MLACNN: an attention mechanism-based CNN architecture for predicting genome-wide DNA methylation
Methylation is an important epigenetic regulation of methylation genes that plays a crucial role in regulating biological processes. While traditional methods for detecting methylation in biological experiments are constantly improving, the development of artificial intelligence has led to the emerg...
Saved in:
Published in | Theory in biosciences = Theorie in den Biowissenschaften Vol. 142; no. 4; pp. 359 - 370 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1431-7613 1611-7530 1611-7530 |
DOI | 10.1007/s12064-023-00402-3 |
Cover
Abstract | Methylation is an important epigenetic regulation of methylation genes that plays a crucial role in regulating biological processes. While traditional methods for detecting methylation in biological experiments are constantly improving, the development of artificial intelligence has led to the emergence of deep learning and machine learning methods as a new trend. However, traditional machine learning-based methods rely heavily on manual feature extraction, and most deep learning methods for studying methylation extract fewer features due to their simple network structures. To address this, we propose a bottomneck network based on an attention mechanism and use new methods to ensure that the deep network can learn more effective features while minimizing overfitting. This approach enables the model to learn more features from nucleotide sequences and make better predictions of methylation. The model uses three coding methods to encode the original DNA sequence and then applies feature fusion based on attention mechanisms to obtain the best fusion method. Our results demonstrate that MLACNN outperforms previous methods and achieves more satisfactory performance. |
---|---|
AbstractList | Methylation is an important epigenetic regulation of methylation genes that plays a crucial role in regulating biological processes. While traditional methods for detecting methylation in biological experiments are constantly improving, the development of artificial intelligence has led to the emergence of deep learning and machine learning methods as a new trend. However, traditional machine learning-based methods rely heavily on manual feature extraction, and most deep learning methods for studying methylation extract fewer features due to their simple network structures. To address this, we propose a bottomneck network based on an attention mechanism and use new methods to ensure that the deep network can learn more effective features while minimizing overfitting. This approach enables the model to learn more features from nucleotide sequences and make better predictions of methylation. The model uses three coding methods to encode the original DNA sequence and then applies feature fusion based on attention mechanisms to obtain the best fusion method. Our results demonstrate that MLACNN outperforms previous methods and achieves more satisfactory performance.Methylation is an important epigenetic regulation of methylation genes that plays a crucial role in regulating biological processes. While traditional methods for detecting methylation in biological experiments are constantly improving, the development of artificial intelligence has led to the emergence of deep learning and machine learning methods as a new trend. However, traditional machine learning-based methods rely heavily on manual feature extraction, and most deep learning methods for studying methylation extract fewer features due to their simple network structures. To address this, we propose a bottomneck network based on an attention mechanism and use new methods to ensure that the deep network can learn more effective features while minimizing overfitting. This approach enables the model to learn more features from nucleotide sequences and make better predictions of methylation. The model uses three coding methods to encode the original DNA sequence and then applies feature fusion based on attention mechanisms to obtain the best fusion method. Our results demonstrate that MLACNN outperforms previous methods and achieves more satisfactory performance. Methylation is an important epigenetic regulation of methylation genes that plays a crucial role in regulating biological processes. While traditional methods for detecting methylation in biological experiments are constantly improving, the development of artificial intelligence has led to the emergence of deep learning and machine learning methods as a new trend. However, traditional machine learning-based methods rely heavily on manual feature extraction, and most deep learning methods for studying methylation extract fewer features due to their simple network structures. To address this, we propose a bottomneck network based on an attention mechanism and use new methods to ensure that the deep network can learn more effective features while minimizing overfitting. This approach enables the model to learn more features from nucleotide sequences and make better predictions of methylation. The model uses three coding methods to encode the original DNA sequence and then applies feature fusion based on attention mechanisms to obtain the best fusion method. Our results demonstrate that MLACNN outperforms previous methods and achieves more satisfactory performance. |
Author | Wu, ChangDe Yang, Hai Bai, JianGuo |
Author_xml | – sequence: 1 givenname: JianGuo surname: Bai fullname: Bai, JianGuo organization: Shandong Jiaotong University – sequence: 2 givenname: Hai surname: Yang fullname: Yang, Hai email: yh_sdjtu@163.com organization: Shandong Jiaotong University – sequence: 3 givenname: ChangDe surname: Wu fullname: Wu, ChangDe organization: Shandong Jiaotong University |
BookMark | eNp9kUuPFCEUhYkZ4zz0D7iqxI2bUi5UQZUb02mfSdtudI0U3OpmUgUtUJr599LTY4yzmBUkfOdwzz2X5MwHj4Q8B_oKKJWvEzAqmpoyXlPaUFbzR-QCBEAtW07Pyr3h5S6An5PLlK4pZSB78YSccymargd6QX582azW2-2bSvtK54w-u-CrGc1ee5fmetAJbVWISkezdxlNXiJWY4jVIaJ1Jju_q3bow4z1b2exerddFX3e30z66PWUPB71lPDZ3XlFvn94_239qd58_fh5vdrUpmlZrrkYBrC670cYrRVADYWuRapRaqNHNL1gQo8ttWCB9QZGOVDTCrBykJ3k_Iq8PfkelmFGa0qSqCd1iG7W8UYF7dT_L97t1S78UkDbsgxgxeHlnUMMPxdMWc0uGZwm7TEsSbGu7QVtGxAFfXEPvQ5L9CVfoWTLgAM_GnYnysSQUsRRGZdvl1IGcFP5WR17VKceVelR3faojmnYPenfIA-K-EmUCux3GP9N9YDqD4fosNI |
CitedBy_id | crossref_primary_10_1007_s10462_024_10883_3 crossref_primary_10_1016_j_compbiomed_2024_109302 |
Cites_doi | 10.1016/j.chemolab.2019.103811 10.1038/nrg2341 10.1093/bioinformatics/btaa155 10.1093/bib/bbaa099 10.1039/C6MB00536E 10.1109/ACCESS.2020.3002995 10.1002/humu.22444 10.1093/nar/gkw104 10.1093/nar/gkt1380 10.1093/bioinformatics/bty002 10.1073/pnas.2206069119 10.1016/j.jtbi.2018.07.018 10.1016/j.ab.2016.06.012 10.1073/pnas.1815441116 10.3390/cells8111332 10.1038/nrg3230 10.1093/nar/gkaa266 10.1186/s13059-014-0456-5 10.1093/bib/bbaa124 10.1093/bioinformatics/btaa507 10.1016/j.ygeno.2018.01.005 10.1186/s13059-015-0581-9 10.2144/000112708 10.1093/bioinformatics/btz015 10.1016/j.omtn.2019.08.011 10.1038/srep46757 10.1038/nrg1655 10.1016/j.stem.2013.06.002 10.3389/fgene.2021.650803 10.1109/ACCESS.2020.3036090 10.1186/s12864-020-6768-9 10.3389/fgene.2018.00495 10.1109/ACCESS.2021.3054361 10.1093/nar/gkx177 10.1126/science.1220671 10.1109/CVPR.2018.00716 10.1109/CVPR42600.2020.01155 10.1007/978-3-319-43624-1_10 10.1109/CVPR.2016.90 10.1038/srep40242 10.1080/07391102.2016.1157761 10.1186/s13059-016-1139-1 10.1007/978-3-030-84529-2_58 10.1109/CVPR.2018.00745 10.1038/srep13859 10.1016/j.ab.2015.08.021 10.1109/ICCV.2019.00679 10.1007/978-981-16-1354-8_19 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023. The Author(s). |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023. The Author(s). |
DBID | C6C AAYXX CITATION 8FE 8FH AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1007/s12064-023-00402-3 |
DatabaseName | Springer Nature OA Free Journals (Selected full-text) CrossRef ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef ProQuest Central Student ProQuest Biological Science Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Central Student CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1611-7530 |
EndPage | 370 |
ExternalDocumentID | PMC10564812 10_1007_s12064_023_00402_3 |
GroupedDBID | --- --K -56 -5G -BR -EM -Y2 -~C -~X .86 .VR 06C 06D 0R~ 0VY 123 1B1 1N0 203 29Q 29~ 2J2 2JN 2JY 2KG 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 53G 5VS 67N 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAEDT AAHNG AAIAL AAJBT AAJKR AALCJ AALRI AANXM AANZL AAQFI AAQXK AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXUO AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABWVN ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACRPL ACSNA ACZOJ ADGUI ADHHG ADHIR ADINQ ADKNI ADKPE ADMUD ADNMO ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEGXH AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BDATZ BENPR BGNMA BHPHI C6C CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMOBN EN4 ESBYG F5P FDB FEDTE FERAY FFXSO FGOYB FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Q G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG5 HG6 HMJXF HRMNR HVGLF HZ~ IHE IJ- IKXTQ IWAJR IXD IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KOV KPH LLZTM M41 M4Y M7P MA- N9A NPVJJ NQ- NQJWS NU0 O9- O93 O9I O9J OAM PF- PT4 QOR QOS R2- R89 R9I ROL RPX RPZ RSV S16 S1Z S27 S3A S3B SAP SBL SDH SEW SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 TSG TSK TSV TUC TUS U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Y6R YLTOR Z45 ZMTXR ZOVNA ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8FE 8FH ABRTQ AZQEC DWQXO GNUQQ LK8 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c452t-36bb1da99f1fdd610c0185e0ae7acafec9626af50d1d129c1f7b0c561d7b78733 |
IEDL.DBID | BENPR |
ISSN | 1431-7613 1611-7530 |
IngestDate | Thu Aug 21 18:35:42 EDT 2025 Fri Sep 05 08:08:09 EDT 2025 Sun Jul 13 05:11:06 EDT 2025 Tue Jul 01 01:52:14 EDT 2025 Thu Apr 24 23:12:31 EDT 2025 Fri Feb 21 02:42:37 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Genome wide methylation detection Attention CNN Hybrid neural network |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c452t-36bb1da99f1fdd610c0185e0ae7acafec9626af50d1d129c1f7b0c561d7b78733 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s12064-023-00402-3 |
PMID | 37648910 |
PQID | 2875213132 |
PQPubID | 2044399 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10564812 proquest_miscellaneous_2859605416 proquest_journals_2875213132 crossref_citationtrail_10_1007_s12064_023_00402_3 crossref_primary_10_1007_s12064_023_00402_3 springer_journals_10_1007_s12064_023_00402_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Theory in biosciences = Theorie in den Biowissenschaften |
PublicationTitleAbbrev | Theory Biosci |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Basith, Manavalan, Shin (CR6) 2019; 18 Alam, Ali, Tayara (CR3) 2020; 8 CR37 Zhang, Spector, Deloukas (CR55) 2015; 16 Nye, van Gijtenbeek, Stevens (CR32) 2020; 48 CR33 Ma, Wilker, Willis-Owen (CR27) 2014; 42 CR30 Manavalan, Basith, Shin (CR29) 2019; 8 Wang, Liu, Li (CR47) 2013; 34 Zhou, Zeng, Li (CR57) 2016; 44 Nazari, Tahir, Tayara (CR31) 2019; 193 Srivastava (CR40) 2014; 15.1 Akbar, Hayat (CR2) 2018; 455 Xing, Su, Guo (CR50) 2017; 7 Feng, Yang, Ding (CR15) 2019; 111 Chen, Lv, Nie (CR13) 2019; 35 CR5 CR8 Pian, Yang, Yang (CR35) 2021; 12 CR9 Liu, Chen, Wang (CR26) 2021; 22 CR48 Suzuki, Bird (CR41) 2008; 9 CR46 CR45 CR43 Liu, Chen (CR25) 2020; 36 Habibi (CR17) 2013; 13 Xu, Jia, Zhao (CR51) 2021; 22 Jia, Zhang, Gu (CR23) 2016; 510 Xiang, Yan, Liu (CR49) 2016; 12 CR18 CR16 CR59 CR12 Huang (CR19) 2019; 116 CR56 Angermueller, Lee, Reik (CR4) 2017; 18 CR11 CR10 Jacinto, Ballestar, Esteller (CR22) 2008; 44 Qiang, Chen, Ye (CR36) 2018; 9 Tian, Zou, Tang (CR44) 2019; 20 Robertson (CR39) 2005; 6 Booth, Branco, Ficz (CR7) 2012; 336 Abbas, Tayara, Chong (CR1) 2020; 8 CR28 Yu, Ji, Neumann (CR53) 2015; 43 Yang, Lang, Zhang (CR52) 2020; 36 Rehman, Hong, Tayara (CR38) 2021; 9 CR21 CR20 Tang, Zou, Zhang (CR42) 2020; 21 Zhou, Chen, Braun (CR58) 2022; 119 Cheng, Hu, Sun (CR14) 2018; 34 Jones (CR24) 2012; 13 Zeng, Gifford (CR54) 2017; 45 Petterson, Chung, Tan (CR34) 2014; 15 TM Nye (402_CR32) 2020; 48 402_CR43 402_CR5 W Alam (402_CR3) 2020; 8 402_CR48 T Wang (402_CR47) 2013; 34 FV Jacinto (402_CR22) 2008; 44 402_CR45 402_CR46 KD Robertson (402_CR39) 2005; 6 P Feng (402_CR15) 2019; 111 B Ma (402_CR27) 2014; 42 J Yang (402_CR52) 2020; 36 Z Abbas (402_CR1) 2020; 8 402_CR10 J Tang (402_CR42) 2020; 21 C Angermueller (402_CR4) 2017; 18 402_CR59 402_CR16 W Chen (402_CR13) 2019; 35 402_CR18 I Nazari (402_CR31) 2019; 193 402_CR11 402_CR12 402_CR56 E Habibi (402_CR17) 2013; 13 402_CR9 W Zhang (402_CR55) 2015; 16 402_CR8 MM Suzuki (402_CR41) 2008; 9 402_CR20 402_CR21 C Pian (402_CR35) 2021; 12 402_CR28 MJ Booth (402_CR7) 2012; 336 S Xiang (402_CR49) 2016; 12 H Huang (402_CR19) 2019; 116 Q Liu (402_CR26) 2021; 22 L Cheng (402_CR14) 2018; 34 MU Rehman (402_CR38) 2021; 9 Y Zhou (402_CR57) 2016; 44 402_CR30 H Xu (402_CR51) 2021; 22 H Zeng (402_CR54) 2017; 45 X Qiang (402_CR36) 2018; 9 S Basith (402_CR6) 2019; 18 J Zhou (402_CR58) 2022; 119 402_CR37 A Petterson (402_CR34) 2014; 15 K Liu (402_CR25) 2020; 36 B Manavalan (402_CR29) 2019; 8 402_CR33 N Srivastava (402_CR40) 2014; 15.1 M Yu (402_CR53) 2015; 43 S Akbar (402_CR2) 2018; 455 CZ Jia (402_CR23) 2016; 510 P Xing (402_CR50) 2017; 7 Q Tian (402_CR44) 2019; 20 PA Jones (402_CR24) 2012; 13 |
References_xml | – volume: 193 year: 2019 ident: CR31 article-title: iN6-Methyl (5-step): identifying RNA N6-methyladenosine sites using deep learning mode via Chou’s 5-step rules and Chou’s general PseKNC publication-title: Chemom Intell Lab Syst doi: 10.1016/j.chemolab.2019.103811 – ident: CR45 – volume: 9 start-page: 465 issue: 6 year: 2008 end-page: 476 ident: CR41 article-title: DNA methylation landscapes: provocative insights from epigenomics publication-title: Nat Rev Genet doi: 10.1038/nrg2341 – volume: 36 start-page: 3336 issue: 11 year: 2020 end-page: 3342 ident: CR25 article-title: iMRM: a platform for simultaneously identifying multiple kinds of RNA modifications publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa155 – volume: 22 start-page: bbaa099 issue: 3 year: 2021 ident: CR51 article-title: Deep4mC: systematic assessment and computational prediction for DNA N4-methylcytosine sites by deep learning publication-title: Brief Bioinform doi: 10.1093/bib/bbaa099 – ident: CR16 – ident: CR12 – volume: 12 start-page: 3333 issue: 11 year: 2016 end-page: 3337 ident: CR49 article-title: AthMethPre: a web server for the prediction and query of mRNA m6A sites in Arabidopsis thaliana publication-title: Mol BioSyst doi: 10.1039/C6MB00536E – ident: CR8 – volume: 8 start-page: 138203 year: 2020 end-page: 138209 ident: CR3 article-title: A CNN-based RNA N6-methyladenosine site predictor for multiple species using heterogeneous features representation publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3002995 – volume: 34 start-page: 1606 issue: 12 year: 2013 end-page: 1610 ident: CR47 article-title: RRBS-A nalyser: a comprehensive web server for reduced representation bisulfite sequencing data analysis publication-title: Hum Mutat doi: 10.1002/humu.22444 – volume: 44 start-page: e91 issue: 10 year: 2016 end-page: e91 ident: CR57 article-title: SRAMP: prediction of mammalian N6-methyladenosine (m6A) sites based on sequence-derived features publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw104 – ident: CR21 – volume: 42 start-page: 3515 issue: 6 year: 2014 end-page: 3528 ident: CR27 article-title: Predicting DNA methylation level across human tissues publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1380 – volume: 34 start-page: 1953 issue: 11 year: 2018 end-page: 1956 ident: CR14 article-title: DincRNA: a comprehensive web-based bioinformatics toolkit for exploring disease associations and ncRNA function publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty002 – ident: CR46 – volume: 119 issue: 34 year: 2022 ident: CR58 article-title: Deep learning predicts DNA methylation regulatory variants in the human brain and elucidates the genetics of psychiatric disorders publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.2206069119 – volume: 455 start-page: 205 year: 2018 end-page: 211 ident: CR2 article-title: iMethyl-STTNC: Identification of N6-methyladenosine sites by extending the idea of SAAC into Chou’s PseAAC to formulate RNA sequences publication-title: J Theor Biol doi: 10.1016/j.jtbi.2018.07.018 – volume: 510 start-page: 72 year: 2016 end-page: 75 ident: CR23 article-title: RNA-MethylPred: a high-accuracy predictor to identify N6-methyladenosine in RNA publication-title: Anal Biochem doi: 10.1016/j.ab.2016.06.012 – volume: 116 start-page: 1430 issue: 4 year: 2019 end-page: 1436 ident: CR19 article-title: Global increase in DNA methylation during orange fruit development and ripening publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1815441116 – ident: CR11 – volume: 8 start-page: 1332 issue: 11 year: 2019 ident: CR29 article-title: 4mCpred-EL: an ensemble learning framework for identification of DNA N4-methylcytosine sites in the mouse genome publication-title: Cells doi: 10.3390/cells8111332 – ident: CR9 – volume: 13 start-page: 484 issue: 7 year: 2012 end-page: 492 ident: CR24 article-title: Functions of DNA methylation: islands, start sites, gene bodies and beyond publication-title: Nat Rev Genet doi: 10.1038/nrg3230 – volume: 48 start-page: 5332 issue: 10 year: 2020 end-page: 5348 ident: CR32 article-title: Methyltransferase DnmA is responsible for genome-wide N6-methyladenosine modifications at non-palindromic recognition sites in Bacillus subtilis publication-title: Nucleic Acids Res doi: 10.1093/nar/gkaa266 – volume: 15 start-page: 1 issue: 9 year: 2014 end-page: 13 ident: CR34 article-title: RRHP: a tag-based approach for 5-hydroxymethylcytosine mapping at single-site resolution publication-title: Genome Biol doi: 10.1186/s13059-014-0456-5 – volume: 22 start-page: bbaa124 issue: 3 year: 2021 ident: CR26 article-title: DeepTorrent: a deep learning-based approach for predicting DNA N4-methylcytosine sites publication-title: Brief Bioinform doi: 10.1093/bib/bbaa124 – ident: CR5 – volume: 36 start-page: 4103 issue: 14 year: 2020 end-page: 4105 ident: CR52 article-title: SOMM4mC: a second-order Markov model for DNA N4-methylcytosine site prediction in six species publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa507 – volume: 111 start-page: 96 issue: 1 year: 2019 end-page: 102 ident: CR15 article-title: iDNA6mA-PseKNC: identifying DNA N6-methyladenosine sites by incorporating nucleotide physicochemical properties into PseKNC publication-title: Genomics doi: 10.1016/j.ygeno.2018.01.005 – volume: 43 start-page: e148 issue: 21 year: 2015 end-page: e148 ident: CR53 article-title: Base-resolution detection of N 4-methylcytosine in genomic DNA using 4mC-Tet-assisted-bisulfite-sequencing publication-title: Nucleic Acids Res – volume: 16 start-page: 1 issue: 1 year: 2015 end-page: 20 ident: CR55 article-title: Predicting genome-wide DNA methylation using methylation marks, genomic position, and DNA regulatory elements publication-title: Genome Biol doi: 10.1186/s13059-015-0581-9 – volume: 44 start-page: 35 issue: 1 year: 2008 end-page: 39 ident: CR22 article-title: Methyl-DNA immunoprecipitation (MeDIP): hunting down the DNA methylome publication-title: Biotechniques doi: 10.2144/000112708 – ident: CR18 – ident: CR43 – volume: 35 start-page: 2796 issue: 16 year: 2019 end-page: 2800 ident: CR13 article-title: i6mA-Pred: identifying DNA N6-methyladenine sites in the rice genome publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz015 – volume: 20 start-page: 1 issue: 2 year: 2019 end-page: 10 ident: CR44 article-title: MRCNN: a deep learning model for regression of genome-wide DNA methylation publication-title: BMC Genom – volume: 18 start-page: 131 year: 2019 end-page: 141 ident: CR6 article-title: SDM6A: a web-based integrative machine-learning framework for predicting 6mA sites in the rice genome publication-title: Mol Ther Nucleic Acids doi: 10.1016/j.omtn.2019.08.011 – ident: CR37 – ident: CR30 – ident: CR10 – ident: CR33 – ident: CR56 – volume: 7 start-page: 1 issue: 1 year: 2017 end-page: 7 ident: CR50 article-title: Identifying N6-methyladenosine sites using multi-interval nucleotide pair position specificity and support vector machine publication-title: Sci Rep doi: 10.1038/srep46757 – ident: CR48 – volume: 6 start-page: 597 issue: 8 year: 2005 end-page: 610 ident: CR39 article-title: DNA methylation and human disease publication-title: Nat Rev Genet doi: 10.1038/nrg1655 – volume: 13 start-page: 360 issue: 3 year: 2013 end-page: 369 ident: CR17 article-title: Whole-genome bisulfite sequencing of two distinct interconvertible DNA methylomes of mouse embryonic stem cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2013.06.002 – volume: 18 start-page: 1 issue: 1 year: 2017 end-page: 13 ident: CR4 article-title: DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning publication-title: Genome Biol – volume: 12 year: 2021 ident: CR35 article-title: Identifying RNA N6-methyladenine sites in three species based on a Markov model publication-title: Front Genet doi: 10.3389/fgene.2021.650803 – volume: 8 start-page: 201450 year: 2020 end-page: 201457 ident: CR1 article-title: Spinenet-6ma: a novel deep learning tool for predicting DNA n6-methyladenine sites in genomes publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3036090 – volume: 21 start-page: 1 year: 2020 end-page: 15 ident: CR42 article-title: PretiMeth: precise prediction models for DNA methylation based on single methylation mark publication-title: BMC Genomics doi: 10.1186/s12864-020-6768-9 – volume: 9 start-page: 495 year: 2018 ident: CR36 article-title: M6AMRFS: robust prediction of N6-methyladenosine sites with sequence-based features in multiple species publication-title: Front Genet doi: 10.3389/fgene.2018.00495 – volume: 9 start-page: 17779 year: 2021 end-page: 17786 ident: CR38 article-title: m6A-NeuralTool: convolution neural tool for RNA N6-Methyladenosine site identification in different species publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3054361 – volume: 45 start-page: e99 issue: 11 year: 2017 end-page: e99 ident: CR54 article-title: Predicting the impact of non-coding variants on DNA methylation publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx177 – volume: 15.1 start-page: 1929 year: 2014 end-page: 1958 ident: CR40 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res – volume: 336 start-page: 934 issue: 6083 year: 2012 end-page: 937 ident: CR7 article-title: Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution publication-title: Science doi: 10.1126/science.1220671 – ident: CR59 – ident: CR28 – ident: CR20 – ident: 402_CR21 – ident: 402_CR56 doi: 10.1109/CVPR.2018.00716 – volume: 34 start-page: 1953 issue: 11 year: 2018 ident: 402_CR14 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty002 – volume: 15 start-page: 1 issue: 9 year: 2014 ident: 402_CR34 publication-title: Genome Biol doi: 10.1186/s13059-014-0456-5 – volume: 6 start-page: 597 issue: 8 year: 2005 ident: 402_CR39 publication-title: Nat Rev Genet doi: 10.1038/nrg1655 – volume: 13 start-page: 360 issue: 3 year: 2013 ident: 402_CR17 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2013.06.002 – volume: 9 start-page: 465 issue: 6 year: 2008 ident: 402_CR41 publication-title: Nat Rev Genet doi: 10.1038/nrg2341 – volume: 8 start-page: 201450 year: 2020 ident: 402_CR1 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3036090 – volume: 12 start-page: 3333 issue: 11 year: 2016 ident: 402_CR49 publication-title: Mol BioSyst doi: 10.1039/C6MB00536E – volume: 20 start-page: 1 issue: 2 year: 2019 ident: 402_CR44 publication-title: BMC Genom – volume: 9 start-page: 495 year: 2018 ident: 402_CR36 publication-title: Front Genet doi: 10.3389/fgene.2018.00495 – volume: 455 start-page: 205 year: 2018 ident: 402_CR2 publication-title: J Theor Biol doi: 10.1016/j.jtbi.2018.07.018 – volume: 22 start-page: bbaa124 issue: 3 year: 2021 ident: 402_CR26 publication-title: Brief Bioinform doi: 10.1093/bib/bbaa124 – ident: 402_CR30 – volume: 15.1 start-page: 1929 year: 2014 ident: 402_CR40 publication-title: J Mach Learn Res – ident: 402_CR48 doi: 10.1109/CVPR42600.2020.01155 – ident: 402_CR43 – volume: 111 start-page: 96 issue: 1 year: 2019 ident: 402_CR15 publication-title: Genomics doi: 10.1016/j.ygeno.2018.01.005 – volume: 48 start-page: 5332 issue: 10 year: 2020 ident: 402_CR32 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkaa266 – ident: 402_CR33 doi: 10.1007/978-3-319-43624-1_10 – volume: 43 start-page: e148 issue: 21 year: 2015 ident: 402_CR53 publication-title: Nucleic Acids Res – volume: 510 start-page: 72 year: 2016 ident: 402_CR23 publication-title: Anal Biochem doi: 10.1016/j.ab.2016.06.012 – volume: 193 year: 2019 ident: 402_CR31 publication-title: Chemom Intell Lab Syst doi: 10.1016/j.chemolab.2019.103811 – ident: 402_CR18 doi: 10.1109/CVPR.2016.90 – volume: 116 start-page: 1430 issue: 4 year: 2019 ident: 402_CR19 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1815441116 – ident: 402_CR11 doi: 10.1038/srep40242 – volume: 34 start-page: 1606 issue: 12 year: 2013 ident: 402_CR47 publication-title: Hum Mutat doi: 10.1002/humu.22444 – volume: 22 start-page: bbaa099 issue: 3 year: 2021 ident: 402_CR51 publication-title: Brief Bioinform doi: 10.1093/bib/bbaa099 – ident: 402_CR12 doi: 10.1080/07391102.2016.1157761 – volume: 9 start-page: 17779 year: 2021 ident: 402_CR38 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3054361 – ident: 402_CR5 – ident: 402_CR37 – volume: 13 start-page: 484 issue: 7 year: 2012 ident: 402_CR24 publication-title: Nat Rev Genet doi: 10.1038/nrg3230 – volume: 45 start-page: e99 issue: 11 year: 2017 ident: 402_CR54 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx177 – volume: 18 start-page: 131 year: 2019 ident: 402_CR6 publication-title: Mol Ther Nucleic Acids doi: 10.1016/j.omtn.2019.08.011 – volume: 18 start-page: 1 issue: 1 year: 2017 ident: 402_CR4 publication-title: Genome Biol doi: 10.1186/s13059-016-1139-1 – ident: 402_CR46 – ident: 402_CR16 doi: 10.1007/978-3-030-84529-2_58 – volume: 7 start-page: 1 issue: 1 year: 2017 ident: 402_CR50 publication-title: Sci Rep doi: 10.1038/srep46757 – volume: 35 start-page: 2796 issue: 16 year: 2019 ident: 402_CR13 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz015 – ident: 402_CR20 doi: 10.1109/CVPR.2018.00745 – volume: 336 start-page: 934 issue: 6083 year: 2012 ident: 402_CR7 publication-title: Science doi: 10.1126/science.1220671 – volume: 12 year: 2021 ident: 402_CR35 publication-title: Front Genet doi: 10.3389/fgene.2021.650803 – volume: 8 start-page: 138203 year: 2020 ident: 402_CR3 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3002995 – ident: 402_CR45 – volume: 36 start-page: 3336 issue: 11 year: 2020 ident: 402_CR25 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa155 – volume: 21 start-page: 1 year: 2020 ident: 402_CR42 publication-title: BMC Genomics doi: 10.1186/s12864-020-6768-9 – volume: 42 start-page: 3515 issue: 6 year: 2014 ident: 402_CR27 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1380 – volume: 44 start-page: e91 issue: 10 year: 2016 ident: 402_CR57 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw104 – ident: 402_CR9 doi: 10.1038/srep13859 – ident: 402_CR10 doi: 10.1016/j.ab.2015.08.021 – volume: 44 start-page: 35 issue: 1 year: 2008 ident: 402_CR22 publication-title: Biotechniques doi: 10.2144/000112708 – volume: 119 issue: 34 year: 2022 ident: 402_CR58 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.2206069119 – ident: 402_CR8 doi: 10.1016/j.ab.2015.08.021 – volume: 8 start-page: 1332 issue: 11 year: 2019 ident: 402_CR29 publication-title: Cells doi: 10.3390/cells8111332 – volume: 36 start-page: 4103 issue: 14 year: 2020 ident: 402_CR52 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa507 – ident: 402_CR59 doi: 10.1109/ICCV.2019.00679 – ident: 402_CR28 doi: 10.1007/978-981-16-1354-8_19 – volume: 16 start-page: 1 issue: 1 year: 2015 ident: 402_CR55 publication-title: Genome Biol doi: 10.1186/s13059-015-0581-9 |
SSID | ssj0021796 |
Score | 2.2683544 |
Snippet | Methylation is an important epigenetic regulation of methylation genes that plays a crucial role in regulating biological processes. While traditional methods... |
SourceID | pubmedcentral proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 359 |
SubjectTerms | Artificial intelligence Bioinformatics Biology Biomedical and Life Sciences Complex Systems Deep learning DNA methylation Epigenetics Evolutionary Biology Gene regulation Genomes Learning algorithms Life Sciences Machine learning Mathematical and Computational Biology Nucleotide sequence Original Original Article Philosophy of Biology Theoretical Ecology/Statistics |
SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB7RIKReChQQWyhypd7AaB3byS63iEJRW3IiEpwWP0UEWVAeqtJfz3gfCYmgEte1d-21x55vNDPfAHz3Mo2VFoJybjwVXjGqEq5pYnhiOVOJK8p0XnZbFz3x61peV0lhozravXZJFjf1PNmtieqToo6hQfKalH-AVRkMlAasdn7e_D6bGVooZGVWEWcUzXReJcu8_pVFhTRHmcsxkkuO0kL_nK9Dr555GXZyfzwZ62Pzb4nU8b2_tgGfKkBKOqUEbcKKyz_DWlmicroFt5d_Oqfd7glROQlUnEVwJBm4kDDcHw1o0IKWYA_y0iVBEAqTp2FwAoWwahKYYAeO_u1bR350OyTUrZ6WUXjb0Ds_uzq9oFVVBmqEbI4pb2nNrEpTz7y1iL5MjDrfxcq1lVHemRRtJOVlbJlFMGGYb-vYIEyzbY23A-c70Mgfc7cLJGXW4zPEpCIVvu107LWIVeITLXlLqghYvTWZqSjLQ-WMh2xOthxWLsOVy4qVy3gEh7N3nkrCjv_23q93PKsO7yhDIxJBTeC0jODbrBmPXfClqNw9TkIfibafRDgbQbIgKbNRA3H3YkvevysIvBHTtgQiqwiOanmYj_72ZL-8r_sefGwGkSoSJ_ehMR5O3FdEUGN9UB2YZ1MjERI priority: 102 providerName: Springer Nature |
Title | MLACNN: an attention mechanism-based CNN architecture for predicting genome-wide DNA methylation |
URI | https://link.springer.com/article/10.1007/s12064-023-00402-3 https://www.proquest.com/docview/2875213132 https://www.proquest.com/docview/2859605416 https://pubmed.ncbi.nlm.nih.gov/PMC10564812 |
Volume | 142 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1611-7530 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021796 issn: 1431-7613 databaseCode: AFBBN dateStart: 20000301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1611-7530 dateEnd: 20240930 omitProxy: true ssIdentifier: ssj0021796 issn: 1431-7613 databaseCode: BENPR dateStart: 20000301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1611-7530 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021796 issn: 1431-7613 databaseCode: AGYKE dateStart: 20000101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1611-7530 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021796 issn: 1431-7613 databaseCode: U2A dateStart: 20000301 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB_aOwRfxE-M1mMF33QxyW5ySUEknleL2iDiQX2K-0kPvNy1vSL9753Jx51XsC95yG7Isjub-W1m5vcDeOWTPFRaSi6E8Vx6FXGVCc0zIzIrIpW5RqbzpEyPZ_LzaXK6B2VfC0Nplf03sflQ26Whf-RvEdmjpyGiwferc06qURRd7SU0VCetYN81FGP7MIxJVXkAww_T8tv3zREMza-tNxIRxwO86Mpo2mK6GN0zRx_GybJjLnZd1RZ_3syevBFCbTzT0X2410FKVrQ28AD2XP0Q7rQik9eP4NfJ12JSlodM1YzINJv0RrZwVPI7v1xw8mOWYQ_2b1CBIZhlqwsK41BiNCMu14Xjf-bWsY9lwUh5-rrNo3sMs6Ppj8kx73QVuJFJvOYi1TqyKs995K1F_GRC9NouVG6sjPLO5HjKUT4JbWQRDpjIj3VoEGjZscb9LcQTGNTL2j0FlkfW4z1ElTKXfux06LUMVeYznYg0UQFE_RRWpiMdJ-2L39WWLpmmvcJpr5ppr0QArzfPrFrKjVt7H_QrU3Xb77LaGksALzfNuHEoGqJqt7yiPgme3hIEpAFkOyu6eStRb--21POzhoIbUWkqERsF8KZf_O3b_z_YZ7cP9jncJTX7ttTxAAbriyv3AjHPWo9gWHz6-WU66gx6BPuTdILXWVz8BYgNAUQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3battAEB1CQmlfSnqjatNkC-1Tu1TSSpZUCMHNBaexRSkJ5E3ZKzHUshM7BP9cv60zuthxoHnLq7VGYnZG56xm5gzAJxdnvlRRxIXQjkdOBlymQvFUi9SIQKa2GtM5yDu9s-jneXy-Bn_bXhgqq2zfidWL2ow1fSP_hswekYaEBvcmV5ymRlF2tR2hIZvRCma3khhrGjtO7PwWj3DT3eMD3O_PYXh0eLrf482UAa6jOJxx0VEqMDLLXOCMQTahfcQw60ubSC2d1Rlyfuli3wQGwVEHLlG-RtphEoXeTh9EEQI2kHYIjKqNH4f5r9-LIx-6e93fJAKeIHI2bTt1816IdIAjZnKKpJCLVWhc8t371Zr3UrYVEh5twvOGwrJu7XMvYM2WL-FJPdRy_gouBv3ufp5_Z7JkJN5ZlVOykaUW4-F0xAk3DcMV7G4SgyF5ZpNrShtRITYj7diR5bdDY9lB3mU06Xpe1-29hrNHsfAbWC_HpX0LLAuMw9-QxUZZ5BKrfKciX6YuVbHoxNKDoDVhoRuRc5q18adYyjOT2Qs0e1GZvRAefFn8Z1JLfDy4eqvdmaIJ92mxdE4PPi4uY6BS9kWWdnxDa2I8LcZIgD1IV3Z0cVeS-l69Ug4vK8lvZMGdCLmYB1_bzV_e_f8P--7hh92Bp73TQb_oH-cn7-FZSL5YtVluwfrs-sZ-QL41U9uNUzO4eOw4-geP7jv7 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9tADLeACcQLYrCJAGOHtLdxIte7tMneKqDiM9rDKvEW7lNUoqGCoon_fnaSthQB0l5zTi6y7-SfZftngB8hyWJtlOJS2sBV0ILrVBqeWpk6KXTqqzGdV3n7tK_Or5PrF138VbX7JCVZ9zQQS1M5Phy5cDhrfGuhK-XobzidwhaXi_BJoa-m8Kvf6k5DLjxudX-RFBwDdtm0zbz9jXnXNMObr6slX6VMK0_UW4e1BkKybm3zz7Dgyw1YrodKPm_CzdVl9yjPfzFdMiLPrMoZ2dBTi-_gccjJbzmGEuxlEoEheGWjB0rbUCE0I-7Woed_B86z47zLaNL0c1039wX6vZM_R6e8maPArUpaYy7bxginsyyI4BziJRujl_ax9h1tdfA2w6hGhyR2wqH7tyJ0TGwRWLmOwfss5VdYKu9LvwUsEy7gM0SRKlOh400cjIp1GlKTyHaiIxATFRa2IRmnWRd3xYwemdReoNqLSu2FjODn9J1RTbHxofTuxDJFc90eCwz7EIYQC2UE-9NlvCiU_dClv38imQSjtQQBaATpnEWnuxLV9vxKObitKLcRhbYVYqEIDibGn-3-_s9u_5_4d1j5fdwrLs_yix1YpcH2ddfjLiyNH578N4Q_Y7NXnfB_Jxb7TQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MLACNN%3A+an+attention+mechanism-based+CNN+architecture+for+predicting+genome-wide+DNA+methylation&rft.jtitle=Theory+in+biosciences+%3D+Theorie+in+den+Biowissenschaften&rft.au=Bai%2C+JianGuo&rft.au=Yang%2C+Hai&rft.au=Wu%2C+ChangDe&rft.date=2023-11-01&rft.issn=1431-7613&rft.eissn=1611-7530&rft.volume=142&rft.issue=4&rft.spage=359&rft.epage=370&rft_id=info:doi/10.1007%2Fs12064-023-00402-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12064_023_00402_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1431-7613&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1431-7613&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1431-7613&client=summon |