GPseudoClust: deconvolution of shared pseudo-profiles at single-cell resolution
Abstract Motivation Many methods have been developed to cluster genes on the basis of their changes in mRNA expression over time, using bulk RNA-seq or microarray data. However, single-cell data may present a particular challenge for these algorithms, since the temporal ordering of cells is not dire...
Saved in:
| Published in | Bioinformatics Vol. 36; no. 5; pp. 1484 - 1491 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Oxford University Press
01.03.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1367-4803 1367-4811 1460-2059 1367-4811 |
| DOI | 10.1093/bioinformatics/btz778 |
Cover
| Abstract | Abstract
Motivation
Many methods have been developed to cluster genes on the basis of their changes in mRNA expression over time, using bulk RNA-seq or microarray data. However, single-cell data may present a particular challenge for these algorithms, since the temporal ordering of cells is not directly observed. One way to address this is to first use pseudotime methods to order the cells, and then apply clustering techniques for time course data. However, pseudotime estimates are subject to high levels of uncertainty, and failing to account for this uncertainty is liable to lead to erroneous and/or over-confident gene clusters.
Results
The proposed method, GPseudoClust, is a novel approach that jointly infers pseudotemporal ordering and gene clusters, and quantifies the uncertainty in both. GPseudoClust combines a recent method for pseudotime inference with non-parametric Bayesian clustering methods, efficient Markov Chain Monte Carlo sampling and novel subsampling strategies which aid computation. We consider a broad array of simulated and experimental datasets to demonstrate the effectiveness of GPseudoClust in a range of settings.
Availability and implementation
An implementation is available on GitHub: https://github.com/magStra/nonparametricSummaryPSM and https://github.com/magStra/GPseudoClust.
Supplementary information
Supplementary data are available at Bioinformatics online. |
|---|---|
| AbstractList | Abstract
Motivation
Many methods have been developed to cluster genes on the basis of their changes in mRNA expression over time, using bulk RNA-seq or microarray data. However, single-cell data may present a particular challenge for these algorithms, since the temporal ordering of cells is not directly observed. One way to address this is to first use pseudotime methods to order the cells, and then apply clustering techniques for time course data. However, pseudotime estimates are subject to high levels of uncertainty, and failing to account for this uncertainty is liable to lead to erroneous and/or over-confident gene clusters.
Results
The proposed method, GPseudoClust, is a novel approach that jointly infers pseudotemporal ordering and gene clusters, and quantifies the uncertainty in both. GPseudoClust combines a recent method for pseudotime inference with non-parametric Bayesian clustering methods, efficient Markov Chain Monte Carlo sampling and novel subsampling strategies which aid computation. We consider a broad array of simulated and experimental datasets to demonstrate the effectiveness of GPseudoClust in a range of settings.
Availability and implementation
An implementation is available on GitHub: https://github.com/magStra/nonparametricSummaryPSM and https://github.com/magStra/GPseudoClust.
Supplementary information
Supplementary data are available at Bioinformatics online. Many methods have been developed to cluster genes on the basis of their changes in mRNA expression over time, using bulk RNA-seq or microarray data. However, single-cell data may present a particular challenge for these algorithms, since the temporal ordering of cells is not directly observed. One way to address this is to first use pseudotime methods to order the cells, and then apply clustering techniques for time course data. However, pseudotime estimates are subject to high levels of uncertainty, and failing to account for this uncertainty is liable to lead to erroneous and/or over-confident gene clusters.MOTIVATIONMany methods have been developed to cluster genes on the basis of their changes in mRNA expression over time, using bulk RNA-seq or microarray data. However, single-cell data may present a particular challenge for these algorithms, since the temporal ordering of cells is not directly observed. One way to address this is to first use pseudotime methods to order the cells, and then apply clustering techniques for time course data. However, pseudotime estimates are subject to high levels of uncertainty, and failing to account for this uncertainty is liable to lead to erroneous and/or over-confident gene clusters.The proposed method, GPseudoClust, is a novel approach that jointly infers pseudotemporal ordering and gene clusters, and quantifies the uncertainty in both. GPseudoClust combines a recent method for pseudotime inference with non-parametric Bayesian clustering methods, efficient Markov Chain Monte Carlo sampling and novel subsampling strategies which aid computation. We consider a broad array of simulated and experimental datasets to demonstrate the effectiveness of GPseudoClust in a range of settings.RESULTSThe proposed method, GPseudoClust, is a novel approach that jointly infers pseudotemporal ordering and gene clusters, and quantifies the uncertainty in both. GPseudoClust combines a recent method for pseudotime inference with non-parametric Bayesian clustering methods, efficient Markov Chain Monte Carlo sampling and novel subsampling strategies which aid computation. We consider a broad array of simulated and experimental datasets to demonstrate the effectiveness of GPseudoClust in a range of settings.An implementation is available on GitHub: https://github.com/magStra/nonparametricSummaryPSM and https://github.com/magStra/GPseudoClust.AVAILABILITY AND IMPLEMENTATIONAn implementation is available on GitHub: https://github.com/magStra/nonparametricSummaryPSM and https://github.com/magStra/GPseudoClust.Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online. Many methods have been developed to cluster genes on the basis of their changes in mRNA expression over time, using bulk RNA-seq or microarray data. However, single-cell data may present a particular challenge for these algorithms, since the temporal ordering of cells is not directly observed. One way to address this is to first use pseudotime methods to order the cells, and then apply clustering techniques for time course data. However, pseudotime estimates are subject to high levels of uncertainty, and failing to account for this uncertainty is liable to lead to erroneous and/or over-confident gene clusters. The proposed method, GPseudoClust, is a novel approach that jointly infers pseudotemporal ordering and gene clusters, and quantifies the uncertainty in both. GPseudoClust combines a recent method for pseudotime inference with non-parametric Bayesian clustering methods, efficient Markov Chain Monte Carlo sampling and novel subsampling strategies which aid computation. We consider a broad array of simulated and experimental datasets to demonstrate the effectiveness of GPseudoClust in a range of settings. An implementation is available on GitHub: https://github.com/magStra/nonparametricSummaryPSM and https://github.com/magStra/GPseudoClust. Supplementary data are available at Bioinformatics online. |
| Author | Reid, John E Wernisch, Lorenz Kirk, Paul D W Strauss, Magdalena E |
| AuthorAffiliation | 1 Wellcome Sanger Institute , Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK 2 MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge , Cambridge CB2 0SR, UK 3 Department of Medicine, University of Cambridge , Addenbrooke's Hospital, Cambridge CB2 0SP, UK |
| AuthorAffiliation_xml | – name: 1 Wellcome Sanger Institute , Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK – name: 3 Department of Medicine, University of Cambridge , Addenbrooke's Hospital, Cambridge CB2 0SP, UK – name: 2 MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge , Cambridge CB2 0SR, UK |
| Author_xml | – sequence: 1 givenname: Magdalena E surname: Strauss fullname: Strauss, Magdalena E email: ms58@sanger.ac.uk organization: Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK – sequence: 2 givenname: Paul D W orcidid: 0000-0002-5931-7489 surname: Kirk fullname: Kirk, Paul D W organization: MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SR, UK – sequence: 3 givenname: John E orcidid: 0000-0002-7762-6760 surname: Reid fullname: Reid, John E organization: MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SR, UK – sequence: 4 givenname: Lorenz surname: Wernisch fullname: Wernisch, Lorenz organization: MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SR, UK |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31608923$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkMtu1TAURS1URB_wCaAMmYQ6Pn7EICGhq7YgVSoDGFtOctIa-drBdorK15NLLo8yoSNb8l57y-uYHIQYkJDnDX3VUA2nnYsujDFtbXF9Pu3Kd6XaR-So4ZLWjAp9sNxBqpq3FA7Jcc5fKBUN5_wJOYRG0lYzOCJXFx8zzkPc-DmX19WAfQy30c_FxVDFsco3NuFQTT9D9ZTi6DzmypYqu3Dtse7R-yph3jNPyePR-ozP9ucJ-Xx-9mnzvr68uviweXdZ91ywUmuquOY9Hyx2wBqUuoVRCAQYGLegrERFB0obTcXY8hFAY6eZloAMGGvhhMi1dw6TvftmvTdTclub7kxDzc6QuW_IrIYW8O0KTnO3xaHHUJL9A0frzP2X4G7Mdbw1SlFQEpaCl_uCFL_OmIvZuryzYAPGORsGVHAlJGuW6Iu_t36P_NK_BN6sgT7FnBOOpnfF7jwu087_9yviH_qhCujKxXl6IPIDauDJpg |
| CitedBy_id | crossref_primary_10_1093_bioinformatics_btaa593 crossref_primary_10_1186_s12859_022_04830_8 crossref_primary_10_1038_s42003_021_02306_8 crossref_primary_10_1093_jrsssc_qlad097 crossref_primary_10_1186_s13059_022_02716_9 |
| Cites_doi | 10.1186/1471-2105-12-399 10.1093/bioinformatics/btv325 10.1016/j.celrep.2015.12.082 10.1093/bioinformatics/bty533 10.1038/nbt.3154 10.1126/science.290.5500.2319 10.1109/TPAMI.2014.2318711 10.1093/bioinformatics/bty664 10.1038/nbt.3102 10.1214/aos/1176342360 10.1198/016214501750332758 10.1109/TSMC.1987.4309069 10.1371/journal.pcbi.1005896 10.1186/s13059-017-1269-0 10.1080/01621459.1971.10482356 10.1093/bioinformatics/bth068 10.1186/gb-2013-14-4-r31 10.1198/016214502760047131 10.1186/gb-2010-11-10-r106 10.1371/journal.pcbi.1005212 10.1186/1471-2105-14-252 10.1093/bioinformatics/bts595 10.1073/pnas.0500334102 10.1186/s13059-017-1188-0 10.1093/nar/gkw430 10.1093/bioinformatics/btw372 10.1371/journal.pcbi.1004333 10.1038/nmeth.4207 10.1038/nature12172 10.3389/fimmu.2018.01435 10.1038/nmeth.4402 10.1214/09-BA414 10.1038/nmeth.3971 10.1073/pnas.95.25.14863 10.1007/BF01908075 10.1182/blood-2016-05-716480 10.1214/aop/1024404422 10.1038/nmeth.4236 10.15252/msb.20178046 10.1186/s13059-016-0975-3 10.1038/nature13437 10.1186/s13059-015-0805-z 10.1038/nrg3833 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2019. Published by Oxford University Press. 2019 The Author(s) 2019. Published by Oxford University Press. |
| Copyright_xml | – notice: The Author(s) 2019. Published by Oxford University Press. 2019 – notice: The Author(s) 2019. Published by Oxford University Press. |
| DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY |
| DOI | 10.1093/bioinformatics/btz778 |
| DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1460-2059 1367-4811 |
| EndPage | 1491 |
| ExternalDocumentID | 10.1093/bioinformatics/btz778 PMC7703763 31608923 10_1093_bioinformatics_btz778 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Medical Research Council grantid: MC_UU_00002/10 – fundername: Medical Research Council grantid: MC_UU_00002/1 – fundername: Medical Research Council grantid: MC_UU_00002/13 – fundername: ; grantid: MC_UU_00002/1; MC_UU_00002/10; MC_UU_00002/13 |
| GroupedDBID | -~X .2P 5GY AAMVS ABPTD ACGFS ADZXQ ALMA_UNASSIGNED_HOLDINGS BCRHZ F5P HW0 KOP Q5Y RD5 ROX TLC TN5 TOX WH7 --- -E4 .DC .I3 0R~ 23N 2WC 4.4 48X 53G 5WA 70D AAIJN AAIMJ AAJKP AAKPC AAMDB AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN AAYXX ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABQLI ABWST ABXVV ABZBJ ACIWK ACPRK ACUFI ACUXJ ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRDM ADRTK ADVEK ADYVW ADZTZ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIJHB AJEEA AJEUX AKHUL AKWXX ALTZX ALUQC AMNDL APIBT APWMN ARIXL ASPBG AVWKF AXUDD AYOIW AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C45 CDBKE CITATION CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBD EBS EE~ EMOBN F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HZ~ IOX J21 JXSIZ KAQDR KQ8 KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. R44 RNS ROL RPM RUSNO RW1 RXO SV3 TEORI TJP TR2 W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 ~KM CGR CUY CVF ECM EIF NPM 7X8 5PM .-4 .GJ 1TH AAJQQ ABEFU ABNGD ACUKT ADTOC AFFNX AGQPQ AI. AQDSO ATTQO AZFZN C1A CAG COF EJD ELUNK HVGLF NTWIH NVLIB O0~ O~Y PB- RNI RZF RZO UNPAY VH1 ZGI |
| ID | FETCH-LOGICAL-c452t-907494c4daeb321e6983f55e33d24a37a6e70d001905f84f339eb92963e232283 |
| IEDL.DBID | UNPAY |
| ISSN | 1367-4803 1367-4811 |
| IngestDate | Sun Oct 26 03:38:30 EDT 2025 Thu Aug 21 14:01:04 EDT 2025 Thu Oct 02 06:03:57 EDT 2025 Mon Jul 21 05:42:53 EDT 2025 Tue Jul 01 02:33:50 EDT 2025 Thu Apr 24 22:51:18 EDT 2025 Wed Aug 28 03:16:44 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 The Author(s) 2019. Published by Oxford University Press. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c452t-907494c4daeb321e6983f55e33d24a37a6e70d001905f84f339eb92963e232283 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-7762-6760 0000-0002-5931-7489 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1093/bioinformatics/btz778 |
| PMID | 31608923 |
| PQID | 2305475621 |
| PQPubID | 23479 |
| PageCount | 8 |
| ParticipantIDs | unpaywall_primary_10_1093_bioinformatics_btz778 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7703763 proquest_miscellaneous_2305475621 pubmed_primary_31608923 crossref_citationtrail_10_1093_bioinformatics_btz778 crossref_primary_10_1093_bioinformatics_btz778 oup_primary_10_1093_bioinformatics_btz778 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-03-01 |
| PublicationDateYYYYMMDD | 2020-03-01 |
| PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Bioinformatics |
| PublicationTitleAlternate | Bioinformatics |
| PublicationYear | 2020 |
| Publisher | Oxford University Press |
| Publisher_xml | – name: Oxford University Press |
| References | Coifman (2023060910265130000_btz778-B8) 2005; 102 Medvedovic (2023060910265130000_btz778-B34) 2004; 20 Moignard (2023060910265130000_btz778-B35) 2015; 33 Buettner (2023060910265130000_btz778-B5) 2015; 33 Fraley (2023060910265130000_btz778-B12) 2002; 97 Shalek (2023060910265130000_btz778-B47) 2014; 510 Hensman (2023060910265130000_btz778-B21) 2013; 14 Lin (2023060910265130000_btz778-B30) 2017; 18 Ferguson (2023060910265130000_btz778-B11) 1973; 1 Welch (2023060910265130000_btz778-B56) 2017; 18 Griffiths (2023060910265130000_btz778-B17) 2018; 14 Fritsch (2023060910265130000_btz778-B13) 2009; 4 Rand (2023060910265130000_btz778-B41) 1971; 66 Tenenbaum (2023060910265130000_btz778-B52) 2000; 290 Kirk (2023060910265130000_btz778-B26) 2012; 28 Haghverdi (2023060910265130000_btz778-B18) 2015; 31 Haghverdi (2023060910265130000_btz778-B19) 2016; 13 Qiu (2023060910265130000_btz778-B40) 2017; 14 Stegle (2023060910265130000_btz778-B49) 2015; 16 Ahmed (2023060910265130000_btz778-B1) 2019; 35 Rasmussen (2023060910265130000_btz778-B42) 2006 Campbell (2023060910265130000_btz778-B7) 2016; 12 Hubert (2023060910265130000_btz778-B22) 1985; 2 Ishwaran (2023060910265130000_btz778-B23) 2001; 96 McDowell (2023060910265130000_btz778-B33) 2018; 14 Eisen (2023060910265130000_btz778-B10) 1998; 95 Kaufman (2023060910265130000_btz778-B25) 2008 Ji (2023060910265130000_btz778-B24) 2016; 44 Vallejos (2023060910265130000_btz778-B53) 2015; 11 Hensman (2023060910265130000_btz778-B20) 2015; 37 Sasagawa (2023060910265130000_btz778-B44) 2013; 14 Kiselev (2023060910265130000_btz778-B27) 2017; 14 Shalek (2023060910265130000_btz778-B46) 2013; 498 Gilks (2023060910265130000_btz778-B15) 1996 Kunz (2023060910265130000_btz778-B28) 2018; 9 Macaulay (2023060910265130000_btz778-B31) 2016; 14 Cabassi (2023060910265130000_btz778-B6) 2019 Kvalseth (2023060910265130000_btz778-B29) 1987; 17 Stumpf (2023060910265130000_btz778-B51) 2017; 5 Welch (2023060910265130000_btz778-B55) 2016; 17 Strauß (2023060910265130000_btz778-B50) 2019; 35 Wang (2023060910265130000_btz778-B54) 2017; 14 Reid (2023060910265130000_btz778-B43) 2016; 32 Pitman (2023060910265130000_btz778-B38) 1997; 25 Anders (2023060910265130000_btz778-B2) 2010; 11 Cooke (2023060910265130000_btz778-B9) 2011; 12 Gönen (2023060910265130000_btz778-B16) 2014 Pierson (2023060910265130000_btz778-B37) 2015; 16 Maechler (2023060910265130000_btz778-B32) 2019 Scrucca (2023060910265130000_btz778-B45) 2017; 8 Nestorowa (2023060910265130000_btz778-B36) 2016; 128 |
| References_xml | – volume: 12 start-page: 399. year: 2011 ident: 2023060910265130000_btz778-B9 article-title: Bayesian hierarchical clustering for microarray time series data with replicates and outlier measurements publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-399 – volume-title: Markov Chain Monte Carlo in Practice year: 1996 ident: 2023060910265130000_btz778-B15 – volume: 31 start-page: 2989 year: 2015 ident: 2023060910265130000_btz778-B18 article-title: Diffusion maps for high-dimensional single-cell analysis of differentiation data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv325 – volume: 14 start-page: 966 year: 2016 ident: 2023060910265130000_btz778-B31 article-title: Single-cell RNA-sequencing reveals a continuous spectrum of differentiation in hematopoietic cells publication-title: Cell Rep doi: 10.1016/j.celrep.2015.12.082 – volume: 35 start-page: 47 year: 2019 ident: 2023060910265130000_btz778-B1 article-title: GrandPrix: scaling up the Bayesian GPLVM for single-cell data publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty533 – volume: 33 start-page: 269–76 year: 2015 ident: 2023060910265130000_btz778-B35 article-title: Decoding the regulatory network of early blood development from single-cell gene expression measurements publication-title: Nat. Biotechnol doi: 10.1038/nbt.3154 – volume: 290 start-page: 2319 year: 2000 ident: 2023060910265130000_btz778-B52 article-title: A global geometric framework for nonlinear dimensionality reduction publication-title: Science doi: 10.1126/science.290.5500.2319 – volume: 37 start-page: 383 year: 2015 ident: 2023060910265130000_btz778-B20 article-title: Fast nonparametric clustering of structured time-series publication-title: IEEE Trans. Pattern Anal doi: 10.1109/TPAMI.2014.2318711 – volume: 35 start-page: 611 year: 2019 ident: 2023060910265130000_btz778-B50 article-title: GPseudoRank: a permutation sampler for single cell orderings publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty664 – volume: 33 start-page: 155 year: 2015 ident: 2023060910265130000_btz778-B5 article-title: Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells publication-title: Nat. Biotechnol doi: 10.1038/nbt.3102 – volume: 1 start-page: 209 year: 1973 ident: 2023060910265130000_btz778-B11 article-title: A Bayesian analysis of some nonparametric problems publication-title: Ann. Stat doi: 10.1214/aos/1176342360 – volume: 96 start-page: 161 year: 2001 ident: 2023060910265130000_btz778-B23 article-title: Gibbs sampling methods for stick-breaking priors publication-title: J. Am. Stat. Assoc doi: 10.1198/016214501750332758 – volume: 17 start-page: 517 year: 1987 ident: 2023060910265130000_btz778-B29 article-title: Entropy and correlation: some comments publication-title: IEEE Trans. Syst. Man. Cyber. SMC doi: 10.1109/TSMC.1987.4309069 – volume: 14 start-page: e1005896 year: 2018 ident: 2023060910265130000_btz778-B33 article-title: Clustering gene expression time series data using an infinite Gaussian process mixture model publication-title: PLoS Comput. Biol doi: 10.1371/journal.pcbi.1005896 – volume: 18 start-page: 138. year: 2017 ident: 2023060910265130000_btz778-B56 article-title: MATCHER: manifold alignment reveals correspondence between single cell transcriptome and epigenome dynamics publication-title: Genome Biol doi: 10.1186/s13059-017-1269-0 – start-page: 1305 volume-title: Advances in Neural Information Processing Systems year: 2014 ident: 2023060910265130000_btz778-B16 – volume: 66 start-page: 846 year: 1971 ident: 2023060910265130000_btz778-B41 article-title: Objective criteria for the evaluation of clustering methods publication-title: J. Am. Stat. Assoc doi: 10.1080/01621459.1971.10482356 – volume: 20 start-page: 1222 year: 2004 ident: 2023060910265130000_btz778-B34 article-title: Bayesian mixture model based clustering of replicated microarray data publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth068 – volume: 14 start-page: 3097. year: 2013 ident: 2023060910265130000_btz778-B44 article-title: Quartz-seq: a highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity publication-title: Genome Biol doi: 10.1186/gb-2013-14-4-r31 – volume: 97 start-page: 611 year: 2002 ident: 2023060910265130000_btz778-B12 article-title: Model-based clustering, discriminant analysis and density estimation publication-title: J. Am. Stat. Assoc doi: 10.1198/016214502760047131 – start-page: 68 volume-title: Partitioning around Medoids (Program PAM) year: 2008 ident: 2023060910265130000_btz778-B25 – volume: 11 start-page: R106 year: 2010 ident: 2023060910265130000_btz778-B2 article-title: Differential expression analysis for sequence count data publication-title: Genome Biol doi: 10.1186/gb-2010-11-10-r106 – volume: 12 start-page: e1005212. year: 2016 ident: 2023060910265130000_btz778-B7 article-title: Order under uncertainty: robust differential expression analysis using probabilistic models for pseudotime inference publication-title: PLoS Comput. Biol doi: 10.1371/journal.pcbi.1005212 – volume: 14 start-page: 252 year: 2013 ident: 2023060910265130000_btz778-B21 article-title: Hierarchical Bayesian modelling of gene expression time series across irregularly sampled replicates and clusters publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-14-252 – volume: 28 start-page: 3290 year: 2012 ident: 2023060910265130000_btz778-B26 article-title: Bayesian correlated clustering to integrate multiple datasets publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts595 – volume: 102 start-page: 7426 year: 2005 ident: 2023060910265130000_btz778-B8 article-title: Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0500334102 – volume: 18 start-page: 59. year: 2017 ident: 2023060910265130000_btz778-B30 article-title: CIDR: ultrafast and accurate clustering through imputation for single-cell RNA-seq data publication-title: Genome Biol doi: 10.1186/s13059-017-1188-0 – volume-title: Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning year: 2006 ident: 2023060910265130000_btz778-B42 – volume: 44 start-page: e117 year: 2016 ident: 2023060910265130000_btz778-B24 article-title: TSCAN: pseudotime reconstruction and evaluation in single-cell RNA-seq analysis publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw430 – volume: 32 start-page: 2973 year: 2016 ident: 2023060910265130000_btz778-B43 article-title: Pseudotime estimation: deconfounding single cell time series publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw372 – volume: 11 start-page: e1004333 year: 2015 ident: 2023060910265130000_btz778-B53 article-title: BASiCS: Bayesian analysis of single-cell sequencing data publication-title: PLoS Comput. Biol doi: 10.1371/journal.pcbi.1004333 – volume: 14 start-page: 414 year: 2017 ident: 2023060910265130000_btz778-B54 article-title: Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning publication-title: Nat. Methods doi: 10.1038/nmeth.4207 – volume: 498 start-page: 236 year: 2013 ident: 2023060910265130000_btz778-B46 article-title: Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells publication-title: Nature doi: 10.1038/nature12172 – volume: 9 start-page: 1435. year: 2018 ident: 2023060910265130000_btz778-B28 article-title: Immune cell dynamics unfolded by single-cell technologies publication-title: Front. Immunol doi: 10.3389/fimmu.2018.01435 – volume: 5 year: 2017 ident: 2023060910265130000_btz778-B51 article-title: Stem cell differentiation as a non-Markov stochastic process publication-title: Cell Syst – volume: 14 start-page: 979 year: 2017 ident: 2023060910265130000_btz778-B40 article-title: Reversed graph embedding resolves complex single-cell trajectories publication-title: Nat. Methods doi: 10.1038/nmeth.4402 – volume: 4 start-page: 367 year: 2009 ident: 2023060910265130000_btz778-B13 article-title: Improved criteria for clustering based on the posterior similarity matrix publication-title: Bayesian Anal doi: 10.1214/09-BA414 – year: 2019 ident: 2023060910265130000_btz778-B6 – volume: 13 start-page: 845 year: 2016 ident: 2023060910265130000_btz778-B19 article-title: Diffusion pseudotime robustly reconstructs lineage branching publication-title: Nat. Methods doi: 10.1038/nmeth.3971 – volume: 95 start-page: 14863 year: 1998 ident: 2023060910265130000_btz778-B10 article-title: Cluster analysis and display of genome-wide expression patterns publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.95.25.14863 – volume: 2 start-page: 193 year: 1985 ident: 2023060910265130000_btz778-B22 article-title: Comparing partitions publication-title: J. Classif doi: 10.1007/BF01908075 – volume: 128 start-page: e20 year: 2016 ident: 2023060910265130000_btz778-B36 article-title: A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation publication-title: Blood doi: 10.1182/blood-2016-05-716480 – volume: 25 start-page: 855 year: 1997 ident: 2023060910265130000_btz778-B38 article-title: The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator publication-title: Ann. Prob doi: 10.1214/aop/1024404422 – volume: 8 start-page: 205 year: 2017 ident: 2023060910265130000_btz778-B45 article-title: mclust 5: clustering, classification and density estimation using Gaussian finite mixture models publication-title: R J – volume: 14 start-page: 483 year: 2017 ident: 2023060910265130000_btz778-B27 article-title: SC3: consensus clustering of single-cell RNA-seq data publication-title: Nat. Methods doi: 10.1038/nmeth.4236 – year: 2019 ident: 2023060910265130000_btz778-B32 – volume: 14 year: 2018 ident: 2023060910265130000_btz778-B17 article-title: Using single-cell genomics to understand developmental processes and cell fate decisions publication-title: Mol. Syst. Biol doi: 10.15252/msb.20178046 – volume: 17 start-page: 106. year: 2016 ident: 2023060910265130000_btz778-B55 article-title: SLICER: inferring branched, nonlinear cellular trajectories from single cell RNA-seq data publication-title: Genome Biol doi: 10.1186/s13059-016-0975-3 – volume: 510 start-page: 363 year: 2014 ident: 2023060910265130000_btz778-B47 article-title: Single-cell RNA-seq reveals dynamic paracrine control of cellular variation publication-title: Nature doi: 10.1038/nature13437 – volume: 16 start-page: 241. year: 2015 ident: 2023060910265130000_btz778-B37 article-title: Zifa: dimensionality reduction for zero-inflated single-cell gene expression analysis publication-title: Genome Biol doi: 10.1186/s13059-015-0805-z – volume: 16 start-page: 133 year: 2015 ident: 2023060910265130000_btz778-B49 article-title: Computational and analytical challenges in single-cell transcriptomics publication-title: Nat. Rev. Genet doi: 10.1038/nrg3833 |
| SSID | ssj0051444 ssj0005056 |
| Score | 2.3650181 |
| Snippet | Abstract
Motivation
Many methods have been developed to cluster genes on the basis of their changes in mRNA expression over time, using bulk RNA-seq or... Many methods have been developed to cluster genes on the basis of their changes in mRNA expression over time, using bulk RNA-seq or microarray data. However,... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref oup |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1484 |
| SubjectTerms | Algorithms Bayes Theorem Cluster Analysis Markov Chains Original Papers Single-Cell Analysis |
| Title | GPseudoClust: deconvolution of shared pseudo-profiles at single-cell resolution |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/31608923 https://www.proquest.com/docview/2305475621 https://pubmed.ncbi.nlm.nih.gov/PMC7703763 https://doi.org/10.1093/bioinformatics/btz778 |
| UnpaywallVersion | publishedVersion |
| Volume | 36 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1460-2059 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: KQ8 dateStart: 19960101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1460-2059 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: ADMLS dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1460-2059 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: DIK dateStart: 19960101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: Open access medical journals (GFMER) customDbUrl: eissn: 1460-2059 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: GX1 dateStart: 19960101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1460-2059 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVOVD databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling customDbUrl: eissn: 1460-2059 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: OVEED dateStart: 20010101 isFulltext: true titleUrlDefault: http://ovidsp.ovid.com/ providerName: Ovid – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1460-2059 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1460-2059 dateEnd: 20220930 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7SDaW9tEmfTpOgQi89aHctyZadWwh5tWSTQxa2JyPZMgk19lLbLcmv72itXeKW0s1FGKwReow030jzAPgUG4b7IOXUSJ1RkXOfohTEQkZZzrSPB6D1Rr6YhGdT8WUWzJyzuvWF6b3fx3ykbysXQdRGLR7p5l7K6AlshgFC7wFsTidXh9863ypJRbTIhOy-fX_psfOvdnqyqOff9gBm_m0t-awt5-rulyqKB6Lo5CVMloPoLFC-D9tGD9P7P-I7rj3KLXjhQCk57LhoGzZM-Qqedmkq717D5elVbdqsOiraujkgmdWhfzqWJVVO6htrxU7mi0rUZQGviWqIvYgoDLWvAwT1ekfzBqYnx9dHZ9QlYqCpCFhDrQIdi1RkClVv5pswjngeBIbzjAnFpQqNHGcWLY6DPMIF57HRiLtCbhCwIYB5C4OyKs17IDqXPtNpGhqlRMCzGIWoVcKYEizVWnkglkuSpC5KuU2WUSTdazlP-nOVdHPlwXBFNu_CdPyP4DOu97p1Py65IsHNZ-dMlaZq6wT1t0BI7L7vwbuOS1ZNcj8cRwifPZA9_llVsIG9-3_K25tFgG-JxzCe-x6MVpy2Xk93Hk3xAZ4ze4OwsKrbhUHzozV7CLMavY8KxvlXLK8vZ_tuo_0GwToyQA |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Na9swFH-sKaO97Kvd5n2hQS89KIkl2bJ3K2VZGSzLYYH0ZCRbpqXGDrW90f71e4qVEHeMZRcjsJ7Qx5Pe70nvA-AkNgz3QcqpkTqjIuc-RSmIHxllOdM-HoDWG_nbNLyYi6-LYOGc1a0vTO_9PuYjfV25CKI2avFIN_dSRnuwHwYIvQewP5_Ozi473ypJRbTKhOzKvr_22PlbOz1Z1PNv24KZf1pLHrTlUt39UkWxJYomT2G6HkRngXIzbBs9TO8fxHfceZTP4IkDpeSs46Ln8MiUL-Bxl6by7gi-f5nVps2q86Ktm08kszr0T8eypMpJfWWt2MlyVYm6LOA1UQ2xFxGFofZ1gKBe72iOYT75_OP8grpEDDQVAWuoVaBjkYpMoerNfBPGEc-DwHCeMaG4VKGR48yixXGQR7jgPDYacVfIDQI2BDAvYVBWpXkNROfSZzpNQ6OUCHgWoxC1ShhTgqVaKw_EekmS1EUpt8kyiqR7LedJf66Sbq48GG7Ill2Yjn8RnOJ671r345orEtx8ds5Uaaq2TlB_C4TE7vsevOq4ZNMk98NxhPDZA9njn00FG9i7_6e8vloF-JZ4DOO578Fow2m79fTNf1O8hUNmbxBWVnXvYNDctuY9wqxGf3Cb6zd3vzAr |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GPseudoClust%3A+deconvolution+of+shared+pseudo-profiles+at+single-cell+resolution&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Strauss%2C+Magdalena+E&rft.au=Kirk%2C+Paul+D+W&rft.au=Reid%2C+John+E&rft.au=Wernisch%2C+Lorenz&rft.date=2020-03-01&rft.eissn=1367-4811&rft.volume=36&rft.issue=5&rft.spage=1484&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtz778&rft_id=info%3Apmid%2F31608923&rft.externalDocID=31608923 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon |