MLACNN: an attention mechanism-based CNN architecture for predicting genome-wide DNA methylation

Methylation is an important epigenetic regulation of methylation genes that plays a crucial role in regulating biological processes. While traditional methods for detecting methylation in biological experiments are constantly improving, the development of artificial intelligence has led to the emerg...

Full description

Saved in:
Bibliographic Details
Published inTheory in biosciences = Theorie in den Biowissenschaften Vol. 142; no. 4; pp. 359 - 370
Main Authors Bai, JianGuo, Yang, Hai, Wu, ChangDe
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1431-7613
1611-7530
1611-7530
DOI10.1007/s12064-023-00402-3

Cover

Abstract Methylation is an important epigenetic regulation of methylation genes that plays a crucial role in regulating biological processes. While traditional methods for detecting methylation in biological experiments are constantly improving, the development of artificial intelligence has led to the emergence of deep learning and machine learning methods as a new trend. However, traditional machine learning-based methods rely heavily on manual feature extraction, and most deep learning methods for studying methylation extract fewer features due to their simple network structures. To address this, we propose a bottomneck network based on an attention mechanism and use new methods to ensure that the deep network can learn more effective features while minimizing overfitting. This approach enables the model to learn more features from nucleotide sequences and make better predictions of methylation. The model uses three coding methods to encode the original DNA sequence and then applies feature fusion based on attention mechanisms to obtain the best fusion method. Our results demonstrate that MLACNN outperforms previous methods and achieves more satisfactory performance.
AbstractList Methylation is an important epigenetic regulation of methylation genes that plays a crucial role in regulating biological processes. While traditional methods for detecting methylation in biological experiments are constantly improving, the development of artificial intelligence has led to the emergence of deep learning and machine learning methods as a new trend. However, traditional machine learning-based methods rely heavily on manual feature extraction, and most deep learning methods for studying methylation extract fewer features due to their simple network structures. To address this, we propose a bottomneck network based on an attention mechanism and use new methods to ensure that the deep network can learn more effective features while minimizing overfitting. This approach enables the model to learn more features from nucleotide sequences and make better predictions of methylation. The model uses three coding methods to encode the original DNA sequence and then applies feature fusion based on attention mechanisms to obtain the best fusion method. Our results demonstrate that MLACNN outperforms previous methods and achieves more satisfactory performance.Methylation is an important epigenetic regulation of methylation genes that plays a crucial role in regulating biological processes. While traditional methods for detecting methylation in biological experiments are constantly improving, the development of artificial intelligence has led to the emergence of deep learning and machine learning methods as a new trend. However, traditional machine learning-based methods rely heavily on manual feature extraction, and most deep learning methods for studying methylation extract fewer features due to their simple network structures. To address this, we propose a bottomneck network based on an attention mechanism and use new methods to ensure that the deep network can learn more effective features while minimizing overfitting. This approach enables the model to learn more features from nucleotide sequences and make better predictions of methylation. The model uses three coding methods to encode the original DNA sequence and then applies feature fusion based on attention mechanisms to obtain the best fusion method. Our results demonstrate that MLACNN outperforms previous methods and achieves more satisfactory performance.
Methylation is an important epigenetic regulation of methylation genes that plays a crucial role in regulating biological processes. While traditional methods for detecting methylation in biological experiments are constantly improving, the development of artificial intelligence has led to the emergence of deep learning and machine learning methods as a new trend. However, traditional machine learning-based methods rely heavily on manual feature extraction, and most deep learning methods for studying methylation extract fewer features due to their simple network structures. To address this, we propose a bottomneck network based on an attention mechanism and use new methods to ensure that the deep network can learn more effective features while minimizing overfitting. This approach enables the model to learn more features from nucleotide sequences and make better predictions of methylation. The model uses three coding methods to encode the original DNA sequence and then applies feature fusion based on attention mechanisms to obtain the best fusion method. Our results demonstrate that MLACNN outperforms previous methods and achieves more satisfactory performance.
Author Wu, ChangDe
Yang, Hai
Bai, JianGuo
Author_xml – sequence: 1
  givenname: JianGuo
  surname: Bai
  fullname: Bai, JianGuo
  organization: Shandong Jiaotong University
– sequence: 2
  givenname: Hai
  surname: Yang
  fullname: Yang, Hai
  email: yh_sdjtu@163.com
  organization: Shandong Jiaotong University
– sequence: 3
  givenname: ChangDe
  surname: Wu
  fullname: Wu, ChangDe
  organization: Shandong Jiaotong University
BookMark eNp9kUuPFCEUhYkZ4zz0D7iqxI2bUi5UQZUb02mfSdtudI0U3OpmUgUtUJr599LTY4yzmBUkfOdwzz2X5MwHj4Q8B_oKKJWvEzAqmpoyXlPaUFbzR-QCBEAtW07Pyr3h5S6An5PLlK4pZSB78YSccymargd6QX582azW2-2bSvtK54w-u-CrGc1ee5fmetAJbVWISkezdxlNXiJWY4jVIaJ1Jju_q3bow4z1b2exerddFX3e30z66PWUPB71lPDZ3XlFvn94_239qd58_fh5vdrUpmlZrrkYBrC670cYrRVADYWuRapRaqNHNL1gQo8ttWCB9QZGOVDTCrBykJ3k_Iq8PfkelmFGa0qSqCd1iG7W8UYF7dT_L97t1S78UkDbsgxgxeHlnUMMPxdMWc0uGZwm7TEsSbGu7QVtGxAFfXEPvQ5L9CVfoWTLgAM_GnYnysSQUsRRGZdvl1IGcFP5WR17VKceVelR3faojmnYPenfIA-K-EmUCux3GP9N9YDqD4fosNI
CitedBy_id crossref_primary_10_1007_s10462_024_10883_3
crossref_primary_10_1016_j_compbiomed_2024_109302
Cites_doi 10.1016/j.chemolab.2019.103811
10.1038/nrg2341
10.1093/bioinformatics/btaa155
10.1093/bib/bbaa099
10.1039/C6MB00536E
10.1109/ACCESS.2020.3002995
10.1002/humu.22444
10.1093/nar/gkw104
10.1093/nar/gkt1380
10.1093/bioinformatics/bty002
10.1073/pnas.2206069119
10.1016/j.jtbi.2018.07.018
10.1016/j.ab.2016.06.012
10.1073/pnas.1815441116
10.3390/cells8111332
10.1038/nrg3230
10.1093/nar/gkaa266
10.1186/s13059-014-0456-5
10.1093/bib/bbaa124
10.1093/bioinformatics/btaa507
10.1016/j.ygeno.2018.01.005
10.1186/s13059-015-0581-9
10.2144/000112708
10.1093/bioinformatics/btz015
10.1016/j.omtn.2019.08.011
10.1038/srep46757
10.1038/nrg1655
10.1016/j.stem.2013.06.002
10.3389/fgene.2021.650803
10.1109/ACCESS.2020.3036090
10.1186/s12864-020-6768-9
10.3389/fgene.2018.00495
10.1109/ACCESS.2021.3054361
10.1093/nar/gkx177
10.1126/science.1220671
10.1109/CVPR.2018.00716
10.1109/CVPR42600.2020.01155
10.1007/978-3-319-43624-1_10
10.1109/CVPR.2016.90
10.1038/srep40242
10.1080/07391102.2016.1157761
10.1186/s13059-016-1139-1
10.1007/978-3-030-84529-2_58
10.1109/CVPR.2018.00745
10.1038/srep13859
10.1016/j.ab.2015.08.021
10.1109/ICCV.2019.00679
10.1007/978-981-16-1354-8_19
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023. The Author(s).
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023. The Author(s).
DBID C6C
AAYXX
CITATION
8FE
8FH
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1007/s12064-023-00402-3
DatabaseName Springer Nature OA Free Journals (Selected full-text)
CrossRef
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
ProQuest Central Student
ProQuest Biological Science Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Central Student


CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1611-7530
EndPage 370
ExternalDocumentID PMC10564812
10_1007_s12064_023_00402_3
GroupedDBID ---
--K
-56
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06C
06D
0R~
0VY
123
1B1
1N0
203
29Q
29~
2J2
2JN
2JY
2KG
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
53G
5VS
67N
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEDT
AAHNG
AAIAL
AAJBT
AAJKR
AALCJ
AALRI
AANXM
AANZL
AAQFI
AAQXK
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXUO
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABWVN
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACRPL
ACSNA
ACZOJ
ADGUI
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMUD
ADNMO
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEGXH
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BDATZ
BENPR
BGNMA
BHPHI
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
ESBYG
F5P
FDB
FEDTE
FERAY
FFXSO
FGOYB
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Q
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IWAJR
IXD
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
KPH
LLZTM
M41
M4Y
M7P
MA-
N9A
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
PF-
PT4
QOR
QOS
R2-
R89
R9I
ROL
RPX
RPZ
RSV
S16
S1Z
S27
S3A
S3B
SAP
SBL
SDH
SEW
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Y6R
YLTOR
Z45
ZMTXR
ZOVNA
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FH
ABRTQ
AZQEC
DWQXO
GNUQQ
LK8
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c452t-36bb1da99f1fdd610c0185e0ae7acafec9626af50d1d129c1f7b0c561d7b78733
IEDL.DBID BENPR
ISSN 1431-7613
1611-7530
IngestDate Thu Aug 21 18:35:42 EDT 2025
Fri Sep 05 08:08:09 EDT 2025
Sun Jul 13 05:11:06 EDT 2025
Tue Jul 01 01:52:14 EDT 2025
Thu Apr 24 23:12:31 EDT 2025
Fri Feb 21 02:42:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Genome wide methylation detection
Attention CNN
Hybrid neural network
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c452t-36bb1da99f1fdd610c0185e0ae7acafec9626af50d1d129c1f7b0c561d7b78733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s12064-023-00402-3
PMID 37648910
PQID 2875213132
PQPubID 2044399
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10564812
proquest_miscellaneous_2859605416
proquest_journals_2875213132
crossref_citationtrail_10_1007_s12064_023_00402_3
crossref_primary_10_1007_s12064_023_00402_3
springer_journals_10_1007_s12064_023_00402_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Theory in biosciences = Theorie in den Biowissenschaften
PublicationTitleAbbrev Theory Biosci
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Basith, Manavalan, Shin (CR6) 2019; 18
Alam, Ali, Tayara (CR3) 2020; 8
CR37
Zhang, Spector, Deloukas (CR55) 2015; 16
Nye, van Gijtenbeek, Stevens (CR32) 2020; 48
CR33
Ma, Wilker, Willis-Owen (CR27) 2014; 42
CR30
Manavalan, Basith, Shin (CR29) 2019; 8
Wang, Liu, Li (CR47) 2013; 34
Zhou, Zeng, Li (CR57) 2016; 44
Nazari, Tahir, Tayara (CR31) 2019; 193
Srivastava (CR40) 2014; 15.1
Akbar, Hayat (CR2) 2018; 455
Xing, Su, Guo (CR50) 2017; 7
Feng, Yang, Ding (CR15) 2019; 111
Chen, Lv, Nie (CR13) 2019; 35
CR5
CR8
Pian, Yang, Yang (CR35) 2021; 12
CR9
Liu, Chen, Wang (CR26) 2021; 22
CR48
Suzuki, Bird (CR41) 2008; 9
CR46
CR45
CR43
Liu, Chen (CR25) 2020; 36
Habibi (CR17) 2013; 13
Xu, Jia, Zhao (CR51) 2021; 22
Jia, Zhang, Gu (CR23) 2016; 510
Xiang, Yan, Liu (CR49) 2016; 12
CR18
CR16
CR59
CR12
Huang (CR19) 2019; 116
CR56
Angermueller, Lee, Reik (CR4) 2017; 18
CR11
CR10
Jacinto, Ballestar, Esteller (CR22) 2008; 44
Qiang, Chen, Ye (CR36) 2018; 9
Tian, Zou, Tang (CR44) 2019; 20
Robertson (CR39) 2005; 6
Booth, Branco, Ficz (CR7) 2012; 336
Abbas, Tayara, Chong (CR1) 2020; 8
CR28
Yu, Ji, Neumann (CR53) 2015; 43
Yang, Lang, Zhang (CR52) 2020; 36
Rehman, Hong, Tayara (CR38) 2021; 9
CR21
CR20
Tang, Zou, Zhang (CR42) 2020; 21
Zhou, Chen, Braun (CR58) 2022; 119
Cheng, Hu, Sun (CR14) 2018; 34
Jones (CR24) 2012; 13
Zeng, Gifford (CR54) 2017; 45
Petterson, Chung, Tan (CR34) 2014; 15
TM Nye (402_CR32) 2020; 48
402_CR43
402_CR5
W Alam (402_CR3) 2020; 8
402_CR48
T Wang (402_CR47) 2013; 34
FV Jacinto (402_CR22) 2008; 44
402_CR45
402_CR46
KD Robertson (402_CR39) 2005; 6
P Feng (402_CR15) 2019; 111
B Ma (402_CR27) 2014; 42
J Yang (402_CR52) 2020; 36
Z Abbas (402_CR1) 2020; 8
402_CR10
J Tang (402_CR42) 2020; 21
C Angermueller (402_CR4) 2017; 18
402_CR59
402_CR16
W Chen (402_CR13) 2019; 35
402_CR18
I Nazari (402_CR31) 2019; 193
402_CR11
402_CR12
402_CR56
E Habibi (402_CR17) 2013; 13
402_CR9
W Zhang (402_CR55) 2015; 16
402_CR8
MM Suzuki (402_CR41) 2008; 9
402_CR20
402_CR21
C Pian (402_CR35) 2021; 12
402_CR28
MJ Booth (402_CR7) 2012; 336
S Xiang (402_CR49) 2016; 12
H Huang (402_CR19) 2019; 116
Q Liu (402_CR26) 2021; 22
L Cheng (402_CR14) 2018; 34
MU Rehman (402_CR38) 2021; 9
Y Zhou (402_CR57) 2016; 44
402_CR30
H Xu (402_CR51) 2021; 22
H Zeng (402_CR54) 2017; 45
X Qiang (402_CR36) 2018; 9
S Basith (402_CR6) 2019; 18
J Zhou (402_CR58) 2022; 119
402_CR37
A Petterson (402_CR34) 2014; 15
K Liu (402_CR25) 2020; 36
B Manavalan (402_CR29) 2019; 8
402_CR33
N Srivastava (402_CR40) 2014; 15.1
M Yu (402_CR53) 2015; 43
S Akbar (402_CR2) 2018; 455
CZ Jia (402_CR23) 2016; 510
P Xing (402_CR50) 2017; 7
Q Tian (402_CR44) 2019; 20
PA Jones (402_CR24) 2012; 13
References_xml – volume: 193
  year: 2019
  ident: CR31
  article-title: iN6-Methyl (5-step): identifying RNA N6-methyladenosine sites using deep learning mode via Chou’s 5-step rules and Chou’s general PseKNC
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2019.103811
– ident: CR45
– volume: 9
  start-page: 465
  issue: 6
  year: 2008
  end-page: 476
  ident: CR41
  article-title: DNA methylation landscapes: provocative insights from epigenomics
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2341
– volume: 36
  start-page: 3336
  issue: 11
  year: 2020
  end-page: 3342
  ident: CR25
  article-title: iMRM: a platform for simultaneously identifying multiple kinds of RNA modifications
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa155
– volume: 22
  start-page: bbaa099
  issue: 3
  year: 2021
  ident: CR51
  article-title: Deep4mC: systematic assessment and computational prediction for DNA N4-methylcytosine sites by deep learning
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa099
– ident: CR16
– ident: CR12
– volume: 12
  start-page: 3333
  issue: 11
  year: 2016
  end-page: 3337
  ident: CR49
  article-title: AthMethPre: a web server for the prediction and query of mRNA m6A sites in Arabidopsis thaliana
  publication-title: Mol BioSyst
  doi: 10.1039/C6MB00536E
– ident: CR8
– volume: 8
  start-page: 138203
  year: 2020
  end-page: 138209
  ident: CR3
  article-title: A CNN-based RNA N6-methyladenosine site predictor for multiple species using heterogeneous features representation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3002995
– volume: 34
  start-page: 1606
  issue: 12
  year: 2013
  end-page: 1610
  ident: CR47
  article-title: RRBS-A nalyser: a comprehensive web server for reduced representation bisulfite sequencing data analysis
  publication-title: Hum Mutat
  doi: 10.1002/humu.22444
– volume: 44
  start-page: e91
  issue: 10
  year: 2016
  end-page: e91
  ident: CR57
  article-title: SRAMP: prediction of mammalian N6-methyladenosine (m6A) sites based on sequence-derived features
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw104
– ident: CR21
– volume: 42
  start-page: 3515
  issue: 6
  year: 2014
  end-page: 3528
  ident: CR27
  article-title: Predicting DNA methylation level across human tissues
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1380
– volume: 34
  start-page: 1953
  issue: 11
  year: 2018
  end-page: 1956
  ident: CR14
  article-title: DincRNA: a comprehensive web-based bioinformatics toolkit for exploring disease associations and ncRNA function
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty002
– ident: CR46
– volume: 119
  issue: 34
  year: 2022
  ident: CR58
  article-title: Deep learning predicts DNA methylation regulatory variants in the human brain and elucidates the genetics of psychiatric disorders
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.2206069119
– volume: 455
  start-page: 205
  year: 2018
  end-page: 211
  ident: CR2
  article-title: iMethyl-STTNC: Identification of N6-methyladenosine sites by extending the idea of SAAC into Chou’s PseAAC to formulate RNA sequences
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2018.07.018
– volume: 510
  start-page: 72
  year: 2016
  end-page: 75
  ident: CR23
  article-title: RNA-MethylPred: a high-accuracy predictor to identify N6-methyladenosine in RNA
  publication-title: Anal Biochem
  doi: 10.1016/j.ab.2016.06.012
– volume: 116
  start-page: 1430
  issue: 4
  year: 2019
  end-page: 1436
  ident: CR19
  article-title: Global increase in DNA methylation during orange fruit development and ripening
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1815441116
– ident: CR11
– volume: 8
  start-page: 1332
  issue: 11
  year: 2019
  ident: CR29
  article-title: 4mCpred-EL: an ensemble learning framework for identification of DNA N4-methylcytosine sites in the mouse genome
  publication-title: Cells
  doi: 10.3390/cells8111332
– ident: CR9
– volume: 13
  start-page: 484
  issue: 7
  year: 2012
  end-page: 492
  ident: CR24
  article-title: Functions of DNA methylation: islands, start sites, gene bodies and beyond
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3230
– volume: 48
  start-page: 5332
  issue: 10
  year: 2020
  end-page: 5348
  ident: CR32
  article-title: Methyltransferase DnmA is responsible for genome-wide N6-methyladenosine modifications at non-palindromic recognition sites in Bacillus subtilis
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkaa266
– volume: 15
  start-page: 1
  issue: 9
  year: 2014
  end-page: 13
  ident: CR34
  article-title: RRHP: a tag-based approach for 5-hydroxymethylcytosine mapping at single-site resolution
  publication-title: Genome Biol
  doi: 10.1186/s13059-014-0456-5
– volume: 22
  start-page: bbaa124
  issue: 3
  year: 2021
  ident: CR26
  article-title: DeepTorrent: a deep learning-based approach for predicting DNA N4-methylcytosine sites
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa124
– ident: CR5
– volume: 36
  start-page: 4103
  issue: 14
  year: 2020
  end-page: 4105
  ident: CR52
  article-title: SOMM4mC: a second-order Markov model for DNA N4-methylcytosine site prediction in six species
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa507
– volume: 111
  start-page: 96
  issue: 1
  year: 2019
  end-page: 102
  ident: CR15
  article-title: iDNA6mA-PseKNC: identifying DNA N6-methyladenosine sites by incorporating nucleotide physicochemical properties into PseKNC
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2018.01.005
– volume: 43
  start-page: e148
  issue: 21
  year: 2015
  end-page: e148
  ident: CR53
  article-title: Base-resolution detection of N 4-methylcytosine in genomic DNA using 4mC-Tet-assisted-bisulfite-sequencing
  publication-title: Nucleic Acids Res
– volume: 16
  start-page: 1
  issue: 1
  year: 2015
  end-page: 20
  ident: CR55
  article-title: Predicting genome-wide DNA methylation using methylation marks, genomic position, and DNA regulatory elements
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0581-9
– volume: 44
  start-page: 35
  issue: 1
  year: 2008
  end-page: 39
  ident: CR22
  article-title: Methyl-DNA immunoprecipitation (MeDIP): hunting down the DNA methylome
  publication-title: Biotechniques
  doi: 10.2144/000112708
– ident: CR18
– ident: CR43
– volume: 35
  start-page: 2796
  issue: 16
  year: 2019
  end-page: 2800
  ident: CR13
  article-title: i6mA-Pred: identifying DNA N6-methyladenine sites in the rice genome
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz015
– volume: 20
  start-page: 1
  issue: 2
  year: 2019
  end-page: 10
  ident: CR44
  article-title: MRCNN: a deep learning model for regression of genome-wide DNA methylation
  publication-title: BMC Genom
– volume: 18
  start-page: 131
  year: 2019
  end-page: 141
  ident: CR6
  article-title: SDM6A: a web-based integrative machine-learning framework for predicting 6mA sites in the rice genome
  publication-title: Mol Ther Nucleic Acids
  doi: 10.1016/j.omtn.2019.08.011
– ident: CR37
– ident: CR30
– ident: CR10
– ident: CR33
– ident: CR56
– volume: 7
  start-page: 1
  issue: 1
  year: 2017
  end-page: 7
  ident: CR50
  article-title: Identifying N6-methyladenosine sites using multi-interval nucleotide pair position specificity and support vector machine
  publication-title: Sci Rep
  doi: 10.1038/srep46757
– ident: CR48
– volume: 6
  start-page: 597
  issue: 8
  year: 2005
  end-page: 610
  ident: CR39
  article-title: DNA methylation and human disease
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg1655
– volume: 13
  start-page: 360
  issue: 3
  year: 2013
  end-page: 369
  ident: CR17
  article-title: Whole-genome bisulfite sequencing of two distinct interconvertible DNA methylomes of mouse embryonic stem cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2013.06.002
– volume: 18
  start-page: 1
  issue: 1
  year: 2017
  end-page: 13
  ident: CR4
  article-title: DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning
  publication-title: Genome Biol
– volume: 12
  year: 2021
  ident: CR35
  article-title: Identifying RNA N6-methyladenine sites in three species based on a Markov model
  publication-title: Front Genet
  doi: 10.3389/fgene.2021.650803
– volume: 8
  start-page: 201450
  year: 2020
  end-page: 201457
  ident: CR1
  article-title: Spinenet-6ma: a novel deep learning tool for predicting DNA n6-methyladenine sites in genomes
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3036090
– volume: 21
  start-page: 1
  year: 2020
  end-page: 15
  ident: CR42
  article-title: PretiMeth: precise prediction models for DNA methylation based on single methylation mark
  publication-title: BMC Genomics
  doi: 10.1186/s12864-020-6768-9
– volume: 9
  start-page: 495
  year: 2018
  ident: CR36
  article-title: M6AMRFS: robust prediction of N6-methyladenosine sites with sequence-based features in multiple species
  publication-title: Front Genet
  doi: 10.3389/fgene.2018.00495
– volume: 9
  start-page: 17779
  year: 2021
  end-page: 17786
  ident: CR38
  article-title: m6A-NeuralTool: convolution neural tool for RNA N6-Methyladenosine site identification in different species
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3054361
– volume: 45
  start-page: e99
  issue: 11
  year: 2017
  end-page: e99
  ident: CR54
  article-title: Predicting the impact of non-coding variants on DNA methylation
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx177
– volume: 15.1
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: CR40
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– volume: 336
  start-page: 934
  issue: 6083
  year: 2012
  end-page: 937
  ident: CR7
  article-title: Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution
  publication-title: Science
  doi: 10.1126/science.1220671
– ident: CR59
– ident: CR28
– ident: CR20
– ident: 402_CR21
– ident: 402_CR56
  doi: 10.1109/CVPR.2018.00716
– volume: 34
  start-page: 1953
  issue: 11
  year: 2018
  ident: 402_CR14
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty002
– volume: 15
  start-page: 1
  issue: 9
  year: 2014
  ident: 402_CR34
  publication-title: Genome Biol
  doi: 10.1186/s13059-014-0456-5
– volume: 6
  start-page: 597
  issue: 8
  year: 2005
  ident: 402_CR39
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg1655
– volume: 13
  start-page: 360
  issue: 3
  year: 2013
  ident: 402_CR17
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2013.06.002
– volume: 9
  start-page: 465
  issue: 6
  year: 2008
  ident: 402_CR41
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2341
– volume: 8
  start-page: 201450
  year: 2020
  ident: 402_CR1
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3036090
– volume: 12
  start-page: 3333
  issue: 11
  year: 2016
  ident: 402_CR49
  publication-title: Mol BioSyst
  doi: 10.1039/C6MB00536E
– volume: 20
  start-page: 1
  issue: 2
  year: 2019
  ident: 402_CR44
  publication-title: BMC Genom
– volume: 9
  start-page: 495
  year: 2018
  ident: 402_CR36
  publication-title: Front Genet
  doi: 10.3389/fgene.2018.00495
– volume: 455
  start-page: 205
  year: 2018
  ident: 402_CR2
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2018.07.018
– volume: 22
  start-page: bbaa124
  issue: 3
  year: 2021
  ident: 402_CR26
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa124
– ident: 402_CR30
– volume: 15.1
  start-page: 1929
  year: 2014
  ident: 402_CR40
  publication-title: J Mach Learn Res
– ident: 402_CR48
  doi: 10.1109/CVPR42600.2020.01155
– ident: 402_CR43
– volume: 111
  start-page: 96
  issue: 1
  year: 2019
  ident: 402_CR15
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2018.01.005
– volume: 48
  start-page: 5332
  issue: 10
  year: 2020
  ident: 402_CR32
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkaa266
– ident: 402_CR33
  doi: 10.1007/978-3-319-43624-1_10
– volume: 43
  start-page: e148
  issue: 21
  year: 2015
  ident: 402_CR53
  publication-title: Nucleic Acids Res
– volume: 510
  start-page: 72
  year: 2016
  ident: 402_CR23
  publication-title: Anal Biochem
  doi: 10.1016/j.ab.2016.06.012
– volume: 193
  year: 2019
  ident: 402_CR31
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2019.103811
– ident: 402_CR18
  doi: 10.1109/CVPR.2016.90
– volume: 116
  start-page: 1430
  issue: 4
  year: 2019
  ident: 402_CR19
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1815441116
– ident: 402_CR11
  doi: 10.1038/srep40242
– volume: 34
  start-page: 1606
  issue: 12
  year: 2013
  ident: 402_CR47
  publication-title: Hum Mutat
  doi: 10.1002/humu.22444
– volume: 22
  start-page: bbaa099
  issue: 3
  year: 2021
  ident: 402_CR51
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa099
– ident: 402_CR12
  doi: 10.1080/07391102.2016.1157761
– volume: 9
  start-page: 17779
  year: 2021
  ident: 402_CR38
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3054361
– ident: 402_CR5
– ident: 402_CR37
– volume: 13
  start-page: 484
  issue: 7
  year: 2012
  ident: 402_CR24
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3230
– volume: 45
  start-page: e99
  issue: 11
  year: 2017
  ident: 402_CR54
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx177
– volume: 18
  start-page: 131
  year: 2019
  ident: 402_CR6
  publication-title: Mol Ther Nucleic Acids
  doi: 10.1016/j.omtn.2019.08.011
– volume: 18
  start-page: 1
  issue: 1
  year: 2017
  ident: 402_CR4
  publication-title: Genome Biol
  doi: 10.1186/s13059-016-1139-1
– ident: 402_CR46
– ident: 402_CR16
  doi: 10.1007/978-3-030-84529-2_58
– volume: 7
  start-page: 1
  issue: 1
  year: 2017
  ident: 402_CR50
  publication-title: Sci Rep
  doi: 10.1038/srep46757
– volume: 35
  start-page: 2796
  issue: 16
  year: 2019
  ident: 402_CR13
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz015
– ident: 402_CR20
  doi: 10.1109/CVPR.2018.00745
– volume: 336
  start-page: 934
  issue: 6083
  year: 2012
  ident: 402_CR7
  publication-title: Science
  doi: 10.1126/science.1220671
– volume: 12
  year: 2021
  ident: 402_CR35
  publication-title: Front Genet
  doi: 10.3389/fgene.2021.650803
– volume: 8
  start-page: 138203
  year: 2020
  ident: 402_CR3
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3002995
– ident: 402_CR45
– volume: 36
  start-page: 3336
  issue: 11
  year: 2020
  ident: 402_CR25
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa155
– volume: 21
  start-page: 1
  year: 2020
  ident: 402_CR42
  publication-title: BMC Genomics
  doi: 10.1186/s12864-020-6768-9
– volume: 42
  start-page: 3515
  issue: 6
  year: 2014
  ident: 402_CR27
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1380
– volume: 44
  start-page: e91
  issue: 10
  year: 2016
  ident: 402_CR57
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw104
– ident: 402_CR9
  doi: 10.1038/srep13859
– ident: 402_CR10
  doi: 10.1016/j.ab.2015.08.021
– volume: 44
  start-page: 35
  issue: 1
  year: 2008
  ident: 402_CR22
  publication-title: Biotechniques
  doi: 10.2144/000112708
– volume: 119
  issue: 34
  year: 2022
  ident: 402_CR58
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.2206069119
– ident: 402_CR8
  doi: 10.1016/j.ab.2015.08.021
– volume: 8
  start-page: 1332
  issue: 11
  year: 2019
  ident: 402_CR29
  publication-title: Cells
  doi: 10.3390/cells8111332
– volume: 36
  start-page: 4103
  issue: 14
  year: 2020
  ident: 402_CR52
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa507
– ident: 402_CR59
  doi: 10.1109/ICCV.2019.00679
– ident: 402_CR28
  doi: 10.1007/978-981-16-1354-8_19
– volume: 16
  start-page: 1
  issue: 1
  year: 2015
  ident: 402_CR55
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0581-9
SSID ssj0021796
Score 2.2683544
Snippet Methylation is an important epigenetic regulation of methylation genes that plays a crucial role in regulating biological processes. While traditional methods...
SourceID pubmedcentral
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 359
SubjectTerms Artificial intelligence
Bioinformatics
Biology
Biomedical and Life Sciences
Complex Systems
Deep learning
DNA methylation
Epigenetics
Evolutionary Biology
Gene regulation
Genomes
Learning algorithms
Life Sciences
Machine learning
Mathematical and Computational Biology
Nucleotide sequence
Original
Original Article
Philosophy of Biology
Theoretical Ecology/Statistics
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB7RIKReChQQWyhypd7AaB3byS63iEJRW3IiEpwWP0UEWVAeqtJfz3gfCYmgEte1d-21x55vNDPfAHz3Mo2VFoJybjwVXjGqEq5pYnhiOVOJK8p0XnZbFz3x61peV0lhozravXZJFjf1PNmtieqToo6hQfKalH-AVRkMlAasdn7e_D6bGVooZGVWEWcUzXReJcu8_pVFhTRHmcsxkkuO0kL_nK9Dr555GXZyfzwZ62Pzb4nU8b2_tgGfKkBKOqUEbcKKyz_DWlmicroFt5d_Oqfd7glROQlUnEVwJBm4kDDcHw1o0IKWYA_y0iVBEAqTp2FwAoWwahKYYAeO_u1bR350OyTUrZ6WUXjb0Ds_uzq9oFVVBmqEbI4pb2nNrEpTz7y1iL5MjDrfxcq1lVHemRRtJOVlbJlFMGGYb-vYIEyzbY23A-c70Mgfc7cLJGXW4zPEpCIVvu107LWIVeITLXlLqghYvTWZqSjLQ-WMh2xOthxWLsOVy4qVy3gEh7N3nkrCjv_23q93PKsO7yhDIxJBTeC0jODbrBmPXfClqNw9TkIfibafRDgbQbIgKbNRA3H3YkvevysIvBHTtgQiqwiOanmYj_72ZL-8r_sefGwGkSoSJ_ehMR5O3FdEUGN9UB2YZ1MjERI
  priority: 102
  providerName: Springer Nature
Title MLACNN: an attention mechanism-based CNN architecture for predicting genome-wide DNA methylation
URI https://link.springer.com/article/10.1007/s12064-023-00402-3
https://www.proquest.com/docview/2875213132
https://www.proquest.com/docview/2859605416
https://pubmed.ncbi.nlm.nih.gov/PMC10564812
Volume 142
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1611-7530
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021796
  issn: 1431-7613
  databaseCode: AFBBN
  dateStart: 20000301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1611-7530
  dateEnd: 20240930
  omitProxy: true
  ssIdentifier: ssj0021796
  issn: 1431-7613
  databaseCode: BENPR
  dateStart: 20000301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1611-7530
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021796
  issn: 1431-7613
  databaseCode: AGYKE
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1611-7530
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021796
  issn: 1431-7613
  databaseCode: U2A
  dateStart: 20000301
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB_aOwRfxE-M1mMF33QxyW5ySUEknleL2iDiQX2K-0kPvNy1vSL9753Jx51XsC95yG7Isjub-W1m5vcDeOWTPFRaSi6E8Vx6FXGVCc0zIzIrIpW5RqbzpEyPZ_LzaXK6B2VfC0Nplf03sflQ26Whf-RvEdmjpyGiwferc06qURRd7SU0VCetYN81FGP7MIxJVXkAww_T8tv3zREMza-tNxIRxwO86Mpo2mK6GN0zRx_GybJjLnZd1RZ_3syevBFCbTzT0X2410FKVrQ28AD2XP0Q7rQik9eP4NfJ12JSlodM1YzINJv0RrZwVPI7v1xw8mOWYQ_2b1CBIZhlqwsK41BiNCMu14Xjf-bWsY9lwUh5-rrNo3sMs6Ppj8kx73QVuJFJvOYi1TqyKs995K1F_GRC9NouVG6sjPLO5HjKUT4JbWQRDpjIj3VoEGjZscb9LcQTGNTL2j0FlkfW4z1ElTKXfux06LUMVeYznYg0UQFE_RRWpiMdJ-2L39WWLpmmvcJpr5ppr0QArzfPrFrKjVt7H_QrU3Xb77LaGksALzfNuHEoGqJqt7yiPgme3hIEpAFkOyu6eStRb--21POzhoIbUWkqERsF8KZf_O3b_z_YZ7cP9jncJTX7ttTxAAbriyv3AjHPWo9gWHz6-WU66gx6BPuTdILXWVz8BYgNAUQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3battAEB1CQmlfSnqjatNkC-1Tu1TSSpZUCMHNBaexRSkJ5E3ZKzHUshM7BP9cv60zuthxoHnLq7VGYnZG56xm5gzAJxdnvlRRxIXQjkdOBlymQvFUi9SIQKa2GtM5yDu9s-jneXy-Bn_bXhgqq2zfidWL2ow1fSP_hswekYaEBvcmV5ymRlF2tR2hIZvRCma3khhrGjtO7PwWj3DT3eMD3O_PYXh0eLrf482UAa6jOJxx0VEqMDLLXOCMQTahfcQw60ubSC2d1Rlyfuli3wQGwVEHLlG-RtphEoXeTh9EEQI2kHYIjKqNH4f5r9-LIx-6e93fJAKeIHI2bTt1816IdIAjZnKKpJCLVWhc8t371Zr3UrYVEh5twvOGwrJu7XMvYM2WL-FJPdRy_gouBv3ufp5_Z7JkJN5ZlVOykaUW4-F0xAk3DcMV7G4SgyF5ZpNrShtRITYj7diR5bdDY9lB3mU06Xpe1-29hrNHsfAbWC_HpX0LLAuMw9-QxUZZ5BKrfKciX6YuVbHoxNKDoDVhoRuRc5q18adYyjOT2Qs0e1GZvRAefFn8Z1JLfDy4eqvdmaIJ92mxdE4PPi4uY6BS9kWWdnxDa2I8LcZIgD1IV3Z0cVeS-l69Ug4vK8lvZMGdCLmYB1_bzV_e_f8P--7hh92Bp73TQb_oH-cn7-FZSL5YtVluwfrs-sZ-QL41U9uNUzO4eOw4-geP7jv7
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9tADLeACcQLYrCJAGOHtLdxIte7tMneKqDiM9rDKvEW7lNUoqGCoon_fnaSthQB0l5zTi6y7-SfZftngB8hyWJtlOJS2sBV0ILrVBqeWpk6KXTqqzGdV3n7tK_Or5PrF138VbX7JCVZ9zQQS1M5Phy5cDhrfGuhK-XobzidwhaXi_BJoa-m8Kvf6k5DLjxudX-RFBwDdtm0zbz9jXnXNMObr6slX6VMK0_UW4e1BkKybm3zz7Dgyw1YrodKPm_CzdVl9yjPfzFdMiLPrMoZ2dBTi-_gccjJbzmGEuxlEoEheGWjB0rbUCE0I-7Woed_B86z47zLaNL0c1039wX6vZM_R6e8maPArUpaYy7bxginsyyI4BziJRujl_ax9h1tdfA2w6hGhyR2wqH7tyJ0TGwRWLmOwfss5VdYKu9LvwUsEy7gM0SRKlOh400cjIp1GlKTyHaiIxATFRa2IRmnWRd3xYwemdReoNqLSu2FjODn9J1RTbHxofTuxDJFc90eCwz7EIYQC2UE-9NlvCiU_dClv38imQSjtQQBaATpnEWnuxLV9vxKObitKLcRhbYVYqEIDibGn-3-_s9u_5_4d1j5fdwrLs_yix1YpcH2ddfjLiyNH578N4Q_Y7NXnfB_Jxb7TQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MLACNN%3A+an+attention+mechanism-based+CNN+architecture+for+predicting+genome-wide+DNA+methylation&rft.jtitle=Theory+in+biosciences+%3D+Theorie+in+den+Biowissenschaften&rft.au=Bai%2C+JianGuo&rft.au=Yang%2C+Hai&rft.au=Wu%2C+ChangDe&rft.date=2023-11-01&rft.issn=1431-7613&rft.eissn=1611-7530&rft.volume=142&rft.issue=4&rft.spage=359&rft.epage=370&rft_id=info:doi/10.1007%2Fs12064-023-00402-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12064_023_00402_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1431-7613&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1431-7613&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1431-7613&client=summon