A zone-level, building energy optimisation combining an artificial neural network, a genetic algorithm, and model predictive control

Buildings account for a substantial proportion of global energy consumption and global greenhouse gas emissions. Given the growth in smart devices and sensors there is an opportunity to develop a new generation of smarter, more context aware, building controllers. Therefore, in this work, surrogate,...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 151; pp. 729 - 739
Main Authors Reynolds, Jonathan, Rezgui, Yacine, Kwan, Alan, Piriou, Solène
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 15.05.2018
Elsevier BV
Subjects
Online AccessGet full text
ISSN0360-5442
1873-6785
1873-6785
DOI10.1016/j.energy.2018.03.113

Cover

Abstract Buildings account for a substantial proportion of global energy consumption and global greenhouse gas emissions. Given the growth in smart devices and sensors there is an opportunity to develop a new generation of smarter, more context aware, building controllers. Therefore, in this work, surrogate, zone-level artificial neural networks that take weather, occupancy and indoor temperature as inputs, have been created. These are used as an evaluation engine by a genetic algorithm with the aim of minimising energy consumption. Bespoke 24-h, heating set point schedules are generated for each zone in a small office building in Cardiff, UK. The optimisation strategy can be deployed in two modes, day ahead optimisation or as model predictive control which re-optimises every hour. Over a February test week, the optimisation is shown to reduce energy consumption by around 25% compared to a baseline heating strategy. When a time of use tariff is introduced, the optimisation is altered to minimise cost rather than energy consumption. The optimisation strategy successfully shifts load to cheaper price periods and reduces energy cost by around 27% compared to the baseline strategy. •This paper develops zone-level, surrogate, ANN models to predict heating energy demand and zone temperature.•The ANN are combined with a GA to minimise energy consumption or energy cost.•The effect of day-ahead controls or model predictive control is assessed.•The control framework was shown to be adaptive to dynamic energy pricing.•A total energy saving of 25% was shown over a February test week.
AbstractList Buildings account for a substantial proportion of global energy consumption and global greenhouse gas emissions. Given the growth in smart devices and sensors there is an opportunity to develop a new generation of smarter, more context aware, building controllers. Therefore, in this work, surrogate, zone-level artificial neural networks that take weather, occupancy and indoor temperature as inputs, have been created. These are used as an evaluation engine by a genetic algorithm with the aim of minimising energy consumption. Bespoke 24-h, heating set point schedules are generated for each zone in a small office building in Cardiff, UK. The optimisation strategy can be deployed in two modes, day ahead optimisation or as model predictive control which re-optimises every hour. Over a February test week, the optimisation is shown to reduce energy consumption by around 25% compared to a baseline heating strategy. When a time of use tariff is introduced, the optimisation is altered to minimise cost rather than energy consumption. The optimisation strategy successfully shifts load to cheaper price periods and reduces energy cost by around 27% compared to the baseline strategy. •This paper develops zone-level, surrogate, ANN models to predict heating energy demand and zone temperature.•The ANN are combined with a GA to minimise energy consumption or energy cost.•The effect of day-ahead controls or model predictive control is assessed.•The control framework was shown to be adaptive to dynamic energy pricing.•A total energy saving of 25% was shown over a February test week.
Buildings account for a substantial proportion of global energy consumption and global greenhouse gas emissions. Given the growth in smart devices and sensors there is an opportunity to develop a new generation of smarter, more context aware, building controllers. Therefore, in this work, surrogate, zone-level artificial neural networks that take weather, occupancy and indoor temperature as inputs, have been created. These are used as an evaluation engine by a genetic algorithm with the aim of minimising energy consumption. Bespoke 24-h, heating set point schedules are generated for each zone in a small office building in Cardiff, UK. The optimisation strategy can be deployed in two modes, day ahead optimisation or as model predictive control which re-optimises every hour. Over a February test week, the optimisation is shown to reduce energy consumption by around 25% compared to a baseline heating strategy. When a time of use tariff is introduced, the optimisation is altered to minimise cost rather than energy consumption. The optimisation strategy successfully shifts load to cheaper price periods and reduces energy cost by around 27% compared to the baseline strategy.
Author Piriou, Solène
Reynolds, Jonathan
Rezgui, Yacine
Kwan, Alan
Author_xml – sequence: 1
  givenname: Jonathan
  surname: Reynolds
  fullname: Reynolds, Jonathan
  email: ReynoldsJ8@Cardiff.ac.uk
– sequence: 2
  givenname: Yacine
  surname: Rezgui
  fullname: Rezgui, Yacine
– sequence: 3
  givenname: Alan
  surname: Kwan
  fullname: Kwan, Alan
– sequence: 4
  givenname: Solène
  surname: Piriou
  fullname: Piriou, Solène
BookMark eNqNkUFvFCEYhompidvqP_BA4sVDZ4RhYGY9mDSNtiZNvPROGPhmZWVgBGab7dkfLtvx1IN6-hJ43jd8D-fozAcPCL2lpKaEig_7GjzE3bFuCO1rwmpK2Qu0oX3HKtH1_AxtCBOk4m3bvELnKe0JIbzfbjfo1xV-LGWVgwO4Szws1hnrd3gtxGHOdrJJZRs81mEarD_dKo9VzHa02iqHPSzxaeSHEH9cYoV3JZ6txsrtQrT5-1QOvcFTMODwHMFYne0BSqPPMbjX6OWoXII3f-YFuv_y-f76trr7dvP1-uqu0i1vcsWYMgJMK8aOCw0djILD0ChDYRDEcGNYN5otI01B2n4AGBhvuBYtb8emZxeIr7WLn9XxQTkn52gnFY-SEnkyKfdyXVyeTErCZDFZcu_X3BzDzwVSlkWJBueUh7CkwnLWbxsuaEHfPUP3YYm-LFWojhT_gvNCfVwpHUNKEUapbX5ynKOy7l-vaZ-F_3OJT2sMiuCDhSiTtuB1-YsIOksT7N8LfgOMTMLX
CitedBy_id crossref_primary_10_3390_en16041609
crossref_primary_10_1016_j_enbuild_2019_06_016
crossref_primary_10_1016_j_enbuild_2021_111218
crossref_primary_10_1016_j_energy_2020_117236
crossref_primary_10_1080_19401493_2024_2440418
crossref_primary_10_1109_TSG_2020_2986539
crossref_primary_10_1016_j_energy_2019_02_035
crossref_primary_10_1016_j_enbuild_2024_114289
crossref_primary_10_1016_j_jclepro_2022_133500
crossref_primary_10_1016_j_egyr_2023_05_263
crossref_primary_10_1109_ACCESS_2019_2937639
crossref_primary_10_1016_j_jobe_2021_102222
crossref_primary_10_1016_j_segan_2022_100742
crossref_primary_10_1016_j_jobe_2021_102340
crossref_primary_10_1016_j_jobe_2025_111909
crossref_primary_10_1016_j_jobe_2023_106148
crossref_primary_10_1016_j_apenergy_2020_116131
crossref_primary_10_1016_j_enbuild_2024_114161
crossref_primary_10_1016_j_apenergy_2021_117733
crossref_primary_10_1016_j_energy_2019_06_062
crossref_primary_10_3390_su141610230
crossref_primary_10_1109_TASE_2020_2990566
crossref_primary_10_1016_j_enbuild_2021_111565
crossref_primary_10_1016_j_jclepro_2023_139040
crossref_primary_10_1016_j_jclepro_2025_144774
crossref_primary_10_1155_ina_6652442
crossref_primary_10_32604_cmc_2022_020491
crossref_primary_10_3390_jmse10091307
crossref_primary_10_1016_j_enbuild_2023_113508
crossref_primary_10_3846_jcem_2022_17566
crossref_primary_10_3390_su16093627
crossref_primary_10_1002_er_4990
crossref_primary_10_1016_j_energy_2022_125029
crossref_primary_10_1016_j_rser_2020_110120
crossref_primary_10_1016_j_buildenv_2023_110101
crossref_primary_10_1109_ACCESS_2023_3262934
crossref_primary_10_1080_23744731_2020_1715250
crossref_primary_10_1016_j_enbuild_2021_111513
crossref_primary_10_1016_j_apenergy_2020_115147
crossref_primary_10_1007_s00170_023_12671_9
crossref_primary_10_1016_j_buildenv_2021_107952
crossref_primary_10_3390_en16062844
crossref_primary_10_1016_j_enconman_2022_116573
crossref_primary_10_1016_j_rser_2019_109250
crossref_primary_10_1016_j_apenergy_2025_125631
crossref_primary_10_3390_en14092398
crossref_primary_10_1016_j_enbuild_2018_03_065
crossref_primary_10_1016_j_enbuild_2019_109576
crossref_primary_10_1080_19401493_2022_2125581
crossref_primary_10_1109_ACCESS_2022_3172322
crossref_primary_10_1088_1757_899X_1294_1_012055
crossref_primary_10_1016_j_apenergy_2024_124788
crossref_primary_10_3390_en14185947
crossref_primary_10_1016_j_buildenv_2022_109747
crossref_primary_10_1016_j_enbuild_2025_115390
crossref_primary_10_1016_j_jobe_2021_102925
crossref_primary_10_12813_kieae_2020_20_6_169
crossref_primary_10_1002_cta_3370
crossref_primary_10_1016_j_est_2021_103014
crossref_primary_10_1016_j_apenergy_2018_04_060
crossref_primary_10_1016_j_enbuild_2021_111102
crossref_primary_10_3390_su12208495
crossref_primary_10_1016_j_scs_2020_102320
crossref_primary_10_3390_buildings14082423
crossref_primary_10_1016_j_energy_2018_07_022
crossref_primary_10_3390_en14102917
crossref_primary_10_3390_en13123103
crossref_primary_10_3390_en16165935
crossref_primary_10_61186_jsdp_20_2_99
crossref_primary_10_1016_j_aei_2019_03_006
crossref_primary_10_1016_j_enbuild_2025_115307
crossref_primary_10_1016_j_jclepro_2024_143004
crossref_primary_10_1038_s41560_020_0671_0
crossref_primary_10_3390_math9182181
crossref_primary_10_1016_j_energy_2019_03_171
crossref_primary_10_1109_TASE_2023_3279278
crossref_primary_10_1016_j_energy_2021_122273
crossref_primary_10_1115_1_4048561
crossref_primary_10_1007_s00500_022_06917_z
crossref_primary_10_1007_s12237_024_01387_y
crossref_primary_10_1016_j_apenergy_2018_11_001
crossref_primary_10_3390_su12052027
crossref_primary_10_3390_buildings12030362
crossref_primary_10_1007_s41024_022_00238_2
crossref_primary_10_1177_09544062211005797
crossref_primary_10_1007_s11036_020_01698_x
crossref_primary_10_1016_j_apenergy_2021_118041
crossref_primary_10_1016_j_energy_2019_01_104
crossref_primary_10_1016_j_jprocont_2021_09_008
crossref_primary_10_3390_rs13030357
crossref_primary_10_2139_ssrn_4076993
crossref_primary_10_3390_foundations5020011
crossref_primary_10_1016_j_enbuild_2024_115086
crossref_primary_10_1016_j_jconhyd_2023_104151
crossref_primary_10_1016_j_apenergy_2021_117821
crossref_primary_10_1016_j_enbuild_2020_109972
crossref_primary_10_3390_e23020260
crossref_primary_10_1007_s00158_023_03673_y
crossref_primary_10_1016_j_apenergy_2021_117429
crossref_primary_10_1016_j_enbuild_2021_111377
crossref_primary_10_1016_j_apenergy_2022_119326
crossref_primary_10_1016_j_jobe_2019_100995
crossref_primary_10_3390_biomimetics9080463
crossref_primary_10_1016_j_heliyon_2024_e25800
crossref_primary_10_1016_j_enbuild_2023_113436
crossref_primary_10_3390_en13112779
crossref_primary_10_1109_JIOT_2021_3111454
crossref_primary_10_1080_19401493_2024_2371918
crossref_primary_10_1016_j_asoc_2021_107191
crossref_primary_10_1016_j_ecmx_2022_100254
crossref_primary_10_1002_adts_201900092
crossref_primary_10_1016_j_cageo_2021_104837
crossref_primary_10_1016_j_apenergy_2019_03_028
crossref_primary_10_1016_j_compchemeng_2023_108377
crossref_primary_10_1016_j_jclepro_2021_129172
crossref_primary_10_1016_j_jobe_2020_101692
crossref_primary_10_1016_j_jclepro_2022_131083
crossref_primary_10_1016_j_enbuild_2022_112067
crossref_primary_10_1016_j_enbuild_2022_112584
crossref_primary_10_1016_j_egyr_2024_04_025
crossref_primary_10_1016_j_buildenv_2021_107927
crossref_primary_10_1016_j_jobe_2024_110445
crossref_primary_10_3390_biom10050787
crossref_primary_10_1016_j_apenergy_2021_118229
crossref_primary_10_1016_j_epsr_2024_111185
crossref_primary_10_3390_su13169318
crossref_primary_10_1016_j_energy_2023_126934
crossref_primary_10_3390_s21175835
crossref_primary_10_1016_j_ecmx_2025_100948
crossref_primary_10_1016_j_enbuild_2023_113027
crossref_primary_10_1016_j_buildenv_2023_111073
crossref_primary_10_1016_j_apenergy_2021_117256
crossref_primary_10_1016_j_jobe_2022_104612
crossref_primary_10_1155_2022_5112950
crossref_primary_10_3390_s20175003
crossref_primary_10_1016_j_jhydrol_2023_129925
crossref_primary_10_1177_0144598718822400
crossref_primary_10_1016_j_apenergy_2020_114771
crossref_primary_10_1016_j_scs_2022_103700
crossref_primary_10_1088_1742_6596_2069_1_012077
crossref_primary_10_3390_en13123093
crossref_primary_10_1016_j_applthermaleng_2019_114558
crossref_primary_10_1016_j_engappai_2023_107115
crossref_primary_10_1109_ACCESS_2021_3078550
crossref_primary_10_1007_s12053_024_10249_2
crossref_primary_10_1016_j_enbuild_2021_111439
crossref_primary_10_3390_app11020763
crossref_primary_10_1016_j_enbuild_2025_115478
crossref_primary_10_1016_j_jobe_2022_104505
crossref_primary_10_1016_j_applthermaleng_2021_117809
crossref_primary_10_1016_j_jobe_2021_103017
crossref_primary_10_1016_j_epsr_2019_106073
crossref_primary_10_1109_JTEHM_2020_2987008
crossref_primary_10_3390_a17100446
crossref_primary_10_1016_j_enbuild_2023_113499
crossref_primary_10_1016_j_enbuild_2025_115633
crossref_primary_10_1016_j_jobe_2021_102440
crossref_primary_10_1016_j_energy_2019_06_037
crossref_primary_10_1016_j_jobe_2023_106204
crossref_primary_10_2139_ssrn_4140070
crossref_primary_10_1016_j_egyr_2020_11_153
crossref_primary_10_1515_auto_2020_0031
crossref_primary_10_1016_j_scs_2022_104101
crossref_primary_10_1007_s11356_023_25146_x
crossref_primary_10_1016_j_neunet_2023_02_010
crossref_primary_10_1109_ACCESS_2020_3041357
crossref_primary_10_3389_fenrg_2023_1078603
crossref_primary_10_3390_en12010034
crossref_primary_10_1016_j_buildenv_2021_108681
crossref_primary_10_1016_j_scs_2019_101991
crossref_primary_10_3390_en15072345
crossref_primary_10_1016_j_apenergy_2019_113493
crossref_primary_10_1016_j_enbuild_2024_115205
crossref_primary_10_1051_e3sconf_202234904012
crossref_primary_10_1016_j_energy_2022_125521
crossref_primary_10_1080_17508975_2019_1613219
crossref_primary_10_1007_s11042_021_11491_x
crossref_primary_10_1109_ACCESS_2021_3065087
crossref_primary_10_1016_j_enbuild_2022_112133
crossref_primary_10_3390_buildings10090163
crossref_primary_10_1016_j_jobe_2020_102139
crossref_primary_10_1007_s10973_022_11896_2
crossref_primary_10_1016_j_apenergy_2021_117276
crossref_primary_10_3390_app13095584
crossref_primary_10_1016_j_energy_2022_123626
Cites_doi 10.1016/j.enbuild.2017.04.069
10.1016/j.erss.2015.12.015
10.1016/j.buildenv.2013.11.016
10.1016/j.enbuild.2015.11.033
10.1016/j.enbuild.2017.04.038
10.1016/j.enbuild.2017.06.076
10.1007/s12273-016-0285-4
10.1016/j.enbuild.2014.06.009
10.1016/j.enbuild.2015.11.045
10.1016/j.enbuild.2010.03.014
10.1109/TSG.2010.2083705
10.1016/j.rser.2013.06.041
10.1109/TIA.2013.2252873
10.1016/j.enbuild.2016.07.036
10.1016/j.buildenv.2009.08.016
10.1016/j.enbuild.2011.09.022
10.1016/j.aei.2015.03.004
10.1016/j.rser.2014.03.027
10.1016/j.enbuild.2014.10.083
10.1016/j.buildenv.2010.01.009
10.1016/j.apenergy.2015.12.066
10.1016/j.apenergy.2011.03.009
10.1016/j.enbuild.2010.10.022
10.1115/1.1592186
10.1016/j.enbuild.2014.04.052
10.1016/j.scs.2017.02.010
10.1016/j.egypro.2015.11.253
10.1016/j.rser.2014.05.056
10.3390/en5125257
10.1016/j.enbuild.2017.02.012
ContentType Journal Article
Copyright 2018 The Authors
Copyright Elsevier BV May 15, 2018
Copyright_xml – notice: 2018 The Authors
– notice: Copyright Elsevier BV May 15, 2018
DBID 6I.
