com/docview/2821959786 https://www.proquest.com/docview/3266770572 |
| Volume | 28 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1437-8213 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0017590 issn: 0948-4280 databaseCode: ADMLS dateStart: 20110301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1437-8213 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017590 issn: 0948-4280 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1437-8213 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017590 issn: 0948-4280 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1437-8213 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017590 issn: 0948-4280 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9t3QsgjTGYKNsqPyDxAJnaxB_JY8baTcAGAiqNJ8t2XKnalqE21ST-eu4Sp-yLSXuIIsUfcuzz-Xf23c8Ab2Ml3UAWHrWfVREfTPqRUUJGHqFJLBNcwyxFIx-fyKMx_3QqTkNQ2Lz1dm-PJGtNvQx2I-YZOnPEB81wHmWrsFbzbXVgLT_89Xm4PD1QotlbyWizLE77IVjm_lpuLEi31fKd89F62Rk9h3Hb4Mbb5GxvUdk99-cWl-Nj_2gD1gMOZXkjOC9gxZeb8PQaO-EmPPvqvCkDpfVL0PmiuqwJXhk5Y9POFQuO7owi0WbsCu17VqDcLGaWhGnODH6YVnM2vWjd1EkO2LTEFOYvrEe1V7CGTfoVjEfDnx-PonA9Q-S4iKvISIQb1kvP5UR4nzihTIYDL5QzEj8JLo0tEJFOnOBOZJlX0idWKjOQHhVJsgWd8rL0r4GpwiDOctZOTMpNkaWF5WRYpb5vbV9lXRi0Y6Rd4C6nKzTO9ZJ1ue5LjX2p677UWOb9sszvhrnjwdzvaOg1TWus2ZkQnYDtI4IsnSsCfog1ky7stNKhw3yfazRciaVHpfLeZMTIUimExnEXPrSy8C_5_81687js2_AkrsWJdol2oFPNFn4XQVNle7Cajg57OFMOjr_86IUZg-_94cm375g6jvO_ACAQGg |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gBCQuUlFlrwAcQBIrKJH_GhQgu02tJ2QaiVejN-rbQSzZbdrCr-HL-NmayzFa_eesglTixrPJ75PPZ8A_C8UNL3ZYho_ZzKeH-cZ1YJmUWEJoUs0Yc5ykY-GsnhCf94Kk7X4GeXC0PXKjub2BrqMPUUI3-DMEMqheiieHv-PaOqUXS62pXQsKm0QthpKcZSYsdB_HGBW7j5zv4HnO8XRbG3e_x-mKUqA5nnomgyK9Fruigjl2MRY-mFshrHL5S3El8JLq0LCKzGXnAvtI5KxtJJZfsy4noosd8bsMFLrnHzt_Fud_T5y-ocQ4lllEdT2K6o8pS20ybvEZMOnaHik-uSZ_o31_ing_jrpLZ1gHubcCchVzZYqtpdWIv1Pbj9yUdbJ9rr-2AGi2baksAyurBN0S2WLsMzylabsYtJHVhA3VrMHCncnFl8MWnmbHLWXWUnXWGTGltYPHMRTWNgS8bpB3ByLcJ9COv1tI6PgKlgEYt558a24jboKjhOm68q5s7lSveg30nP-MRvTmU2vpkVM3MrcYMSN63EDf7zavXP-ZLd48qvX9KkGFr62LO3KYMBx0ckWmagCBwiHi17sNXNm0k2YW5wc0tMPqqS_2y-VPAevO6m-rL5_8N6fHVvz-Dm8Pjo0Bzujw6ewK2iVTiKIm3BejNbxG0EVY17mjSXwdfrXiy_AJP1MBw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSyNBFH44CjIKos6Ica2DMAdtTLpr6T4GNcR9Dga8FVXV1RDQVpIO_n3f6yXGZQY89KU2mvdq-eotXwEchEq6jkw97n5WBbyTtQOjhAw8QpNQRniGWcpGvr6R_QG_uBf3M1n8ZbR745KschqIpSkvjp_T7Hia-EYsNOR_xA-v5DxIfsACJ6IEnNGDsDv1IyhRWVkSMpuFcbtOm_l6jHdH08cN-pOntDyAequwUiNH1q1UvQZzPl-HpRk-wXVYvnXe5DUJ9S_Q3UnxVFKyMgqfJlsTq0PTGeWOjdgL3shZipqejCypf8wMFgyLMRs-NoHlpDk2zLGG-UfrcaNKWcX__BsGvbO7k35QP6gQOC7CIjASAYL10nOZCe8jJ5RJUFVCOSOxSHBpbIoYMnOCO5EkXkkfWalMR3pc-tEGzOdPud8EplKDyMhZm5mYmzSJU8vpKhT7trVtlbSg08hSu5ptnB69eNBTnuRS_hrlr0v5a-xzOO3zXHFt_Lf1H1KRpoWIIztT5xPg_xGlle4qgmqIDqMW7DRa1PUKHWu8ahKvjorll9WIaqVSCGbDFhw1in-r_vdvbX2v-T4s_j3t6avzm8tt-BmWs5FMPDswX4wmfhcRT2H3ykn9CneV9TI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+berthing+control+under+wind+disturbances+and+its+implementation+in+an+embedded+system&rft.jtitle=Journal+of+marine+science+and+technology&rft.au=Sawada+Ryohei&rft.au=Hirata+Koichi&rft.au=Kitagawa+Yasushi&rft.date=2023-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0948-4280&rft.eissn=1437-8213&rft.volume=28&rft.issue=2&rft.spage=452&rft.epage=470&rft_id=info:doi/10.1007%2Fs00773-023-00934-9&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0948-4280&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0948-4280&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0948-4280&client=summon |