Genomic Prediction of Breeding Values when Modeling Genotype × Environment Interaction using Pedigree and Dense Molecular Markers
Genomic selection (GS) has become an important aid in plant and animal breeding. Multienvironment (multitrait) models allow borrowing of information across environments (traits), which could enhance prediction accuracy. This study presents multienvironment (multitrait) models for GS and compares the...
Saved in:
Published in | Crop science Vol. 52; no. 2; pp. 707 - 719 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Madison, WI
Crop Science Society of America
01.03.2012
The Crop Science Society of America, Inc American Society of Agronomy |
Subjects | |
Online Access | Get full text |
ISSN | 1435-0653 0011-183X 1435-0653 |
DOI | 10.2135/cropsci2011.06.0299 |
Cover
Abstract | Genomic selection (GS) has become an important aid in plant and animal breeding. Multienvironment (multitrait) models allow borrowing of information across environments (traits), which could enhance prediction accuracy. This study presents multienvironment (multitrait) models for GS and compares the predictive accuracy of these models with: (i) multienvironment analysis without pedigree and marker information, and (ii) multienvironment pedigree or/and marker-based models. A statistical framework for incorporating pedigree and molecular marker information in models for multienvironment data is described and applied to data that originate from wheat (Triticum aestivum L.) multienvironment trials. Two prediction problems relevant to plant breeders are considered: (CV1) predicting the performance of untested genotypes (“newly” developed lines), and (CV2) predicting the performance of genotypes that have been evaluated in some environments but not in others. Results confirmed the superiority of models using both marker and pedigree information over those based on pedigree information only. Models with pedigree and/or markers had better predictive accuracy than simple linear mixed models that do not include either of these two sources of information. We concluded that the evaluation of such trials can benefit greatly from using multienvironment GS models. |
---|---|
AbstractList | Genomic selection (GS) has become an important aid in plant and animal breeding. Multienvironment (multitrait) models allow borrowing of information across environments (traits), which could enhance prediction accuracy. This study presents multienvironment (multitrait) models for GS and compares the predictive accuracy of these models with: (i) multienvironment analysis without pedigree and marker information, and (ii) multienvironment pedigree or/and marker-based models. A statistical framework for incorporating pedigree and molecular marker information in models for multienvironment data is described and applied to data that originate from wheat (Triticum aestivum L.) multienvironment trials. Two prediction problems relevant to plant breeders are considered: (CV1) predicting the performance of untested genotypes (“newly” developed lines), and (CV2) predicting the performance of genotypes that have been evaluated in some environments but not in others. Results confirmed the superiority of models using both marker and pedigree information over those based on pedigree information only. Models with pedigree and/or markers had better predictive accuracy than simple linear mixed models that do not include either of these two sources of information. We concluded that the evaluation of such trials can benefit greatly from using multienvironment GS models. Genomic selection (GS) has become an important aid in plant and animal breeding. Multienvironment (multitrait) models allow borrowing of information across environments (traits), which could enhance prediction accuracy. This study presents multienvironment (multitrait) models for GS and compares the predictive accuracy of these models with: (i) multienvironment analysis without pedigree and marker information, and (ii) multienvironment pedigree or/and marker‐based models. A statistical framework for incorporating pedigree and molecular marker information in models for multienvironment data is described and applied to data that originate from wheat ( Triticum aestivum L.) multienvironment trials. Two prediction problems relevant to plant breeders are considered: (CV1) predicting the performance of untested genotypes (“newly” developed lines), and (CV2) predicting the performance of genotypes that have been evaluated in some environments but not in others. Results confirmed the superiority of models using both marker and pedigree information over those based on pedigree information only. Models with pedigree and/or markers had better predictive accuracy than simple linear mixed models that do not include either of these two sources of information. We concluded that the evaluation of such trials can benefit greatly from using multienvironment GS models. Genomic selection (GS) has become an important aid in plant and animal breeding. Multienvironment (multitrait) models allow borrowing of information across environments (traits), which could enhance prediction accuracy. This study presents multienvironment (multitrait) models for GS and compares the predictive accuracy of these models with: (i) multienvironment analysis without pedigree and marker information, and (ii) multienvironment pedigree or/and marker-based models. A statistical framework for incorporating pedigree and molecular marker information in models for multienvironment data is described and applied to data that originate from wheat (Triticum aestivum L.) multienvironment trials. Two prediction problems relevant to plant breeders are considered: (CV1) predicting the performance of untested genotypes ("newly" developed lines), and (CV2) predicting the performance of genotypes that have been evaluated in some environments but not in others. Results confirmed the superiority of models using both marker and pedigree information over those based on pedigree information only. Models with pedigree and/or markers had better predictive accuracy than simple linear mixed models that do not include either of these two sources of information. We concluded that the evaluation of such trials can benefit greatly from using multienvironment GS models. [PUBLICATION ABSTRACT] ABSTRACT Genomic selection (GS) has become an important aid in plant and animal breeding. Multienvironment (multitrait) models allow borrowing of information across environments (traits), which could enhance prediction accuracy. This study presents multienvironment (multitrait) models for GS and compares the predictive accuracy of these models with: (i) multienvironment analysis without pedigree and marker information, and (ii) multienvironment pedigree or/and marker‐based models. A statistical framework for incorporating pedigree and molecular marker information in models for multienvironment data is described and applied to data that originate from wheat (Triticum aestivum L.) multienvironment trials. Two prediction problems relevant to plant breeders are considered: (CV1) predicting the performance of untested genotypes (“newly” developed lines), and (CV2) predicting the performance of genotypes that have been evaluated in some environments but not in others. Results confirmed the superiority of models using both marker and pedigree information over those based on pedigree information only. Models with pedigree and/or markers had better predictive accuracy than simple linear mixed models that do not include either of these two sources of information. We concluded that the evaluation of such trials can benefit greatly from using multienvironment GS models. |
Author | Burgueño, Juan Campos, Gustavo de los Weigel, Kent Crossa, José |
Author_xml | – sequence: 1 fullname: Burgueño, Juan – sequence: 2 fullname: Campos, Gustavo de los – sequence: 3 fullname: Weigel, Kent – sequence: 4 fullname: Crossa, José |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25543533$$DView record in Pascal Francis |
BookMark | eNqNks1uEzEUhUeoSLSFJ2CBhYTEJsE_Y0-8hKEtkVo1IpStdcdzJ7hM7NSeUGXLS_BAvBgeJUJVN7Cyff2dY18fnxRHPngsipeMTjkT8p2NYZOs45SxKVVTyrV-UhyzUsgJVVIcPZg_K05SuqWUVrqSx8XPC_Rh7SxZRGydHVzwJHTkQ8S89CvyFfotJnL_DT25Ci32Y3HUDLsNkt-_yJn_4WLwa_QDmfsBI-xNtmkkF9lllb0I-JZ8RJ8wu_Rotz1EcgXxO8b0vHjaQZ_wxWE8LW7Oz77UnyaX1xfz-v3lxJaS60kFVWtlyYUUXYkayg6wQgRV6ZlUXAtdqZY3shWNLZtZx1qQZdU0jVIVZQLEafF277uJ4S43NZi1Sxb7HjyGbTJMKaFYWc10Rl8_Qm_DNvp8O6MFnVFJBcvQmwMEyULfRfDWJbOJbg1xZ7iU-c2FyJzYczmllCJ2fxFGzRifeRCfocqM8WWVfqSyboDxaYcIrv-H9nyvvXc97v7nOFMva15_vl4s6_lYp-pg9Gpv1EEwsIq5vZtl3pf5_8iSci7-APVcxC0 |
CODEN | CRPSAY |
CitedBy_id | crossref_primary_10_3389_fgene_2023_1212804 crossref_primary_10_1016_j_applanim_2022_105747 crossref_primary_10_1093_g3journal_jkac226 crossref_primary_10_3389_fpls_2019_01353 crossref_primary_10_1007_s00122_021_03773_7 crossref_primary_10_1007_s00122_013_2243_1 crossref_primary_10_1007_s11032_019_1002_7 crossref_primary_10_1534_g3_116_035584 crossref_primary_10_1002_tpg2_20305 crossref_primary_10_1007_s00122_024_04684_z crossref_primary_10_2135_cropsci2015_06_0375 crossref_primary_10_1007_s00122_013_2100_2 crossref_primary_10_3389_fgene_2021_798840 crossref_primary_10_1186_s12711_017_0361_y crossref_primary_10_3390_cimb45040173 crossref_primary_10_3389_fgene_2022_1032691 crossref_primary_10_3389_fpls_2021_658978 crossref_primary_10_1007_s00122_017_3033_y crossref_primary_10_1016_j_ygeno_2021_02_007 crossref_primary_10_5691_jjb_44_55 crossref_primary_10_1534_g3_118_200140 crossref_primary_10_3835_plantgenome2016_12_0130 crossref_primary_10_1111_nph_14174 crossref_primary_10_3389_fpls_2021_664148 crossref_primary_10_3389_fpls_2022_939448 crossref_primary_10_2135_cropsci2018_03_0189 crossref_primary_10_17816_ecogen1233_11 crossref_primary_10_3389_fpls_2024_1393965 crossref_primary_10_3389_fpls_2021_761402 crossref_primary_10_2135_cropsci2015_02_0111 crossref_primary_10_3389_fgene_2016_00221 crossref_primary_10_3389_fbioe_2021_567548 crossref_primary_10_1093_g3journal_jkab270 crossref_primary_10_1007_s00122_017_2922_4 crossref_primary_10_1371_journal_pone_0258473 crossref_primary_10_1186_s12870_017_1059_6 crossref_primary_10_1007_s00425_023_04252_7 crossref_primary_10_1016_j_pbi_2020_101986 crossref_primary_10_1002_ppj2_20113 crossref_primary_10_1093_bioadv_vbad106 crossref_primary_10_3389_fgene_2023_1221751 crossref_primary_10_3390_agronomy11061119 crossref_primary_10_3390_plants9060719 crossref_primary_10_1016_j_tig_2021_08_002 crossref_primary_10_1093_g3journal_jkaa050 crossref_primary_10_1111_pbr_12862 crossref_primary_10_1002_tpg2_20558 crossref_primary_10_1007_s00122_019_03413_1 crossref_primary_10_1016_j_rser_2017_03_116 crossref_primary_10_2135_cropsci2018_11_0685 crossref_primary_10_1007_s00122_018_3120_8 crossref_primary_10_1534_g3_119_400064 crossref_primary_10_3389_fpls_2022_785196 crossref_primary_10_1038_hdy_2014_99 crossref_primary_10_1016_j_stress_2025_100751 crossref_primary_10_1371_journal_pone_0239609 crossref_primary_10_1186_s13007_024_01207_1 crossref_primary_10_1534_g3_114_016188 crossref_primary_10_1016_j_molp_2024_03_007 crossref_primary_10_3389_fgene_2019_01168 crossref_primary_10_3389_fgene_2020_592769 crossref_primary_10_1007_s00122_024_04565_5 crossref_primary_10_1038_s41598_019_45618_w crossref_primary_10_3390_plants9111454 crossref_primary_10_3390_plants13192790 crossref_primary_10_3835_plantgenome2016_12_0128 crossref_primary_10_1534_g3_115_019745 crossref_primary_10_2135_cropsci2018_11_0692 crossref_primary_10_1007_s00122_018_3264_6 crossref_primary_10_1007_s00122_023_04469_w crossref_primary_10_1007_s00438_023_02026_0 crossref_primary_10_1093_g3journal_jkab320 crossref_primary_10_1038_s41598_018_30027_2 crossref_primary_10_1093_g3journal_jkab440 crossref_primary_10_1590_1984_70332021v21sa28 crossref_primary_10_2135_cropsci2014_09_0620 crossref_primary_10_1016_j_atg_2016_10_004 crossref_primary_10_1590_1984_70332021v21sa25 crossref_primary_10_1007_s00122_021_03949_1 crossref_primary_10_1126_sciadv_abf9106 crossref_primary_10_1534_g3_118_200038 crossref_primary_10_3389_fpls_2018_01878 crossref_primary_10_1007_s00122_024_04687_w crossref_primary_10_3389_fpls_2024_1408356 crossref_primary_10_1093_genetics_iyac112 crossref_primary_10_1038_s41467_023_42687_4 crossref_primary_10_1093_g3journal_jkac322 crossref_primary_10_1534_g3_113_008227 crossref_primary_10_1186_1471_2164_15_1048 crossref_primary_10_3389_fpls_2020_564183 crossref_primary_10_1534_g3_118_200273 crossref_primary_10_1590_1984_70332021v21sa19 crossref_primary_10_1534_g3_116_027524 crossref_primary_10_1371_journal_pone_0178734 crossref_primary_10_1007_s00122_016_2726_y crossref_primary_10_1534_g3_119_400094 crossref_primary_10_3389_fpls_2022_960449 crossref_primary_10_3835_plantgenome2015_09_0085 crossref_primary_10_2135_cropsci2016_08_0715 crossref_primary_10_3389_fgene_2020_567757 crossref_primary_10_3389_fpls_2021_690059 crossref_primary_10_3835_plantgenome2012_07_0017 crossref_primary_10_1007_s00122_020_03703_z crossref_primary_10_3389_fpls_2021_708233 crossref_primary_10_3389_fgene_2021_689319 crossref_primary_10_1534_g3_118_200098 crossref_primary_10_3389_fpls_2023_1280331 crossref_primary_10_1186_1471_2164_15_646 crossref_primary_10_1186_s12284_023_00623_6 crossref_primary_10_1186_s13007_019_0388_x crossref_primary_10_3389_fpls_2019_01502 crossref_primary_10_1093_g3journal_jkae001 crossref_primary_10_1007_s00122_020_03638_5 crossref_primary_10_1007_s11434_015_0791_2 crossref_primary_10_3389_fpls_2021_720123 crossref_primary_10_1007_s00122_021_03909_9 crossref_primary_10_1534_g3_116_032359 crossref_primary_10_1007_s00122_014_2305_z crossref_primary_10_3168_jds_2012_6133 crossref_primary_10_2135_cropsci2017_08_0469 crossref_primary_10_1016_j_cj_2018_03_001 crossref_primary_10_2134_agronj2018_06_0361 crossref_primary_10_3390_agronomy8120291 crossref_primary_10_1016_j_cj_2018_03_005 crossref_primary_10_2135_cropsci2017_10_0638 crossref_primary_10_1016_j_plantsci_2018_06_018 crossref_primary_10_2135_cropsci2018_05_0314 crossref_primary_10_1093_genetics_iyae171 crossref_primary_10_1534_g3_120_401349 crossref_primary_10_1016_j_tplants_2024_09_011 crossref_primary_10_1186_1471_2164_15_740 crossref_primary_10_1111_ppl_14544 crossref_primary_10_1016_j_scienta_2016_05_005 crossref_primary_10_1038_s41598_023_37169_y crossref_primary_10_3389_fpls_2021_651480 crossref_primary_10_1002_csc2_20955 crossref_primary_10_1371_journal_pone_0259607 crossref_primary_10_3389_fpls_2018_01310 crossref_primary_10_1016_j_cj_2020_04_005 crossref_primary_10_1371_journal_pone_0173368 crossref_primary_10_1093_g3journal_jkad286 crossref_primary_10_1093_g3journal_jkae011 crossref_primary_10_1007_s00122_021_03982_0 crossref_primary_10_1002_csc2_20986 crossref_primary_10_3389_fpls_2019_01673 crossref_primary_10_1534_g3_117_300454 crossref_primary_10_2135_cropsci2016_08_0639 crossref_primary_10_1007_s00122_024_04679_w crossref_primary_10_3835_plantgenome2016_03_0024 crossref_primary_10_1111_j_1744_7909_2012_01116_x crossref_primary_10_1080_15427528_2025_2460571 crossref_primary_10_1007_s00122_020_03613_0 crossref_primary_10_1002_csc2_20995 crossref_primary_10_1111_gfs_12551 crossref_primary_10_1534_g3_117_042341 crossref_primary_10_1534_g3_119_400598 crossref_primary_10_1071_CP17387 crossref_primary_10_3389_fpls_2021_663565 crossref_primary_10_1093_g3journal_jkad109 crossref_primary_10_1002_csc2_20857 crossref_primary_10_2135_cropsci2015_04_0260 crossref_primary_10_3389_fpls_2020_00197 crossref_primary_10_1007_s10681_021_02831_x crossref_primary_10_3389_fpls_2024_1448961 crossref_primary_10_3835_plantgenome2019_04_0028 crossref_primary_10_1016_j_plantsci_2015_08_021 crossref_primary_10_1002_csc2_20529 crossref_primary_10_1186_s12870_022_03975_1 crossref_primary_10_1534_g3_119_400126 crossref_primary_10_3390_agronomy10091221 crossref_primary_10_3835_plantgenome2016_08_0082 crossref_primary_10_1534_g3_112_005066 crossref_primary_10_1038_s41598_024_69299_2 crossref_primary_10_3390_agronomy10010062 crossref_primary_10_3390_agronomy11081555 crossref_primary_10_1002_agj2_20696 crossref_primary_10_3390_plants11131736 crossref_primary_10_1016_j_fcr_2013_07_020 crossref_primary_10_1007_s00122_020_03658_1 crossref_primary_10_1371_journal_pone_0223898 crossref_primary_10_3389_fpls_2022_843065 crossref_primary_10_1186_s12284_023_00643_2 crossref_primary_10_1007_s00122_021_03972_2 crossref_primary_10_1534_g3_119_400493 crossref_primary_10_3389_fpls_2020_580136 crossref_primary_10_1590_1678_992x_2020_0314 crossref_primary_10_1038_hdy_2013_16 crossref_primary_10_3389_fpls_2024_1400000 crossref_primary_10_1371_journal_pone_0233200 crossref_primary_10_1007_s00122_020_03744_4 crossref_primary_10_1534_g3_116_035410 crossref_primary_10_3389_fgene_2023_1108416 crossref_primary_10_1111_ppl_14480 crossref_primary_10_1270_jsbbs_19009 crossref_primary_10_1371_journal_pone_0291833 crossref_primary_10_3389_fpls_2023_1221750 crossref_primary_10_3390_agronomy12030714 crossref_primary_10_1371_journal_pone_0233951 crossref_primary_10_1038_hdy_2012_35 crossref_primary_10_1371_journal_pone_0208871 crossref_primary_10_1016_j_gene_2024_149140 crossref_primary_10_1038_hdy_2015_113 crossref_primary_10_3389_fpls_2022_983818 crossref_primary_10_3389_fpls_2020_00827 crossref_primary_10_1016_j_molp_2025_01_020 crossref_primary_10_2135_cropsci2015_01_0061 crossref_primary_10_3389_fgene_2022_958780 crossref_primary_10_1016_j_ygeno_2015_08_001 crossref_primary_10_3835_plantgenome2018_07_0051 crossref_primary_10_1007_s00122_016_2760_9 crossref_primary_10_3389_fpls_2024_1349569 crossref_primary_10_3390_agronomy9090479 crossref_primary_10_1002_csc2_20303 crossref_primary_10_1534_g3_113_007807 crossref_primary_10_1007_s11295_022_01563_w crossref_primary_10_3389_fpls_2024_1293307 crossref_primary_10_3835_plantgenome2012_06_0006 crossref_primary_10_3389_fgene_2020_596258 crossref_primary_10_1002_csc2_20782 crossref_primary_10_1007_s00122_019_03475_1 crossref_primary_10_3390_agriculture11100932 crossref_primary_10_1371_journal_pone_0307009 crossref_primary_10_1007_s10681_021_02779_y crossref_primary_10_1080_02648725_2016_1177377 crossref_primary_10_3835_plantgenome2017_12_0112 crossref_primary_10_1007_s10681_014_1073_9 crossref_primary_10_1007_s10681_016_1722_2 crossref_primary_10_1038_s41437_018_0053_6 crossref_primary_10_3389_fpls_2021_658267 crossref_primary_10_1016_j_cj_2020_06_004 crossref_primary_10_1111_pbr_13027 crossref_primary_10_1007_s00122_022_04170_4 crossref_primary_10_1016_j_cj_2018_01_006 crossref_primary_10_1186_s13059_021_02416_w crossref_primary_10_1007_s00122_021_03868_1 crossref_primary_10_2135_cropsci2016_03_0151 crossref_primary_10_2135_cropsci2015_04_0207 crossref_primary_10_1534_g3_115_024950 crossref_primary_10_2298_GENSR2202857B crossref_primary_10_2135_cropsci2016_06_0558 crossref_primary_10_1371_journal_pone_0179191 crossref_primary_10_1071_CP23126 crossref_primary_10_1371_journal_pone_0217571 crossref_primary_10_1002_agj2_21639 crossref_primary_10_1093_g3journal_jkae092 crossref_primary_10_1002_csc2_20686 crossref_primary_10_2135_cropsci2012_07_0420 crossref_primary_10_1007_s00122_018_3249_5 crossref_primary_10_1534_g3_120_401172 crossref_primary_10_1534_g3_119_400508 crossref_primary_10_2135_cropsci2015_07_0451 crossref_primary_10_1002_ppj2_70004 crossref_primary_10_2135_cropsci2017_06_0366 crossref_primary_10_1007_s00122_021_03779_1 crossref_primary_10_1038_s41438_018_0081_7 crossref_primary_10_1534_g3_118_200856 crossref_primary_10_1111_pbr_12597 crossref_primary_10_1371_journal_pone_0211718 crossref_primary_10_1007_s00122_017_2897_1 crossref_primary_10_3389_fpls_2024_1407609 crossref_primary_10_1007_s00122_022_04085_0 crossref_primary_10_2527_af_2016_0010 crossref_primary_10_1002_tpg2_20064 crossref_primary_10_1038_s41598_020_71274_6 crossref_primary_10_3835_plantgenome2017_10_0090 crossref_primary_10_1093_jhered_esz061 crossref_primary_10_1534_g3_119_400759 crossref_primary_10_1002_csc2_20460 crossref_primary_10_1002_csc2_21315 crossref_primary_10_1093_g3journal_jkae159 crossref_primary_10_1002_csc2_20221 crossref_primary_10_3390_genes13040565 crossref_primary_10_1094_PHYTO_12_16_0431_R crossref_primary_10_1007_s10681_020_02607_9 crossref_primary_10_1093_bioinformatics_btz197 crossref_primary_10_1371_journal_pone_0309502 crossref_primary_10_1016_j_molp_2022_09_001 crossref_primary_10_1093_g3journal_jkae186 crossref_primary_10_1007_s00122_017_2898_0 crossref_primary_10_3835_plantgenome2013_01_0001 crossref_primary_10_1534_g3_115_021105 crossref_primary_10_1002_csc2_20253 crossref_primary_10_3389_fgene_2020_586687 crossref_primary_10_1111_are_12673 crossref_primary_10_1016_j_tplants_2017_08_011 crossref_primary_10_1038_s41598_024_51792_3 crossref_primary_10_3389_fpls_2017_00550 crossref_primary_10_1007_s00122_019_03337_w crossref_primary_10_1007_s13131_015_0643_6 crossref_primary_10_1002_csc2_21213 crossref_primary_10_1016_j_plantsci_2024_112110 crossref_primary_10_1071_FP12079 crossref_primary_10_1007_s00122_022_04041_y crossref_primary_10_1002_tpg2_20151 crossref_primary_10_1007_s00122_012_1892_9 crossref_primary_10_1016_j_jplph_2020_153354 crossref_primary_10_1007_s00122_021_03946_4 crossref_primary_10_3390_agronomy12051126 crossref_primary_10_1534_g3_112_003699 crossref_primary_10_3389_fgene_2022_920689 crossref_primary_10_1002_tpg2_20260 crossref_primary_10_1111_nph_14220 crossref_primary_10_1002_csc2_21107 crossref_primary_10_1186_s12284_023_00661_0 crossref_primary_10_1186_s12864_024_10310_5 crossref_primary_10_1007_s00122_016_2666_6 crossref_primary_10_1007_s00122_022_04147_3 crossref_primary_10_3389_fpls_2021_613300 crossref_primary_10_1007_s11032_017_0715_8 crossref_primary_10_2134_agronj2015_0430 crossref_primary_10_1002_csc2_20382 crossref_primary_10_1016_j_xplc_2019_100005 crossref_primary_10_1038_s41588_019_0414_y crossref_primary_10_1007_s00425_022_03996_y crossref_primary_10_1038_s41477_021_01001_0 crossref_primary_10_3389_fpls_2024_1285094 crossref_primary_10_1534_g3_114_016097 crossref_primary_10_3389_fpls_2021_735285 crossref_primary_10_1534_g3_116_029637 crossref_primary_10_3390_ijms232314558 crossref_primary_10_1002_tpg2_20012 crossref_primary_10_1007_s00122_025_04825_y crossref_primary_10_1007_s11032_019_0983_6 crossref_primary_10_1534_g3_119_400968 crossref_primary_10_1016_j_agrformet_2017_12_263 crossref_primary_10_1007_s00122_018_3186_3 crossref_primary_10_2135_cropsci2016_07_0002in crossref_primary_10_1186_s13059_020_02224_8 crossref_primary_10_2135_cropsci2012_11_0653 crossref_primary_10_1007_s00122_019_03364_7 crossref_primary_10_1016_j_fcr_2017_08_020 crossref_primary_10_3389_fpls_2024_1488814 crossref_primary_10_1002_tpg2_20048 crossref_primary_10_1534_g3_116_036251 crossref_primary_10_1002_csc2_21029 crossref_primary_10_3389_fgene_2022_883853 crossref_primary_10_3390_agronomy9020095 crossref_primary_10_1007_s00122_016_2667_5 crossref_primary_10_1016_j_fcr_2020_107929 crossref_primary_10_1111_pbr_12105 crossref_primary_10_3389_fpls_2021_665195 crossref_primary_10_1371_journal_pone_0282288 crossref_primary_10_1111_pce_14145 crossref_primary_10_3389_fpls_2021_699589 crossref_primary_10_1002_csc2_20048 crossref_primary_10_2135_cropsci2014_03_0249 crossref_primary_10_1002_tpg2_20033 crossref_primary_10_3389_fpls_2020_00539 crossref_primary_10_1007_s11032_022_01341_5 crossref_primary_10_3389_fpls_2024_1410851 crossref_primary_10_2135_cropsci2015_05_0311 crossref_primary_10_1038_s41467_020_18480_y crossref_primary_10_1146_annurev_phyto_080615_100056 crossref_primary_10_1002_csc2_20072 crossref_primary_10_1111_anzs_12362 crossref_primary_10_1007_s11032_021_01221_4 crossref_primary_10_1038_hdy_2013_144 crossref_primary_10_1002_tpg2_20464 crossref_primary_10_1038_srep27312 crossref_primary_10_3390_plants13213059 crossref_primary_10_1093_jxb_erad216 crossref_primary_10_1534_genetics_115_179887 crossref_primary_10_3835_plantgenome2016_09_0089 crossref_primary_10_1186_s12870_022_03479_y crossref_primary_10_1016_j_fcr_2017_09_024 crossref_primary_10_1007_s10681_021_02903_y crossref_primary_10_1007_s11295_017_1171_7 crossref_primary_10_3389_frai_2022_1040295 crossref_primary_10_3389_fpls_2021_717552 crossref_primary_10_1038_s41437_022_00582_6 crossref_primary_10_3389_fpls_2021_718611 crossref_primary_10_1007_s00122_018_3206_3 crossref_primary_10_2135_cropsci2014_08_0577 crossref_primary_10_3390_agronomy10101591 crossref_primary_10_1007_s00122_015_2655_1 crossref_primary_10_1007_s00122_019_03432_y crossref_primary_10_2135_cropsci2017_09_0564 crossref_primary_10_1007_s11032_023_01383_3 crossref_primary_10_1007_s10681_022_03075_z crossref_primary_10_1038_s41437_020_0321_0 crossref_primary_10_1007_s00122_020_03673_2 crossref_primary_10_1002_csc2_20096 crossref_primary_10_1002_tpg2_20128 crossref_primary_10_3390_f13101554 crossref_primary_10_1371_journal_pone_0201181 crossref_primary_10_3835_plantgenome2017_11_0100 crossref_primary_10_1534_g3_118_200435 crossref_primary_10_1134_S207905971505010X crossref_primary_10_1002_tpg2_20004 crossref_primary_10_1007_s00122_020_03696_9 crossref_primary_10_1002_tpg2_20127 crossref_primary_10_3390_plants8020034 crossref_primary_10_1002_csc2_20098 crossref_primary_10_3390_agronomy10122008 crossref_primary_10_1002_tpg2_20002 crossref_primary_10_1071_CP13363 crossref_primary_10_1038_hdy_2016_87 crossref_primary_10_1016_j_tplants_2014_05_006 crossref_primary_10_1186_s12864_016_3170_8 crossref_primary_10_3835_plantgenome2018_03_0017 crossref_primary_10_1007_s11032_018_0925_8 crossref_primary_10_1007_s10681_022_03062_4 crossref_primary_10_1002_tpg2_20235 |
Cites_doi | 10.1198/108571104X4423 10.1017/S0016672300033620 10.1017/S0016672310000285 10.1111/j.1095-8312.1999.tb01157.x 10.1093/genetics/6.2.111 10.1186/1297-9686-37-1-1 10.2135/cropsci2010.06.0338 10.2135/cropsci2010.07.0403 10.1104/pp.105.063438 10.2135/cropsci2008.10.0595 10.1079/9780851996011.0323 10.2135/cropsci2006.09.0564 10.2307/2533976 10.2135/cropsci2007.11.0632 10.1534/genetics.103.025734 10.3835/plantgenome2010.04.0005 10.1093/genetics/157.4.1819 10.1111/j.1467-842X.2010.00570.x 10.1534/genetics.104.029181 10.2135/cropsci2005.11-0427 10.1534/genetics.110.118521 10.1080/15427528.2011.558767 10.2135/cropsci2006.11.0690 10.1371/journal.pgen.1002051 10.1111/j.0006-341X.2001.01138.x 10.1007/BF00022843 10.1139/G10-076 10.1534/genetics.107.081190 10.1534/genetics.109.101501 10.1186/1297-9686-39-5-481 10.2307/2529430 10.1007/s001220050885 10.1007/s00122-006-0333-z 10.1017/S0080456800012163 |
ContentType | Journal Article |
Copyright | 2012 The Authors. 2015 INIST-CNRS Copyright American Society of Agronomy Mar/Apr 2012 |
Copyright_xml | – notice: 2012 The Authors. – notice: 2015 INIST-CNRS – notice: Copyright American Society of Agronomy Mar/Apr 2012 |
DBID | FBQ 24P AAYXX CITATION IQODW 3V. 7X2 7XB 88I 8AF 8FE 8FG 8FH 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI CCPQU DWQXO GNUQQ GUQSH HCIFZ L6V M0K M2O M2P M7S MBDVC PATMY PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U R05 S0X 7S9 L.6 |
DOI | 10.2135/cropsci2011.06.0299 |
DatabaseName | AGRIS Wiley Online Library Open Access CrossRef Pascal-Francis ProQuest Central (Corporate) Agricultural Science Collection ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) STEM Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology collection Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Engineering Collection Agriculture Science Database Research Library Science Database Engineering Database Research Library (Corporate) Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan SIRS Editorial AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Agricultural Science Database University of Michigan Research Library Prep ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials SIRS Editorial ProQuest AP Science ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Research Library ProQuest Central (New) Engineering Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Agricultural Science Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1435-0653 |
EndPage | 719 |
ExternalDocumentID | 2614664211 25543533 10_2135_cropsci2011_06_0299 CSC2CROPSCI2011060299 US201500054022 |
Genre | article Feature |
GrantInformation_xml | – fundername: National Association of Animal Breeders |
GroupedDBID | -~X .86 .~0 0R~ 186 18M 1OB 1OC 29F 2A4 2WC 33P 3V. 53G 5GY 6J9 6KN 7X2 7XC 88I 8AF 8FE 8FG 8FH 8G5 8R4 8R5 AAHHS AANLZ ABCQX ABCUV ABEFU ABJCF ABJNI ABPTK ABUWG ACAWQ ACCFJ ACCZN ACGOD ACIWK ACPOU ACXQS ADFRT ADKYN ADNWM ADYHW ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AETEA AEUYR AFFPM AFKRA AFRAH AI. AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ATCPS AZQEC BENPR BES BFHJK BGLVJ BGNMA BHPHI BKOMP BPHCQ C1A CCPQU CS3 D0L DCZOG DROCM DWQXO E3Z EBS ECGQY EJD F5P FBQ GNUQQ GUQSH HCIFZ HF~ IAG IAO ICU IEA IEP IGG IOF ITC L6V L7B LAS LATKE LEEKS M0K M2O M2P M2Q M4Y M7S MEWTI MV1 NHAZY NHB NU0 O9- PATMY PQQKQ PRG PROAC PTHSS PYCSY Q2X R05 RAK ROL RPX RXW S0X SAMSI SUPJJ TAE TR2 TWZ U2A U5U VH1 VQA WOQ WXSBR XOL Y6R ~02 ~KM 24P AAHBH AAHQN AAMNL AAYCA AEUYN AFWVQ AHBTC AITYG ALVPJ H13 HGLYW AAYXX AEYWJ AGHNM AGYGG CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW PQGLB 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7S9 L.6 LH4 PUEGO |
ID | FETCH-LOGICAL-c4529-7a7dc542353f4e9a4fae7eea679856293976d2b5d3bc4b8f1da547bbb667013a3 |
IEDL.DBID | 24P |
ISSN | 1435-0653 0011-183X |
IngestDate | Fri Sep 05 04:56:01 EDT 2025 Fri Aug 15 20:04:01 EDT 2025 Mon Jul 21 09:13:20 EDT 2025 Tue Jul 01 01:42:09 EDT 2025 Thu Apr 24 23:07:54 EDT 2025 Wed Jan 22 16:36:25 EST 2025 Wed Dec 27 19:14:15 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Genotype environment interaction Pedigree Genomics Prediction Molecular marker Breeding value Modeling |
Language | English |
License | Attribution-NonCommercial-NoDerivs CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4529-7a7dc542353f4e9a4fae7eea679856293976d2b5d3bc4b8f1da547bbb667013a3 |
Notes | http://dx.doi.org/10.2135/cropsci2011.06.0299 All rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permission for printing and for reprinting the material contained herein has been obtained by the publisher. SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.2135%2Fcropsci2011.06.0299 |
PQID | 930805031 |
PQPubID | 30013 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1663614789 proquest_journals_930805031 pascalfrancis_primary_25543533 crossref_primary_10_2135_cropsci2011_06_0299 crossref_citationtrail_10_2135_cropsci2011_06_0299 wiley_primary_10_2135_cropsci2011_06_0299_CSC2CROPSCI2011060299 fao_agris_US201500054022 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2012 |
PublicationDateYYYYMMDD | 2012-03-01 |
PublicationDate_xml | – month: 03 year: 2012 text: March 2012 |
PublicationDecade | 2010 |
PublicationPlace | Madison, WI |
PublicationPlace_xml | – name: Madison, WI – name: Madison |
PublicationTitle | Crop science |
PublicationYear | 2012 |
Publisher | Crop Science Society of America The Crop Science Society of America, Inc American Society of Agronomy |
Publisher_xml | – name: Crop Science Society of America – name: The Crop Science Society of America, Inc – name: American Society of Agronomy |
References | 2007; 39 2004; 167 2010; 53 2004; 168 2010 2009; 182 2004; 9 2005; 139 2010; 186 1975; 31 1996; 92 2002 1918; 52 2009; 49 2011; 7 2007; 37 2006; 113 2001; 157 1921; 6 2006; 46 1997; 53 2007; 177 2011; 51 2008; 48 1999; 152 2011; 25 2010; 92 2005; 37 2010; 3 2001; 57 1998; 97 2010; 52 2007; 47 1996; 67 e_1_2_10_23_1 Wright S. (e_1_2_10_38_1) 1921; 6 e_1_2_10_24_1 e_1_2_10_21_1 e_1_2_10_22_1 e_1_2_10_20_1 Meuwissen T.H.E. (e_1_2_10_25_1) 2001; 157 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 Van Raden P.M. (e_1_2_10_36_1) 2007; 37 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_7_1 Crossa J. (e_1_2_10_11_1) 2004; 9 e_1_2_10_15_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_10_1 e_1_2_10_32_1 e_1_2_10_31_1 Campos G. (e_1_2_10_12_1) 2007; 39 e_1_2_10_30_1 ASReml (e_1_2_10_2_1) 2010 e_1_2_10_29_1 Smith A. (e_1_2_10_33_1) 2002 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_26_1 |
References_xml | – volume: 177 start-page: 2389 year: 2007 end-page: 2397 article-title: The impact of genomic relationship information on genome-assisted breeding value publication-title: Genetics – volume: 113 start-page: 809 year: 2006 end-page: 819 article-title: Joint modeling of additive and non-additive genetic line effects in single field trials publication-title: Theor. Appl. Genet. – volume: 182 start-page: 375 year: 2009 end-page: 385 article-title: Predicting quantitative traits with regression models for dense molecular markers and pedigree publication-title: Genetics – volume: 46 start-page: 1722 year: 2006 end-page: 1733 article-title: Modeling genotype × environment interaction using additive genetic covariances of relatives for predicting breeding values of wheat genotypes publication-title: Crop Sci. – volume: 52 start-page: 399 year: 1918 end-page: 433 article-title: The correlation between relatives on the supposition of Mendelian inheritance publication-title: Trans. R. Soc. Edinb. – volume: 3 start-page: 106 year: 2010 end-page: 116 article-title: Genomic-enabled prediction based on molecular markers and pedigree using the BLR package in R publication-title: Plant Gen. – volume: 53 start-page: 761 year: 1997 end-page: 766 article-title: Analyzing genotype-environment data by mixed models with multiplicative effects publication-title: Biometrics – volume: 168 start-page: 2295 year: 2004 end-page: 2306 article-title: Direct estimation of genetic principal components: Simplified analysis of complex phenotypes publication-title: Genetics – volume: 57 start-page: 1138 year: 2001 end-page: 1147 article-title: Analyzing variety by environment data using multiplicative mixed models and adjustments for spatial field trend publication-title: Biometrics – volume: 92 start-page: 175 year: 1996 end-page: 183 article-title: CIMMYT's approach to breeding for wide adaptation publication-title: Euphytica – volume: 37 start-page: 33 year: 2007 end-page: 36 article-title: Genomic measures of relationship and inbreeding publication-title: Interbull Bull. – volume: 97 start-page: 195 year: 1998 end-page: 201 article-title: Empirical best linear unbiased prediction in cultivar trials using factor analytic variance covariance structure publication-title: Theor. Appl. Genet. – volume: 31 start-page: 423 year: 1975 end-page: 447 article-title: Best linear unbiased estimation and prediction under a selection model publication-title: Biometrics – volume: 139 start-page: 637 year: 2005 end-page: 642 article-title: The International Rice Information System. A platform for meta-analysis of rice crop data publication-title: Plant Physiol. – year: 2010 – volume: 52 start-page: 125 year: 2010 end-page: 149 article-title: A comparison of analysis method for late-stage variety evaluation trials publication-title: Aust. N.Z.J. Stat. – volume: 47 start-page: 311 year: 2007 end-page: 320 article-title: Modeling additive × environment and additive × additive × environment using genetic covariances of relatives of wheat genotypes publication-title: Crop Sci. – volume: 48 start-page: 1291 year: 2008 end-page: 1305 article-title: Using factor analytic models for joining environments and genotypes without crossover genotype × environment interaction publication-title: Crop Sci. – volume: 51 start-page: 944 year: 2011 end-page: 954 article-title: Prediction assessment of linear mixed models for multienvironment trials publication-title: Crop Sci. – volume: 39 start-page: 481 year: 2007 end-page: 494 article-title: Factor analysis models for structuring covariance matrices of additive genetic effects: A Bayesian implementation publication-title: Genet. Sel. Evol. – volume: 49 start-page: 1165 year: 2009 end-page: 1176 article-title: Ridge regression and extensions for genome-wide selection in maize publication-title: Crop Sci. – volume: 9 start-page: 362 year: 2004 end-page: 380 article-title: Studying crossover genotype × environment interaction using linear-bilinear models and mixed models publication-title: J. Agric. Biol. Environ. Stat. – volume: 67 start-page: 175 year: 1996 end-page: 185 article-title: Estimators for pairwise relatedness and individual inbreeding coefficients publication-title: Genet. Res. – volume: 6 start-page: 111 year: 1921 end-page: 123 article-title: Systems of mating. 1. The biometric relations between parent and offspring publication-title: Genetics – year: 2002 – volume: 157 start-page: 1819 year: 2001 end-page: 1829 article-title: Prediction of total genetic values using genome-wide dense marker maps publication-title: Genetics – volume: 186 start-page: 713 year: 2010 end-page: 724 article-title: Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers publication-title: Genetics – volume: 152 start-page: 1753 year: 1999 end-page: 1766 article-title: Estimation of pairwise relatedness with molecular markers publication-title: Genetics – volume: 47 start-page: 1082 year: 2007 end-page: 1090 article-title: Prospects for genome-wide selection for quantitative traits in maize publication-title: Crop Sci. – volume: 92 start-page: 295 year: 2010 end-page: 308 article-title: Semi-parametric genomic-enabled prediction of genetic values using reproducing kernel Hilbert spaces methods publication-title: Genet. Res. – volume: 25 start-page: 239 year: 2011 end-page: 261 article-title: Genomic selection and prediction in plant breeding publication-title: J. Crop Improv. – volume: 53 start-page: 876 year: 2010 end-page: 883 article-title: Genome-wide association and genomic selection in animal breeding publication-title: Genome – volume: 167 start-page: 1407 year: 2004 end-page: 1424 article-title: Quantitative genetic models for describing simultaneous and recursive relationships between phenotypes publication-title: Genetics – volume: 51 start-page: 542 year: 2011 end-page: 552 article-title: Predictive ability assessment of linear mixed models in multienvironment trials in corn publication-title: Crop Sci. – volume: 37 start-page: 1 year: 2005 end-page: 30 article-title: Restricted maximum likelihood estimation of genetic principal components and smoothed covariance matrices publication-title: Genet. Sel. Evol. – volume: 7 year: 2011 article-title: Beyond missing heritability: Prediction of complex traits publication-title: PLoS Genet. – volume: 9 start-page: 362 year: 2004 ident: e_1_2_10_11_1 article-title: Studying crossover genotype × environment interaction using linear-bilinear models and mixed models publication-title: J. Agric. Biol. Environ. Stat. doi: 10.1198/108571104X4423 – ident: e_1_2_10_32_1 doi: 10.1017/S0016672300033620 – ident: e_1_2_10_13_1 doi: 10.1017/S0016672310000285 – ident: e_1_2_10_22_1 doi: 10.1111/j.1095-8312.1999.tb01157.x – volume: 6 start-page: 111 year: 1921 ident: e_1_2_10_38_1 article-title: Systems of mating. 1. The biometric relations between parent and offspring publication-title: Genetics doi: 10.1093/genetics/6.2.111 – ident: e_1_2_10_26_1 doi: 10.1186/1297-9686-37-1-1 – ident: e_1_2_10_35_1 doi: 10.2135/cropsci2010.06.0338 – ident: e_1_2_10_7_1 doi: 10.2135/cropsci2010.07.0403 – ident: e_1_2_10_24_1 doi: 10.1104/pp.105.063438 – ident: e_1_2_10_31_1 doi: 10.2135/cropsci2008.10.0595 – volume-title: Exploring variety-environment data using random effects models with adjustment for spatial field trends: Part 1: Theory year: 2002 ident: e_1_2_10_33_1 doi: 10.1079/9780851996011.0323 – volume-title: Version 3 year: 2010 ident: e_1_2_10_2_1 – ident: e_1_2_10_5_1 doi: 10.2135/cropsci2006.09.0564 – ident: e_1_2_10_29_1 doi: 10.2307/2533976 – ident: e_1_2_10_6_1 doi: 10.2135/cropsci2007.11.0632 – ident: e_1_2_10_17_1 doi: 10.1534/genetics.103.025734 – ident: e_1_2_10_28_1 doi: 10.3835/plantgenome2010.04.0005 – volume: 157 start-page: 1819 year: 2001 ident: e_1_2_10_25_1 article-title: Prediction of total genetic values using genome-wide dense marker maps publication-title: Genetics doi: 10.1093/genetics/157.4.1819 – volume: 37 start-page: 33 year: 2007 ident: e_1_2_10_36_1 article-title: Genomic measures of relationship and inbreeding publication-title: Interbull Bull. – ident: e_1_2_10_37_1 doi: 10.1111/j.1467-842X.2010.00570.x – ident: e_1_2_10_21_1 doi: 10.1534/genetics.104.029181 – ident: e_1_2_10_8_1 doi: 10.2135/cropsci2005.11-0427 – ident: e_1_2_10_9_1 doi: 10.1534/genetics.110.118521 – ident: e_1_2_10_10_1 doi: 10.1080/15427528.2011.558767 – ident: e_1_2_10_3_1 doi: 10.2135/cropsci2006.11.0690 – ident: e_1_2_10_15_1 – ident: e_1_2_10_23_1 doi: 10.1371/journal.pgen.1002051 – ident: e_1_2_10_34_1 doi: 10.1111/j.0006-341X.2001.01138.x – ident: e_1_2_10_4_1 doi: 10.1007/BF00022843 – ident: e_1_2_10_19_1 doi: 10.1139/G10-076 – ident: e_1_2_10_18_1 doi: 10.1534/genetics.107.081190 – ident: e_1_2_10_14_1 doi: 10.1534/genetics.109.101501 – volume: 39 start-page: 481 year: 2007 ident: e_1_2_10_12_1 article-title: Factor analysis models for structuring covariance matrices of additive genetic effects: A Bayesian implementation publication-title: Genet. Sel. Evol. doi: 10.1186/1297-9686-39-5-481 – ident: e_1_2_10_20_1 doi: 10.2307/2529430 – ident: e_1_2_10_30_1 doi: 10.1007/s001220050885 – ident: e_1_2_10_27_1 doi: 10.1007/s00122-006-0333-z – ident: e_1_2_10_16_1 doi: 10.1017/S0080456800012163 |
SSID | ssj0007975 |
Score | 2.5529234 |
Snippet | Genomic selection (GS) has become an important aid in plant and animal breeding. Multienvironment (multitrait) models allow borrowing of information across... ABSTRACT Genomic selection (GS) has become an important aid in plant and animal breeding. Multienvironment (multitrait) models allow borrowing of information... |
SourceID | proquest pascalfrancis crossref wiley fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 707 |
SubjectTerms | Agronomy. Soil science and plant productions Animal breeding Biological and medical sciences breeding value Fundamental and applied biological sciences. Psychology genetic markers Genetics and breeding of economic plants genotype Genotypes information sources marker-assisted selection pedigree plant breeders Plant breeding prediction Triticum aestivum Varietal selection. Specialized plant breeding, plant breeding aims Wheat |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7BcmkPqPQhUgpypR6bsmvH8eZQIUiX0krQFdut9mb5FXpACeyCeu-f6A_qH-tMXsAF9ZrESeQZe77xPD6Ad0OfZVbwLLYWl1viizQ2Ug1jJ71wlmyQp2rk07P0ZJ58XcjFGpx2tTCUVtntifVG7StHZ-T7mUBsI1EFD66uYyKNouBqx6BhWmYF_7HuMLYOG7gjy-EANo4mZ9PzfmtWmWopDUYx6vKiaUPER0LuE2EWGp2mp2f6YcjrbrB3pmq9MBUlTpoVzl3RkF48QKX3sW1tnI6fwWaLKtlhowZbsBbK5_D08GLZdtYIL-D351BXILPpkmIzJA9WFexo2Zgv9sNc4hfYr5-hZESQRmXqjMbQIS37-4dN7kriWH2O2JREMMqcv2BE-YGue2Cm9OwT-sYB39Iy7zIqCEKY-RLmx5Pv-UncEjDEjuKxsTLKO4mAS4oiCZlJChNUCIYiN4ibMsIynlsUq3WJHRcjb2SirLVpqhBaGvEKBmVVhm1ggpsgVcicDOTCFWPn0XR6IzLEE174CHg319q13cmJJONSo5dCAtL3BKQpFw8FFMH7ftBV05zj8ce3UYja4OSv9HzG6bCnhqycR7D3QLL969DjQkApRAQ7nah1u8pXutfJCN72d3F5UszFlKG6XekRIjpEQGqMXz-oNeR__lTns5zn59-ms_xLjdBSuvr60X_YgSf4KG_y497A4GZ5G3YRMN3YvXYZ_AOqMhJ8 priority: 102 providerName: ProQuest |
Title | Genomic Prediction of Breeding Values when Modeling Genotype × Environment Interaction using Pedigree and Dense Molecular Markers |
URI | https://onlinelibrary.wiley.com/doi/abs/10.2135%2Fcropsci2011.06.0299 https://www.proquest.com/docview/930805031 https://www.proquest.com/docview/1663614789 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB71cYEDKi81tKyMxJHArh3Hm1PVht0WJMqqy6K9WXbstIcqi3ZbcedP8IP6x5ixs6ErIYTEJVJek8jj8Xxje-YDeN13RWEFL1Jr0dwyV-epkaqfVtKJypIPcpSN_Ok8P5tlH-dyvgWjdS5MrA_RTbiRZYTxmgzc2MBCwgeC6iEQwxV6iViEM3_bx3F1G3YR3gvq6DybdAOyKlRLZDBIsQfPY_EhEvPuD0I2HNR2bRa0XdKssMXqSHWxgUXvI9rgksZ78KjFkuw4Kv8xbPnmCTw8vly29TT8U_hx6kPeMZssaUWGtMAWNTtZRqfFvppr_AL7fuUbRrRolJzO6B2ammV3P9nodyIcC7OHMRGC0X75S0ZEHxiwe2Yax95jROxRSsu3yygNCMHlM5iNR1_Ks7SlXUgrWoVNlVGukgizpKgzX5isNl55b2i9BtFSQQjGcYvKtFVmh_XAGZkpa22eKwSURjyHnWbR-H1gghsvlS8q6Slwq4eVQ4fpjCgQRTjhEuDrttZVW5OcqDGuNcYmpCB9T0GaduChghJ40730LZbk-Pvj-6hEbbDxV3o25TTFE4Aq5wn0NjTbicM4C2GkEAkcrFWtW9te6UIgypY4GCbwqruLRkkrLabxi9uVHiCOQ9yjhvj1o9BD_uVPdTkteXnxeTItPwRcltPVF_8t4QAe4AmPO-cOYedmeetfIpS6sb1gKHgcjk97sHsyOp9c_ALdkhhO |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LU9swEN6BcGh7YPocXFqqzrS3uiSSH_GBYcCEJgXSDCFMbqpkyemBsSGGYXrtn-iv6al_rLu2Y-DC9MI1jmSNV6v9tK8P4EPbRJEWPHK1RnXzTBq4yg_bbuIbkWiyQYaqkY-GQX_ifZ360yX4s6iFobTKxZlYHtQmT8hHvhkJxDY-bsHt8wuXSKMouLpg0FA1s4LZKjuM1XUdB_bnNd7giq3BHor7I-f7vZO479YkA25CMUc3VKFJfAQVvkg9GykvVTa0VlF0ArFBRPbacI1L14mnu2nHKN8LtdZBECJ8UgLnXYYVj_wnLVjZ7Q1Hx40pCKOwplDouKg706rtEe8If5MIutDIVT1Eg89tXnafvTGNy6nKKVFTFSirtCLZuIOCb2Pp0hjuP4XVGsWynWrbPYMlmz2HJzuzed3Jw76AX19sWfHMRnOKBZH8WZ6y3XllLtmpOsM3sOsfNmNEyEZl8YzGkFOY_f3NejcleKz0W1YlGIwy9WeMKEZmOBdTmWF7eBe3OEvN9MuoAAlh7UuYPIgsXkEryzO7BkxwZf3QRolv6cqYdhODptooESF-McI4wBffWiZ1N3Qi5TiTeCsiAclbApKU-4cCcuBTM-i8agZy_9_XUIhS4ccv5GTMyblUQmTOHdi4I9lmOrzh4VYSwoH1hahlfaoUstEBB943T_E4oBiPymx-VcgOIkhEXGEX375d7pD_WamMxzGPj7-NxvGgRIQB_fr63jW8g0f9k6NDeTgYHqzDYxzGq9y8N9C6nF_ZtwjWLvVGrRIMvj-0Fv4DrFpPMw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLf2ISE4ID61MBhGghuhrZ3EzWGatrRlZVCqlaLejB075TAlo9k0ceWf4A_ixH_Fe4mTbZeJy65p7KR5fn6_5_fxI-R118Sx5iz2tQZ1C0wW-SoUXT8NDU812iCD1cifJtHhPPiwCBdr5G9TC4Nplc2eWG3UpkjxjLwTc8A2ISzBTuayIqaD0d7pDx8JpDDQ2rBpKMeyYHarbmOuxuPI_rwAb67cHQ9A9G8YGw2_JIe-IxzwU4w_-kIJk4YAMEKeBTZWQaassFZhpAJwQoy22zANf0Onge5nPaPCQGito0gAlFIc5l0nmwKMPviBmwfDyfS4NQsiFo5OoeeDHi3qFkisx8MOknWBwav7iUbvuqzqRHtpJtczVWDSpipBbllNuHENEV_F1ZVhHD0g9x2ipfv1EnxI1mz-iNzbX65cVw_7mPx6b6vqZzpdYVwI1wItMnqwqk0n_apO4An04rvNKZKzYYk8xTF4QEz__KbDy3I8Wp1h1uUYFLP2lxTpRpYwF1W5oQPwyy3M4lh_KRYjAcR9Qua3IounZCMvcrtFKGfKhsLGaWjRfcz6qQGzbRSPAcsYbjzCmm8tU9cZHQk6TiR4SCggeUVAEvMAQUAeedsOOq0bg9x8-xYIUSr4-KWczxgeNFVwmTGP7FyTbDsdeHsAZjn3yHYjaul2mFK2-uCRV-2vsDVgvEfltjgvZQ_QJKAv0Yen71Ur5H_eVCazhCXHn6ezZFyhwwivPrvxHV6SO6CN8uN4crRN7sIoVqfpPScbZ6tz-wJw25necRpBybfbVsJ_oExTdw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genomic+Prediction+of+Breeding+Values+when+Modeling+Genotype+%C3%97+Environment+Interaction+using+Pedigree+and+Dense+Molecular+Markers&rft.jtitle=Crop+science&rft.au=Burgue%C3%B1o%2C+Juan&rft.au=de+los+Campos%2C+Gustavo&rft.au=Weigel%2C+Kent&rft.au=Crossa%2C+Jos%C3%A9&rft.date=2012-03-01&rft.issn=0011-183X&rft.volume=52&rft.issue=2+p.707-719&rft.spage=707&rft.epage=719&rft_id=info:doi/10.2135%2Fcropsci2011.06.0299&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1435-0653&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1435-0653&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1435-0653&client=summon |