A zone-level, building energy optimisation combining an artificial neural network, a genetic algorithm, and model predictive control
Buildings account for a substantial proportion of global energy consumption and global greenhouse gas emissions. Given the growth in smart devices and sensors there is an opportunity to develop a new generation of smarter, more context aware, building controllers. Therefore, in this work, surrogate,...
Saved in:
| Published in | Energy (Oxford) Vol. 151; pp. 729 - 739 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford
Elsevier Ltd
15.05.2018
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0360-5442 1873-6785 1873-6785 |
| DOI | 10.1016/j.energy.2018.03.113 |
Cover
| Abstract | Buildings account for a substantial proportion of global energy consumption and global greenhouse gas emissions. Given the growth in smart devices and sensors there is an opportunity to develop a new generation of smarter, more context aware, building controllers. Therefore, in this work, surrogate, zone-level artificial neural networks that take weather, occupancy and indoor temperature as inputs, have been created. These are used as an evaluation engine by a genetic algorithm with the aim of minimising energy consumption. Bespoke 24-h, heating set point schedules are generated for each zone in a small office building in Cardiff, UK. The optimisation strategy can be deployed in two modes, day ahead optimisation or as model predictive control which re-optimises every hour. Over a February test week, the optimisation is shown to reduce energy consumption by around 25% compared to a baseline heating strategy. When a time of use tariff is introduced, the optimisation is altered to minimise cost rather than energy consumption. The optimisation strategy successfully shifts load to cheaper price periods and reduces energy cost by around 27% compared to the baseline strategy.
•This paper develops zone-level, surrogate, ANN models to predict heating energy demand and zone temperature.•The ANN are combined with a GA to minimise energy consumption or energy cost.•The effect of day-ahead controls or model predictive control is assessed.•The control framework was shown to be adaptive to dynamic energy pricing.•A total energy saving of 25% was shown over a February test week. |
|---|---|
| AbstractList | Buildings account for a substantial proportion of global energy consumption and global greenhouse gas emissions. Given the growth in smart devices and sensors there is an opportunity to develop a new generation of smarter, more context aware, building controllers. Therefore, in this work, surrogate, zone-level artificial neural networks that take weather, occupancy and indoor temperature as inputs, have been created. These are used as an evaluation engine by a genetic algorithm with the aim of minimising energy consumption. Bespoke 24-h, heating set point schedules are generated for each zone in a small office building in Cardiff, UK. The optimisation strategy can be deployed in two modes, day ahead optimisation or as model predictive control which re-optimises every hour. Over a February test week, the optimisation is shown to reduce energy consumption by around 25% compared to a baseline heating strategy. When a time of use tariff is introduced, the optimisation is altered to minimise cost rather than energy consumption. The optimisation strategy successfully shifts load to cheaper price periods and reduces energy cost by around 27% compared to the baseline strategy.
•This paper develops zone-level, surrogate, ANN models to predict heating energy demand and zone temperature.•The ANN are combined with a GA to minimise energy consumption or energy cost.•The effect of day-ahead controls or model predictive control is assessed.•The control framework was shown to be adaptive to dynamic energy pricing.•A total energy saving of 25% was shown over a February test week. Buildings account for a substantial proportion of global energy consumption and global greenhouse gas emissions. Given the growth in smart devices and sensors there is an opportunity to develop a new generation of smarter, more context aware, building controllers. Therefore, in this work, surrogate, zone-level artificial neural networks that take weather, occupancy and indoor temperature as inputs, have been created. These are used as an evaluation engine by a genetic algorithm with the aim of minimising energy consumption. Bespoke 24-h, heating set point schedules are generated for each zone in a small office building in Cardiff, UK. The optimisation strategy can be deployed in two modes, day ahead optimisation or as model predictive control which re-optimises every hour. Over a February test week, the optimisation is shown to reduce energy consumption by around 25% compared to a baseline heating strategy. When a time of use tariff is introduced, the optimisation is altered to minimise cost rather than energy consumption. The optimisation strategy successfully shifts load to cheaper price periods and reduces energy cost by around 27% compared to the baseline strategy. |
| Author | Piriou, Solène Reynolds, Jonathan Rezgui, Yacine Kwan, Alan |
| Author_xml | – sequence: 1 givenname: Jonathan surname: Reynolds fullname: Reynolds, Jonathan email: ReynoldsJ8@Cardiff.ac.uk – sequence: 2 givenname: Yacine surname: Rezgui fullname: Rezgui, Yacine – sequence: 3 givenname: Alan surname: Kwan fullname: Kwan, Alan – sequence: 4 givenname: Solène surname: Piriou fullname: Piriou, Solène |
| BookMark | eNqNkUFvFCEYhompidvqP_BA4sVDZ4RhYGY9mDSNtiZNvPROGPhmZWVgBGab7dkfLtvx1IN6-hJ43jd8D-fozAcPCL2lpKaEig_7GjzE3bFuCO1rwmpK2Qu0oX3HKtH1_AxtCBOk4m3bvELnKe0JIbzfbjfo1xV-LGWVgwO4Szws1hnrd3gtxGHOdrJJZRs81mEarD_dKo9VzHa02iqHPSzxaeSHEH9cYoV3JZ6txsrtQrT5-1QOvcFTMODwHMFYne0BSqPPMbjX6OWoXII3f-YFuv_y-f76trr7dvP1-uqu0i1vcsWYMgJMK8aOCw0djILD0ChDYRDEcGNYN5otI01B2n4AGBhvuBYtb8emZxeIr7WLn9XxQTkn52gnFY-SEnkyKfdyXVyeTErCZDFZcu_X3BzDzwVSlkWJBueUh7CkwnLWbxsuaEHfPUP3YYm-LFWojhT_gvNCfVwpHUNKEUapbX5ynKOy7l-vaZ-F_3OJT2sMiuCDhSiTtuB1-YsIOksT7N8LfgOMTMLX |
| CitedBy_id | crossref_primary_10_3390_en16041609 crossref_primary_10_1016_j_enbuild_2019_06_016 crossref_primary_10_1016_j_enbuild_2021_111218 crossref_primary_10_1016_j_energy_2020_117236 crossref_primary_10_1080_19401493_2024_2440418 crossref_primary_10_1109_TSG_2020_2986539 crossref_primary_10_1016_j_energy_2019_02_035 crossref_primary_10_1016_j_enbuild_2024_114289 crossref_primary_10_1016_j_jclepro_2022_133500 crossref_primary_10_1016_j_egyr_2023_05_263 crossref_primary_10_1109_ACCESS_2019_2937639 crossref_primary_10_1016_j_jobe_2021_102222 crossref_primary_10_1016_j_segan_2022_100742 crossref_primary_10_1016_j_jobe_2021_102340 crossref_primary_10_1016_j_jobe_2025_111909 crossref_primary_10_1016_j_jobe_2023_106148 crossref_primary_10_1016_j_apenergy_2020_116131 crossref_primary_10_1016_j_enbuild_2024_114161 crossref_primary_10_1016_j_apenergy_2021_117733 crossref_primary_10_1016_j_energy_2019_06_062 crossref_primary_10_3390_su141610230 crossref_primary_10_1109_TASE_2020_2990566 crossref_primary_10_1016_j_enbuild_2021_111565 crossref_primary_10_1016_j_jclepro_2023_139040 crossref_primary_10_1016_j_jclepro_2025_144774 crossref_primary_10_1155_ina_6652442 crossref_primary_10_32604_cmc_2022_020491 crossref_primary_10_3390_jmse10091307 crossref_primary_10_1016_j_enbuild_2023_113508 crossref_primary_10_3846_jcem_2022_17566 crossref_primary_10_3390_su16093627 crossref_primary_10_1002_er_4990 crossref_primary_10_1016_j_energy_2022_125029 crossref_primary_10_1016_j_rser_2020_110120 crossref_primary_10_1016_j_buildenv_2023_110101 crossref_primary_10_1109_ACCESS_2023_3262934 crossref_primary_10_1080_23744731_2020_1715250 crossref_primary_10_1016_j_enbuild_2021_111513 crossref_primary_10_1016_j_apenergy_2020_115147 crossref_primary_10_1007_s00170_023_12671_9 crossref_primary_10_1016_j_buildenv_2021_107952 crossref_primary_10_3390_en16062844 crossref_primary_10_1016_j_enconman_2022_116573 crossref_primary_10_1016_j_rser_2019_109250 crossref_primary_10_1016_j_apenergy_2025_125631 crossref_primary_10_3390_en14092398 crossref_primary_10_1016_j_enbuild_2018_03_065 crossref_primary_10_1016_j_enbuild_2019_109576 crossref_primary_10_1080_19401493_2022_2125581 crossref_primary_10_1109_ACCESS_2022_3172322 crossref_primary_10_1088_1757_899X_1294_1_012055 crossref_primary_10_1016_j_apenergy_2024_124788 crossref_primary_10_3390_en14185947 crossref_primary_10_1016_j_buildenv_2022_109747 crossref_primary_10_1016_j_enbuild_2025_115390 crossref_primary_10_1016_j_jobe_2021_102925 crossref_primary_10_12813_kieae_2020_20_6_169 crossref_primary_10_1002_cta_3370 crossref_primary_10_1016_j_est_2021_103014 crossref_primary_10_1016_j_apenergy_2018_04_060 crossref_primary_10_1016_j_enbuild_2021_111102 crossref_primary_10_3390_su12208495 crossref_primary_10_1016_j_scs_2020_102320 crossref_primary_10_3390_buildings14082423 crossref_primary_10_1016_j_energy_2018_07_022 crossref_primary_10_3390_en14102917 crossref_primary_10_3390_en13123103 crossref_primary_10_3390_en16165935 crossref_primary_10_61186_jsdp_20_2_99 crossref_primary_10_1016_j_aei_2019_03_006 crossref_primary_10_1016_j_enbuild_2025_115307 crossref_primary_10_1016_j_jclepro_2024_143004 crossref_primary_10_1038_s41560_020_0671_0 crossref_primary_10_3390_math9182181 crossref_primary_10_1016_j_energy_2019_03_171 crossref_primary_10_1109_TASE_2023_3279278 crossref_primary_10_1016_j_energy_2021_122273 crossref_primary_10_1115_1_4048561 crossref_primary_10_1007_s00500_022_06917_z crossref_primary_10_1007_s12237_024_01387_y crossref_primary_10_1016_j_apenergy_2018_11_001 crossref_primary_10_3390_su12052027 crossref_primary_10_3390_buildings12030362 crossref_primary_10_1007_s41024_022_00238_2 crossref_primary_10_1177_09544062211005797 crossref_primary_10_1007_s11036_020_01698_x crossref_primary_10_1016_j_apenergy_2021_118041 crossref_primary_10_1016_j_energy_2019_01_104 crossref_primary_10_1016_j_jprocont_2021_09_008 crossref_primary_10_3390_rs13030357 crossref_primary_10_2139_ssrn_4076993 crossref_primary_10_3390_foundations5020011 crossref_primary_10_1016_j_enbuild_2024_115086 crossref_primary_10_1016_j_jconhyd_2023_104151 crossref_primary_10_1016_j_apenergy_2021_117821 crossref_primary_10_1016_j_enbuild_2020_109972 crossref_primary_10_3390_e23020260 crossref_primary_10_1007_s00158_023_03673_y crossref_primary_10_1016_j_apenergy_2021_117429 crossref_primary_10_1016_j_enbuild_2021_111377 crossref_primary_10_1016_j_apenergy_2022_119326 crossref_primary_10_1016_j_jobe_2019_100995 crossref_primary_10_3390_biomimetics9080463 crossref_primary_10_1016_j_heliyon_2024_e25800 crossref_primary_10_1016_j_enbuild_2023_113436 crossref_primary_10_3390_en13112779 crossref_primary_10_1109_JIOT_2021_3111454 crossref_primary_10_1080_19401493_2024_2371918 crossref_primary_10_1016_j_asoc_2021_107191 crossref_primary_10_1016_j_ecmx_2022_100254 crossref_primary_10_1002_adts_201900092 crossref_primary_10_1016_j_cageo_2021_104837 crossref_primary_10_1016_j_apenergy_2019_03_028 crossref_primary_10_1016_j_compchemeng_2023_108377 crossref_primary_10_1016_j_jclepro_2021_129172 crossref_primary_10_1016_j_jobe_2020_101692 crossref_primary_10_1016_j_jclepro_2022_131083 crossref_primary_10_1016_j_enbuild_2022_112067 crossref_primary_10_1016_j_enbuild_2022_112584 crossref_primary_10_1016_j_egyr_2024_04_025 crossref_primary_10_1016_j_buildenv_2021_107927 crossref_primary_10_1016_j_jobe_2024_110445 crossref_primary_10_3390_biom10050787 crossref_primary_10_1016_j_apenergy_2021_118229 crossref_primary_10_1016_j_epsr_2024_111185 crossref_primary_10_3390_su13169318 crossref_primary_10_1016_j_energy_2023_126934 crossref_primary_10_3390_s21175835 crossref_primary_10_1016_j_ecmx_2025_100948 crossref_primary_10_1016_j_enbuild_2023_113027 crossref_primary_10_1016_j_buildenv_2023_111073 crossref_primary_10_1016_j_apenergy_2021_117256 crossref_primary_10_1016_j_jobe_2022_104612 crossref_primary_10_1155_2022_5112950 crossref_primary_10_3390_s20175003 crossref_primary_10_1016_j_jhydrol_2023_129925 crossref_primary_10_1177_0144598718822400 crossref_primary_10_1016_j_apenergy_2020_114771 crossref_primary_10_1016_j_scs_2022_103700 crossref_primary_10_1088_1742_6596_2069_1_012077 crossref_primary_10_3390_en13123093 crossref_primary_10_1016_j_applthermaleng_2019_114558 crossref_primary_10_1016_j_engappai_2023_107115 crossref_primary_10_1109_ACCESS_2021_3078550 crossref_primary_10_1007_s12053_024_10249_2 crossref_primary_10_1016_j_enbuild_2021_111439 crossref_primary_10_3390_app11020763 crossref_primary_10_1016_j_enbuild_2025_115478 crossref_primary_10_1016_j_jobe_2022_104505 crossref_primary_10_1016_j_applthermaleng_2021_117809 crossref_primary_10_1016_j_jobe_2021_103017 crossref_primary_10_1016_j_epsr_2019_106073 crossref_primary_10_1109_JTEHM_2020_2987008 crossref_primary_10_3390_a17100446 crossref_primary_10_1016_j_enbuild_2023_113499 crossref_primary_10_1016_j_enbuild_2025_115633 crossref_primary_10_1016_j_jobe_2021_102440 crossref_primary_10_1016_j_energy_2019_06_037 crossref_primary_10_1016_j_jobe_2023_106204 crossref_primary_10_2139_ssrn_4140070 crossref_primary_10_1016_j_egyr_2020_11_153 crossref_primary_10_1515_auto_2020_0031 crossref_primary_10_1016_j_scs_2022_104101 crossref_primary_10_1007_s11356_023_25146_x crossref_primary_10_1016_j_neunet_2023_02_010 crossref_primary_10_1109_ACCESS_2020_3041357 crossref_primary_10_3389_fenrg_2023_1078603 crossref_primary_10_3390_en12010034 crossref_primary_10_1016_j_buildenv_2021_108681 crossref_primary_10_1016_j_scs_2019_101991 crossref_primary_10_3390_en15072345 crossref_primary_10_1016_j_apenergy_2019_113493 crossref_primary_10_1016_j_enbuild_2024_115205 crossref_primary_10_1051_e3sconf_202234904012 crossref_primary_10_1016_j_energy_2022_125521 crossref_primary_10_1080_17508975_2019_1613219 crossref_primary_10_1007_s11042_021_11491_x crossref_primary_10_1109_ACCESS_2021_3065087 crossref_primary_10_1016_j_enbuild_2022_112133 crossref_primary_10_3390_buildings10090163 crossref_primary_10_1016_j_jobe_2020_102139 crossref_primary_10_1007_s10973_022_11896_2 crossref_primary_10_1016_j_apenergy_2021_117276 crossref_primary_10_3390_app13095584 crossref_primary_10_1016_j_energy_2022_123626 |
| Cites_doi | 10.1016/j.enbuild.2017.04.069 10.1016/j.erss.2015.12.015 10.1016/j.buildenv.2013.11.016 10.1016/j.enbuild.2015.11.033 10.1016/j.enbuild.2017.04.038 10.1016/j.enbuild.2017.06.076 10.1007/s12273-016-0285-4 10.1016/j.enbuild.2014.06.009 10.1016/j.enbuild.2015.11.045 10.1016/j.enbuild.2010.03.014 10.1109/TSG.2010.2083705 10.1016/j.rser.2013.06.041 10.1109/TIA.2013.2252873 10.1016/j.enbuild.2016.07.036 10.1016/j.buildenv.2009.08.016 10.1016/j.enbuild.2011.09.022 10.1016/j.aei.2015.03.004 10.1016/j.rser.2014.03.027 10.1016/j.enbuild.2014.10.083 10.1016/j.buildenv.2010.01.009 10.1016/j.apenergy.2015.12.066 10.1016/j.apenergy.2011.03.009 10.1016/j.enbuild.2010.10.022 10.1115/1.1592186 10.1016/j.enbuild.2014.04.052 10.1016/j.scs.2017.02.010 10.1016/j.egypro.2015.11.253 10.1016/j.rser.2014.05.056 10.3390/en5125257 10.1016/j.enbuild.2017.02.012 |
| ContentType | Journal Article |
| Copyright | 2018 The Authors Copyright Elsevier BV May 15, 2018 |
| Copyright_xml | – notice: 2018 The Authors – notice: Copyright Elsevier BV May 15, 2018 |
| DBID | 6I. AAFTH AAYXX CITATION 7SP 7ST 7TB 8FD C1K F28 FR3 KR7 L7M SOI 7S9 L.6 ADTOC UNPAY |
| DOI | 10.1016/j.energy.2018.03.113 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| EISSN | 1873-6785 |
| EndPage | 739 |
| ExternalDocumentID | 10.1016/j.energy.2018.03.113 10_1016_j_energy_2018_03_113 S036054421830522X |
| GeographicLocations | United Kingdom |
| GeographicLocations_xml | – name: United Kingdom |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ~HD 7SP 7ST 7TB 8FD AGCQF C1K F28 FR3 KR7 L7M SOI 7S9 L.6 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c452t-33ad6ed46f756ce7ef65eb2ad1eb60d5dd37fd930246f48beeb3525c6454f283 |
| IEDL.DBID | .~1 |
| ISSN | 0360-5442 1873-6785 |
| IngestDate | Wed Oct 01 16:32:53 EDT 2025 Wed Oct 01 14:49:02 EDT 2025 Wed Aug 13 06:10:04 EDT 2025 Wed Oct 01 01:34:51 EDT 2025 Thu Apr 24 23:06:11 EDT 2025 Fri Feb 23 02:33:57 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Model predictive control Artificial neural network HVAC control Heating set point scheduler Building energy management Genetic algorithm |
| Language | English |
| License | This is an open access article under the CC BY license. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c452t-33ad6ed46f756ce7ef65eb2ad1eb60d5dd37fd930246f48beeb3525c6454f283 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S036054421830522X |
| PQID | 2070442655 |
| PQPubID | 2045484 |
| PageCount | 11 |
| ParticipantIDs | unpaywall_primary_10_1016_j_energy_2018_03_113 proquest_miscellaneous_2053892561 proquest_journals_2070442655 crossref_citationtrail_10_1016_j_energy_2018_03_113 crossref_primary_10_1016_j_energy_2018_03_113 elsevier_sciencedirect_doi_10_1016_j_energy_2018_03_113 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-05-15 |
| PublicationDateYYYYMMDD | 2018-05-15 |
| PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Ahmad, Hippolyte, Reynolds, Mourshed, Rezgui (bib13) 2016 Guan, Xu, Jia (bib2) 2010; 1 Shaikh, Nor, Nallagownden, Elamvazuthi, Ibrahim (bib6) 2014; 34 European Parliament (bib1) 2010; 53 Magalhães, Leal, Horta (bib20) 2017; 151 Erickson, Cerpa (bib33) 2010; 10 Ma, Qin, Li, Salsbury (bib12) 2011 Ascione, Bianco, De Stasio, Mauro, Vanoli (bib16) 2016; 111 Afram, Janabi-Sharifi, Fung, Raahemifar (bib23) 2017; 141 Moon, Kim (bib26) 2010; 45 Papadopoulos, Azar (bib14) 2016 Pisello, Bobker, Cotana (bib32) 2012; 5 Ascione, Bianco, De Stasio, Mauro, Vanoli (bib15) 2017; 31 Kubli, Ulli-Beer (bib4) 2016; 13 Oldewurtel, Parisio, Jones, Gyalistras, Gwerder, Stauch (bib29) 2012; 45 Cho, Ham, Golpavar-Fard (bib39) 2015; 29 Široký, Oldewurtel, Cigler, Prívara (bib28) 2011; 88 Haniff, Selamat, Yusof, Buyamin, Sham Ismail (bib3) 2013; 27 Ahmad, Mourshed, Yuce, Rezgui (bib8) 2016; 9 Li, Wen (bib10) 2014; 37 Ascione, Bianco, De Stasio, Mauro, Vanoli (bib19) 2017; 146 Afram, Janabi-Sharifi (bib7) 2014; 72 Magnier, Haghighat (bib17) 2010; 45 Molina, Lu, Sherman, Harley (bib30) 2013; 49 Mirakhorli, Dong (bib9) 2016; 129 Lee, Horesh, Liberti (bib25) 2015; 78 Asadi, Da Silva, Antunes, Dias, Glicksman (bib18) 2014; 81 Chae, Horesh, Hwang, Lee (bib22) 2016; 111 Papantoniou, Kolokotsa, Kalaitzakis (bib24) 2015; 98 Moroşan, Bourdais, Dumur, Buisson (bib31) 2010; 42 Reynolds, Hippolyte, Rezgui (bib36) 2017 Benedetti, Cesarotti, Introna, Serranti (bib21) 2016; 165 Ahmad, Mourshed, Rezgui (bib11) 2017 Green Energy UK (bib38) 2017 Yuce, Li, Rezgui, Petri, Jayan, Yang (bib34) 2014; 80 Prívara, Jan, Ferkl, Cigler (bib27) 2011; 43 Wetter, Haves (bib37) 2008 Reynolds, Rezgui, Hippolyte (bib5) 2017 Krarti (bib35) 2003; 125 Ahmad (10.1016/j.energy.2018.03.113_bib13) 2016 Ascione (10.1016/j.energy.2018.03.113_bib19) 2017; 146 Oldewurtel (10.1016/j.energy.2018.03.113_bib29) 2012; 45 Široký (10.1016/j.energy.2018.03.113_bib28) 2011; 88 Kubli (10.1016/j.energy.2018.03.113_bib4) 2016; 13 Chae (10.1016/j.energy.2018.03.113_bib22) 2016; 111 Mirakhorli (10.1016/j.energy.2018.03.113_bib9) 2016; 129 Ascione (10.1016/j.energy.2018.03.113_bib15) 2017; 31 Ahmad (10.1016/j.energy.2018.03.113_bib8) 2016; 9 Reynolds (10.1016/j.energy.2018.03.113_bib5) 2017 Haniff (10.1016/j.energy.2018.03.113_bib3) 2013; 27 Magalhães (10.1016/j.energy.2018.03.113_bib20) 2017; 151 Afram (10.1016/j.energy.2018.03.113_bib23) 2017; 141 Erickson (10.1016/j.energy.2018.03.113_bib33) 2010; 10 Ahmad (10.1016/j.energy.2018.03.113_bib11) 2017 Lee (10.1016/j.energy.2018.03.113_bib25) 2015; 78 Krarti (10.1016/j.energy.2018.03.113_bib35) 2003; 125 Cho (10.1016/j.energy.2018.03.113_bib39) 2015; 29 Moon (10.1016/j.energy.2018.03.113_bib26) 2010; 45 Benedetti (10.1016/j.energy.2018.03.113_bib21) 2016; 165 Molina (10.1016/j.energy.2018.03.113_bib30) 2013; 49 Shaikh (10.1016/j.energy.2018.03.113_bib6) 2014; 34 Asadi (10.1016/j.energy.2018.03.113_bib18) 2014; 81 Afram (10.1016/j.energy.2018.03.113_bib7) 2014; 72 Wetter (10.1016/j.energy.2018.03.113_bib37) 2008 Green Energy UK (10.1016/j.energy.2018.03.113_bib38) 2017 Reynolds (10.1016/j.energy.2018.03.113_bib36) 2017 Guan (10.1016/j.energy.2018.03.113_bib2) 2010; 1 Pisello (10.1016/j.energy.2018.03.113_bib32) 2012; 5 Magnier (10.1016/j.energy.2018.03.113_bib17) 2010; 45 European Parliament (10.1016/j.energy.2018.03.113_bib1) 2010; 53 Ma (10.1016/j.energy.2018.03.113_bib12) 2011 Ascione (10.1016/j.energy.2018.03.113_bib16) 2016; 111 Papantoniou (10.1016/j.energy.2018.03.113_bib24) 2015; 98 Moroşan (10.1016/j.energy.2018.03.113_bib31) 2010; 42 Yuce (10.1016/j.energy.2018.03.113_bib34) 2014; 80 Li (10.1016/j.energy.2018.03.113_bib10) 2014; 37 Papadopoulos (10.1016/j.energy.2018.03.113_bib14) 2016 Prívara (10.1016/j.energy.2018.03.113_bib27) 2011; 43 |
| References_xml | – volume: 129 start-page: 499 year: 2016 end-page: 513 ident: bib9 article-title: Occupancy behavior based model predictive control for building indoor climate—A critical review publication-title: Energy Build – volume: 125 start-page: 331 year: 2003 ident: bib35 article-title: An overview of artificial intelligence-based methods for building energy systems publication-title: J Sol Energy Eng – volume: 42 start-page: 1445 year: 2010 end-page: 1452 ident: bib31 article-title: Building temperature regulation using a distributed model predictive control publication-title: Energy Build – volume: 81 start-page: 444 year: 2014 end-page: 456 ident: bib18 article-title: Multi-objective optimization for building retrofit: a model using genetic algorithm and artificial neural network and an application publication-title: Energy Build – volume: 111 start-page: 184 year: 2016 end-page: 194 ident: bib22 article-title: Artificial neural network model for forecasting sub-hourly electricity usage in commercial buildings publication-title: Energy Build – year: 2017 ident: bib11 article-title: Trees vs Neurons: comparison between Random Forest and ANN for high-resolution prediction of building energy consumption publication-title: Energy Build – start-page: 726 year: 2017 end-page: 732 ident: bib36 article-title: A smart heating set point scheduler using an artificial neural network and genetic algorithm publication-title: Int. Conf. Eng. Technol. Innov – volume: 45 start-page: 1612 year: 2010 end-page: 1625 ident: bib26 article-title: ANN-based thermal control models for residential buildings publication-title: Build Environ – volume: 49 start-page: 7 year: 2013 end-page: 13 ident: bib30 article-title: Model predictive and genetic algorithm based optimization of residential temperature control in the presence of time-varying electricity prices publication-title: IEEE Trans Ind Appl – volume: 9 start-page: 359 year: 2016 end-page: 398 ident: bib8 article-title: Computational intelligence techniques for HVAC systems: a review publication-title: Build Simul – volume: 72 start-page: 343 year: 2014 end-page: 355 ident: bib7 article-title: Theory and applications of HVAC control systems - a review of model predictive control (MPC) publication-title: Build Environ – volume: 45 start-page: 15 year: 2012 end-page: 27 ident: bib29 article-title: Use of model predictive control and weather forecasts for energy efficient building climate control publication-title: Energy Build – volume: 78 start-page: 2106 year: 2015 end-page: 2111 ident: bib25 article-title: Optimal HVAC control as demand response with on-site energy storage and generation system publication-title: Energy Procedia – volume: 45 start-page: 739 year: 2010 end-page: 746 ident: bib17 article-title: Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and artificial neural network publication-title: Build Environ – volume: 29 start-page: 184 year: 2015 end-page: 195 ident: bib39 article-title: 3D as-is building energy modeling and diagnostics: a review of the state-of-the-art publication-title: Adv Eng Inf – volume: 88 start-page: 3079 year: 2011 end-page: 3087 ident: bib28 article-title: Experimental analysis of model predictive control for an energy efficient building heating system publication-title: Appl Energy – volume: 5 start-page: 5257 year: 2012 end-page: 5278 ident: bib32 article-title: A building energy efficiency optimization method by evaluating the effective thermal zones occupancy publication-title: Energies – volume: 98 start-page: 45 year: 2015 end-page: 55 ident: bib24 article-title: Building optimization and control algorithms implemented in existing BEMS using a web based energy management and control system publication-title: Energy Build – start-page: 1 year: 2017 end-page: 15 ident: bib5 article-title: Upscaling energy control from building to districts: current limitations and future perspectives publication-title: Sustain Cities Soc – start-page: 69 year: 2008 end-page: 76 ident: bib37 article-title: A modular building controls virtual test bed for the integration of heterogeneous systems publication-title: SimBuild 2008, Berkeley, CA – volume: 165 start-page: 60 year: 2016 end-page: 71 ident: bib21 article-title: Energy consumption control automation using Artificial Neural Networks and adaptive algorithms: proposal of a new methodology and case study publication-title: Appl Energy – year: 2017 ident: bib38 article-title: Tide tariff – volume: 141 start-page: 96 year: 2017 end-page: 113 ident: bib23 article-title: Artificial neural network (ANN) based model predictive control (MPC) and optimization of HVAC systems: a state of the art review and case study of a residential HVAC system publication-title: Energy Build – volume: 43 start-page: 564 year: 2011 end-page: 572 ident: bib27 article-title: Model predictive control of a building heating system: the first experience publication-title: Energy Build – volume: 10 start-page: 7 year: 2010 ident: bib33 article-title: Occupancy based demand response HVAC control strategy publication-title: Proc 2nd ACM Work Embed Sens Syst Energy-Efficiency Build - BuildSys – volume: 53 start-page: 40 year: 2010 ident: bib1 article-title: Directive 2010/31/EU of the European Parliament and of the Council on the energy performance of buildings publication-title: Off J Eur Union – volume: 151 start-page: 332 year: 2017 end-page: 343 ident: bib20 article-title: Modelling the relationship between heating energy use and indoor temperatures in residential buildings through Artificial Neural Networks considering occupant behavior publication-title: Energy Build – volume: 34 start-page: 409 year: 2014 end-page: 429 ident: bib6 article-title: A review on optimized control systems for building energy and comfort management of smart sustainable buildings publication-title: Renew. Sustain Energy Rev – volume: 111 start-page: 131 year: 2016 end-page: 144 ident: bib16 article-title: Simulation-based model predictive control by the multi-objective optimization of building energy performance and thermal comfort publication-title: Energy Build – volume: 1 start-page: 243 year: 2010 end-page: 252 ident: bib2 article-title: Energy-efficient buildings facilitated by microgrid publication-title: IEEE Trans Smart Grid – volume: 31 start-page: 136 year: 2017 end-page: 150 ident: bib15 article-title: A new comprehensive approach for cost-optimal building design integrated with the multi-objective model predictive control of HVAC systems publication-title: Sustain Cities Soc – start-page: 1725 year: 2016 end-page: 1735 ident: bib14 article-title: Optimizing HVAC operation in commercial buildings: a genetic algorithm multi-objective optimization framework publication-title: 2016 Winter Simul. Conf – volume: 80 start-page: 45 year: 2014 end-page: 56 ident: bib34 article-title: Utilizing artificial neural network to predict energy consumption and thermal comfort level: an indoor swimming pool case study publication-title: Energy Build – volume: 13 start-page: 71 year: 2016 end-page: 83 ident: bib4 article-title: Decentralisation dynamics in energy systems: a generic simulation of network effects publication-title: Energy Res Soc Sci – start-page: 1 year: 2011 end-page: 6 ident: bib12 article-title: Economic model predictive control for building energy systems publication-title: ISGT 2011 – year: 2016 ident: bib13 article-title: Optimal scheduling strategy for enhancing IAQ, thermal comfort and visual using a genetic algorithm publication-title: IAQ 2016 Defin. Indoor air qual. Policy, Stand. Pract – volume: 37 start-page: 517 year: 2014 end-page: 537 ident: bib10 article-title: Review of building energy modeling for control and operation publication-title: Renew Sustain Energy Rev – volume: 146 start-page: 200 year: 2017 end-page: 219 ident: bib19 article-title: CASA, cost-optimal analysis by multi-objective optimisation and artificial neural networks: a new framework for the robust assessment of cost-optimal energy retrofit, feasible for any building publication-title: Energy Build – volume: 27 start-page: 94 year: 2013 end-page: 103 ident: bib3 article-title: Review of HVAC scheduling techniques for buildings towards energy-efficient and cost-effective operations publication-title: Renew Sustain Energy Rev – volume: 146 start-page: 200 year: 2017 ident: 10.1016/j.energy.2018.03.113_bib19 article-title: CASA, cost-optimal analysis by multi-objective optimisation and artificial neural networks: a new framework for the robust assessment of cost-optimal energy retrofit, feasible for any building publication-title: Energy Build doi: 10.1016/j.enbuild.2017.04.069 – start-page: 1 year: 2017 ident: 10.1016/j.energy.2018.03.113_bib5 article-title: Upscaling energy control from building to districts: current limitations and future perspectives publication-title: Sustain Cities Soc – volume: 13 start-page: 71 year: 2016 ident: 10.1016/j.energy.2018.03.113_bib4 article-title: Decentralisation dynamics in energy systems: a generic simulation of network effects publication-title: Energy Res Soc Sci doi: 10.1016/j.erss.2015.12.015 – volume: 72 start-page: 343 year: 2014 ident: 10.1016/j.energy.2018.03.113_bib7 article-title: Theory and applications of HVAC control systems - a review of model predictive control (MPC) publication-title: Build Environ doi: 10.1016/j.buildenv.2013.11.016 – volume: 111 start-page: 131 year: 2016 ident: 10.1016/j.energy.2018.03.113_bib16 article-title: Simulation-based model predictive control by the multi-objective optimization of building energy performance and thermal comfort publication-title: Energy Build doi: 10.1016/j.enbuild.2015.11.033 – year: 2017 ident: 10.1016/j.energy.2018.03.113_bib11 article-title: Trees vs Neurons: comparison between Random Forest and ANN for high-resolution prediction of building energy consumption publication-title: Energy Build doi: 10.1016/j.enbuild.2017.04.038 – volume: 151 start-page: 332 year: 2017 ident: 10.1016/j.energy.2018.03.113_bib20 article-title: Modelling the relationship between heating energy use and indoor temperatures in residential buildings through Artificial Neural Networks considering occupant behavior publication-title: Energy Build doi: 10.1016/j.enbuild.2017.06.076 – volume: 9 start-page: 359 year: 2016 ident: 10.1016/j.energy.2018.03.113_bib8 article-title: Computational intelligence techniques for HVAC systems: a review publication-title: Build Simul doi: 10.1007/s12273-016-0285-4 – volume: 81 start-page: 444 year: 2014 ident: 10.1016/j.energy.2018.03.113_bib18 article-title: Multi-objective optimization for building retrofit: a model using genetic algorithm and artificial neural network and an application publication-title: Energy Build doi: 10.1016/j.enbuild.2014.06.009 – volume: 111 start-page: 184 year: 2016 ident: 10.1016/j.energy.2018.03.113_bib22 article-title: Artificial neural network model for forecasting sub-hourly electricity usage in commercial buildings publication-title: Energy Build doi: 10.1016/j.enbuild.2015.11.045 – volume: 42 start-page: 1445 year: 2010 ident: 10.1016/j.energy.2018.03.113_bib31 article-title: Building temperature regulation using a distributed model predictive control publication-title: Energy Build doi: 10.1016/j.enbuild.2010.03.014 – volume: 1 start-page: 243 year: 2010 ident: 10.1016/j.energy.2018.03.113_bib2 article-title: Energy-efficient buildings facilitated by microgrid publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2010.2083705 – year: 2017 ident: 10.1016/j.energy.2018.03.113_bib38 – volume: 27 start-page: 94 year: 2013 ident: 10.1016/j.energy.2018.03.113_bib3 article-title: Review of HVAC scheduling techniques for buildings towards energy-efficient and cost-effective operations publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2013.06.041 – start-page: 726 year: 2017 ident: 10.1016/j.energy.2018.03.113_bib36 article-title: A smart heating set point scheduler using an artificial neural network and genetic algorithm – volume: 49 start-page: 7 year: 2013 ident: 10.1016/j.energy.2018.03.113_bib30 article-title: Model predictive and genetic algorithm based optimization of residential temperature control in the presence of time-varying electricity prices publication-title: IEEE Trans Ind Appl doi: 10.1109/TIA.2013.2252873 – volume: 129 start-page: 499 year: 2016 ident: 10.1016/j.energy.2018.03.113_bib9 article-title: Occupancy behavior based model predictive control for building indoor climate—A critical review publication-title: Energy Build doi: 10.1016/j.enbuild.2016.07.036 – volume: 45 start-page: 739 year: 2010 ident: 10.1016/j.energy.2018.03.113_bib17 article-title: Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and artificial neural network publication-title: Build Environ doi: 10.1016/j.buildenv.2009.08.016 – volume: 53 start-page: 40 year: 2010 ident: 10.1016/j.energy.2018.03.113_bib1 article-title: Directive 2010/31/EU of the European Parliament and of the Council on the energy performance of buildings publication-title: Off J Eur Union – volume: 45 start-page: 15 year: 2012 ident: 10.1016/j.energy.2018.03.113_bib29 article-title: Use of model predictive control and weather forecasts for energy efficient building climate control publication-title: Energy Build doi: 10.1016/j.enbuild.2011.09.022 – start-page: 69 year: 2008 ident: 10.1016/j.energy.2018.03.113_bib37 article-title: A modular building controls virtual test bed for the integration of heterogeneous systems – volume: 29 start-page: 184 year: 2015 ident: 10.1016/j.energy.2018.03.113_bib39 article-title: 3D as-is building energy modeling and diagnostics: a review of the state-of-the-art publication-title: Adv Eng Inf doi: 10.1016/j.aei.2015.03.004 – volume: 34 start-page: 409 year: 2014 ident: 10.1016/j.energy.2018.03.113_bib6 article-title: A review on optimized control systems for building energy and comfort management of smart sustainable buildings publication-title: Renew. Sustain Energy Rev doi: 10.1016/j.rser.2014.03.027 – volume: 98 start-page: 45 year: 2015 ident: 10.1016/j.energy.2018.03.113_bib24 article-title: Building optimization and control algorithms implemented in existing BEMS using a web based energy management and control system publication-title: Energy Build doi: 10.1016/j.enbuild.2014.10.083 – volume: 10 start-page: 7 year: 2010 ident: 10.1016/j.energy.2018.03.113_bib33 article-title: Occupancy based demand response HVAC control strategy – volume: 45 start-page: 1612 year: 2010 ident: 10.1016/j.energy.2018.03.113_bib26 article-title: ANN-based thermal control models for residential buildings publication-title: Build Environ doi: 10.1016/j.buildenv.2010.01.009 – volume: 165 start-page: 60 year: 2016 ident: 10.1016/j.energy.2018.03.113_bib21 article-title: Energy consumption control automation using Artificial Neural Networks and adaptive algorithms: proposal of a new methodology and case study publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.12.066 – volume: 88 start-page: 3079 year: 2011 ident: 10.1016/j.energy.2018.03.113_bib28 article-title: Experimental analysis of model predictive control for an energy efficient building heating system publication-title: Appl Energy doi: 10.1016/j.apenergy.2011.03.009 – start-page: 1 year: 2011 ident: 10.1016/j.energy.2018.03.113_bib12 article-title: Economic model predictive control for building energy systems – volume: 43 start-page: 564 year: 2011 ident: 10.1016/j.energy.2018.03.113_bib27 article-title: Model predictive control of a building heating system: the first experience publication-title: Energy Build doi: 10.1016/j.enbuild.2010.10.022 – volume: 125 start-page: 331 year: 2003 ident: 10.1016/j.energy.2018.03.113_bib35 article-title: An overview of artificial intelligence-based methods for building energy systems publication-title: J Sol Energy Eng doi: 10.1115/1.1592186 – start-page: 1725 year: 2016 ident: 10.1016/j.energy.2018.03.113_bib14 article-title: Optimizing HVAC operation in commercial buildings: a genetic algorithm multi-objective optimization framework – volume: 80 start-page: 45 year: 2014 ident: 10.1016/j.energy.2018.03.113_bib34 article-title: Utilizing artificial neural network to predict energy consumption and thermal comfort level: an indoor swimming pool case study publication-title: Energy Build doi: 10.1016/j.enbuild.2014.04.052 – volume: 31 start-page: 136 year: 2017 ident: 10.1016/j.energy.2018.03.113_bib15 article-title: A new comprehensive approach for cost-optimal building design integrated with the multi-objective model predictive control of HVAC systems publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2017.02.010 – volume: 78 start-page: 2106 year: 2015 ident: 10.1016/j.energy.2018.03.113_bib25 article-title: Optimal HVAC control as demand response with on-site energy storage and generation system publication-title: Energy Procedia doi: 10.1016/j.egypro.2015.11.253 – volume: 37 start-page: 517 year: 2014 ident: 10.1016/j.energy.2018.03.113_bib10 article-title: Review of building energy modeling for control and operation publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.05.056 – year: 2016 ident: 10.1016/j.energy.2018.03.113_bib13 article-title: Optimal scheduling strategy for enhancing IAQ, thermal comfort and visual using a genetic algorithm – volume: 5 start-page: 5257 year: 2012 ident: 10.1016/j.energy.2018.03.113_bib32 article-title: A building energy efficiency optimization method by evaluating the effective thermal zones occupancy publication-title: Energies doi: 10.3390/en5125257 – volume: 141 start-page: 96 year: 2017 ident: 10.1016/j.energy.2018.03.113_bib23 article-title: Artificial neural network (ANN) based model predictive control (MPC) and optimization of HVAC systems: a state of the art review and case study of a residential HVAC system publication-title: Energy Build doi: 10.1016/j.enbuild.2017.02.012 |
| SSID | ssj0005899 |
| Score | 2.6352298 |
| Snippet | Buildings account for a substantial proportion of global energy consumption and global greenhouse gas emissions. Given the growth in smart devices and sensors... |
| SourceID | unpaywall proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 729 |
| SubjectTerms | Algorithms Artificial neural network Artificial neural networks Building energy management buildings controllers Emissions energy Energy consumption energy costs Genetic algorithm Genetic algorithms Greenhouse effect greenhouse gas emissions Greenhouse gases Heating Heating set point scheduler HVAC control Mathematical models Model predictive control Neural networks Optimization Predictive control prices Schedules Smart sensors Strategy Tariffs temperature Time of use United Kingdom weather |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6V7aFceBQqFgoyEtya3WT9SPaEVtCq4rBCopWWU2THDg2kyWp3A6JnfjgzibMUJFSQOEWJbcmP8czn-JsZgBcoQpZrjRtJRYr-VuGeszYJYiMoWpmNjGnZFnN1ei7eLuRiB-a9LwzRKr3u73R6q639l7GfzfGyKMbvUfci3hBk40NEEYtXXwr9kr8pLhpzC3aVRGw-gN3z-bvZh-7CMgyoOp3AkpgHqKVl70vXEr5c62xHbK-E4p5GEf-TrbqGRfeaaqm_fdVlec0sndyFuh9Qx0b5PGo2ZpRd_Rbr8f-N-B7c8QiWzbom92HHVfuw1zs4r_fh4Pin8xxW9Npj_QC-z9hVXbmgJKLSETM-IzfrpoTVqL0uPbuIYe9Mm7uC6YpR97pIF4zib7aPlr1-xDTDHUCOmEyXH-tVsbm4xI-VZW2KH7Zc0UUUqXTmSfkP4ezk-Oz1aeCzQASZkJNNwLm2ylmh8liqzMUuV9KZibaRMyq00loe53bKEWyoXCTGOUMhXjMKVZYjeDqAQYVjewTMxTxTxjhEPUZkYppooRLtnDC5kW4SDoH3y51mPkI6Jeoo054K9yntZiQlIUlDjucnPoRg22rZRQi5oX7cS1L6y7qnaMRuaHnYC17qNc0ay-MQRUJJOYTn22JcLbr40ZWrG6qDZm2K4DYawmgrsH_V28f_2uAJ3KY3IlhE8hAGm1XjniJu25hnfjP-AFoxROc priority: 102 providerName: Unpaywall |
| Title | A zone-level, building energy optimisation combining an artificial neural network, a genetic algorithm, and model predictive control |
| URI | https://dx.doi.org/10.1016/j.energy.2018.03.113 https://www.proquest.com/docview/2070442655 https://www.proquest.com/docview/2053892561 https://www.sciencedirect.com/science/article/pii/S036054421830522X?via%3Dihub |
| UnpaywallVersion | publishedVersion |
| Volume | 151 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Journals customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: AKRWK dateStart: 19760301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB4heqCXilJQAxQtUo-Y2NmHnWOEQAGkqBIgpSdr17tuUxknykOIHnrqD-_Mep2mh4qqJ8v2rLSendd6v5kB-IgiZLnWqEgqUfS3CnXO2ixKjaBqZTYxxqMtRmr4IG7GcrwFF20uDMEqg-1vbLq31uFJN3CzO5tMundoezHeEOTjY4wixpTBLlLqYnD-YwPmkfkekkQcEXWbPucxXs7n1xHAK6NSp0nC_-aeNsLPnVU9089Puqo2PNHVLrwJISQbNLN8C1uu3oOdNsN4sQcHl7-z15AwqO_iHfwcsO_T2kUVIYXOmAktsVkzQTZF8_EY4D0MGWJ88wima0YcaUpNMCqA6S8ePn7GNEMRpExIpqsv0_lk-fURH9aW-R47bDankyCyqSyg4vfh_ury_mIYhTYMUSFkbxlxrq1yVqgylapwqSuVxP24tokzKrbSWp6Wts_R26tSZMbh_lz2ZEG1wkqMXg5gu8Zvew_MpbxQxjgMO4woRD_TQmXaOWFKI10v7gBvmZ8XoUQ5dcqo8haL9i1vOJLTkuUxxw0M70C0HjVrSnS8QJ-265r_IWo5epEXRh63YpAHVV_g-zRGuVJSduB0_RpXi05edO2mK6JBv9LH6DLpwPlafP5ptof_PdsjeE13BHVI5DFsL-cr9wEjqKU58SpyAq8G17fDEV4fRp8Gn38BDCYgDg |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VclguCAoVSwsYiWPTTdaPZI9V1WqB0guLtDfLjh1YlGZX-xAqB078cGYcZ1kOqIhTJHsiOeN5Of5mBuANipDjxqAiqUzR3yrUOeeKJLeCqpW5zNqAtrhW40_i3VRO9-C8y4UhWGW0_a1ND9Y6jgwiNweL2WzwEW0vxhuCfHyKUcT0HtwXcpjTCez0xw7OowhNJIk6IfIufy6AvHxIsCOEV0G1TrOM_80_7cSfvU2zMLffTF3vuKLLR_AwxpDsrF3mY9jzzQH0uhTj1QEcXvxOX0PCqL-rJ_DzjH2fNz6pCSp0wmzsic3aBbI52o-biO9hyBEbukcw0zBiSVtrglEFzPAI-PETZhjKIKVCMlN_ni9n6y83ONg4FprssMWSroLIqLIIi38Kk8uLyfk4iX0YkhIZuk44N055J1SVS1X63FdK4oHcuMxblTrpHM8rN-Lo7lUlCuvxgC6HsqRiYRWGL4ew3-C3PQPmc14qaz3GHVaUYlQYoQrjvbCVlX6Y9oF3zNdlrFFOrTJq3YHRvuqWI5q2TKccTzC8D8n2rUVbo-MO-rzbV_2HrGl0I3e8edyJgY66vsL5PEW5UlL24fV2GneLrl5M4-cbokHHMsLwMuvD6VZ8_mm1z_97ta-gN558uNJXb6_fH8EDmiHcQyaPYX-93PgXGE6t7cugLr8AfJ0f8w |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6V7aFceBQqFgoyEtya3WT9SPaEVtCq4rBCopWWU2THDg2kyWp3A6JnfjgzibMUJFSQOEWJbcmP8czn-JsZgBcoQpZrjRtJRYr-VuGeszYJYiMoWpmNjGnZFnN1ei7eLuRiB-a9LwzRKr3u73R6q639l7GfzfGyKMbvUfci3hBk40NEEYtXXwr9kr8pLhpzC3aVRGw-gN3z-bvZh-7CMgyoOp3AkpgHqKVl70vXEr5c62xHbK-E4p5GEf-TrbqGRfeaaqm_fdVlec0sndyFuh9Qx0b5PGo2ZpRd_Rbr8f-N-B7c8QiWzbom92HHVfuw1zs4r_fh4Pin8xxW9Npj_QC-z9hVXbmgJKLSETM-IzfrpoTVqL0uPbuIYe9Mm7uC6YpR97pIF4zib7aPlr1-xDTDHUCOmEyXH-tVsbm4xI-VZW2KH7Zc0UUUqXTmSfkP4ezk-Oz1aeCzQASZkJNNwLm2ylmh8liqzMUuV9KZibaRMyq00loe53bKEWyoXCTGOUMhXjMKVZYjeDqAQYVjewTMxTxTxjhEPUZkYppooRLtnDC5kW4SDoH3y51mPkI6Jeoo054K9yntZiQlIUlDjucnPoRg22rZRQi5oX7cS1L6y7qnaMRuaHnYC17qNc0ay-MQRUJJOYTn22JcLbr40ZWrG6qDZm2K4DYawmgrsH_V28f_2uAJ3KY3IlhE8hAGm1XjniJu25hnfjP-AFoxROc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+zone-level%2C+building+energy+optimisation+combining+an+artificial+neural+network%2C+a+genetic+algorithm%2C+and+model+predictive+control&rft.jtitle=Energy+%28Oxford%29&rft.au=Reynolds%2C+Jonathan&rft.au=Rezgui%2C+Yacine&rft.au=Kwan%2C+Alan&rft.au=Piriou%2C+Sol%C3%A8ne&rft.date=2018-05-15&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=151&rft.spage=729&rft.epage=739&rft_id=info:doi/10.1016%2Fj.energy.2018.03.113&rft.externalDocID=S036054421830522X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |