Improved learning algorithms for mixture of experts in multiclass classification

Mixture of experts (ME) is a modular neural network architecture for supervised learning. A double-loop Expectation-Maximization (EM) algorithm has been introduced to the ME architecture for adjusting the parameters and the iteratively reweighted least squares (IRLS) algorithm is used to perform max...

Full description

Saved in:
Bibliographic Details
Published inNeural networks Vol. 12; no. 9; pp. 1229 - 1252
Main Authors Chen, K., Xu, L., Chi, H.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.11.1999
Elsevier Science
Subjects
Online AccessGet full text
ISSN0893-6080
1879-2782
1879-2782
DOI10.1016/S0893-6080(99)00043-X

Cover

Abstract Mixture of experts (ME) is a modular neural network architecture for supervised learning. A double-loop Expectation-Maximization (EM) algorithm has been introduced to the ME architecture for adjusting the parameters and the iteratively reweighted least squares (IRLS) algorithm is used to perform maximization in the inner loop [Jordan, M.I., Jacobs, R.A. (1994). Hierarchical mixture of experts and the EM algorithm, Neural Computation, 6(2), 181–214]. However, it is reported in literature that the IRLS algorithm is of instability and the ME architecture trained by the EM algorithm, where IRLS algorithm is used in the inner loop, often produces the poor performance in multiclass classification. In this paper, the reason of this instability is explored. We find out that due to an implicitly imposed incorrect assumption on parameter independence in multiclass classification, an incomplete Hessian matrix is used in that IRLS algorithm. Based on this finding, we apply the Newton–Raphson method to the inner loop of the EM algorithm in the case of multiclass classification, where the exact Hessian matrix is adopted. To tackle the expensive computation of the Hessian matrix and its inverse, we propose an approximation to the Newton–Raphson algorithm based on a so-called generalized Bernoulli density. The Newton–Raphson algorithm and its approximation have been applied to synthetic data, benchmark, and real-world multiclass classification tasks. For comparison, the IRLS algorithm and a quasi-Newton algorithm called BFGS have also been applied to the same tasks. Simulation results have shown that the use of the proposed learning algorithms avoids the instability problem and makes the ME architecture produce good performance in multiclass classification. In particular, our approximation algorithm leads to fast learning. In addition, the limitation of our approximation algorithm is also empirically investigated in this paper.
AbstractList Mixture of experts (ME) is a modular neural network architecture for supervised learning. A double-loop Expectation-Maximization (EM) algorithm has been introduced to the ME architecture for adjusting the parameters and the iteratively reweighted least squares (IRLS) algorithm is used to perform maximization in the inner loop. However, it is reported in literature that the IRLS algorithm is of instability and the ME architecture trained by the EM algorithm, where IRLS algorithm is used in the inner loop, often produces the poor performance in multiclass classification. In this paper, the reason of this instability is explored. We find out that due to an implicitly imposed incorrect assumption on parameter independence in multiclass classification, an incomplete Hessian matrix is used in that IRLS algorithm. Based on this finding, we apply the Newton-Raphson method to the inner loop of the EM algorithm in the case of multiclass classification, where the exact Hessian matrix is adopted. To tackle the expensive computation of the Hessian matrix and its inverse, we propose an approximation to the Newton-Raphson algorithm based on a so-called generalized Bernoulli density. The Newton-Raphson algorithm and its approximation have been applied to synthetic data, benchmark, and real-world multiclass classification tasks. For comparison, the IRLS algorithm and a quasi-Newton algorithm called BFGS have also been applied to the same tasks. Simulation results have shown that the use of the proposed learning algorithms avoids the instability problem and makes the ME architecture produce good performance in multiclass classification. In particular, our approximation algorithm leads to fast learning. In addition, the limitation of our approximation algorithm is also empirically investigated in this paper.
Mixture of experts (ME) is a modular neural network architecture for supervised learning. A double-loop Expectation-Maximization (EM) algorithm has been introduced to the ME architecture for adjusting the parameters and the iteratively reweighted least squares (IRLS) algorithm is used to perform maximization in the inner loop [Jordan, M.I., Jacobs, R.A. (1994). Hierarchical mixture of experts and the EM algorithm, Neural Computation, 6(2), 181-214]. However, it is reported in literature that the IRLS algorithm is of instability and the ME architecture trained by the EM algorithm, where IRLS algorithm is used in the inner loop, often produces the poor performance in multiclass classification. In this paper, the reason of this instability is explored. We find out that due to an implicitly imposed incorrect assumption on parameter independence in multiclass classification, an incomplete Hessian matrix is used in that IRLS algorithm. Based on this finding, we apply the Newton-Raphson method to the inner loop of the EM algorithm in the case of multiclass classification, where the exact Hessian matrix is adopted. To tackle the expensive computation of the Hessian matrix and its inverse, we propose an approximation to the Newton-Raphson algorithm based on a so-called generalized Bernoulli density. The Newton-Raphson algorithm and its approximation have been applied to synthetic data, benchmark, and real-world multiclass classification tasks. For comparison, the IRLS algorithm and a quasi-Newton algorithm called BFGS have also been applied to the same tasks. Simulation results have shown that the use of the proposed learning algorithms avoids the instability problem and makes the ME architecture produce good performance in multiclass classification. In particular, our approximation algorithm leads to fast learning. In addition, the limitation of our approximation algorithm is also empirically investigated in this paper.
Mixture of experts (ME) is a modular neural network architecture for supervised learning. A double-loop Expectation-Maximization (EM) algorithm has been introduced to the ME architecture for adjusting the parameters and the iteratively reweighted least squares (IRLS) algorithm is used to perform maximization in the inner loop [Jordan, M.I., Jacobs, R.A. (1994). Hierarchical mixture of experts and the EM algorithm, Neural Computation, 6(2), 181-214]. However, it is reported in literature that the IRLS algorithm is of instability and the ME architecture trained by the EM algorithm, where IRLS algorithm is used in the inner loop, often produces the poor performance in multiclass classification. In this paper, the reason of this instability is explored. We find out that due to an implicitly imposed incorrect assumption on parameter independence in multiclass classification, an incomplete Hessian matrix is used in that IRLS algorithm. Based on this finding, we apply the Newton-Raphson method to the inner loop of the EM algorithm in the case of multiclass classification, where the exact Hessian matrix is adopted. To tackle the expensive computation of the Hessian matrix and its inverse, we propose an approximation to the Newton-Raphson algorithm based on a so-called generalized Bernoulli density. The Newton-Raphson algorithm and its approximation have been applied to synthetic data, benchmark, and real-world multiclass classification tasks. For comparison, the IRLS algorithm and a quasi-Newton algorithm called BFGS have also been applied to the same tasks. Simulation results have shown that the use of the proposed learning algorithms avoids the instability problem and makes the ME architecture produce good performance in multiclass classification. In particular, our approximation algorithm leads to fast learning. In addition, the limitation of our approximation algorithm is also empirically investigated in this paper.Mixture of experts (ME) is a modular neural network architecture for supervised learning. A double-loop Expectation-Maximization (EM) algorithm has been introduced to the ME architecture for adjusting the parameters and the iteratively reweighted least squares (IRLS) algorithm is used to perform maximization in the inner loop [Jordan, M.I., Jacobs, R.A. (1994). Hierarchical mixture of experts and the EM algorithm, Neural Computation, 6(2), 181-214]. However, it is reported in literature that the IRLS algorithm is of instability and the ME architecture trained by the EM algorithm, where IRLS algorithm is used in the inner loop, often produces the poor performance in multiclass classification. In this paper, the reason of this instability is explored. We find out that due to an implicitly imposed incorrect assumption on parameter independence in multiclass classification, an incomplete Hessian matrix is used in that IRLS algorithm. Based on this finding, we apply the Newton-Raphson method to the inner loop of the EM algorithm in the case of multiclass classification, where the exact Hessian matrix is adopted. To tackle the expensive computation of the Hessian matrix and its inverse, we propose an approximation to the Newton-Raphson algorithm based on a so-called generalized Bernoulli density. The Newton-Raphson algorithm and its approximation have been applied to synthetic data, benchmark, and real-world multiclass classification tasks. For comparison, the IRLS algorithm and a quasi-Newton algorithm called BFGS have also been applied to the same tasks. Simulation results have shown that the use of the proposed learning algorithms avoids the instability problem and makes the ME architecture produce good performance in multiclass classification. In particular, our approximation algorithm leads to fast learning. In addition, the limitation of our approximation algorithm is also empirically investigated in this paper.
Mixture of experts (ME) is a modular neural network architecture for supervised learning. A double-loop Expectation-Maximization (EM) algorithm has been introduced to the ME architecture for adjusting the parameters and the iteratively reweighted least squares (IRLS) algorithm is used to perform maximization in the inner loop [Jordan, M.I., Jacobs, R.A. (1994). Hierarchical mixture of experts and the EM algorithm, Neural Computation, 6(2), 181–214]. However, it is reported in literature that the IRLS algorithm is of instability and the ME architecture trained by the EM algorithm, where IRLS algorithm is used in the inner loop, often produces the poor performance in multiclass classification. In this paper, the reason of this instability is explored. We find out that due to an implicitly imposed incorrect assumption on parameter independence in multiclass classification, an incomplete Hessian matrix is used in that IRLS algorithm. Based on this finding, we apply the Newton–Raphson method to the inner loop of the EM algorithm in the case of multiclass classification, where the exact Hessian matrix is adopted. To tackle the expensive computation of the Hessian matrix and its inverse, we propose an approximation to the Newton–Raphson algorithm based on a so-called generalized Bernoulli density. The Newton–Raphson algorithm and its approximation have been applied to synthetic data, benchmark, and real-world multiclass classification tasks. For comparison, the IRLS algorithm and a quasi-Newton algorithm called BFGS have also been applied to the same tasks. Simulation results have shown that the use of the proposed learning algorithms avoids the instability problem and makes the ME architecture produce good performance in multiclass classification. In particular, our approximation algorithm leads to fast learning. In addition, the limitation of our approximation algorithm is also empirically investigated in this paper.
Author Xu, L.
Chen, K.
Chi, H.
Author_xml – sequence: 1
  givenname: K.
  surname: Chen
  fullname: Chen, K.
  organization: Department of Computer Science and Engineering, Chinese University of Hong Kong, Shatin, NT, Hong Kong, People's Republic of China
– sequence: 2
  givenname: L.
  surname: Xu
  fullname: Xu, L.
  email: lxu@cse.cuhk.edu.hk
  organization: National Laboratory of Machine Perception and Center for Information Science, Peking University, Beijing 100871, People's Republic of China
– sequence: 3
  givenname: H.
  surname: Chi
  fullname: Chi, H.
  organization: National Laboratory of Machine Perception and Center for Information Science, Peking University, Beijing 100871, People's Republic of China
BackLink https://cir.nii.ac.jp/crid/1572543024569124864$$DView record in CiNii
http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1976362$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/12662629$$D View this record in MEDLINE/PubMed
BookMark eNqF0UtrFTEUB_AgFXtb_QjKLETqYjTvBy5ESquFgoIK3YXczEmNzGRuk9xSv725Dy24sJsTCL-THM7_CB2kOQFCzwl-QzCRb79ibVgvscYnxrzGGHPWXz1CC6KV6anS9AAt_pJDdFTKz4ak5uwJOiRUSiqpWaAvF9Mqz7cwdCO4nGK67tx4PedYf0ylC3PupnhX1xm6OXRwt4JcSxdTN63HGv3oSum2NYboXY1zeooeBzcWeLY_j9H387Nvp5_6y88fL04_XPaeC1p7qjnI5XJwmhMIYVBAGCVKygEHNghGlpRzh4NQ3jCluceKS0oYSC7aXWDH6NXu3Tb-zRpKtVMsHsbRJZjXxVKFsWBaN3jyX0i0MMxoJlSjL_Z0vZxgsKscJ5d_2T_rauDlHrji3RiySz6We2eUZJI2JnbM57mUDOFeYLtJz27Ts5torDF2m569an3v_unzsW63WrOL44Pd--FSjK1xU4lQVHCGKRfSEMq15I293zFo6dxGyLb4CMnDEDP4aoc5PvDRbzzivSM
CitedBy_id crossref_primary_10_1111_j_1468_0394_2007_00418_x
crossref_primary_10_4258_hir_2013_19_2_130
crossref_primary_10_1002_widm_1246
crossref_primary_10_1016_S0167_8191_02_00078_9
crossref_primary_10_1016_j_compbiomed_2007_12_002
crossref_primary_10_1016_j_neucom_2009_12_023
crossref_primary_10_1016_j_eswa_2017_11_046
crossref_primary_10_1109_JSAC_2021_3078489
crossref_primary_10_1109_TSP_2011_2144587
crossref_primary_10_1142_S0218213008004242
crossref_primary_10_1162_NECO_a_00154
crossref_primary_10_3103_S1060992X08030028
crossref_primary_10_1016_j_engappai_2005_03_002
crossref_primary_10_1016_j_eswa_2011_12_042
crossref_primary_10_4028_www_scientific_net_AMM_475_476_188
crossref_primary_10_1016_j_dsp_2007_02_002
crossref_primary_10_1016_j_insmatheco_2023_02_008
crossref_primary_10_1007_s10916_008_9191_3
crossref_primary_10_1016_j_cviu_2007_10_003
crossref_primary_10_1016_j_compbiomed_2004_04_001
crossref_primary_10_1016_j_eswa_2008_08_009
crossref_primary_10_1007_s10916_008_9239_4
crossref_primary_10_1016_j_neucom_2013_04_003
crossref_primary_10_1016_j_febslet_2006_12_050
crossref_primary_10_1142_S0129065701000588
crossref_primary_10_1016_j_omega_2011_01_009
crossref_primary_10_1080_01431161_2010_493564
crossref_primary_10_1016_j_neucom_2017_05_044
crossref_primary_10_1108_F_05_2014_0047
crossref_primary_10_1109_TNNLS_2019_2957109
crossref_primary_10_1109_TSMCC_2005_848166
crossref_primary_10_1142_S0129065799000587
crossref_primary_10_1109_TNN_2005_849826
crossref_primary_10_1007_s40815_016_0285_7
crossref_primary_10_1109_TNN_2004_826217
crossref_primary_10_1016_j_neunet_2016_03_002
crossref_primary_10_12677_SA_2022_115123
crossref_primary_10_1109_TBME_2005_863929
crossref_primary_10_1016_j_patrec_2006_10_004
crossref_primary_10_1016_j_eswa_2007_02_006
crossref_primary_10_1016_j_neucom_2019_08_014
crossref_primary_10_1093_bioinformatics_btq107
crossref_primary_10_1108_BEPAM_07_2012_0043
crossref_primary_10_1111_j_1468_0394_2008_00444_x
crossref_primary_10_1007_s00521_012_1063_6
crossref_primary_10_1002_cjce_20364
crossref_primary_10_1007_s00521_010_0493_2
crossref_primary_10_1007_s10916_005_6112_6
crossref_primary_10_1007_s10462_012_9338_y
crossref_primary_10_1109_MCI_2007_353418
crossref_primary_10_1002_apj_213
crossref_primary_10_1007_s00138_009_0232_9
crossref_primary_10_1016_j_neucom_2007_02_010
crossref_primary_10_1109_TITB_2008_920614
crossref_primary_10_1016_j_dsp_2007_05_005
crossref_primary_10_1016_j_jfranklin_2007_06_004
crossref_primary_10_1111_j_1468_0394_2009_00490_x
crossref_primary_10_1016_j_neunet_2009_06_040
crossref_primary_10_1109_TNNLS_2012_2200299
Cites_doi 10.1162/neco.1996.8.1.129
10.1016/0893-6080(96)83696-3
10.1109/5.628714
10.1109/72.165594
10.1111/j.2517-6161.1977.tb01600.x
10.1162/neco.1991.3.1.79
10.1016/S0167-8655(98)00055-5
10.1109/72.536317
10.1093/comjnl/13.3.317
10.1109/ICNN.1997.611668
10.1016/0893-6080(95)00014-3
10.1090/S0025-5718-1970-0274029-X
10.1093/imamat/6.1.76
10.1016/S0167-8655(97)00073-1
10.1016/S0925-2312(98)00019-8
10.1111/j.1469-1809.1936.tb02137.x
10.1142/S0129065791000212
10.1162/neco.1992.4.4.494
10.1109/ICASSP.1996.550800
10.1090/S0025-5718-1970-0258249-6
10.1142/S012906579600004X
10.1162/neco.1994.6.2.181
10.1007/BF00571681
ContentType Journal Article
Copyright 1999
1999 INIST-CNRS
Copyright_xml – notice: 1999
– notice: 1999 INIST-CNRS
DBID RYH
AAYXX
CITATION
IQODW
NPM
7X8
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/S0893-6080(99)00043-X
DatabaseName CiNii Complete
CrossRef
Pascal-Francis
PubMed
MEDLINE - Academic
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1879-2782
EndPage 1252
ExternalDocumentID 12662629
1976362
10_1016_S0893_6080_99_00043_X
10008960174
S089360809900043X
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
RYH
SSH
AAYXX
ABDPE
ACLOT
AFJKZ
AIGII
APXCP
CITATION
EFKBS
~HD
BNPGV
IQODW
NPM
PKN
7X8
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c452t-284e6bbda841effd7e1321766d0f3d531b244a0f57c93784c0746213e64557cf3
IEDL.DBID AIKHN
ISSN 0893-6080
1879-2782
IngestDate Sun Sep 28 08:01:09 EDT 2025
Sun Sep 28 02:39:09 EDT 2025
Wed Feb 19 01:40:47 EST 2025
Mon Jul 21 09:15:56 EDT 2025
Thu Apr 24 23:02:26 EDT 2025
Wed Oct 01 02:07:36 EDT 2025
Thu Jun 26 21:19:02 EDT 2025
Fri Feb 23 02:29:01 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Expectation-Maximization (EM) algorithm
Mixture of experts
Iterative reweighted least squares (IRLS) algorithm
Generalized Bernoulli density
BFGS algorithm
Multinomial density
Newton–Raphson method
Multiclass classification
Maximization
Bernoulli scheme
Expert system
Classification
Theoretical study
Mixture theory
Multinomial distribution
Expectation
Learning algorithm
Newton Raphson method
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c452t-284e6bbda841effd7e1321766d0f3d531b244a0f57c93784c0746213e64557cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 12662629
PQID 1859398357
PQPubID 23479
PageCount 24
ParticipantIDs proquest_miscellaneous_27005388
proquest_miscellaneous_1859398357
pubmed_primary_12662629
pascalfrancis_primary_1976362
crossref_primary_10_1016_S0893_6080_99_00043_X
crossref_citationtrail_10_1016_S0893_6080_99_00043_X
nii_cinii_1572543024569124864
elsevier_sciencedirect_doi_10_1016_S0893_6080_99_00043_X
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1999-11-01
PublicationDateYYYYMMDD 1999-11-01
PublicationDate_xml – month: 11
  year: 1999
  text: 1999-11-01
  day: 01
PublicationDecade 1990
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 1999
Publisher Elsevier Ltd
Elsevier Science
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science
References Chen, K., Xie, D., & Chi, H. (1996). A modified HME architecture for text-dependent speaker identification.
Bishop (BIB3) 1991; 2
Xu (BIB41) 1998; 19
Campbell (BIB9) 1997; 85
Duda, Hart (BIB17) 1973
Shanno (BIB34) 1970; 24
Bridle (BIB7) 1989
Fletcher (BIB20) 1987
Bennani, Y., & Gallinari, P. (1994). Connectionist approaches for automatic speaker recognition.
McCullagh, Nelder (BIB29) 1983
Xu, Jordan (BIB38) 1996; 8
Broyden (BIB8) 1970; 6
Xu, L., & Jordan, M.I. (1994). A modified gating network for the mixture of experts architecture.
Guo, Gelfand (BIB24) 1992; 3
5): 1309–1313 (for errata see
Jordan, Xu (BIB28) 1995; 8
Ramamurti, V., & Ghosh, J. (1997). Regularization and error bars for the mixture of experts network.
Xu, Jordan, Hinton (BIB39) 1995
Minoux (BIB30) 1986
Fletcher (BIB19) 1970; 13
Goldfarb (BIB22) 1970; 24
Chen (BIB15) 1998; 19
Ishikawa (BIB25) 1996; 9
Breiman, Friedman, Olshen, Stone (BIB6) 1984
Chen, Xie, Chi (BIB13) 1996; 7
,
Dempster, Laird, Rubin (BIB16) 1977; 39
Fisher (BIB18) 1936; 7
Furui (BIB21) 1997; 18
Houston, pp. 221–225.
Böning (BIB5) 1993
Golub, Van Loan (BIB23) 1989
Neter, Wassermand, Kutner (BIB31) 1985
Waterhouse, S.R. (1993). The application of HME with the EM algorithm to speech recognition. Master Thesis, Department of Engineering, Cambridge University.
Martigny, Switzerland, pp. 95-102.
Chen, Xie, Chi (BIB11) 1995
(2): 455, 1997).
Atlanta, pp. 3569–3572.
Waterhouse, S.R. (1997). Classification and regression using mixtures of experts. Ph.D., Thesis, Department of Engineering, Cambridge University.
San Diego, pp. II405–II410.
Ramamurti, V., & Ghosh, J. (1996). Advances in using hierarchical mixture of experts for signal classification.
Jacobs, Jordan, Nowlan, Hinton (BIB26) 1991; 3
Bishop (BIB4) 1992; 4
Xu, L. (1996). Bayesian-Kullback YING-YANG learning scheme: reviews and new results, Proceedings of International Conference on Neural Information Processing, Hong Kong, pp. 59-67.
Jordan, Jacobs (BIB27) 1994; 6
Bishop (10.1016/S0893-6080(99)00043-X_BIB3) 1991; 2
Fletcher (10.1016/S0893-6080(99)00043-X_BIB19) 1970; 13
McCullagh (10.1016/S0893-6080(99)00043-X_BIB29) 1983
10.1016/S0893-6080(99)00043-X_BIB2
Goldfarb (10.1016/S0893-6080(99)00043-X_BIB22) 1970; 24
Golub (10.1016/S0893-6080(99)00043-X_BIB23) 1989
Xu (10.1016/S0893-6080(99)00043-X_BIB38) 1996; 8
Breiman (10.1016/S0893-6080(99)00043-X_BIB6) 1984
Bishop (10.1016/S0893-6080(99)00043-X_BIB4) 1992; 4
Duda (10.1016/S0893-6080(99)00043-X_BIB17) 1973
Chen (10.1016/S0893-6080(99)00043-X_NEWBIB10) 1998; 20
Broyden (10.1016/S0893-6080(99)00043-X_BIB8) 1970; 6
Jordan (10.1016/S0893-6080(99)00043-X_BIB27) 1994; 6
10.1016/S0893-6080(99)00043-X_BIB40
Fletcher (10.1016/S0893-6080(99)00043-X_BIB20) 1987
Furui (10.1016/S0893-6080(99)00043-X_BIB21) 1997; 18
Fisher (10.1016/S0893-6080(99)00043-X_BIB18) 1936; 7
Bridle (10.1016/S0893-6080(99)00043-X_BIB7) 1989
Chen (10.1016/S0893-6080(99)00043-X_BIB11) 1995
Chen (10.1016/S0893-6080(99)00043-X_NEWBIB14) 1996; 3
Minoux (10.1016/S0893-6080(99)00043-X_BIB30) 1986
10.1016/S0893-6080(99)00043-X_BIB12
Dempster (10.1016/S0893-6080(99)00043-X_BIB16) 1977; 39
10.1016/S0893-6080(99)00043-X_BIB35
Chen (10.1016/S0893-6080(99)00043-X_BIB15) 1998; 19
Jordan (10.1016/S0893-6080(99)00043-X_BIB28) 1995; 8
10.1016/S0893-6080(99)00043-X_BIB36
10.1016/S0893-6080(99)00043-X_BIB37
Chen (10.1016/S0893-6080(99)00043-X_BIB13) 1996; 7
Xu (10.1016/S0893-6080(99)00043-X_BIB41) 1998; 19
10.1016/S0893-6080(99)00043-X_BIB32
10.1016/S0893-6080(99)00043-X_BIB33
Campbell (10.1016/S0893-6080(99)00043-X_BIB9) 1997; 85
Böning (10.1016/S0893-6080(99)00043-X_BIB5) 1993
Guo (10.1016/S0893-6080(99)00043-X_BIB24) 1992; 3
Ishikawa (10.1016/S0893-6080(99)00043-X_BIB25) 1996; 9
Neter (10.1016/S0893-6080(99)00043-X_BIB31) 1985
Jacobs (10.1016/S0893-6080(99)00043-X_BIB26) 1991; 3
Bengio (10.1016/S0893-6080(99)00043-X_NEWBIB1) 1996; 7
Shanno (10.1016/S0893-6080(99)00043-X_BIB34) 1970; 24
Xu (10.1016/S0893-6080(99)00043-X_BIB39) 1995
References_xml – reference: Waterhouse, S.R. (1997). Classification and regression using mixtures of experts. Ph.D., Thesis, Department of Engineering, Cambridge University.
– year: 1986
  ident: BIB30
  publication-title: Mathematical programming: theory and algorithms
– reference: , Martigny, Switzerland, pp. 95-102.
– reference: ,
– reference: Ramamurti, V., & Ghosh, J. (1997). Regularization and error bars for the mixture of experts network.
– reference: Waterhouse, S.R. (1993). The application of HME with the EM algorithm to speech recognition. Master Thesis, Department of Engineering, Cambridge University.
– volume: 19
  start-page: 223
  year: 1998
  end-page: 257
  ident: BIB41
  publication-title: RBF nets, mixture of experts, and Bayesian Ying-Yang learning, Neurocomputing
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  ident: BIB16
  article-title: Maximum-likelihood from incomplete data via the EM algorithm
  publication-title: Journal of the Royal Statistical Society B
– start-page: 1493
  year: 1995
  end-page: 1496
  ident: BIB11
  article-title: Speaker identification based on hierarchical mixture of experts
  publication-title: Proceedings of World Congress on Neural Networks, Washington, DC
– reference: , Houston, pp. 221–225.
– volume: 8
  start-page: 129
  year: 1996
  end-page: 151
  ident: BIB38
  article-title: On convergence properties of the EM algorithm for Gaussian mixtures
  publication-title: Neural Computation
– volume: 4
  start-page: 494
  year: 1992
  end-page: 501
  ident: BIB4
  article-title: Exact calculation of the Hessian matrix for the multilayer perceptron
  publication-title: Neural Computation
– reference: , Atlanta, pp. 3569–3572.
– year: 1984
  ident: BIB6
  publication-title: Classification and regression trees
– volume: 7
  start-page: 29
  year: 1996
  end-page: 43
  ident: BIB13
  article-title: Speaker identification using time-delay HMEs
  publication-title: International Journal of Neural Systems
– year: 1989
  ident: BIB23
  publication-title: Matrix computations
– volume: 3
  start-page: 79
  year: 1991
  end-page: 87
  ident: BIB26
  article-title: Adaptive mixture of local experts
  publication-title: Neural Computation
– reference: (2): 455, 1997).
– year: 1985
  ident: BIB31
  publication-title: Applied linear statistical models
– reference: Bennani, Y., & Gallinari, P. (1994). Connectionist approaches for automatic speaker recognition.
– reference: (5): 1309–1313 (for errata see
– start-page: 227
  year: 1989
  end-page: 236
  ident: BIB7
  article-title: Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition
  publication-title: Neurocomputing: algorithm, architectures, and applications
– volume: 6
  start-page: 181
  year: 1994
  end-page: 214
  ident: BIB27
  article-title: Hierarchical mixture of experts and the EM algorithm
  publication-title: Neural Computation
– year: 1973
  ident: BIB17
  publication-title: Pattern classification and scene analysis
– volume: 85
  start-page: 1437
  year: 1997
  end-page: 1463
  ident: BIB9
  article-title: Speaker recognition: a tutorial
  publication-title: Proceedings of the IEEE
– volume: 3
  start-page: 923
  year: 1992
  end-page: 933
  ident: BIB24
  article-title: Classification trees with neural network decision trees
  publication-title: IEEE Transactions on Neural Networks
– volume: 9
  start-page: 509
  year: 1996
  end-page: 521
  ident: BIB25
  article-title: Structural learning with forgetting
  publication-title: Neural Networks
– volume: 19
  start-page: 545
  year: 1998
  end-page: 558
  ident: BIB15
  article-title: A connectionist method for pattern classification with diverse features
  publication-title: Pattern Recognition Letters
– year: 1983
  ident: BIB29
  publication-title: Generalized linear models
– reference: , San Diego, pp. II405–II410.
– volume: 2
  start-page: 229
  year: 1991
  end-page: 396
  ident: BIB3
  article-title: A fast procedure for re-training the multilayer perception
  publication-title: International Journal of Neural Systems
– reference: Xu, L. (1996). Bayesian-Kullback YING-YANG learning scheme: reviews and new results, Proceedings of International Conference on Neural Information Processing, Hong Kong, pp. 59-67.
– start-page: 633
  year: 1995
  end-page: 640
  ident: BIB39
  article-title: Advances in neural information processing systems
  publication-title: Advances in Neural Information Processing Systems
– reference: Ramamurti, V., & Ghosh, J. (1996). Advances in using hierarchical mixture of experts for signal classification.
– reference: Chen, K., Xie, D., & Chi, H. (1996). A modified HME architecture for text-dependent speaker identification.
– volume: 13
  start-page: 317
  year: 1970
  end-page: 322
  ident: BIB19
  article-title: A general quadratic programming algorithm
  publication-title: Computer Journal
– volume: 24
  start-page: 23
  year: 1970
  end-page: 26
  ident: BIB22
  article-title: A family of variable metric methods derived by variational means
  publication-title: Mathematics of Computation
– start-page: 409
  year: 1993
  end-page: 422
  ident: BIB5
  article-title: Construction of reliable maximum likelihood algorithms with applications to logistic and Cox regression
  publication-title: Computational statistics
– reference: Xu, L., & Jordan, M.I. (1994). A modified gating network for the mixture of experts architecture.
– volume: 18
  start-page: 859
  year: 1997
  end-page: 872
  ident: BIB21
  article-title: Recent advances in speaker recognition
  publication-title: Pattern Recognition Letters
– year: 1987
  ident: BIB20
  publication-title: Practical methods of optimization
– volume: 24
  start-page: 647
  year: 1970
  end-page: 657
  ident: BIB34
  article-title: On variable metric methods for sparse Hessians
  publication-title: Mathematics of Computation
– volume: 6
  start-page: 76
  year: 1970
  end-page: 90
  ident: BIB8
  article-title: The convergence of a class of double rank minimization algorithms
  publication-title: Journal of the Institute of Mathematics and Its Applications
– volume: 7
  start-page: 179
  year: 1936
  end-page: 188
  ident: BIB18
  article-title: The use of multiple measurements in taxonomic problem
  publication-title: Annals of Eugenices
– volume: 8
  start-page: 1409
  year: 1995
  end-page: 1431
  ident: BIB28
  article-title: Convergence results for the EM approach to mixtures of experts
  publication-title: Neural Networks
– volume: 8
  start-page: 129
  issue: 2
  year: 1996
  ident: 10.1016/S0893-6080(99)00043-X_BIB38
  article-title: On convergence properties of the EM algorithm for Gaussian mixtures
  publication-title: Neural Computation
  doi: 10.1162/neco.1996.8.1.129
– volume: 9
  start-page: 509
  issue: 3
  year: 1996
  ident: 10.1016/S0893-6080(99)00043-X_BIB25
  article-title: Structural learning with forgetting
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(96)83696-3
– volume: 85
  start-page: 1437
  issue: 9
  year: 1997
  ident: 10.1016/S0893-6080(99)00043-X_BIB9
  article-title: Speaker recognition: a tutorial
  publication-title: Proceedings of the IEEE
  doi: 10.1109/5.628714
– volume: 3
  start-page: 923
  issue: 5
  year: 1992
  ident: 10.1016/S0893-6080(99)00043-X_BIB24
  article-title: Classification trees with neural network decision trees
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.165594
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  ident: 10.1016/S0893-6080(99)00043-X_BIB16
  article-title: Maximum-likelihood from incomplete data via the EM algorithm
  publication-title: Journal of the Royal Statistical Society B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: 10.1016/S0893-6080(99)00043-X_BIB40
– start-page: 1493
  year: 1995
  ident: 10.1016/S0893-6080(99)00043-X_BIB11
  article-title: Speaker identification based on hierarchical mixture of experts
  publication-title: Proceedings of World Congress on Neural Networks, Washington, DC
– volume: 3
  start-page: 79
  issue: 1
  year: 1991
  ident: 10.1016/S0893-6080(99)00043-X_BIB26
  article-title: Adaptive mixture of local experts
  publication-title: Neural Computation
  doi: 10.1162/neco.1991.3.1.79
– volume: 19
  start-page: 545
  issue: 7
  year: 1998
  ident: 10.1016/S0893-6080(99)00043-X_BIB15
  article-title: A connectionist method for pattern classification with diverse features
  publication-title: Pattern Recognition Letters
  doi: 10.1016/S0167-8655(98)00055-5
– start-page: 227
  year: 1989
  ident: 10.1016/S0893-6080(99)00043-X_BIB7
  article-title: Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition
– year: 1986
  ident: 10.1016/S0893-6080(99)00043-X_BIB30
– volume: 7
  start-page: 1231
  issue: 5
  year: 1996
  ident: 10.1016/S0893-6080(99)00043-X_NEWBIB1
  article-title: Input/output HMMs for sequence processing
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.536317
– ident: 10.1016/S0893-6080(99)00043-X_BIB37
– start-page: 633
  year: 1995
  ident: 10.1016/S0893-6080(99)00043-X_BIB39
  article-title: Advances in neural information processing systems
– year: 1984
  ident: 10.1016/S0893-6080(99)00043-X_BIB6
– volume: 13
  start-page: 317
  year: 1970
  ident: 10.1016/S0893-6080(99)00043-X_BIB19
  article-title: A general quadratic programming algorithm
  publication-title: Computer Journal
  doi: 10.1093/comjnl/13.3.317
– ident: 10.1016/S0893-6080(99)00043-X_BIB33
  doi: 10.1109/ICNN.1997.611668
– ident: 10.1016/S0893-6080(99)00043-X_BIB35
– volume: 19
  start-page: 223
  issue: 1-3
  year: 1998
  ident: 10.1016/S0893-6080(99)00043-X_BIB41
  publication-title: RBF nets, mixture of experts, and Bayesian Ying-Yang learning, Neurocomputing
– ident: 10.1016/S0893-6080(99)00043-X_BIB12
– year: 1985
  ident: 10.1016/S0893-6080(99)00043-X_BIB31
– volume: 8
  start-page: 1409
  issue: 9
  year: 1995
  ident: 10.1016/S0893-6080(99)00043-X_BIB28
  article-title: Convergence results for the EM approach to mixtures of experts
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(95)00014-3
– volume: 24
  start-page: 647
  year: 1970
  ident: 10.1016/S0893-6080(99)00043-X_BIB34
  article-title: On variable metric methods for sparse Hessians
  publication-title: Mathematics of Computation
  doi: 10.1090/S0025-5718-1970-0274029-X
– volume: 6
  start-page: 76
  year: 1970
  ident: 10.1016/S0893-6080(99)00043-X_BIB8
  article-title: The convergence of a class of double rank minimization algorithms
  publication-title: Journal of the Institute of Mathematics and Its Applications
  doi: 10.1093/imamat/6.1.76
– volume: 18
  start-page: 859
  issue: 9
  year: 1997
  ident: 10.1016/S0893-6080(99)00043-X_BIB21
  article-title: Recent advances in speaker recognition
  publication-title: Pattern Recognition Letters
  doi: 10.1016/S0167-8655(97)00073-1
– year: 1973
  ident: 10.1016/S0893-6080(99)00043-X_BIB17
– year: 1989
  ident: 10.1016/S0893-6080(99)00043-X_BIB23
– volume: 20
  start-page: 227
  issue: 1-3
  year: 1998
  ident: 10.1016/S0893-6080(99)00043-X_NEWBIB10
  article-title: A method of combining multiple probabilistic classifiers through soft competition on different features sets
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(98)00019-8
– year: 1983
  ident: 10.1016/S0893-6080(99)00043-X_BIB29
– volume: 7
  start-page: 179
  year: 1936
  ident: 10.1016/S0893-6080(99)00043-X_BIB18
  article-title: The use of multiple measurements in taxonomic problem
  publication-title: Annals of Eugenices
  doi: 10.1111/j.1469-1809.1936.tb02137.x
– volume: 2
  start-page: 229
  issue: 3
  year: 1991
  ident: 10.1016/S0893-6080(99)00043-X_BIB3
  article-title: A fast procedure for re-training the multilayer perception
  publication-title: International Journal of Neural Systems
  doi: 10.1142/S0129065791000212
– start-page: 409
  year: 1993
  ident: 10.1016/S0893-6080(99)00043-X_BIB5
  article-title: Construction of reliable maximum likelihood algorithms with applications to logistic and Cox regression
– volume: 4
  start-page: 494
  issue: 4
  year: 1992
  ident: 10.1016/S0893-6080(99)00043-X_BIB4
  article-title: Exact calculation of the Hessian matrix for the multilayer perceptron
  publication-title: Neural Computation
  doi: 10.1162/neco.1992.4.4.494
– ident: 10.1016/S0893-6080(99)00043-X_BIB32
  doi: 10.1109/ICASSP.1996.550800
– ident: 10.1016/S0893-6080(99)00043-X_BIB2
– ident: 10.1016/S0893-6080(99)00043-X_BIB36
– year: 1987
  ident: 10.1016/S0893-6080(99)00043-X_BIB20
– volume: 24
  start-page: 23
  year: 1970
  ident: 10.1016/S0893-6080(99)00043-X_BIB22
  article-title: A family of variable metric methods derived by variational means
  publication-title: Mathematics of Computation
  doi: 10.1090/S0025-5718-1970-0258249-6
– volume: 7
  start-page: 29
  issue: 1
  year: 1996
  ident: 10.1016/S0893-6080(99)00043-X_BIB13
  article-title: Speaker identification using time-delay HMEs
  publication-title: International Journal of Neural Systems
  doi: 10.1142/S012906579600004X
– volume: 6
  start-page: 181
  issue: 2
  year: 1994
  ident: 10.1016/S0893-6080(99)00043-X_BIB27
  article-title: Hierarchical mixture of experts and the EM algorithm
  publication-title: Neural Computation
  doi: 10.1162/neco.1994.6.2.181
– volume: 3
  start-page: 81
  issue: 2
  year: 1996
  ident: 10.1016/S0893-6080(99)00043-X_NEWBIB14
  article-title: Text-dependent speaker identification based on input/output HMM: an empirical study
  publication-title: Neural Processing Letters
  doi: 10.1007/BF00571681
SSID ssj0006843
Score 1.9163061
Snippet Mixture of experts (ME) is a modular neural network architecture for supervised learning. A double-loop Expectation-Maximization (EM) algorithm has been...
SourceID proquest
pubmed
pascalfrancis
crossref
nii
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1229
SubjectTerms Applied sciences
Artificial intelligence
BFGS algorithm
Computer science; control theory; systems
Connectionism. Neural networks
Exact sciences and technology
Expectation-Maximization (EM) algorithm
Generalized Bernoulli density
Iterative reweighted least squares (IRLS) algorithm
Learning and adaptive systems
Mixture of experts
Multiclass classification
Multinomial density
Newton-Raphson method
Title Improved learning algorithms for mixture of experts in multiclass classification
URI https://dx.doi.org/10.1016/S0893-6080(99)00043-X
https://cir.nii.ac.jp/crid/1572543024569124864
https://www.ncbi.nlm.nih.gov/pubmed/12662629
https://www.proquest.com/docview/1859398357
https://www.proquest.com/docview/27005388
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB2xy6WX0kI_AgVcqYf2YHaTdZz4iFDRtlURUouUm5XENo0EWcQGiRO_nRnHYcVhhdRLDk5sOX6230tmPAPwhXwXhDOG43SZcWEyy6vaZDyRSiZTi4RmyKL7-0zOL8TPIi024GQ4C0NulWHv7_d0v1uHkkkYzclN00z-TJFqJQoepbw9qxjBJvJPno9h8_jHr_nZ04Ys8955Dp_nVGF1kKdvxBd-Veqbb4cX6yhq1DYN-U6WSxw-1-e9WC9MPUGdvoHXQVmy477zb2HDttuwNWRtYGER78B5_x_BGhYyRlyy8upycdt0_66XDDUsu27uya7AFo75BADdkjUt866HNYlt5q_kY-RhfQcXp9__nsx5yKvAa5EmHUdGsrKqTJmL2DqH-OAnKQWKNFM3M7goK-T8curSrEbxkouacpIk8cxKkWKZm72Hcbto7UdgCGlWZs4g0nTKlXxSqyrBphJjalReEYhhKHUdgo5T7osrvfIuQwQ0IaCV0h4BXURw9FTtpo-68VKFfMBJP5s-Gpnhpar7iCv2jq5xmlF0ALJHS4XSJ5cC7z9DfNUhVHJI_xF8HmaAxqVJ9paytYu7pY4plpxCiZtFcLjmGbL7I-fkEXzoJ8-qeZROiUzU7v-_2h688lEm_NHJTzDubu_sPmqorjqA0dFDfBBWyiOidhFi
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0BPcClUFpoaAEj9UAPZnezjhMfKwTalg9VKki5WUlsL5Egi9ggceK3d8ZJiDiskLjk4LUtr5_t95IZzwD8IN8F4YzhuFzGXJjY8rwwMQ-lkuHQIqEZsuheXMrJtfiTRukSHHd3Ycitsj37mzPdn9ZtyaCdzcF9WQ7-DZFqJQoepbw9K12GDyIKY3oDO3ru_Txk0rjOYW1O1ftrPE0XvvBQqZ--F54uIqjlqizJczKb4-S5JuvFYlnq6el0Az62upL9aob-CZZstQnrXc4G1m7hz_C3-YpgDWvzRUxZdjudPZT1zd2coYJld-UTWRXYzDEf_r-es7Ji3vGwIKnN_JM8jDyoX-D69OTqeMLbrAq8wOmpOfKRlXluskSMrHOIDr6QUphIM3Rjg1syR8bPhi6KC5QuiSgoI0k4GlspIixz4y1YqWaV_QoMAY2z2BnEme64kkdqnofYVWhMgborANFNpS7akOOU-eJW975liIAmBLRS2iOg0wCOXprdNzE33mqQdDjpV4tHIy-81XQXccXR0XMUxRQbgKzRUqHwSaTA318h3g8IdRySfwAH3QrQuDHJ2pJVdvY41yOKJKdQ4MYB7C-oQ1Z_ZJwkgO1m8fTdo3AKZah23v_X9mF1cnVxrs9_X559gzUfb8JfovwOK_XDo91FNVXne363_AfbGBIq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+learning+algorithms+for+mixture+of+experts+in+multiclass+classification&rft.jtitle=Neural+networks&rft.au=Chen%2C+K&rft.au=Xu%2C+L&rft.au=Chi%2C+H&rft.date=1999-11-01&rft.issn=0893-6080&rft.volume=12&rft.issue=9&rft.spage=1229&rft.epage=1252&rft_id=info:doi/10.1016%2FS0893-6080%2899%2900043-X&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon