GPseudoClust: deconvolution of shared pseudo-profiles at single-cell resolution

Abstract Motivation Many methods have been developed to cluster genes on the basis of their changes in mRNA expression over time, using bulk RNA-seq or microarray data. However, single-cell data may present a particular challenge for these algorithms, since the temporal ordering of cells is not dire...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics Vol. 36; no. 5; pp. 1484 - 1491
Main Authors Strauss, Magdalena E, Kirk, Paul D W, Reid, John E, Wernisch, Lorenz
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.03.2020
Subjects
Online AccessGet full text
ISSN1367-4803
1367-4811
1460-2059
1367-4811
DOI10.1093/bioinformatics/btz778

Cover

Abstract Abstract Motivation Many methods have been developed to cluster genes on the basis of their changes in mRNA expression over time, using bulk RNA-seq or microarray data. However, single-cell data may present a particular challenge for these algorithms, since the temporal ordering of cells is not directly observed. One way to address this is to first use pseudotime methods to order the cells, and then apply clustering techniques for time course data. However, pseudotime estimates are subject to high levels of uncertainty, and failing to account for this uncertainty is liable to lead to erroneous and/or over-confident gene clusters. Results The proposed method, GPseudoClust, is a novel approach that jointly infers pseudotemporal ordering and gene clusters, and quantifies the uncertainty in both. GPseudoClust combines a recent method for pseudotime inference with non-parametric Bayesian clustering methods, efficient Markov Chain Monte Carlo sampling and novel subsampling strategies which aid computation. We consider a broad array of simulated and experimental datasets to demonstrate the effectiveness of GPseudoClust in a range of settings. Availability and implementation An implementation is available on GitHub: https://github.com/magStra/nonparametricSummaryPSM and https://github.com/magStra/GPseudoClust. Supplementary information Supplementary data are available at Bioinformatics online.
AbstractList Abstract Motivation Many methods have been developed to cluster genes on the basis of their changes in mRNA expression over time, using bulk RNA-seq or microarray data. However, single-cell data may present a particular challenge for these algorithms, since the temporal ordering of cells is not directly observed. One way to address this is to first use pseudotime methods to order the cells, and then apply clustering techniques for time course data. However, pseudotime estimates are subject to high levels of uncertainty, and failing to account for this uncertainty is liable to lead to erroneous and/or over-confident gene clusters. Results The proposed method, GPseudoClust, is a novel approach that jointly infers pseudotemporal ordering and gene clusters, and quantifies the uncertainty in both. GPseudoClust combines a recent method for pseudotime inference with non-parametric Bayesian clustering methods, efficient Markov Chain Monte Carlo sampling and novel subsampling strategies which aid computation. We consider a broad array of simulated and experimental datasets to demonstrate the effectiveness of GPseudoClust in a range of settings. Availability and implementation An implementation is available on GitHub: https://github.com/magStra/nonparametricSummaryPSM and https://github.com/magStra/GPseudoClust. Supplementary information Supplementary data are available at Bioinformatics online.
Many methods have been developed to cluster genes on the basis of their changes in mRNA expression over time, using bulk RNA-seq or microarray data. However, single-cell data may present a particular challenge for these algorithms, since the temporal ordering of cells is not directly observed. One way to address this is to first use pseudotime methods to order the cells, and then apply clustering techniques for time course data. However, pseudotime estimates are subject to high levels of uncertainty, and failing to account for this uncertainty is liable to lead to erroneous and/or over-confident gene clusters.MOTIVATIONMany methods have been developed to cluster genes on the basis of their changes in mRNA expression over time, using bulk RNA-seq or microarray data. However, single-cell data may present a particular challenge for these algorithms, since the temporal ordering of cells is not directly observed. One way to address this is to first use pseudotime methods to order the cells, and then apply clustering techniques for time course data. However, pseudotime estimates are subject to high levels of uncertainty, and failing to account for this uncertainty is liable to lead to erroneous and/or over-confident gene clusters.The proposed method, GPseudoClust, is a novel approach that jointly infers pseudotemporal ordering and gene clusters, and quantifies the uncertainty in both. GPseudoClust combines a recent method for pseudotime inference with non-parametric Bayesian clustering methods, efficient Markov Chain Monte Carlo sampling and novel subsampling strategies which aid computation. We consider a broad array of simulated and experimental datasets to demonstrate the effectiveness of GPseudoClust in a range of settings.RESULTSThe proposed method, GPseudoClust, is a novel approach that jointly infers pseudotemporal ordering and gene clusters, and quantifies the uncertainty in both. GPseudoClust combines a recent method for pseudotime inference with non-parametric Bayesian clustering methods, efficient Markov Chain Monte Carlo sampling and novel subsampling strategies which aid computation. We consider a broad array of simulated and experimental datasets to demonstrate the effectiveness of GPseudoClust in a range of settings.An implementation is available on GitHub: https://github.com/magStra/nonparametricSummaryPSM and https://github.com/magStra/GPseudoClust.AVAILABILITY AND IMPLEMENTATIONAn implementation is available on GitHub: https://github.com/magStra/nonparametricSummaryPSM and https://github.com/magStra/GPseudoClust.Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online.
Many methods have been developed to cluster genes on the basis of their changes in mRNA expression over time, using bulk RNA-seq or microarray data. However, single-cell data may present a particular challenge for these algorithms, since the temporal ordering of cells is not directly observed. One way to address this is to first use pseudotime methods to order the cells, and then apply clustering techniques for time course data. However, pseudotime estimates are subject to high levels of uncertainty, and failing to account for this uncertainty is liable to lead to erroneous and/or over-confident gene clusters. The proposed method, GPseudoClust, is a novel approach that jointly infers pseudotemporal ordering and gene clusters, and quantifies the uncertainty in both. GPseudoClust combines a recent method for pseudotime inference with non-parametric Bayesian clustering methods, efficient Markov Chain Monte Carlo sampling and novel subsampling strategies which aid computation. We consider a broad array of simulated and experimental datasets to demonstrate the effectiveness of GPseudoClust in a range of settings. An implementation is available on GitHub: https://github.com/magStra/nonparametricSummaryPSM and https://github.com/magStra/GPseudoClust. Supplementary data are available at Bioinformatics online.
Author Reid, John E
Wernisch, Lorenz
Kirk, Paul D W
Strauss, Magdalena E
AuthorAffiliation 1 Wellcome Sanger Institute , Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
2 MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge , Cambridge CB2 0SR, UK
3 Department of Medicine, University of Cambridge , Addenbrooke's Hospital, Cambridge CB2 0SP, UK
AuthorAffiliation_xml – name: 1 Wellcome Sanger Institute , Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
– name: 3 Department of Medicine, University of Cambridge , Addenbrooke's Hospital, Cambridge CB2 0SP, UK
– name: 2 MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge , Cambridge CB2 0SR, UK
Author_xml – sequence: 1
  givenname: Magdalena E
  surname: Strauss
  fullname: Strauss, Magdalena E
  email: ms58@sanger.ac.uk
  organization: Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
– sequence: 2
  givenname: Paul D W
  orcidid: 0000-0002-5931-7489
  surname: Kirk
  fullname: Kirk, Paul D W
  organization: MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SR, UK
– sequence: 3
  givenname: John E
  orcidid: 0000-0002-7762-6760
  surname: Reid
  fullname: Reid, John E
  organization: MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SR, UK
– sequence: 4
  givenname: Lorenz
  surname: Wernisch
  fullname: Wernisch, Lorenz
  organization: MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SR, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31608923$$D View this record in MEDLINE/PubMed
BookMark eNqNkMtu1TAURS1URB_wCaAMmYQ6Pn7EICGhq7YgVSoDGFtOctIa-drBdorK15NLLo8yoSNb8l57y-uYHIQYkJDnDX3VUA2nnYsujDFtbXF9Pu3Kd6XaR-So4ZLWjAp9sNxBqpq3FA7Jcc5fKBUN5_wJOYRG0lYzOCJXFx8zzkPc-DmX19WAfQy30c_FxVDFsco3NuFQTT9D9ZTi6DzmypYqu3Dtse7R-yph3jNPyePR-ozP9ucJ-Xx-9mnzvr68uviweXdZ91ywUmuquOY9Hyx2wBqUuoVRCAQYGLegrERFB0obTcXY8hFAY6eZloAMGGvhhMi1dw6TvftmvTdTclub7kxDzc6QuW_IrIYW8O0KTnO3xaHHUJL9A0frzP2X4G7Mdbw1SlFQEpaCl_uCFL_OmIvZuryzYAPGORsGVHAlJGuW6Iu_t36P_NK_BN6sgT7FnBOOpnfF7jwu087_9yviH_qhCujKxXl6IPIDauDJpg
CitedBy_id crossref_primary_10_1093_bioinformatics_btaa593
crossref_primary_10_1186_s12859_022_04830_8
crossref_primary_10_1038_s42003_021_02306_8
crossref_primary_10_1093_jrsssc_qlad097
crossref_primary_10_1186_s13059_022_02716_9
Cites_doi 10.1186/1471-2105-12-399
10.1093/bioinformatics/btv325
10.1016/j.celrep.2015.12.082
10.1093/bioinformatics/bty533
10.1038/nbt.3154
10.1126/science.290.5500.2319
10.1109/TPAMI.2014.2318711
10.1093/bioinformatics/bty664
10.1038/nbt.3102
10.1214/aos/1176342360
10.1198/016214501750332758
10.1109/TSMC.1987.4309069
10.1371/journal.pcbi.1005896
10.1186/s13059-017-1269-0
10.1080/01621459.1971.10482356
10.1093/bioinformatics/bth068
10.1186/gb-2013-14-4-r31
10.1198/016214502760047131
10.1186/gb-2010-11-10-r106
10.1371/journal.pcbi.1005212
10.1186/1471-2105-14-252
10.1093/bioinformatics/bts595
10.1073/pnas.0500334102
10.1186/s13059-017-1188-0
10.1093/nar/gkw430
10.1093/bioinformatics/btw372
10.1371/journal.pcbi.1004333
10.1038/nmeth.4207
10.1038/nature12172
10.3389/fimmu.2018.01435
10.1038/nmeth.4402
10.1214/09-BA414
10.1038/nmeth.3971
10.1073/pnas.95.25.14863
10.1007/BF01908075
10.1182/blood-2016-05-716480
10.1214/aop/1024404422
10.1038/nmeth.4236
10.15252/msb.20178046
10.1186/s13059-016-0975-3
10.1038/nature13437
10.1186/s13059-015-0805-z
10.1038/nrg3833
ContentType Journal Article
Copyright The Author(s) 2019. Published by Oxford University Press. 2019
The Author(s) 2019. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2019. Published by Oxford University Press. 2019
– notice: The Author(s) 2019. Published by Oxford University Press.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1093/bioinformatics/btz778
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1460-2059
1367-4811
EndPage 1491
ExternalDocumentID 10.1093/bioinformatics/btz778
PMC7703763
31608923
10_1093_bioinformatics_btz778
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: MC_UU_00002/10
– fundername: Medical Research Council
  grantid: MC_UU_00002/1
– fundername: Medical Research Council
  grantid: MC_UU_00002/13
– fundername: ;
  grantid: MC_UU_00002/1; MC_UU_00002/10; MC_UU_00002/13
GroupedDBID -~X
.2P
5GY
AAMVS
ABPTD
ACGFS
ADZXQ
ALMA_UNASSIGNED_HOLDINGS
BCRHZ
F5P
HW0
KOP
Q5Y
RD5
ROX
TLC
TN5
TOX
WH7
---
-E4
.DC
.I3
0R~
23N
2WC
4.4
48X
53G
5WA
70D
AAIJN
AAIMJ
AAJKP
AAKPC
AAMDB
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABQLI
ABWST
ABXVV
ABZBJ
ACIWK
ACPRK
ACUFI
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EMOBN
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HZ~
IOX
J21
JXSIZ
KAQDR
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
R44
RNS
ROL
RPM
RUSNO
RW1
RXO
SV3
TEORI
TJP
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
.-4
.GJ
1TH
AAJQQ
ABEFU
ABNGD
ACUKT
ADTOC
AFFNX
AGQPQ
AI.
AQDSO
ATTQO
AZFZN
C1A
CAG
COF
EJD
ELUNK
HVGLF
NTWIH
NVLIB
O0~
O~Y
PB-
RNI
RZF
RZO
UNPAY
VH1
ZGI
ID FETCH-LOGICAL-c452t-907494c4daeb321e6983f55e33d24a37a6e70d001905f84f339eb92963e232283
IEDL.DBID UNPAY
ISSN 1367-4803
1367-4811
IngestDate Sun Oct 26 03:38:30 EDT 2025
Thu Aug 21 14:01:04 EDT 2025
Thu Oct 02 06:03:57 EDT 2025
Mon Jul 21 05:42:53 EDT 2025
Tue Jul 01 02:33:50 EDT 2025
Thu Apr 24 22:51:18 EDT 2025
Wed Aug 28 03:16:44 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
The Author(s) 2019. Published by Oxford University Press.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c452t-907494c4daeb321e6983f55e33d24a37a6e70d001905f84f339eb92963e232283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7762-6760
0000-0002-5931-7489
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1093/bioinformatics/btz778
PMID 31608923
PQID 2305475621
PQPubID 23479
PageCount 8
ParticipantIDs unpaywall_primary_10_1093_bioinformatics_btz778
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7703763
proquest_miscellaneous_2305475621
pubmed_primary_31608923
crossref_citationtrail_10_1093_bioinformatics_btz778
crossref_primary_10_1093_bioinformatics_btz778
oup_primary_10_1093_bioinformatics_btz778
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics
PublicationTitleAlternate Bioinformatics
PublicationYear 2020
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Coifman (2023060910265130000_btz778-B8) 2005; 102
Medvedovic (2023060910265130000_btz778-B34) 2004; 20
Moignard (2023060910265130000_btz778-B35) 2015; 33
Buettner (2023060910265130000_btz778-B5) 2015; 33
Fraley (2023060910265130000_btz778-B12) 2002; 97
Shalek (2023060910265130000_btz778-B47) 2014; 510
Hensman (2023060910265130000_btz778-B21) 2013; 14
Lin (2023060910265130000_btz778-B30) 2017; 18
Ferguson (2023060910265130000_btz778-B11) 1973; 1
Welch (2023060910265130000_btz778-B56) 2017; 18
Griffiths (2023060910265130000_btz778-B17) 2018; 14
Fritsch (2023060910265130000_btz778-B13) 2009; 4
Rand (2023060910265130000_btz778-B41) 1971; 66
Tenenbaum (2023060910265130000_btz778-B52) 2000; 290
Kirk (2023060910265130000_btz778-B26) 2012; 28
Haghverdi (2023060910265130000_btz778-B18) 2015; 31
Haghverdi (2023060910265130000_btz778-B19) 2016; 13
Qiu (2023060910265130000_btz778-B40) 2017; 14
Stegle (2023060910265130000_btz778-B49) 2015; 16
Ahmed (2023060910265130000_btz778-B1) 2019; 35
Rasmussen (2023060910265130000_btz778-B42) 2006
Campbell (2023060910265130000_btz778-B7) 2016; 12
Hubert (2023060910265130000_btz778-B22) 1985; 2
Ishwaran (2023060910265130000_btz778-B23) 2001; 96
McDowell (2023060910265130000_btz778-B33) 2018; 14
Eisen (2023060910265130000_btz778-B10) 1998; 95
Kaufman (2023060910265130000_btz778-B25) 2008
Ji (2023060910265130000_btz778-B24) 2016; 44
Vallejos (2023060910265130000_btz778-B53) 2015; 11
Hensman (2023060910265130000_btz778-B20) 2015; 37
Sasagawa (2023060910265130000_btz778-B44) 2013; 14
Kiselev (2023060910265130000_btz778-B27) 2017; 14
Shalek (2023060910265130000_btz778-B46) 2013; 498
Gilks (2023060910265130000_btz778-B15) 1996
Kunz (2023060910265130000_btz778-B28) 2018; 9
Macaulay (2023060910265130000_btz778-B31) 2016; 14
Cabassi (2023060910265130000_btz778-B6) 2019
Kvalseth (2023060910265130000_btz778-B29) 1987; 17
Stumpf (2023060910265130000_btz778-B51) 2017; 5
Welch (2023060910265130000_btz778-B55) 2016; 17
Strauß (2023060910265130000_btz778-B50) 2019; 35
Wang (2023060910265130000_btz778-B54) 2017; 14
Reid (2023060910265130000_btz778-B43) 2016; 32
Pitman (2023060910265130000_btz778-B38) 1997; 25
Anders (2023060910265130000_btz778-B2) 2010; 11
Cooke (2023060910265130000_btz778-B9) 2011; 12
Gönen (2023060910265130000_btz778-B16) 2014
Pierson (2023060910265130000_btz778-B37) 2015; 16
Maechler (2023060910265130000_btz778-B32) 2019
Scrucca (2023060910265130000_btz778-B45) 2017; 8
Nestorowa (2023060910265130000_btz778-B36) 2016; 128
References_xml – volume: 12
  start-page: 399.
  year: 2011
  ident: 2023060910265130000_btz778-B9
  article-title: Bayesian hierarchical clustering for microarray time series data with replicates and outlier measurements
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-399
– volume-title: Markov Chain Monte Carlo in Practice
  year: 1996
  ident: 2023060910265130000_btz778-B15
– volume: 31
  start-page: 2989
  year: 2015
  ident: 2023060910265130000_btz778-B18
  article-title: Diffusion maps for high-dimensional single-cell analysis of differentiation data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv325
– volume: 14
  start-page: 966
  year: 2016
  ident: 2023060910265130000_btz778-B31
  article-title: Single-cell RNA-sequencing reveals a continuous spectrum of differentiation in hematopoietic cells
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2015.12.082
– volume: 35
  start-page: 47
  year: 2019
  ident: 2023060910265130000_btz778-B1
  article-title: GrandPrix: scaling up the Bayesian GPLVM for single-cell data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty533
– volume: 33
  start-page: 269–76
  year: 2015
  ident: 2023060910265130000_btz778-B35
  article-title: Decoding the regulatory network of early blood development from single-cell gene expression measurements
  publication-title: Nat. Biotechnol
  doi: 10.1038/nbt.3154
– volume: 290
  start-page: 2319
  year: 2000
  ident: 2023060910265130000_btz778-B52
  article-title: A global geometric framework for nonlinear dimensionality reduction
  publication-title: Science
  doi: 10.1126/science.290.5500.2319
– volume: 37
  start-page: 383
  year: 2015
  ident: 2023060910265130000_btz778-B20
  article-title: Fast nonparametric clustering of structured time-series
  publication-title: IEEE Trans. Pattern Anal
  doi: 10.1109/TPAMI.2014.2318711
– volume: 35
  start-page: 611
  year: 2019
  ident: 2023060910265130000_btz778-B50
  article-title: GPseudoRank: a permutation sampler for single cell orderings
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty664
– volume: 33
  start-page: 155
  year: 2015
  ident: 2023060910265130000_btz778-B5
  article-title: Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells
  publication-title: Nat. Biotechnol
  doi: 10.1038/nbt.3102
– volume: 1
  start-page: 209
  year: 1973
  ident: 2023060910265130000_btz778-B11
  article-title: A Bayesian analysis of some nonparametric problems
  publication-title: Ann. Stat
  doi: 10.1214/aos/1176342360
– volume: 96
  start-page: 161
  year: 2001
  ident: 2023060910265130000_btz778-B23
  article-title: Gibbs sampling methods for stick-breaking priors
  publication-title: J. Am. Stat. Assoc
  doi: 10.1198/016214501750332758
– volume: 17
  start-page: 517
  year: 1987
  ident: 2023060910265130000_btz778-B29
  article-title: Entropy and correlation: some comments
  publication-title: IEEE Trans. Syst. Man. Cyber. SMC
  doi: 10.1109/TSMC.1987.4309069
– volume: 14
  start-page: e1005896
  year: 2018
  ident: 2023060910265130000_btz778-B33
  article-title: Clustering gene expression time series data using an infinite Gaussian process mixture model
  publication-title: PLoS Comput. Biol
  doi: 10.1371/journal.pcbi.1005896
– volume: 18
  start-page: 138.
  year: 2017
  ident: 2023060910265130000_btz778-B56
  article-title: MATCHER: manifold alignment reveals correspondence between single cell transcriptome and epigenome dynamics
  publication-title: Genome Biol
  doi: 10.1186/s13059-017-1269-0
– start-page: 1305
  volume-title: Advances in Neural Information Processing Systems
  year: 2014
  ident: 2023060910265130000_btz778-B16
– volume: 66
  start-page: 846
  year: 1971
  ident: 2023060910265130000_btz778-B41
  article-title: Objective criteria for the evaluation of clustering methods
  publication-title: J. Am. Stat. Assoc
  doi: 10.1080/01621459.1971.10482356
– volume: 20
  start-page: 1222
  year: 2004
  ident: 2023060910265130000_btz778-B34
  article-title: Bayesian mixture model based clustering of replicated microarray data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth068
– volume: 14
  start-page: 3097.
  year: 2013
  ident: 2023060910265130000_btz778-B44
  article-title: Quartz-seq: a highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity
  publication-title: Genome Biol
  doi: 10.1186/gb-2013-14-4-r31
– volume: 97
  start-page: 611
  year: 2002
  ident: 2023060910265130000_btz778-B12
  article-title: Model-based clustering, discriminant analysis and density estimation
  publication-title: J. Am. Stat. Assoc
  doi: 10.1198/016214502760047131
– start-page: 68
  volume-title: Partitioning around Medoids (Program PAM)
  year: 2008
  ident: 2023060910265130000_btz778-B25
– volume: 11
  start-page: R106
  year: 2010
  ident: 2023060910265130000_btz778-B2
  article-title: Differential expression analysis for sequence count data
  publication-title: Genome Biol
  doi: 10.1186/gb-2010-11-10-r106
– volume: 12
  start-page: e1005212.
  year: 2016
  ident: 2023060910265130000_btz778-B7
  article-title: Order under uncertainty: robust differential expression analysis using probabilistic models for pseudotime inference
  publication-title: PLoS Comput. Biol
  doi: 10.1371/journal.pcbi.1005212
– volume: 14
  start-page: 252
  year: 2013
  ident: 2023060910265130000_btz778-B21
  article-title: Hierarchical Bayesian modelling of gene expression time series across irregularly sampled replicates and clusters
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-14-252
– volume: 28
  start-page: 3290
  year: 2012
  ident: 2023060910265130000_btz778-B26
  article-title: Bayesian correlated clustering to integrate multiple datasets
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts595
– volume: 102
  start-page: 7426
  year: 2005
  ident: 2023060910265130000_btz778-B8
  article-title: Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0500334102
– volume: 18
  start-page: 59.
  year: 2017
  ident: 2023060910265130000_btz778-B30
  article-title: CIDR: ultrafast and accurate clustering through imputation for single-cell RNA-seq data
  publication-title: Genome Biol
  doi: 10.1186/s13059-017-1188-0
– volume-title: Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning
  year: 2006
  ident: 2023060910265130000_btz778-B42
– volume: 44
  start-page: e117
  year: 2016
  ident: 2023060910265130000_btz778-B24
  article-title: TSCAN: pseudotime reconstruction and evaluation in single-cell RNA-seq analysis
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw430
– volume: 32
  start-page: 2973
  year: 2016
  ident: 2023060910265130000_btz778-B43
  article-title: Pseudotime estimation: deconfounding single cell time series
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw372
– volume: 11
  start-page: e1004333
  year: 2015
  ident: 2023060910265130000_btz778-B53
  article-title: BASiCS: Bayesian analysis of single-cell sequencing data
  publication-title: PLoS Comput. Biol
  doi: 10.1371/journal.pcbi.1004333
– volume: 14
  start-page: 414
  year: 2017
  ident: 2023060910265130000_btz778-B54
  article-title: Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4207
– volume: 498
  start-page: 236
  year: 2013
  ident: 2023060910265130000_btz778-B46
  article-title: Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells
  publication-title: Nature
  doi: 10.1038/nature12172
– volume: 9
  start-page: 1435.
  year: 2018
  ident: 2023060910265130000_btz778-B28
  article-title: Immune cell dynamics unfolded by single-cell technologies
  publication-title: Front. Immunol
  doi: 10.3389/fimmu.2018.01435
– volume: 5
  year: 2017
  ident: 2023060910265130000_btz778-B51
  article-title: Stem cell differentiation as a non-Markov stochastic process
  publication-title: Cell Syst
– volume: 14
  start-page: 979
  year: 2017
  ident: 2023060910265130000_btz778-B40
  article-title: Reversed graph embedding resolves complex single-cell trajectories
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4402
– volume: 4
  start-page: 367
  year: 2009
  ident: 2023060910265130000_btz778-B13
  article-title: Improved criteria for clustering based on the posterior similarity matrix
  publication-title: Bayesian Anal
  doi: 10.1214/09-BA414
– year: 2019
  ident: 2023060910265130000_btz778-B6
– volume: 13
  start-page: 845
  year: 2016
  ident: 2023060910265130000_btz778-B19
  article-title: Diffusion pseudotime robustly reconstructs lineage branching
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3971
– volume: 95
  start-page: 14863
  year: 1998
  ident: 2023060910265130000_btz778-B10
  article-title: Cluster analysis and display of genome-wide expression patterns
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.95.25.14863
– volume: 2
  start-page: 193
  year: 1985
  ident: 2023060910265130000_btz778-B22
  article-title: Comparing partitions
  publication-title: J. Classif
  doi: 10.1007/BF01908075
– volume: 128
  start-page: e20
  year: 2016
  ident: 2023060910265130000_btz778-B36
  article-title: A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation
  publication-title: Blood
  doi: 10.1182/blood-2016-05-716480
– volume: 25
  start-page: 855
  year: 1997
  ident: 2023060910265130000_btz778-B38
  article-title: The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator
  publication-title: Ann. Prob
  doi: 10.1214/aop/1024404422
– volume: 8
  start-page: 205
  year: 2017
  ident: 2023060910265130000_btz778-B45
  article-title: mclust 5: clustering, classification and density estimation using Gaussian finite mixture models
  publication-title: R J
– volume: 14
  start-page: 483
  year: 2017
  ident: 2023060910265130000_btz778-B27
  article-title: SC3: consensus clustering of single-cell RNA-seq data
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4236
– year: 2019
  ident: 2023060910265130000_btz778-B32
– volume: 14
  year: 2018
  ident: 2023060910265130000_btz778-B17
  article-title: Using single-cell genomics to understand developmental processes and cell fate decisions
  publication-title: Mol. Syst. Biol
  doi: 10.15252/msb.20178046
– volume: 17
  start-page: 106.
  year: 2016
  ident: 2023060910265130000_btz778-B55
  article-title: SLICER: inferring branched, nonlinear cellular trajectories from single cell RNA-seq data
  publication-title: Genome Biol
  doi: 10.1186/s13059-016-0975-3
– volume: 510
  start-page: 363
  year: 2014
  ident: 2023060910265130000_btz778-B47
  article-title: Single-cell RNA-seq reveals dynamic paracrine control of cellular variation
  publication-title: Nature
  doi: 10.1038/nature13437
– volume: 16
  start-page: 241.
  year: 2015
  ident: 2023060910265130000_btz778-B37
  article-title: Zifa: dimensionality reduction for zero-inflated single-cell gene expression analysis
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0805-z
– volume: 16
  start-page: 133
  year: 2015
  ident: 2023060910265130000_btz778-B49
  article-title: Computational and analytical challenges in single-cell transcriptomics
  publication-title: Nat. Rev. Genet
  doi: 10.1038/nrg3833
SSID ssj0051444
ssj0005056
Score 2.3650181
Snippet Abstract Motivation Many methods have been developed to cluster genes on the basis of their changes in mRNA expression over time, using bulk RNA-seq or...
Many methods have been developed to cluster genes on the basis of their changes in mRNA expression over time, using bulk RNA-seq or microarray data. However,...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1484
SubjectTerms Algorithms
Bayes Theorem
Cluster Analysis
Markov Chains
Original Papers
Single-Cell Analysis
Title GPseudoClust: deconvolution of shared pseudo-profiles at single-cell resolution
URI https://www.ncbi.nlm.nih.gov/pubmed/31608923
https://www.proquest.com/docview/2305475621
https://pubmed.ncbi.nlm.nih.gov/PMC7703763
https://doi.org/10.1093/bioinformatics/btz778
UnpaywallVersion publishedVersion
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: KQ8
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: ADMLS
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: DIK
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: Open access medical journals (GFMER)
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: GX1
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: OVEED
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 20220930
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7SDaW9tEmfTpOgQi89aHctyZadWwh5tWSTQxa2JyPZMgk19lLbLcmv72itXeKW0s1FGKwReow030jzAPgUG4b7IOXUSJ1RkXOfohTEQkZZzrSPB6D1Rr6YhGdT8WUWzJyzuvWF6b3fx3ykbysXQdRGLR7p5l7K6AlshgFC7wFsTidXh9863ypJRbTIhOy-fX_psfOvdnqyqOff9gBm_m0t-awt5-rulyqKB6Lo5CVMloPoLFC-D9tGD9P7P-I7rj3KLXjhQCk57LhoGzZM-Qqedmkq717D5elVbdqsOiraujkgmdWhfzqWJVVO6htrxU7mi0rUZQGviWqIvYgoDLWvAwT1ekfzBqYnx9dHZ9QlYqCpCFhDrQIdi1RkClVv5pswjngeBIbzjAnFpQqNHGcWLY6DPMIF57HRiLtCbhCwIYB5C4OyKs17IDqXPtNpGhqlRMCzGIWoVcKYEizVWnkglkuSpC5KuU2WUSTdazlP-nOVdHPlwXBFNu_CdPyP4DOu97p1Py65IsHNZ-dMlaZq6wT1t0BI7L7vwbuOS1ZNcj8cRwifPZA9_llVsIG9-3_K25tFgG-JxzCe-x6MVpy2Xk93Hk3xAZ4ze4OwsKrbhUHzozV7CLMavY8KxvlXLK8vZ_tuo_0GwToyQA
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Na9swFH-sKaO97Kvd5n2hQS89KIkl2bJ3K2VZGSzLYYH0ZCRbpqXGDrW90f71e4qVEHeMZRcjsJ7Qx5Pe70nvA-AkNgz3QcqpkTqjIuc-RSmIHxllOdM-HoDWG_nbNLyYi6-LYOGc1a0vTO_9PuYjfV25CKI2avFIN_dSRnuwHwYIvQewP5_Ozi473ypJRbTKhOzKvr_22PlbOz1Z1PNv24KZf1pLHrTlUt39UkWxJYomT2G6HkRngXIzbBs9TO8fxHfceZTP4IkDpeSs46Ln8MiUL-Bxl6by7gi-f5nVps2q86Ktm08kszr0T8eypMpJfWWt2MlyVYm6LOA1UQ2xFxGFofZ1gKBe72iOYT75_OP8grpEDDQVAWuoVaBjkYpMoerNfBPGEc-DwHCeMaG4VKGR48yixXGQR7jgPDYacVfIDQI2BDAvYVBWpXkNROfSZzpNQ6OUCHgWoxC1ShhTgqVaKw_EekmS1EUpt8kyiqR7LedJf66Sbq48GG7Ill2Yjn8RnOJ671r345orEtx8ds5Uaaq2TlB_C4TE7vsevOq4ZNMk98NxhPDZA9njn00FG9i7_6e8vloF-JZ4DOO578Fow2m79fTNf1O8hUNmbxBWVnXvYNDctuY9wqxGf3Cb6zd3vzAr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GPseudoClust%3A+deconvolution+of+shared+pseudo-profiles+at+single-cell+resolution&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Strauss%2C+Magdalena+E&rft.au=Kirk%2C+Paul+D+W&rft.au=Reid%2C+John+E&rft.au=Wernisch%2C+Lorenz&rft.date=2020-03-01&rft.eissn=1367-4811&rft.volume=36&rft.issue=5&rft.spage=1484&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtz778&rft_id=info%3Apmid%2F31608923&rft.externalDocID=31608923
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon