Genomic Prediction of Breeding Values when Modeling Genotype × Environment Interaction using Pedigree and Dense Molecular Markers

Genomic selection (GS) has become an important aid in plant and animal breeding. Multienvironment (multitrait) models allow borrowing of information across environments (traits), which could enhance prediction accuracy. This study presents multienvironment (multitrait) models for GS and compares the...

Full description

Saved in:
Bibliographic Details
Published inCrop science Vol. 52; no. 2; pp. 707 - 719
Main Authors Burgueño, Juan, Campos, Gustavo de los, Weigel, Kent, Crossa, José
Format Journal Article
LanguageEnglish
Published Madison, WI Crop Science Society of America 01.03.2012
The Crop Science Society of America, Inc
American Society of Agronomy
Subjects
Online AccessGet full text
ISSN1435-0653
0011-183X
1435-0653
DOI10.2135/cropsci2011.06.0299

Cover

Abstract Genomic selection (GS) has become an important aid in plant and animal breeding. Multienvironment (multitrait) models allow borrowing of information across environments (traits), which could enhance prediction accuracy. This study presents multienvironment (multitrait) models for GS and compares the predictive accuracy of these models with: (i) multienvironment analysis without pedigree and marker information, and (ii) multienvironment pedigree or/and marker-based models. A statistical framework for incorporating pedigree and molecular marker information in models for multienvironment data is described and applied to data that originate from wheat (Triticum aestivum L.) multienvironment trials. Two prediction problems relevant to plant breeders are considered: (CV1) predicting the performance of untested genotypes (“newly” developed lines), and (CV2) predicting the performance of genotypes that have been evaluated in some environments but not in others. Results confirmed the superiority of models using both marker and pedigree information over those based on pedigree information only. Models with pedigree and/or markers had better predictive accuracy than simple linear mixed models that do not include either of these two sources of information. We concluded that the evaluation of such trials can benefit greatly from using multienvironment GS models.
AbstractList Genomic selection (GS) has become an important aid in plant and animal breeding. Multienvironment (multitrait) models allow borrowing of information across environments (traits), which could enhance prediction accuracy. This study presents multienvironment (multitrait) models for GS and compares the predictive accuracy of these models with: (i) multienvironment analysis without pedigree and marker information, and (ii) multienvironment pedigree or/and marker-based models. A statistical framework for incorporating pedigree and molecular marker information in models for multienvironment data is described and applied to data that originate from wheat (Triticum aestivum L.) multienvironment trials. Two prediction problems relevant to plant breeders are considered: (CV1) predicting the performance of untested genotypes (“newly” developed lines), and (CV2) predicting the performance of genotypes that have been evaluated in some environments but not in others. Results confirmed the superiority of models using both marker and pedigree information over those based on pedigree information only. Models with pedigree and/or markers had better predictive accuracy than simple linear mixed models that do not include either of these two sources of information. We concluded that the evaluation of such trials can benefit greatly from using multienvironment GS models.
Genomic selection (GS) has become an important aid in plant and animal breeding. Multienvironment (multitrait) models allow borrowing of information across environments (traits), which could enhance prediction accuracy. This study presents multienvironment (multitrait) models for GS and compares the predictive accuracy of these models with: (i) multienvironment analysis without pedigree and marker information, and (ii) multienvironment pedigree or/and marker‐based models. A statistical framework for incorporating pedigree and molecular marker information in models for multienvironment data is described and applied to data that originate from wheat ( Triticum aestivum L.) multienvironment trials. Two prediction problems relevant to plant breeders are considered: (CV1) predicting the performance of untested genotypes (“newly” developed lines), and (CV2) predicting the performance of genotypes that have been evaluated in some environments but not in others. Results confirmed the superiority of models using both marker and pedigree information over those based on pedigree information only. Models with pedigree and/or markers had better predictive accuracy than simple linear mixed models that do not include either of these two sources of information. We concluded that the evaluation of such trials can benefit greatly from using multienvironment GS models.
Genomic selection (GS) has become an important aid in plant and animal breeding. Multienvironment (multitrait) models allow borrowing of information across environments (traits), which could enhance prediction accuracy. This study presents multienvironment (multitrait) models for GS and compares the predictive accuracy of these models with: (i) multienvironment analysis without pedigree and marker information, and (ii) multienvironment pedigree or/and marker-based models. A statistical framework for incorporating pedigree and molecular marker information in models for multienvironment data is described and applied to data that originate from wheat (Triticum aestivum L.) multienvironment trials. Two prediction problems relevant to plant breeders are considered: (CV1) predicting the performance of untested genotypes ("newly" developed lines), and (CV2) predicting the performance of genotypes that have been evaluated in some environments but not in others. Results confirmed the superiority of models using both marker and pedigree information over those based on pedigree information only. Models with pedigree and/or markers had better predictive accuracy than simple linear mixed models that do not include either of these two sources of information. We concluded that the evaluation of such trials can benefit greatly from using multienvironment GS models. [PUBLICATION ABSTRACT]
ABSTRACT Genomic selection (GS) has become an important aid in plant and animal breeding. Multienvironment (multitrait) models allow borrowing of information across environments (traits), which could enhance prediction accuracy. This study presents multienvironment (multitrait) models for GS and compares the predictive accuracy of these models with: (i) multienvironment analysis without pedigree and marker information, and (ii) multienvironment pedigree or/and marker‐based models. A statistical framework for incorporating pedigree and molecular marker information in models for multienvironment data is described and applied to data that originate from wheat (Triticum aestivum L.) multienvironment trials. Two prediction problems relevant to plant breeders are considered: (CV1) predicting the performance of untested genotypes (“newly” developed lines), and (CV2) predicting the performance of genotypes that have been evaluated in some environments but not in others. Results confirmed the superiority of models using both marker and pedigree information over those based on pedigree information only. Models with pedigree and/or markers had better predictive accuracy than simple linear mixed models that do not include either of these two sources of information. We concluded that the evaluation of such trials can benefit greatly from using multienvironment GS models.
Author Burgueño, Juan
Campos, Gustavo de los
Weigel, Kent
Crossa, José
Author_xml – sequence: 1
  fullname: Burgueño, Juan
– sequence: 2
  fullname: Campos, Gustavo de los
– sequence: 3
  fullname: Weigel, Kent
– sequence: 4
  fullname: Crossa, José
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25543533$$DView record in Pascal Francis
BookMark eNqNks1uEzEUhUeoSLSFJ2CBhYTEJsE_Y0-8hKEtkVo1IpStdcdzJ7hM7NSeUGXLS_BAvBgeJUJVN7Cyff2dY18fnxRHPngsipeMTjkT8p2NYZOs45SxKVVTyrV-UhyzUsgJVVIcPZg_K05SuqWUVrqSx8XPC_Rh7SxZRGydHVzwJHTkQ8S89CvyFfotJnL_DT25Ci32Y3HUDLsNkt-_yJn_4WLwa_QDmfsBI-xNtmkkF9lllb0I-JZ8RJ8wu_Rotz1EcgXxO8b0vHjaQZ_wxWE8LW7Oz77UnyaX1xfz-v3lxJaS60kFVWtlyYUUXYkayg6wQgRV6ZlUXAtdqZY3shWNLZtZx1qQZdU0jVIVZQLEafF277uJ4S43NZi1Sxb7HjyGbTJMKaFYWc10Rl8_Qm_DNvp8O6MFnVFJBcvQmwMEyULfRfDWJbOJbg1xZ7iU-c2FyJzYczmllCJ2fxFGzRifeRCfocqM8WWVfqSyboDxaYcIrv-H9nyvvXc97v7nOFMva15_vl4s6_lYp-pg9Gpv1EEwsIq5vZtl3pf5_8iSci7-APVcxC0
CODEN CRPSAY
CitedBy_id crossref_primary_10_3389_fgene_2023_1212804
crossref_primary_10_1016_j_applanim_2022_105747
crossref_primary_10_1093_g3journal_jkac226
crossref_primary_10_3389_fpls_2019_01353
crossref_primary_10_1007_s00122_021_03773_7
crossref_primary_10_1007_s00122_013_2243_1
crossref_primary_10_1007_s11032_019_1002_7
crossref_primary_10_1534_g3_116_035584
crossref_primary_10_1002_tpg2_20305
crossref_primary_10_1007_s00122_024_04684_z
crossref_primary_10_2135_cropsci2015_06_0375
crossref_primary_10_1007_s00122_013_2100_2
crossref_primary_10_3389_fgene_2021_798840
crossref_primary_10_1186_s12711_017_0361_y
crossref_primary_10_3390_cimb45040173
crossref_primary_10_3389_fgene_2022_1032691
crossref_primary_10_3389_fpls_2021_658978
crossref_primary_10_1007_s00122_017_3033_y
crossref_primary_10_1016_j_ygeno_2021_02_007
crossref_primary_10_5691_jjb_44_55
crossref_primary_10_1534_g3_118_200140
crossref_primary_10_3835_plantgenome2016_12_0130
crossref_primary_10_1111_nph_14174
crossref_primary_10_3389_fpls_2021_664148
crossref_primary_10_3389_fpls_2022_939448
crossref_primary_10_2135_cropsci2018_03_0189
crossref_primary_10_17816_ecogen1233_11
crossref_primary_10_3389_fpls_2024_1393965
crossref_primary_10_3389_fpls_2021_761402
crossref_primary_10_2135_cropsci2015_02_0111
crossref_primary_10_3389_fgene_2016_00221
crossref_primary_10_3389_fbioe_2021_567548
crossref_primary_10_1093_g3journal_jkab270
crossref_primary_10_1007_s00122_017_2922_4
crossref_primary_10_1371_journal_pone_0258473
crossref_primary_10_1186_s12870_017_1059_6
crossref_primary_10_1007_s00425_023_04252_7
crossref_primary_10_1016_j_pbi_2020_101986
crossref_primary_10_1002_ppj2_20113
crossref_primary_10_1093_bioadv_vbad106
crossref_primary_10_3389_fgene_2023_1221751
crossref_primary_10_3390_agronomy11061119
crossref_primary_10_3390_plants9060719
crossref_primary_10_1016_j_tig_2021_08_002
crossref_primary_10_1093_g3journal_jkaa050
crossref_primary_10_1111_pbr_12862
crossref_primary_10_1002_tpg2_20558
crossref_primary_10_1007_s00122_019_03413_1
crossref_primary_10_1016_j_rser_2017_03_116
crossref_primary_10_2135_cropsci2018_11_0685
crossref_primary_10_1007_s00122_018_3120_8
crossref_primary_10_1534_g3_119_400064
crossref_primary_10_3389_fpls_2022_785196
crossref_primary_10_1038_hdy_2014_99
crossref_primary_10_1016_j_stress_2025_100751
crossref_primary_10_1371_journal_pone_0239609
crossref_primary_10_1186_s13007_024_01207_1
crossref_primary_10_1534_g3_114_016188
crossref_primary_10_1016_j_molp_2024_03_007
crossref_primary_10_3389_fgene_2019_01168
crossref_primary_10_3389_fgene_2020_592769
crossref_primary_10_1007_s00122_024_04565_5
crossref_primary_10_1038_s41598_019_45618_w
crossref_primary_10_3390_plants9111454
crossref_primary_10_3390_plants13192790
crossref_primary_10_3835_plantgenome2016_12_0128
crossref_primary_10_1534_g3_115_019745
crossref_primary_10_2135_cropsci2018_11_0692
crossref_primary_10_1007_s00122_018_3264_6
crossref_primary_10_1007_s00122_023_04469_w
crossref_primary_10_1007_s00438_023_02026_0
crossref_primary_10_1093_g3journal_jkab320
crossref_primary_10_1038_s41598_018_30027_2
crossref_primary_10_1093_g3journal_jkab440
crossref_primary_10_1590_1984_70332021v21sa28
crossref_primary_10_2135_cropsci2014_09_0620
crossref_primary_10_1016_j_atg_2016_10_004
crossref_primary_10_1590_1984_70332021v21sa25
crossref_primary_10_1007_s00122_021_03949_1
crossref_primary_10_1126_sciadv_abf9106
crossref_primary_10_1534_g3_118_200038
crossref_primary_10_3389_fpls_2018_01878
crossref_primary_10_1007_s00122_024_04687_w
crossref_primary_10_3389_fpls_2024_1408356
crossref_primary_10_1093_genetics_iyac112
crossref_primary_10_1038_s41467_023_42687_4
crossref_primary_10_1093_g3journal_jkac322
crossref_primary_10_1534_g3_113_008227
crossref_primary_10_1186_1471_2164_15_1048
crossref_primary_10_3389_fpls_2020_564183
crossref_primary_10_1534_g3_118_200273
crossref_primary_10_1590_1984_70332021v21sa19
crossref_primary_10_1534_g3_116_027524
crossref_primary_10_1371_journal_pone_0178734
crossref_primary_10_1007_s00122_016_2726_y
crossref_primary_10_1534_g3_119_400094
crossref_primary_10_3389_fpls_2022_960449
crossref_primary_10_3835_plantgenome2015_09_0085
crossref_primary_10_2135_cropsci2016_08_0715
crossref_primary_10_3389_fgene_2020_567757
crossref_primary_10_3389_fpls_2021_690059
crossref_primary_10_3835_plantgenome2012_07_0017
crossref_primary_10_1007_s00122_020_03703_z
crossref_primary_10_3389_fpls_2021_708233
crossref_primary_10_3389_fgene_2021_689319
crossref_primary_10_1534_g3_118_200098
crossref_primary_10_3389_fpls_2023_1280331
crossref_primary_10_1186_1471_2164_15_646
crossref_primary_10_1186_s12284_023_00623_6
crossref_primary_10_1186_s13007_019_0388_x
crossref_primary_10_3389_fpls_2019_01502
crossref_primary_10_1093_g3journal_jkae001
crossref_primary_10_1007_s00122_020_03638_5
crossref_primary_10_1007_s11434_015_0791_2
crossref_primary_10_3389_fpls_2021_720123
crossref_primary_10_1007_s00122_021_03909_9
crossref_primary_10_1534_g3_116_032359
crossref_primary_10_1007_s00122_014_2305_z
crossref_primary_10_3168_jds_2012_6133
crossref_primary_10_2135_cropsci2017_08_0469
crossref_primary_10_1016_j_cj_2018_03_001
crossref_primary_10_2134_agronj2018_06_0361
crossref_primary_10_3390_agronomy8120291
crossref_primary_10_1016_j_cj_2018_03_005
crossref_primary_10_2135_cropsci2017_10_0638
crossref_primary_10_1016_j_plantsci_2018_06_018
crossref_primary_10_2135_cropsci2018_05_0314
crossref_primary_10_1093_genetics_iyae171
crossref_primary_10_1534_g3_120_401349
crossref_primary_10_1016_j_tplants_2024_09_011
crossref_primary_10_1186_1471_2164_15_740
crossref_primary_10_1111_ppl_14544
crossref_primary_10_1016_j_scienta_2016_05_005
crossref_primary_10_1038_s41598_023_37169_y
crossref_primary_10_3389_fpls_2021_651480
crossref_primary_10_1002_csc2_20955
crossref_primary_10_1371_journal_pone_0259607
crossref_primary_10_3389_fpls_2018_01310
crossref_primary_10_1016_j_cj_2020_04_005
crossref_primary_10_1371_journal_pone_0173368
crossref_primary_10_1093_g3journal_jkad286
crossref_primary_10_1093_g3journal_jkae011
crossref_primary_10_1007_s00122_021_03982_0
crossref_primary_10_1002_csc2_20986
crossref_primary_10_3389_fpls_2019_01673
crossref_primary_10_1534_g3_117_300454
crossref_primary_10_2135_cropsci2016_08_0639
crossref_primary_10_1007_s00122_024_04679_w
crossref_primary_10_3835_plantgenome2016_03_0024
crossref_primary_10_1111_j_1744_7909_2012_01116_x
crossref_primary_10_1080_15427528_2025_2460571
crossref_primary_10_1007_s00122_020_03613_0
crossref_primary_10_1002_csc2_20995
crossref_primary_10_1111_gfs_12551
crossref_primary_10_1534_g3_117_042341
crossref_primary_10_1534_g3_119_400598
crossref_primary_10_1071_CP17387
crossref_primary_10_3389_fpls_2021_663565
crossref_primary_10_1093_g3journal_jkad109
crossref_primary_10_1002_csc2_20857
crossref_primary_10_2135_cropsci2015_04_0260
crossref_primary_10_3389_fpls_2020_00197
crossref_primary_10_1007_s10681_021_02831_x
crossref_primary_10_3389_fpls_2024_1448961
crossref_primary_10_3835_plantgenome2019_04_0028
crossref_primary_10_1016_j_plantsci_2015_08_021
crossref_primary_10_1002_csc2_20529
crossref_primary_10_1186_s12870_022_03975_1
crossref_primary_10_1534_g3_119_400126
crossref_primary_10_3390_agronomy10091221
crossref_primary_10_3835_plantgenome2016_08_0082
crossref_primary_10_1534_g3_112_005066
crossref_primary_10_1038_s41598_024_69299_2
crossref_primary_10_3390_agronomy10010062
crossref_primary_10_3390_agronomy11081555
crossref_primary_10_1002_agj2_20696
crossref_primary_10_3390_plants11131736
crossref_primary_10_1016_j_fcr_2013_07_020
crossref_primary_10_1007_s00122_020_03658_1
crossref_primary_10_1371_journal_pone_0223898
crossref_primary_10_3389_fpls_2022_843065
crossref_primary_10_1186_s12284_023_00643_2
crossref_primary_10_1007_s00122_021_03972_2
crossref_primary_10_1534_g3_119_400493
crossref_primary_10_3389_fpls_2020_580136
crossref_primary_10_1590_1678_992x_2020_0314
crossref_primary_10_1038_hdy_2013_16
crossref_primary_10_3389_fpls_2024_1400000
crossref_primary_10_1371_journal_pone_0233200
crossref_primary_10_1007_s00122_020_03744_4
crossref_primary_10_1534_g3_116_035410
crossref_primary_10_3389_fgene_2023_1108416
crossref_primary_10_1111_ppl_14480
crossref_primary_10_1270_jsbbs_19009
crossref_primary_10_1371_journal_pone_0291833
crossref_primary_10_3389_fpls_2023_1221750
crossref_primary_10_3390_agronomy12030714
crossref_primary_10_1371_journal_pone_0233951
crossref_primary_10_1038_hdy_2012_35
crossref_primary_10_1371_journal_pone_0208871
crossref_primary_10_1016_j_gene_2024_149140
crossref_primary_10_1038_hdy_2015_113
crossref_primary_10_3389_fpls_2022_983818
crossref_primary_10_3389_fpls_2020_00827
crossref_primary_10_1016_j_molp_2025_01_020
crossref_primary_10_2135_cropsci2015_01_0061
crossref_primary_10_3389_fgene_2022_958780
crossref_primary_10_1016_j_ygeno_2015_08_001
crossref_primary_10_3835_plantgenome2018_07_0051
crossref_primary_10_1007_s00122_016_2760_9
crossref_primary_10_3389_fpls_2024_1349569
crossref_primary_10_3390_agronomy9090479
crossref_primary_10_1002_csc2_20303
crossref_primary_10_1534_g3_113_007807
crossref_primary_10_1007_s11295_022_01563_w
crossref_primary_10_3389_fpls_2024_1293307
crossref_primary_10_3835_plantgenome2012_06_0006
crossref_primary_10_3389_fgene_2020_596258
crossref_primary_10_1002_csc2_20782
crossref_primary_10_1007_s00122_019_03475_1
crossref_primary_10_3390_agriculture11100932
crossref_primary_10_1371_journal_pone_0307009
crossref_primary_10_1007_s10681_021_02779_y
crossref_primary_10_1080_02648725_2016_1177377
crossref_primary_10_3835_plantgenome2017_12_0112
crossref_primary_10_1007_s10681_014_1073_9
crossref_primary_10_1007_s10681_016_1722_2
crossref_primary_10_1038_s41437_018_0053_6
crossref_primary_10_3389_fpls_2021_658267
crossref_primary_10_1016_j_cj_2020_06_004
crossref_primary_10_1111_pbr_13027
crossref_primary_10_1007_s00122_022_04170_4
crossref_primary_10_1016_j_cj_2018_01_006
crossref_primary_10_1186_s13059_021_02416_w
crossref_primary_10_1007_s00122_021_03868_1
crossref_primary_10_2135_cropsci2016_03_0151
crossref_primary_10_2135_cropsci2015_04_0207
crossref_primary_10_1534_g3_115_024950
crossref_primary_10_2298_GENSR2202857B
crossref_primary_10_2135_cropsci2016_06_0558
crossref_primary_10_1371_journal_pone_0179191
crossref_primary_10_1071_CP23126
crossref_primary_10_1371_journal_pone_0217571
crossref_primary_10_1002_agj2_21639
crossref_primary_10_1093_g3journal_jkae092
crossref_primary_10_1002_csc2_20686
crossref_primary_10_2135_cropsci2012_07_0420
crossref_primary_10_1007_s00122_018_3249_5
crossref_primary_10_1534_g3_120_401172
crossref_primary_10_1534_g3_119_400508
crossref_primary_10_2135_cropsci2015_07_0451
crossref_primary_10_1002_ppj2_70004
crossref_primary_10_2135_cropsci2017_06_0366
crossref_primary_10_1007_s00122_021_03779_1
crossref_primary_10_1038_s41438_018_0081_7
crossref_primary_10_1534_g3_118_200856
crossref_primary_10_1111_pbr_12597
crossref_primary_10_1371_journal_pone_0211718
crossref_primary_10_1007_s00122_017_2897_1
crossref_primary_10_3389_fpls_2024_1407609
crossref_primary_10_1007_s00122_022_04085_0
crossref_primary_10_2527_af_2016_0010
crossref_primary_10_1002_tpg2_20064
crossref_primary_10_1038_s41598_020_71274_6
crossref_primary_10_3835_plantgenome2017_10_0090
crossref_primary_10_1093_jhered_esz061
crossref_primary_10_1534_g3_119_400759
crossref_primary_10_1002_csc2_20460
crossref_primary_10_1002_csc2_21315
crossref_primary_10_1093_g3journal_jkae159
crossref_primary_10_1002_csc2_20221
crossref_primary_10_3390_genes13040565
crossref_primary_10_1094_PHYTO_12_16_0431_R
crossref_primary_10_1007_s10681_020_02607_9
crossref_primary_10_1093_bioinformatics_btz197
crossref_primary_10_1371_journal_pone_0309502
crossref_primary_10_1016_j_molp_2022_09_001
crossref_primary_10_1093_g3journal_jkae186
crossref_primary_10_1007_s00122_017_2898_0
crossref_primary_10_3835_plantgenome2013_01_0001
crossref_primary_10_1534_g3_115_021105
crossref_primary_10_1002_csc2_20253
crossref_primary_10_3389_fgene_2020_586687
crossref_primary_10_1111_are_12673
crossref_primary_10_1016_j_tplants_2017_08_011
crossref_primary_10_1038_s41598_024_51792_3
crossref_primary_10_3389_fpls_2017_00550
crossref_primary_10_1007_s00122_019_03337_w
crossref_primary_10_1007_s13131_015_0643_6
crossref_primary_10_1002_csc2_21213
crossref_primary_10_1016_j_plantsci_2024_112110
crossref_primary_10_1071_FP12079
crossref_primary_10_1007_s00122_022_04041_y
crossref_primary_10_1002_tpg2_20151
crossref_primary_10_1007_s00122_012_1892_9
crossref_primary_10_1016_j_jplph_2020_153354
crossref_primary_10_1007_s00122_021_03946_4
crossref_primary_10_3390_agronomy12051126
crossref_primary_10_1534_g3_112_003699
crossref_primary_10_3389_fgene_2022_920689
crossref_primary_10_1002_tpg2_20260
crossref_primary_10_1111_nph_14220
crossref_primary_10_1002_csc2_21107
crossref_primary_10_1186_s12284_023_00661_0
crossref_primary_10_1186_s12864_024_10310_5
crossref_primary_10_1007_s00122_016_2666_6
crossref_primary_10_1007_s00122_022_04147_3
crossref_primary_10_3389_fpls_2021_613300
crossref_primary_10_1007_s11032_017_0715_8
crossref_primary_10_2134_agronj2015_0430
crossref_primary_10_1002_csc2_20382
crossref_primary_10_1016_j_xplc_2019_100005
crossref_primary_10_1038_s41588_019_0414_y
crossref_primary_10_1007_s00425_022_03996_y
crossref_primary_10_1038_s41477_021_01001_0
crossref_primary_10_3389_fpls_2024_1285094
crossref_primary_10_1534_g3_114_016097
crossref_primary_10_3389_fpls_2021_735285
crossref_primary_10_1534_g3_116_029637
crossref_primary_10_3390_ijms232314558
crossref_primary_10_1002_tpg2_20012
crossref_primary_10_1007_s00122_025_04825_y
crossref_primary_10_1007_s11032_019_0983_6
crossref_primary_10_1534_g3_119_400968
crossref_primary_10_1016_j_agrformet_2017_12_263
crossref_primary_10_1007_s00122_018_3186_3
crossref_primary_10_2135_cropsci2016_07_0002in
crossref_primary_10_1186_s13059_020_02224_8
crossref_primary_10_2135_cropsci2012_11_0653
crossref_primary_10_1007_s00122_019_03364_7
crossref_primary_10_1016_j_fcr_2017_08_020
crossref_primary_10_3389_fpls_2024_1488814
crossref_primary_10_1002_tpg2_20048
crossref_primary_10_1534_g3_116_036251
crossref_primary_10_1002_csc2_21029
crossref_primary_10_3389_fgene_2022_883853
crossref_primary_10_3390_agronomy9020095
crossref_primary_10_1007_s00122_016_2667_5
crossref_primary_10_1016_j_fcr_2020_107929
crossref_primary_10_1111_pbr_12105
crossref_primary_10_3389_fpls_2021_665195
crossref_primary_10_1371_journal_pone_0282288
crossref_primary_10_1111_pce_14145
crossref_primary_10_3389_fpls_2021_699589
crossref_primary_10_1002_csc2_20048
crossref_primary_10_2135_cropsci2014_03_0249
crossref_primary_10_1002_tpg2_20033
crossref_primary_10_3389_fpls_2020_00539
crossref_primary_10_1007_s11032_022_01341_5
crossref_primary_10_3389_fpls_2024_1410851
crossref_primary_10_2135_cropsci2015_05_0311
crossref_primary_10_1038_s41467_020_18480_y
crossref_primary_10_1146_annurev_phyto_080615_100056
crossref_primary_10_1002_csc2_20072
crossref_primary_10_1111_anzs_12362
crossref_primary_10_1007_s11032_021_01221_4
crossref_primary_10_1038_hdy_2013_144
crossref_primary_10_1002_tpg2_20464
crossref_primary_10_1038_srep27312
crossref_primary_10_3390_plants13213059
crossref_primary_10_1093_jxb_erad216
crossref_primary_10_1534_genetics_115_179887
crossref_primary_10_3835_plantgenome2016_09_0089
crossref_primary_10_1186_s12870_022_03479_y
crossref_primary_10_1016_j_fcr_2017_09_024
crossref_primary_10_1007_s10681_021_02903_y
crossref_primary_10_1007_s11295_017_1171_7
crossref_primary_10_3389_frai_2022_1040295
crossref_primary_10_3389_fpls_2021_717552
crossref_primary_10_1038_s41437_022_00582_6
crossref_primary_10_3389_fpls_2021_718611
crossref_primary_10_1007_s00122_018_3206_3
crossref_primary_10_2135_cropsci2014_08_0577
crossref_primary_10_3390_agronomy10101591
crossref_primary_10_1007_s00122_015_2655_1
crossref_primary_10_1007_s00122_019_03432_y
crossref_primary_10_2135_cropsci2017_09_0564
crossref_primary_10_1007_s11032_023_01383_3
crossref_primary_10_1007_s10681_022_03075_z
crossref_primary_10_1038_s41437_020_0321_0
crossref_primary_10_1007_s00122_020_03673_2
crossref_primary_10_1002_csc2_20096
crossref_primary_10_1002_tpg2_20128
crossref_primary_10_3390_f13101554
crossref_primary_10_1371_journal_pone_0201181
crossref_primary_10_3835_plantgenome2017_11_0100
crossref_primary_10_1534_g3_118_200435
crossref_primary_10_1134_S207905971505010X
crossref_primary_10_1002_tpg2_20004
crossref_primary_10_1007_s00122_020_03696_9
crossref_primary_10_1002_tpg2_20127
crossref_primary_10_3390_plants8020034
crossref_primary_10_1002_csc2_20098
crossref_primary_10_3390_agronomy10122008
crossref_primary_10_1002_tpg2_20002
crossref_primary_10_1071_CP13363
crossref_primary_10_1038_hdy_2016_87
crossref_primary_10_1016_j_tplants_2014_05_006
crossref_primary_10_1186_s12864_016_3170_8
crossref_primary_10_3835_plantgenome2018_03_0017
crossref_primary_10_1007_s11032_018_0925_8
crossref_primary_10_1007_s10681_022_03062_4
crossref_primary_10_1002_tpg2_20235
Cites_doi 10.1198/108571104X4423
10.1017/S0016672300033620
10.1017/S0016672310000285
10.1111/j.1095-8312.1999.tb01157.x
10.1093/genetics/6.2.111
10.1186/1297-9686-37-1-1
10.2135/cropsci2010.06.0338
10.2135/cropsci2010.07.0403
10.1104/pp.105.063438
10.2135/cropsci2008.10.0595
10.1079/9780851996011.0323
10.2135/cropsci2006.09.0564
10.2307/2533976
10.2135/cropsci2007.11.0632
10.1534/genetics.103.025734
10.3835/plantgenome2010.04.0005
10.1093/genetics/157.4.1819
10.1111/j.1467-842X.2010.00570.x
10.1534/genetics.104.029181
10.2135/cropsci2005.11-0427
10.1534/genetics.110.118521
10.1080/15427528.2011.558767
10.2135/cropsci2006.11.0690
10.1371/journal.pgen.1002051
10.1111/j.0006-341X.2001.01138.x
10.1007/BF00022843
10.1139/G10-076
10.1534/genetics.107.081190
10.1534/genetics.109.101501
10.1186/1297-9686-39-5-481
10.2307/2529430
10.1007/s001220050885
10.1007/s00122-006-0333-z
10.1017/S0080456800012163
ContentType Journal Article
Copyright 2012 The Authors.
2015 INIST-CNRS
Copyright American Society of Agronomy Mar/Apr 2012
Copyright_xml – notice: 2012 The Authors.
– notice: 2015 INIST-CNRS
– notice: Copyright American Society of Agronomy Mar/Apr 2012
DBID FBQ
24P
AAYXX
CITATION
IQODW
3V.
7X2
7XB
88I
8AF
8FE
8FG
8FH
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
L6V
M0K
M2O
M2P
M7S
MBDVC
PATMY
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
R05
S0X
7S9
L.6
DOI 10.2135/cropsci2011.06.0299
DatabaseName AGRIS
Wiley Online Library Open Access
CrossRef
Pascal-Francis
ProQuest Central (Corporate)
Agricultural Science Collection
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
STEM Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Engineering Collection
Agriculture Science Database
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
SIRS Editorial
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Agricultural Science Database
University of Michigan
Research Library Prep
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
SIRS Editorial
ProQuest AP Science
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Research Library
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

CrossRef
Agricultural Science Database

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1435-0653
EndPage 719
ExternalDocumentID 2614664211
25543533
10_2135_cropsci2011_06_0299
CSC2CROPSCI2011060299
US201500054022
Genre article
Feature
GrantInformation_xml – fundername: National Association of Animal Breeders
GroupedDBID -~X
.86
.~0
0R~
186
18M
1OB
1OC
29F
2A4
2WC
33P
3V.
53G
5GY
6J9
6KN
7X2
7XC
88I
8AF
8FE
8FG
8FH
8G5
8R4
8R5
AAHHS
AANLZ
ABCQX
ABCUV
ABEFU
ABJCF
ABJNI
ABPTK
ABUWG
ACAWQ
ACCFJ
ACCZN
ACGOD
ACIWK
ACPOU
ACXQS
ADFRT
ADKYN
ADNWM
ADYHW
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AETEA
AEUYR
AFFPM
AFKRA
AFRAH
AI.
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ATCPS
AZQEC
BENPR
BES
BFHJK
BGLVJ
BGNMA
BHPHI
BKOMP
BPHCQ
C1A
CCPQU
CS3
D0L
DCZOG
DROCM
DWQXO
E3Z
EBS
ECGQY
EJD
F5P
FBQ
GNUQQ
GUQSH
HCIFZ
HF~
IAG
IAO
ICU
IEA
IEP
IGG
IOF
ITC
L6V
L7B
LAS
LATKE
LEEKS
M0K
M2O
M2P
M2Q
M4Y
M7S
MEWTI
MV1
NHAZY
NHB
NU0
O9-
PATMY
PQQKQ
PRG
PROAC
PTHSS
PYCSY
Q2X
R05
RAK
ROL
RPX
RXW
S0X
SAMSI
SUPJJ
TAE
TR2
TWZ
U2A
U5U
VH1
VQA
WOQ
WXSBR
XOL
Y6R
~02
~KM
24P
AAHBH
AAHQN
AAMNL
AAYCA
AEUYN
AFWVQ
AHBTC
AITYG
ALVPJ
H13
HGLYW
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
PQGLB
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7S9
L.6
LH4
PUEGO
ID FETCH-LOGICAL-c4529-7a7dc542353f4e9a4fae7eea679856293976d2b5d3bc4b8f1da547bbb667013a3
IEDL.DBID 24P
ISSN 1435-0653
0011-183X
IngestDate Fri Sep 05 04:56:01 EDT 2025
Fri Aug 15 20:04:01 EDT 2025
Mon Jul 21 09:13:20 EDT 2025
Tue Jul 01 01:42:09 EDT 2025
Thu Apr 24 23:07:54 EDT 2025
Wed Jan 22 16:36:25 EST 2025
Wed Dec 27 19:14:15 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Genotype environment interaction
Pedigree
Genomics
Prediction
Molecular marker
Breeding value
Modeling
Language English
License Attribution-NonCommercial-NoDerivs
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4529-7a7dc542353f4e9a4fae7eea679856293976d2b5d3bc4b8f1da547bbb667013a3
Notes http://dx.doi.org/10.2135/cropsci2011.06.0299
All rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permission for printing and for reprinting the material contained herein has been obtained by the publisher.
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.2135%2Fcropsci2011.06.0299
PQID 930805031
PQPubID 30013
PageCount 13
ParticipantIDs proquest_miscellaneous_1663614789
proquest_journals_930805031
pascalfrancis_primary_25543533
crossref_primary_10_2135_cropsci2011_06_0299
crossref_citationtrail_10_2135_cropsci2011_06_0299
wiley_primary_10_2135_cropsci2011_06_0299_CSC2CROPSCI2011060299
fao_agris_US201500054022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2012
PublicationDateYYYYMMDD 2012-03-01
PublicationDate_xml – month: 03
  year: 2012
  text: March 2012
PublicationDecade 2010
PublicationPlace Madison, WI
PublicationPlace_xml – name: Madison, WI
– name: Madison
PublicationTitle Crop science
PublicationYear 2012
Publisher Crop Science Society of America
The Crop Science Society of America, Inc
American Society of Agronomy
Publisher_xml – name: Crop Science Society of America
– name: The Crop Science Society of America, Inc
– name: American Society of Agronomy
References 2007; 39
2004; 167
2010; 53
2004; 168
2010
2009; 182
2004; 9
2005; 139
2010; 186
1975; 31
1996; 92
2002
1918; 52
2009; 49
2011; 7
2007; 37
2006; 113
2001; 157
1921; 6
2006; 46
1997; 53
2007; 177
2011; 51
2008; 48
1999; 152
2011; 25
2010; 92
2005; 37
2010; 3
2001; 57
1998; 97
2010; 52
2007; 47
1996; 67
e_1_2_10_23_1
Wright S. (e_1_2_10_38_1) 1921; 6
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
Meuwissen T.H.E. (e_1_2_10_25_1) 2001; 157
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
Van Raden P.M. (e_1_2_10_36_1) 2007; 37
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_7_1
Crossa J. (e_1_2_10_11_1) 2004; 9
e_1_2_10_15_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_32_1
e_1_2_10_31_1
Campos G. (e_1_2_10_12_1) 2007; 39
e_1_2_10_30_1
ASReml (e_1_2_10_2_1) 2010
e_1_2_10_29_1
Smith A. (e_1_2_10_33_1) 2002
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_26_1
References_xml – volume: 177
  start-page: 2389
  year: 2007
  end-page: 2397
  article-title: The impact of genomic relationship information on genome-assisted breeding value
  publication-title: Genetics
– volume: 113
  start-page: 809
  year: 2006
  end-page: 819
  article-title: Joint modeling of additive and non-additive genetic line effects in single field trials
  publication-title: Theor. Appl. Genet.
– volume: 182
  start-page: 375
  year: 2009
  end-page: 385
  article-title: Predicting quantitative traits with regression models for dense molecular markers and pedigree
  publication-title: Genetics
– volume: 46
  start-page: 1722
  year: 2006
  end-page: 1733
  article-title: Modeling genotype × environment interaction using additive genetic covariances of relatives for predicting breeding values of wheat genotypes
  publication-title: Crop Sci.
– volume: 52
  start-page: 399
  year: 1918
  end-page: 433
  article-title: The correlation between relatives on the supposition of Mendelian inheritance
  publication-title: Trans. R. Soc. Edinb.
– volume: 3
  start-page: 106
  year: 2010
  end-page: 116
  article-title: Genomic-enabled prediction based on molecular markers and pedigree using the BLR package in R
  publication-title: Plant Gen.
– volume: 53
  start-page: 761
  year: 1997
  end-page: 766
  article-title: Analyzing genotype-environment data by mixed models with multiplicative effects
  publication-title: Biometrics
– volume: 168
  start-page: 2295
  year: 2004
  end-page: 2306
  article-title: Direct estimation of genetic principal components: Simplified analysis of complex phenotypes
  publication-title: Genetics
– volume: 57
  start-page: 1138
  year: 2001
  end-page: 1147
  article-title: Analyzing variety by environment data using multiplicative mixed models and adjustments for spatial field trend
  publication-title: Biometrics
– volume: 92
  start-page: 175
  year: 1996
  end-page: 183
  article-title: CIMMYT's approach to breeding for wide adaptation
  publication-title: Euphytica
– volume: 37
  start-page: 33
  year: 2007
  end-page: 36
  article-title: Genomic measures of relationship and inbreeding
  publication-title: Interbull Bull.
– volume: 97
  start-page: 195
  year: 1998
  end-page: 201
  article-title: Empirical best linear unbiased prediction in cultivar trials using factor analytic variance covariance structure
  publication-title: Theor. Appl. Genet.
– volume: 31
  start-page: 423
  year: 1975
  end-page: 447
  article-title: Best linear unbiased estimation and prediction under a selection model
  publication-title: Biometrics
– volume: 139
  start-page: 637
  year: 2005
  end-page: 642
  article-title: The International Rice Information System. A platform for meta-analysis of rice crop data
  publication-title: Plant Physiol.
– year: 2010
– volume: 52
  start-page: 125
  year: 2010
  end-page: 149
  article-title: A comparison of analysis method for late-stage variety evaluation trials
  publication-title: Aust. N.Z.J. Stat.
– volume: 47
  start-page: 311
  year: 2007
  end-page: 320
  article-title: Modeling additive × environment and additive × additive × environment using genetic covariances of relatives of wheat genotypes
  publication-title: Crop Sci.
– volume: 48
  start-page: 1291
  year: 2008
  end-page: 1305
  article-title: Using factor analytic models for joining environments and genotypes without crossover genotype × environment interaction
  publication-title: Crop Sci.
– volume: 51
  start-page: 944
  year: 2011
  end-page: 954
  article-title: Prediction assessment of linear mixed models for multienvironment trials
  publication-title: Crop Sci.
– volume: 39
  start-page: 481
  year: 2007
  end-page: 494
  article-title: Factor analysis models for structuring covariance matrices of additive genetic effects: A Bayesian implementation
  publication-title: Genet. Sel. Evol.
– volume: 49
  start-page: 1165
  year: 2009
  end-page: 1176
  article-title: Ridge regression and extensions for genome-wide selection in maize
  publication-title: Crop Sci.
– volume: 9
  start-page: 362
  year: 2004
  end-page: 380
  article-title: Studying crossover genotype × environment interaction using linear-bilinear models and mixed models
  publication-title: J. Agric. Biol. Environ. Stat.
– volume: 67
  start-page: 175
  year: 1996
  end-page: 185
  article-title: Estimators for pairwise relatedness and individual inbreeding coefficients
  publication-title: Genet. Res.
– volume: 6
  start-page: 111
  year: 1921
  end-page: 123
  article-title: Systems of mating. 1. The biometric relations between parent and offspring
  publication-title: Genetics
– year: 2002
– volume: 157
  start-page: 1819
  year: 2001
  end-page: 1829
  article-title: Prediction of total genetic values using genome-wide dense marker maps
  publication-title: Genetics
– volume: 186
  start-page: 713
  year: 2010
  end-page: 724
  article-title: Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers
  publication-title: Genetics
– volume: 152
  start-page: 1753
  year: 1999
  end-page: 1766
  article-title: Estimation of pairwise relatedness with molecular markers
  publication-title: Genetics
– volume: 47
  start-page: 1082
  year: 2007
  end-page: 1090
  article-title: Prospects for genome-wide selection for quantitative traits in maize
  publication-title: Crop Sci.
– volume: 92
  start-page: 295
  year: 2010
  end-page: 308
  article-title: Semi-parametric genomic-enabled prediction of genetic values using reproducing kernel Hilbert spaces methods
  publication-title: Genet. Res.
– volume: 25
  start-page: 239
  year: 2011
  end-page: 261
  article-title: Genomic selection and prediction in plant breeding
  publication-title: J. Crop Improv.
– volume: 53
  start-page: 876
  year: 2010
  end-page: 883
  article-title: Genome-wide association and genomic selection in animal breeding
  publication-title: Genome
– volume: 167
  start-page: 1407
  year: 2004
  end-page: 1424
  article-title: Quantitative genetic models for describing simultaneous and recursive relationships between phenotypes
  publication-title: Genetics
– volume: 51
  start-page: 542
  year: 2011
  end-page: 552
  article-title: Predictive ability assessment of linear mixed models in multienvironment trials in corn
  publication-title: Crop Sci.
– volume: 37
  start-page: 1
  year: 2005
  end-page: 30
  article-title: Restricted maximum likelihood estimation of genetic principal components and smoothed covariance matrices
  publication-title: Genet. Sel. Evol.
– volume: 7
  year: 2011
  article-title: Beyond missing heritability: Prediction of complex traits
  publication-title: PLoS Genet.
– volume: 9
  start-page: 362
  year: 2004
  ident: e_1_2_10_11_1
  article-title: Studying crossover genotype × environment interaction using linear-bilinear models and mixed models
  publication-title: J. Agric. Biol. Environ. Stat.
  doi: 10.1198/108571104X4423
– ident: e_1_2_10_32_1
  doi: 10.1017/S0016672300033620
– ident: e_1_2_10_13_1
  doi: 10.1017/S0016672310000285
– ident: e_1_2_10_22_1
  doi: 10.1111/j.1095-8312.1999.tb01157.x
– volume: 6
  start-page: 111
  year: 1921
  ident: e_1_2_10_38_1
  article-title: Systems of mating. 1. The biometric relations between parent and offspring
  publication-title: Genetics
  doi: 10.1093/genetics/6.2.111
– ident: e_1_2_10_26_1
  doi: 10.1186/1297-9686-37-1-1
– ident: e_1_2_10_35_1
  doi: 10.2135/cropsci2010.06.0338
– ident: e_1_2_10_7_1
  doi: 10.2135/cropsci2010.07.0403
– ident: e_1_2_10_24_1
  doi: 10.1104/pp.105.063438
– ident: e_1_2_10_31_1
  doi: 10.2135/cropsci2008.10.0595
– volume-title: Exploring variety-environment data using random effects models with adjustment for spatial field trends: Part 1: Theory
  year: 2002
  ident: e_1_2_10_33_1
  doi: 10.1079/9780851996011.0323
– volume-title: Version 3
  year: 2010
  ident: e_1_2_10_2_1
– ident: e_1_2_10_5_1
  doi: 10.2135/cropsci2006.09.0564
– ident: e_1_2_10_29_1
  doi: 10.2307/2533976
– ident: e_1_2_10_6_1
  doi: 10.2135/cropsci2007.11.0632
– ident: e_1_2_10_17_1
  doi: 10.1534/genetics.103.025734
– ident: e_1_2_10_28_1
  doi: 10.3835/plantgenome2010.04.0005
– volume: 157
  start-page: 1819
  year: 2001
  ident: e_1_2_10_25_1
  article-title: Prediction of total genetic values using genome-wide dense marker maps
  publication-title: Genetics
  doi: 10.1093/genetics/157.4.1819
– volume: 37
  start-page: 33
  year: 2007
  ident: e_1_2_10_36_1
  article-title: Genomic measures of relationship and inbreeding
  publication-title: Interbull Bull.
– ident: e_1_2_10_37_1
  doi: 10.1111/j.1467-842X.2010.00570.x
– ident: e_1_2_10_21_1
  doi: 10.1534/genetics.104.029181
– ident: e_1_2_10_8_1
  doi: 10.2135/cropsci2005.11-0427
– ident: e_1_2_10_9_1
  doi: 10.1534/genetics.110.118521
– ident: e_1_2_10_10_1
  doi: 10.1080/15427528.2011.558767
– ident: e_1_2_10_3_1
  doi: 10.2135/cropsci2006.11.0690
– ident: e_1_2_10_15_1
– ident: e_1_2_10_23_1
  doi: 10.1371/journal.pgen.1002051
– ident: e_1_2_10_34_1
  doi: 10.1111/j.0006-341X.2001.01138.x
– ident: e_1_2_10_4_1
  doi: 10.1007/BF00022843
– ident: e_1_2_10_19_1
  doi: 10.1139/G10-076
– ident: e_1_2_10_18_1
  doi: 10.1534/genetics.107.081190
– ident: e_1_2_10_14_1
  doi: 10.1534/genetics.109.101501
– volume: 39
  start-page: 481
  year: 2007
  ident: e_1_2_10_12_1
  article-title: Factor analysis models for structuring covariance matrices of additive genetic effects: A Bayesian implementation
  publication-title: Genet. Sel. Evol.
  doi: 10.1186/1297-9686-39-5-481
– ident: e_1_2_10_20_1
  doi: 10.2307/2529430
– ident: e_1_2_10_30_1
  doi: 10.1007/s001220050885
– ident: e_1_2_10_27_1
  doi: 10.1007/s00122-006-0333-z
– ident: e_1_2_10_16_1
  doi: 10.1017/S0080456800012163
SSID ssj0007975
Score 2.5529234
Snippet Genomic selection (GS) has become an important aid in plant and animal breeding. Multienvironment (multitrait) models allow borrowing of information across...
ABSTRACT Genomic selection (GS) has become an important aid in plant and animal breeding. Multienvironment (multitrait) models allow borrowing of information...
SourceID proquest
pascalfrancis
crossref
wiley
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 707
SubjectTerms Agronomy. Soil science and plant productions
Animal breeding
Biological and medical sciences
breeding value
Fundamental and applied biological sciences. Psychology
genetic markers
Genetics and breeding of economic plants
genotype
Genotypes
information sources
marker-assisted selection
pedigree
plant breeders
Plant breeding
prediction
Triticum aestivum
Varietal selection. Specialized plant breeding, plant breeding aims
Wheat
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7BcmkPqPQhUgpypR6bsmvH8eZQIUiX0krQFdut9mb5FXpACeyCeu-f6A_qH-tMXsAF9ZrESeQZe77xPD6Ad0OfZVbwLLYWl1viizQ2Ug1jJ71wlmyQp2rk07P0ZJ58XcjFGpx2tTCUVtntifVG7StHZ-T7mUBsI1EFD66uYyKNouBqx6BhWmYF_7HuMLYOG7gjy-EANo4mZ9PzfmtWmWopDUYx6vKiaUPER0LuE2EWGp2mp2f6YcjrbrB3pmq9MBUlTpoVzl3RkF48QKX3sW1tnI6fwWaLKtlhowZbsBbK5_D08GLZdtYIL-D351BXILPpkmIzJA9WFexo2Zgv9sNc4hfYr5-hZESQRmXqjMbQIS37-4dN7kriWH2O2JREMMqcv2BE-YGue2Cm9OwT-sYB39Iy7zIqCEKY-RLmx5Pv-UncEjDEjuKxsTLKO4mAS4oiCZlJChNUCIYiN4ibMsIynlsUq3WJHRcjb2SirLVpqhBaGvEKBmVVhm1ggpsgVcicDOTCFWPn0XR6IzLEE174CHg319q13cmJJONSo5dCAtL3BKQpFw8FFMH7ftBV05zj8ce3UYja4OSv9HzG6bCnhqycR7D3QLL969DjQkApRAQ7nah1u8pXutfJCN72d3F5UszFlKG6XekRIjpEQGqMXz-oNeR__lTns5zn59-ms_xLjdBSuvr60X_YgSf4KG_y497A4GZ5G3YRMN3YvXYZ_AOqMhJ8
  priority: 102
  providerName: ProQuest
Title Genomic Prediction of Breeding Values when Modeling Genotype × Environment Interaction using Pedigree and Dense Molecular Markers
URI https://onlinelibrary.wiley.com/doi/abs/10.2135%2Fcropsci2011.06.0299
https://www.proquest.com/docview/930805031
https://www.proquest.com/docview/1663614789
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB71cYEDKi81tKyMxJHArh3Hm1PVht0WJMqqy6K9WXbstIcqi3ZbcedP8IP6x5ixs6ErIYTEJVJek8jj8Xxje-YDeN13RWEFL1Jr0dwyV-epkaqfVtKJypIPcpSN_Ok8P5tlH-dyvgWjdS5MrA_RTbiRZYTxmgzc2MBCwgeC6iEQwxV6iViEM3_bx3F1G3YR3gvq6DybdAOyKlRLZDBIsQfPY_EhEvPuD0I2HNR2bRa0XdKssMXqSHWxgUXvI9rgksZ78KjFkuw4Kv8xbPnmCTw8vly29TT8U_hx6kPeMZssaUWGtMAWNTtZRqfFvppr_AL7fuUbRrRolJzO6B2ammV3P9nodyIcC7OHMRGC0X75S0ZEHxiwe2Yax95jROxRSsu3yygNCMHlM5iNR1_Ks7SlXUgrWoVNlVGukgizpKgzX5isNl55b2i9BtFSQQjGcYvKtFVmh_XAGZkpa22eKwSURjyHnWbR-H1gghsvlS8q6Slwq4eVQ4fpjCgQRTjhEuDrttZVW5OcqDGuNcYmpCB9T0GaduChghJ40730LZbk-Pvj-6hEbbDxV3o25TTFE4Aq5wn0NjTbicM4C2GkEAkcrFWtW9te6UIgypY4GCbwqruLRkkrLabxi9uVHiCOQ9yjhvj1o9BD_uVPdTkteXnxeTItPwRcltPVF_8t4QAe4AmPO-cOYedmeetfIpS6sb1gKHgcjk97sHsyOp9c_ALdkhhO
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LU9swEN6BcGh7YPocXFqqzrS3uiSSH_GBYcCEJgXSDCFMbqpkyemBsSGGYXrtn-iv6al_rLu2Y-DC9MI1jmSNV6v9tK8P4EPbRJEWPHK1RnXzTBq4yg_bbuIbkWiyQYaqkY-GQX_ifZ360yX4s6iFobTKxZlYHtQmT8hHvhkJxDY-bsHt8wuXSKMouLpg0FA1s4LZKjuM1XUdB_bnNd7giq3BHor7I-f7vZO479YkA25CMUc3VKFJfAQVvkg9GykvVTa0VlF0ArFBRPbacI1L14mnu2nHKN8LtdZBECJ8UgLnXYYVj_wnLVjZ7Q1Hx40pCKOwplDouKg706rtEe8If5MIutDIVT1Eg89tXnafvTGNy6nKKVFTFSirtCLZuIOCb2Pp0hjuP4XVGsWynWrbPYMlmz2HJzuzed3Jw76AX19sWfHMRnOKBZH8WZ6y3XllLtmpOsM3sOsfNmNEyEZl8YzGkFOY_f3NejcleKz0W1YlGIwy9WeMKEZmOBdTmWF7eBe3OEvN9MuoAAlh7UuYPIgsXkEryzO7BkxwZf3QRolv6cqYdhODptooESF-McI4wBffWiZ1N3Qi5TiTeCsiAclbApKU-4cCcuBTM-i8agZy_9_XUIhS4ccv5GTMyblUQmTOHdi4I9lmOrzh4VYSwoH1hahlfaoUstEBB943T_E4oBiPymx-VcgOIkhEXGEX375d7pD_WamMxzGPj7-NxvGgRIQB_fr63jW8g0f9k6NDeTgYHqzDYxzGq9y8N9C6nF_ZtwjWLvVGrRIMvj-0Fv4DrFpPMw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLf2ISE4ID61MBhGghuhrZ3EzWGatrRlZVCqlaLejB075TAlo9k0ceWf4A_ixH_Fe4mTbZeJy65p7KR5fn6_5_fxI-R118Sx5iz2tQZ1C0wW-SoUXT8NDU812iCD1cifJtHhPPiwCBdr5G9TC4Nplc2eWG3UpkjxjLwTc8A2ISzBTuayIqaD0d7pDx8JpDDQ2rBpKMeyYHarbmOuxuPI_rwAb67cHQ9A9G8YGw2_JIe-IxzwU4w_-kIJk4YAMEKeBTZWQaassFZhpAJwQoy22zANf0Onge5nPaPCQGito0gAlFIc5l0nmwKMPviBmwfDyfS4NQsiFo5OoeeDHi3qFkisx8MOknWBwav7iUbvuqzqRHtpJtczVWDSpipBbllNuHENEV_F1ZVhHD0g9x2ipfv1EnxI1mz-iNzbX65cVw_7mPx6b6vqZzpdYVwI1wItMnqwqk0n_apO4An04rvNKZKzYYk8xTF4QEz__KbDy3I8Wp1h1uUYFLP2lxTpRpYwF1W5oQPwyy3M4lh_KRYjAcR9Qua3IounZCMvcrtFKGfKhsLGaWjRfcz6qQGzbRSPAcsYbjzCmm8tU9cZHQk6TiR4SCggeUVAEvMAQUAeedsOOq0bg9x8-xYIUSr4-KWczxgeNFVwmTGP7FyTbDsdeHsAZjn3yHYjaul2mFK2-uCRV-2vsDVgvEfltjgvZQ_QJKAv0Yen71Ur5H_eVCazhCXHn6ezZFyhwwivPrvxHV6SO6CN8uN4crRN7sIoVqfpPScbZ6tz-wJw25necRpBybfbVsJ_oExTdw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genomic+Prediction+of+Breeding+Values+when+Modeling+Genotype+%C3%97+Environment+Interaction+using+Pedigree+and+Dense+Molecular+Markers&rft.jtitle=Crop+science&rft.au=Burgue%C3%B1o%2C+Juan&rft.au=de+los+Campos%2C+Gustavo&rft.au=Weigel%2C+Kent&rft.au=Crossa%2C+Jos%C3%A9&rft.date=2012-03-01&rft.issn=0011-183X&rft.volume=52&rft.issue=2+p.707-719&rft.spage=707&rft.epage=719&rft_id=info:doi/10.2135%2Fcropsci2011.06.0299&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1435-0653&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1435-0653&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1435-0653&client=summon