AAFTH
AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
ADTOC
UNPAY
DOI 10.1016/j.energy.2018.03.113
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1873-6785
EndPage 739
ExternalDocumentID 10.1016/j.energy.2018.03.113
10_1016_j_energy_2018_03_113
S036054421830522X
GeographicLocations United Kingdom
GeographicLocations_xml – name: United Kingdom
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
~HD
7SP
7ST
7TB
8FD
AGCQF
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
ADTOC
UNPAY
ID FETCH-LOGICAL-c452t-33ad6ed46f756ce7ef65eb2ad1eb60d5dd37fd930246f48beeb3525c6454f283
IEDL.DBID .~1
ISSN 0360-5442
1873-6785
IngestDate Wed Oct 01 16:32:53 EDT 2025
Wed Oct 01 14:49:02 EDT 2025
Wed Aug 13 06:10:04 EDT 2025
Wed Oct 01 01:34:51 EDT 2025
Thu Apr 24 23:06:11 EDT 2025
Fri Feb 23 02:33:57 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Model predictive control
Artificial neural network
HVAC control
Heating set point scheduler
Building energy management
Genetic algorithm
Language English
License This is an open access article under the CC BY license.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c452t-33ad6ed46f756ce7ef65eb2ad1eb60d5dd37fd930246f48beeb3525c6454f283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S036054421830522X
PQID 2070442655
PQPubID 2045484
PageCount 11
ParticipantIDs unpaywall_primary_10_1016_j_energy_2018_03_113
proquest_miscellaneous_2053892561
proquest_journals_2070442655
crossref_citationtrail_10_1016_j_energy_2018_03_113
crossref_primary_10_1016_j_energy_2018_03_113
elsevier_sciencedirect_doi_10_1016_j_energy_2018_03_113
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-15
PublicationDateYYYYMMDD 2018-05-15
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-15
  day: 15
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy (Oxford)
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Ahmad, Hippolyte, Reynolds, Mourshed, Rezgui (bib13) 2016
Guan, Xu, Jia (bib2) 2010; 1
Shaikh, Nor, Nallagownden, Elamvazuthi, Ibrahim (bib6) 2014; 34
European Parliament (bib1) 2010; 53
Magalhães, Leal, Horta (bib20) 2017; 151
Erickson, Cerpa (bib33) 2010; 10
Ma, Qin, Li, Salsbury (bib12) 2011
Ascione, Bianco, De Stasio, Mauro, Vanoli (bib16) 2016; 111
Afram, Janabi-Sharifi, Fung, Raahemifar (bib23) 2017; 141
Moon, Kim (bib26) 2010; 45
Papadopoulos, Azar (bib14) 2016
Pisello, Bobker, Cotana (bib32) 2012; 5
Ascione, Bianco, De Stasio, Mauro, Vanoli (bib15) 2017; 31
Kubli, Ulli-Beer (bib4) 2016; 13
Oldewurtel, Parisio, Jones, Gyalistras, Gwerder, Stauch (bib29) 2012; 45
Cho, Ham, Golpavar-Fard (bib39) 2015; 29
Široký, Oldewurtel, Cigler, Prívara (bib28) 2011; 88
Haniff, Selamat, Yusof, Buyamin, Sham Ismail (bib3) 2013; 27
Ahmad, Mourshed, Yuce, Rezgui (bib8) 2016; 9
Li, Wen (bib10) 2014; 37
Ascione, Bianco, De Stasio, Mauro, Vanoli (bib19) 2017; 146
Afram, Janabi-Sharifi (bib7) 2014; 72
Magnier, Haghighat (bib17) 2010; 45
Molina, Lu, Sherman, Harley (bib30) 2013; 49
Mirakhorli, Dong (bib9) 2016; 129
Lee, Horesh, Liberti (bib25) 2015; 78
Asadi, Da Silva, Antunes, Dias, Glicksman (bib18) 2014; 81
Chae, Horesh, Hwang, Lee (bib22) 2016; 111
Papantoniou, Kolokotsa, Kalaitzakis (bib24) 2015; 98
Moroşan, Bourdais, Dumur, Buisson (bib31) 2010; 42
Reynolds, Hippolyte, Rezgui (bib36) 2017
Benedetti, Cesarotti, Introna, Serranti (bib21) 2016; 165
Ahmad, Mourshed, Rezgui (bib11) 2017
Green Energy UK (bib38) 2017
Yuce, Li, Rezgui, Petri, Jayan, Yang (bib34) 2014; 80
Prívara, Jan, Ferkl, Cigler (bib27) 2011; 43
Wetter, Haves (bib37) 2008
Reynolds, Rezgui, Hippolyte (bib5) 2017
Krarti (bib35) 2003; 125
Ahmad (10.1016/j.energy.2018.03.113_bib13) 2016
Ascione (10.1016/j.energy.2018.03.113_bib19) 2017; 146
Oldewurtel (10.1016/j.energy.2018.03.113_bib29) 2012; 45
Široký (10.1016/j.energy.2018.03.113_bib28) 2011; 88
Kubli (10.1016/j.energy.2018.03.113_bib4) 2016; 13
Chae (10.1016/j.energy.2018.03.113_bib22) 2016; 111
Mirakhorli (10.1016/j.energy.2018.03.113_bib9) 2016; 129
Ascione (10.1016/j.energy.2018.03.113_bib15) 2017; 31
Ahmad (10.1016/j.energy.2018.03.113_bib8) 2016; 9
Reynolds (10.1016/j.energy.2018.03.113_bib5) 2017
Haniff (10.1016/j.energy.2018.03.113_bib3) 2013; 27
Magalhães (10.1016/j.energy.2018.03.113_bib20) 2017; 151
Afram (10.1016/j.energy.2018.03.113_bib23) 2017; 141
Erickson (10.1016/j.energy.2018.03.113_bib33) 2010; 10
Ahmad (10.1016/j.energy.2018.03.113_bib11) 2017
Lee (10.1016/j.energy.2018.03.113_bib25) 2015; 78
Krarti (10.1016/j.energy.2018.03.113_bib35) 2003; 125
Cho (10.1016/j.energy.2018.03.113_bib39) 2015; 29
Moon (10.1016/j.energy.2018.03.113_bib26) 2010; 45
Benedetti (10.1016/j.energy.2018.03.113_bib21) 2016; 165
Molina (10.1016/j.energy.2018.03.113_bib30) 2013; 49
Shaikh (10.1016/j.energy.2018.03.113_bib6) 2014; 34
Asadi (10.1016/j.energy.2018.03.113_bib18) 2014; 81
Afram (10.1016/j.energy.2018.03.113_bib7) 2014; 72
Wetter (10.1016/j.energy.2018.03.113_bib37) 2008
Green Energy UK (10.1016/j.energy.2018.03.113_bib38) 2017
Reynolds (10.1016/j.energy.2018.03.113_bib36) 2017
Guan (10.1016/j.energy.2018.03.113_bib2) 2010; 1
Pisello (10.1016/j.energy.2018.03.113_bib32) 2012; 5
Magnier (10.1016/j.energy.2018.03.113_bib17) 2010; 45
European Parliament (10.1016/j.energy.2018.03.113_bib1) 2010; 53
Ma (10.1016/j.energy.2018.03.113_bib12) 2011
Ascione (10.1016/j.energy.2018.03.113_bib16) 2016; 111
Papantoniou (10.1016/j.energy.2018.03.113_bib24) 2015; 98
Moroşan (10.1016/j.energy.2018.03.113_bib31) 2010; 42
Yuce (10.1016/j.energy.2018.03.113_bib34) 2014; 80
Li (10.1016/j.energy.2018.03.113_bib10) 2014; 37
Papadopoulos (10.1016/j.energy.2018.03.113_bib14) 2016
Prívara (10.1016/j.energy.2018.03.113_bib27) 2011; 43
References_xml – volume: 129
  start-page: 499
  year: 2016
  end-page: 513
  ident: bib9
  article-title: Occupancy behavior based model predictive control for building indoor climate—A critical review
  publication-title: Energy Build
– volume: 125
  start-page: 331
  year: 2003
  ident: bib35
  article-title: An overview of artificial intelligence-based methods for building energy systems
  publication-title: J Sol Energy Eng
– volume: 42
  start-page: 1445
  year: 2010
  end-page: 1452
  ident: bib31
  article-title: Building temperature regulation using a distributed model predictive control
  publication-title: Energy Build
– volume: 81
  start-page: 444
  year: 2014
  end-page: 456
  ident: bib18
  article-title: Multi-objective optimization for building retrofit: a model using genetic algorithm and artificial neural network and an application
  publication-title: Energy Build
– volume: 111
  start-page: 184
  year: 2016
  end-page: 194
  ident: bib22
  article-title: Artificial neural network model for forecasting sub-hourly electricity usage in commercial buildings
  publication-title: Energy Build
– year: 2017
  ident: bib11
  article-title: Trees vs Neurons: comparison between Random Forest and ANN for high-resolution prediction of building energy consumption
  publication-title: Energy Build
– start-page: 726
  year: 2017
  end-page: 732
  ident: bib36
  article-title: A smart heating set point scheduler using an artificial neural network and genetic algorithm
  publication-title: Int. Conf. Eng. Technol. Innov
– volume: 45
  start-page: 1612
  year: 2010
  end-page: 1625
  ident: bib26
  article-title: ANN-based thermal control models for residential buildings
  publication-title: Build Environ
– volume: 49
  start-page: 7
  year: 2013
  end-page: 13
  ident: bib30
  article-title: Model predictive and genetic algorithm based optimization of residential temperature control in the presence of time-varying electricity prices
  publication-title: IEEE Trans Ind Appl
– volume: 9
  start-page: 359
  year: 2016
  end-page: 398
  ident: bib8
  article-title: Computational intelligence techniques for HVAC systems: a review
  publication-title: Build Simul
– volume: 72
  start-page: 343
  year: 2014
  end-page: 355
  ident: bib7
  article-title: Theory and applications of HVAC control systems - a review of model predictive control (MPC)
  publication-title: Build Environ
– volume: 45
  start-page: 15
  year: 2012
  end-page: 27
  ident: bib29
  article-title: Use of model predictive control and weather forecasts for energy efficient building climate control
  publication-title: Energy Build
– volume: 78
  start-page: 2106
  year: 2015
  end-page: 2111
  ident: bib25
  article-title: Optimal HVAC control as demand response with on-site energy storage and generation system
  publication-title: Energy Procedia
– volume: 45
  start-page: 739
  year: 2010
  end-page: 746
  ident: bib17
  article-title: Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and artificial neural network
  publication-title: Build Environ
– volume: 29
  start-page: 184
  year: 2015
  end-page: 195
  ident: bib39
  article-title: 3D as-is building energy modeling and diagnostics: a review of the state-of-the-art
  publication-title: Adv Eng Inf
– volume: 88
  start-page: 3079
  year: 2011
  end-page: 3087
  ident: bib28
  article-title: Experimental analysis of model predictive control for an energy efficient building heating system
  publication-title: Appl Energy
– volume: 5
  start-page: 5257
  year: 2012
  end-page: 5278
  ident: bib32
  article-title: A building energy efficiency optimization method by evaluating the effective thermal zones occupancy
  publication-title: Energies
– volume: 98
  start-page: 45
  year: 2015
  end-page: 55
  ident: bib24
  article-title: Building optimization and control algorithms implemented in existing BEMS using a web based energy management and control system
  publication-title: Energy Build
– start-page: 1
  year: 2017
  end-page: 15
  ident: bib5
  article-title: Upscaling energy control from building to districts: current limitations and future perspectives
  publication-title: Sustain Cities Soc
– start-page: 69
  year: 2008
  end-page: 76
  ident: bib37
  article-title: A modular building controls virtual test bed for the integration of heterogeneous systems
  publication-title: SimBuild 2008, Berkeley, CA
– volume: 165
  start-page: 60
  year: 2016
  end-page: 71
  ident: bib21
  article-title: Energy consumption control automation using Artificial Neural Networks and adaptive algorithms: proposal of a new methodology and case study
  publication-title: Appl Energy
– year: 2017
  ident: bib38
  article-title: Tide tariff
– volume: 141
  start-page: 96
  year: 2017
  end-page: 113
  ident: bib23
  article-title: Artificial neural network (ANN) based model predictive control (MPC) and optimization of HVAC systems: a state of the art review and case study of a residential HVAC system
  publication-title: Energy Build
– volume: 43
  start-page: 564
  year: 2011
  end-page: 572
  ident: bib27
  article-title: Model predictive control of a building heating system: the first experience
  publication-title: Energy Build
– volume: 10
  start-page: 7
  year: 2010
  ident: bib33
  article-title: Occupancy based demand response HVAC control strategy
  publication-title: Proc 2nd ACM Work Embed Sens Syst Energy-Efficiency Build - BuildSys
– volume: 53
  start-page: 40
  year: 2010
  ident: bib1
  article-title: Directive 2010/31/EU of the European Parliament and of the Council on the energy performance of buildings
  publication-title: Off J Eur Union
– volume: 151
  start-page: 332
  year: 2017
  end-page: 343
  ident: bib20
  article-title: Modelling the relationship between heating energy use and indoor temperatures in residential buildings through Artificial Neural Networks considering occupant behavior
  publication-title: Energy Build
– volume: 34
  start-page: 409
  year: 2014
  end-page: 429
  ident: bib6
  article-title: A review on optimized control systems for building energy and comfort management of smart sustainable buildings
  publication-title: Renew. Sustain Energy Rev
– volume: 111
  start-page: 131
  year: 2016
  end-page: 144
  ident: bib16
  article-title: Simulation-based model predictive control by the multi-objective optimization of building energy performance and thermal comfort
  publication-title: Energy Build
– volume: 1
  start-page: 243
  year: 2010
  end-page: 252
  ident: bib2
  article-title: Energy-efficient buildings facilitated by microgrid
  publication-title: IEEE Trans Smart Grid
– volume: 31
  start-page: 136
  year: 2017
  end-page: 150
  ident: bib15
  article-title: A new comprehensive approach for cost-optimal building design integrated with the multi-objective model predictive control of HVAC systems
  publication-title: Sustain Cities Soc
– start-page: 1725
  year: 2016
  end-page: 1735
  ident: bib14
  article-title: Optimizing HVAC operation in commercial buildings: a genetic algorithm multi-objective optimization framework
  publication-title: 2016 Winter Simul. Conf
– volume: 80
  start-page: 45
  year: 2014
  end-page: 56
  ident: bib34
  article-title: Utilizing artificial neural network to predict energy consumption and thermal comfort level: an indoor swimming pool case study
  publication-title: Energy Build
– volume: 13
  start-page: 71
  year: 2016
  end-page: 83
  ident: bib4
  article-title: Decentralisation dynamics in energy systems: a generic simulation of network effects
  publication-title: Energy Res Soc Sci
– start-page: 1
  year: 2011
  end-page: 6
  ident: bib12
  article-title: Economic model predictive control for building energy systems
  publication-title: ISGT 2011
– year: 2016
  ident: bib13
  article-title: Optimal scheduling strategy for enhancing IAQ, thermal comfort and visual using a genetic algorithm
  publication-title: IAQ 2016 Defin. Indoor air qual. Policy, Stand. Pract
– volume: 37
  start-page: 517
  year: 2014
  end-page: 537
  ident: bib10
  article-title: Review of building energy modeling for control and operation
  publication-title: Renew Sustain Energy Rev
– volume: 146
  start-page: 200
  year: 2017
  end-page: 219
  ident: bib19
  article-title: CASA, cost-optimal analysis by multi-objective optimisation and artificial neural networks: a new framework for the robust assessment of cost-optimal energy retrofit, feasible for any building
  publication-title: Energy Build
– volume: 27
  start-page: 94
  year: 2013
  end-page: 103
  ident: bib3
  article-title: Review of HVAC scheduling techniques for buildings towards energy-efficient and cost-effective operations
  publication-title: Renew Sustain Energy Rev
– volume: 146
  start-page: 200
  year: 2017
  ident: 10.1016/j.energy.2018.03.113_bib19
  article-title: CASA, cost-optimal analysis by multi-objective optimisation and artificial neural networks: a new framework for the robust assessment of cost-optimal energy retrofit, feasible for any building
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2017.04.069
– start-page: 1
  year: 2017
  ident: 10.1016/j.energy.2018.03.113_bib5
  article-title: Upscaling energy control from building to districts: current limitations and future perspectives
  publication-title: Sustain Cities Soc
– volume: 13
  start-page: 71
  year: 2016
  ident: 10.1016/j.energy.2018.03.113_bib4
  article-title: Decentralisation dynamics in energy systems: a generic simulation of network effects
  publication-title: Energy Res Soc Sci
  doi: 10.1016/j.erss.2015.12.015
– volume: 72
  start-page: 343
  year: 2014
  ident: 10.1016/j.energy.2018.03.113_bib7
  article-title: Theory and applications of HVAC control systems - a review of model predictive control (MPC)
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2013.11.016
– volume: 111
  start-page: 131
  year: 2016
  ident: 10.1016/j.energy.2018.03.113_bib16
  article-title: Simulation-based model predictive control by the multi-objective optimization of building energy performance and thermal comfort
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2015.11.033
– year: 2017
  ident: 10.1016/j.energy.2018.03.113_bib11
  article-title: Trees vs Neurons: comparison between Random Forest and ANN for high-resolution prediction of building energy consumption
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2017.04.038
– volume: 151
  start-page: 332
  year: 2017
  ident: 10.1016/j.energy.2018.03.113_bib20
  article-title: Modelling the relationship between heating energy use and indoor temperatures in residential buildings through Artificial Neural Networks considering occupant behavior
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2017.06.076
– volume: 9
  start-page: 359
  year: 2016
  ident: 10.1016/j.energy.2018.03.113_bib8
  article-title: Computational intelligence techniques for HVAC systems: a review
  publication-title: Build Simul
  doi: 10.1007/s12273-016-0285-4
– volume: 81
  start-page: 444
  year: 2014
  ident: 10.1016/j.energy.2018.03.113_bib18
  article-title: Multi-objective optimization for building retrofit: a model using genetic algorithm and artificial neural network and an application
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2014.06.009
– volume: 111
  start-page: 184
  year: 2016
  ident: 10.1016/j.energy.2018.03.113_bib22
  article-title: Artificial neural network model for forecasting sub-hourly electricity usage in commercial buildings
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2015.11.045
– volume: 42
  start-page: 1445
  year: 2010
  ident: 10.1016/j.energy.2018.03.113_bib31
  article-title: Building temperature regulation using a distributed model predictive control
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2010.03.014
– volume: 1
  start-page: 243
  year: 2010
  ident: 10.1016/j.energy.2018.03.113_bib2
  article-title: Energy-efficient buildings facilitated by microgrid
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2010.2083705
– year: 2017
  ident: 10.1016/j.energy.2018.03.113_bib38
– volume: 27
  start-page: 94
  year: 2013
  ident: 10.1016/j.energy.2018.03.113_bib3
  article-title: Review of HVAC scheduling techniques for buildings towards energy-efficient and cost-effective operations
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2013.06.041
– start-page: 726
  year: 2017
  ident: 10.1016/j.energy.2018.03.113_bib36
  article-title: A smart heating set point scheduler using an artificial neural network and genetic algorithm
– volume: 49
  start-page: 7
  year: 2013
  ident: 10.1016/j.energy.2018.03.113_bib30
  article-title: Model predictive and genetic algorithm based optimization of residential temperature control in the presence of time-varying electricity prices
  publication-title: IEEE Trans Ind Appl
  doi: 10.1109/TIA.2013.2252873
– volume: 129
  start-page: 499
  year: 2016
  ident: 10.1016/j.energy.2018.03.113_bib9
  article-title: Occupancy behavior based model predictive control for building indoor climate—A critical review
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2016.07.036
– volume: 45
  start-page: 739
  year: 2010
  ident: 10.1016/j.energy.2018.03.113_bib17
  article-title: Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and artificial neural network
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2009.08.016
– volume: 53
  start-page: 40
  year: 2010
  ident: 10.1016/j.energy.2018.03.113_bib1
  article-title: Directive 2010/31/EU of the European Parliament and of the Council on the energy performance of buildings
  publication-title: Off J Eur Union
– volume: 45
  start-page: 15
  year: 2012
  ident: 10.1016/j.energy.2018.03.113_bib29
  article-title: Use of model predictive control and weather forecasts for energy efficient building climate control
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2011.09.022
– start-page: 69
  year: 2008
  ident: 10.1016/j.energy.2018.03.113_bib37
  article-title: A modular building controls virtual test bed for the integration of heterogeneous systems
– volume: 29
  start-page: 184
  year: 2015
  ident: 10.1016/j.energy.2018.03.113_bib39
  article-title: 3D as-is building energy modeling and diagnostics: a review of the state-of-the-art
  publication-title: Adv Eng Inf
  doi: 10.1016/j.aei.2015.03.004
– volume: 34
  start-page: 409
  year: 2014
  ident: 10.1016/j.energy.2018.03.113_bib6
  article-title: A review on optimized control systems for building energy and comfort management of smart sustainable buildings
  publication-title: Renew. Sustain Energy Rev
  doi: 10.1016/j.rser.2014.03.027
– volume: 98
  start-page: 45
  year: 2015
  ident: 10.1016/j.energy.2018.03.113_bib24
  article-title: Building optimization and control algorithms implemented in existing BEMS using a web based energy management and control system
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2014.10.083
– volume: 10
  start-page: 7
  year: 2010
  ident: 10.1016/j.energy.2018.03.113_bib33
  article-title: Occupancy based demand response HVAC control strategy
– volume: 45
  start-page: 1612
  year: 2010
  ident: 10.1016/j.energy.2018.03.113_bib26
  article-title: ANN-based thermal control models for residential buildings
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2010.01.009
– volume: 165
  start-page: 60
  year: 2016
  ident: 10.1016/j.energy.2018.03.113_bib21
  article-title: Energy consumption control automation using Artificial Neural Networks and adaptive algorithms: proposal of a new methodology and case study
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.12.066
– volume: 88
  start-page: 3079
  year: 2011
  ident: 10.1016/j.energy.2018.03.113_bib28
  article-title: Experimental analysis of model predictive control for an energy efficient building heating system
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.03.009
– start-page: 1
  year: 2011
  ident: 10.1016/j.energy.2018.03.113_bib12
  article-title: Economic model predictive control for building energy systems
– volume: 43
  start-page: 564
  year: 2011
  ident: 10.1016/j.energy.2018.03.113_bib27
  article-title: Model predictive control of a building heating system: the first experience
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2010.10.022
– volume: 125
  start-page: 331
  year: 2003
  ident: 10.1016/j.energy.2018.03.113_bib35
  article-title: An overview of artificial intelligence-based methods for building energy systems
  publication-title: J Sol Energy Eng
  doi: 10.1115/1.1592186
– start-page: 1725
  year: 2016
  ident: 10.1016/j.energy.2018.03.113_bib14
  article-title: Optimizing HVAC operation in commercial buildings: a genetic algorithm multi-objective optimization framework
– volume: 80
  start-page: 45
  year: 2014
  ident: 10.1016/j.energy.2018.03.113_bib34
  article-title: Utilizing artificial neural network to predict energy consumption and thermal comfort level: an indoor swimming pool case study
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2014.04.052
– volume: 31
  start-page: 136
  year: 2017
  ident: 10.1016/j.energy.2018.03.113_bib15
  article-title: A new comprehensive approach for cost-optimal building design integrated with the multi-objective model predictive control of HVAC systems
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2017.02.010
– volume: 78
  start-page: 2106
  year: 2015
  ident: 10.1016/j.energy.2018.03.113_bib25
  article-title: Optimal HVAC control as demand response with on-site energy storage and generation system
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2015.11.253
– volume: 37
  start-page: 517
  year: 2014
  ident: 10.1016/j.energy.2018.03.113_bib10
  article-title: Review of building energy modeling for control and operation
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.05.056
– year: 2016
  ident: 10.1016/j.energy.2018.03.113_bib13
  article-title: Optimal scheduling strategy for enhancing IAQ, thermal comfort and visual using a genetic algorithm
– volume: 5
  start-page: 5257
  year: 2012
  ident: 10.1016/j.energy.2018.03.113_bib32
  article-title: A building energy efficiency optimization method by evaluating the effective thermal zones occupancy
  publication-title: Energies
  doi: 10.3390/en5125257
– volume: 141
  start-page: 96
  year: 2017
  ident: 10.1016/j.energy.2018.03.113_bib23
  article-title: Artificial neural network (ANN) based model predictive control (MPC) and optimization of HVAC systems: a state of the art review and case study of a residential HVAC system
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2017.02.012
SSID ssj0005899
Score 2.6352298
Snippet Buildings account for a substantial proportion of global energy consumption and global greenhouse gas emissions. Given the growth in smart devices and sensors...
SourceID unpaywall
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 729
SubjectTerms Algorithms
Artificial neural network
Artificial neural networks
Building energy management
buildings
controllers
Emissions
energy
Energy consumption
energy costs
Genetic algorithm
Genetic algorithms
Greenhouse effect
greenhouse gas emissions
Greenhouse gases
Heating
Heating set point scheduler
HVAC control
Mathematical models
Model predictive control
Neural networks
Optimization
Predictive control
prices
Schedules
Smart sensors
Strategy
Tariffs
temperature
Time of use
United Kingdom
weather
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6V7aFceBQqFgoyEtya3WT9SPaEVtCq4rBCopWWU2THDg2kyWp3A6JnfjgzibMUJFSQOEWJbcmP8czn-JsZgBcoQpZrjRtJRYr-VuGeszYJYiMoWpmNjGnZFnN1ei7eLuRiB-a9LwzRKr3u73R6q639l7GfzfGyKMbvUfci3hBk40NEEYtXXwr9kr8pLhpzC3aVRGw-gN3z-bvZh-7CMgyoOp3AkpgHqKVl70vXEr5c62xHbK-E4p5GEf-TrbqGRfeaaqm_fdVlec0sndyFuh9Qx0b5PGo2ZpRd_Rbr8f-N-B7c8QiWzbom92HHVfuw1zs4r_fh4Pin8xxW9Npj_QC-z9hVXbmgJKLSETM-IzfrpoTVqL0uPbuIYe9Mm7uC6YpR97pIF4zib7aPlr1-xDTDHUCOmEyXH-tVsbm4xI-VZW2KH7Zc0UUUqXTmSfkP4ezk-Oz1aeCzQASZkJNNwLm2ylmh8liqzMUuV9KZibaRMyq00loe53bKEWyoXCTGOUMhXjMKVZYjeDqAQYVjewTMxTxTxjhEPUZkYppooRLtnDC5kW4SDoH3y51mPkI6Jeoo054K9yntZiQlIUlDjucnPoRg22rZRQi5oX7cS1L6y7qnaMRuaHnYC17qNc0ay-MQRUJJOYTn22JcLbr40ZWrG6qDZm2K4DYawmgrsH_V28f_2uAJ3KY3IlhE8hAGm1XjniJu25hnfjP-AFoxROc
  priority: 102
  providerName: Unpaywall
Title A zone-level, building energy optimisation combining an artificial neural network, a genetic algorithm, and model predictive control
URI https://dx.doi.org/10.1016/j.energy.2018.03.113
https://www.proquest.com/docview/2070442655
https://www.proquest.com/docview/2053892561
https://www.sciencedirect.com/science/article/pii/S036054421830522X?via%3Dihub
UnpaywallVersion publishedVersion
Volume 151
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Journals
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: AKRWK
  dateStart: 19760301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB4heqCXilJQAxQtUo-Y2NmHnWOEQAGkqBIgpSdr17tuUxknykOIHnrqD-_Mep2mh4qqJ8v2rLSendd6v5kB-IgiZLnWqEgqUfS3CnXO2ixKjaBqZTYxxqMtRmr4IG7GcrwFF20uDMEqg-1vbLq31uFJN3CzO5tMundoezHeEOTjY4wixpTBLlLqYnD-YwPmkfkekkQcEXWbPucxXs7n1xHAK6NSp0nC_-aeNsLPnVU9089Puqo2PNHVLrwJISQbNLN8C1uu3oOdNsN4sQcHl7-z15AwqO_iHfwcsO_T2kUVIYXOmAktsVkzQTZF8_EY4D0MGWJ88wima0YcaUpNMCqA6S8ePn7GNEMRpExIpqsv0_lk-fURH9aW-R47bDankyCyqSyg4vfh_ury_mIYhTYMUSFkbxlxrq1yVqgylapwqSuVxP24tokzKrbSWp6Wts_R26tSZMbh_lz2ZEG1wkqMXg5gu8Zvew_MpbxQxjgMO4woRD_TQmXaOWFKI10v7gBvmZ8XoUQ5dcqo8haL9i1vOJLTkuUxxw0M70C0HjVrSnS8QJ-265r_IWo5epEXRh63YpAHVV_g-zRGuVJSduB0_RpXi05edO2mK6JBv9LH6DLpwPlafP5ptof_PdsjeE13BHVI5DFsL-cr9wEjqKU58SpyAq8G17fDEV4fRp8Gn38BDCYgDg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VclguCAoVSwsYiWPTTdaPZI9V1WqB0guLtDfLjh1YlGZX-xAqB078cGYcZ1kOqIhTJHsiOeN5Of5mBuANipDjxqAiqUzR3yrUOeeKJLeCqpW5zNqAtrhW40_i3VRO9-C8y4UhWGW0_a1ND9Y6jgwiNweL2WzwEW0vxhuCfHyKUcT0HtwXcpjTCez0xw7OowhNJIk6IfIufy6AvHxIsCOEV0G1TrOM_80_7cSfvU2zMLffTF3vuKLLR_AwxpDsrF3mY9jzzQH0uhTj1QEcXvxOX0PCqL-rJ_DzjH2fNz6pCSp0wmzsic3aBbI52o-biO9hyBEbukcw0zBiSVtrglEFzPAI-PETZhjKIKVCMlN_ni9n6y83ONg4FprssMWSroLIqLIIi38Kk8uLyfk4iX0YkhIZuk44N055J1SVS1X63FdK4oHcuMxblTrpHM8rN-Lo7lUlCuvxgC6HsqRiYRWGL4ew3-C3PQPmc14qaz3GHVaUYlQYoQrjvbCVlX6Y9oF3zNdlrFFOrTJq3YHRvuqWI5q2TKccTzC8D8n2rUVbo-MO-rzbV_2HrGl0I3e8edyJgY66vsL5PEW5UlL24fV2GneLrl5M4-cbokHHMsLwMuvD6VZ8_mm1z_97ta-gN558uNJXb6_fH8EDmiHcQyaPYX-93PgXGE6t7cugLr8AfJ0f8w
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6V7aFceBQqFgoyEtya3WT9SPaEVtCq4rBCopWWU2THDg2kyWp3A6JnfjgzibMUJFSQOEWJbcmP8czn-JsZgBcoQpZrjRtJRYr-VuGeszYJYiMoWpmNjGnZFnN1ei7eLuRiB-a9LwzRKr3u73R6q639l7GfzfGyKMbvUfci3hBk40NEEYtXXwr9kr8pLhpzC3aVRGw-gN3z-bvZh-7CMgyoOp3AkpgHqKVl70vXEr5c62xHbK-E4p5GEf-TrbqGRfeaaqm_fdVlec0sndyFuh9Qx0b5PGo2ZpRd_Rbr8f-N-B7c8QiWzbom92HHVfuw1zs4r_fh4Pin8xxW9Npj_QC-z9hVXbmgJKLSETM-IzfrpoTVqL0uPbuIYe9Mm7uC6YpR97pIF4zib7aPlr1-xDTDHUCOmEyXH-tVsbm4xI-VZW2KH7Zc0UUUqXTmSfkP4ezk-Oz1aeCzQASZkJNNwLm2ylmh8liqzMUuV9KZibaRMyq00loe53bKEWyoXCTGOUMhXjMKVZYjeDqAQYVjewTMxTxTxjhEPUZkYppooRLtnDC5kW4SDoH3y51mPkI6Jeoo054K9yntZiQlIUlDjucnPoRg22rZRQi5oX7cS1L6y7qnaMRuaHnYC17qNc0ay-MQRUJJOYTn22JcLbr40ZWrG6qDZm2K4DYawmgrsH_V28f_2uAJ3KY3IlhE8hAGm1XjniJu25hnfjP-AFoxROc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+zone-level%2C+building+energy+optimisation+combining+an+artificial+neural+network%2C+a+genetic+algorithm%2C+and+model+predictive+control&rft.jtitle=Energy+%28Oxford%29&rft.au=Reynolds%2C+Jonathan&rft.au=Rezgui%2C+Yacine&rft.au=Kwan%2C+Alan&rft.au=Piriou%2C+Sol%C3%A8ne&rft.date=2018-05-15&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=151&rft.spage=729&rft.epage=739&rft_id=info:doi/10.1016%2Fj.energy.2018.03.113&rft.externalDocID=S036054421830522X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon