Elucidating the combinatorial effect of substrate stiffness and surface viscoelasticity on cellular phenotype
Cells maintain tensional homeostasis by monitoring the mechanics of their microenvironment. In order to understand this mechanotransduction phenomenon, hydrogel materials have been developed with either controllable linear elastic or viscoelastic properties. Native biological tissues, and biomateria...
Saved in:
Published in | Journal of biomedical materials research. Part A Vol. 110; no. 6; pp. 1224 - 1237 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.06.2022
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1549-3296 1552-4965 1552-4965 |
DOI | 10.1002/jbm.a.37367 |
Cover
Abstract | Cells maintain tensional homeostasis by monitoring the mechanics of their microenvironment. In order to understand this mechanotransduction phenomenon, hydrogel materials have been developed with either controllable linear elastic or viscoelastic properties. Native biological tissues, and biomaterials used for medical purposes, often have complex mechanical properties. However, due to the difficulty in completely decoupling the elastic and viscous components of hydrogel materials, the effect of complex composite materials on cellular responses has largely gone unreported. Here, we characterize a novel composite hydrogel system capable of decoupling and individually controlling both the bulk stiffness and surface viscoelasticity of the material by combining polyacrylamide (PA) gels with microgel thin films. By taking advantage of the high degree of control over stiffness offered by PA gels and viscoelasticity, in terms of surface loss tangent, of microgel thin films, it is possible to study the influence that bulk substrate stiffness and surface loss tangent have on complex fibroblast responses, including cellular and nuclear morphology and gene expression. This material system provides a facile method for investigating cellular responses to complex material mechanics with great precision and allows for a greater understanding of cellular mechanotransduction mechanisms than previously possible through current model material platforms.
A novel composite hydrogel system capable of decoupling and individually controlling both the bulk stiffness and surface viscoelasticity of the material by combining polyacrylamide gels with microgel thin films is described. Fibroblast cellular and nuclear morphological changes and changes in gene expression in response to a wide range of these parameters are characterized. |
---|---|
AbstractList | Cells maintain tensional homeostasis by monitoring the mechanics of their microenvironment. In order to understand this mechanotransduction phenomenon, hydrogel materials have been developed with either controllable linear elastic or viscoelastic properties. Native biological tissues, and biomaterials used for medical purposes, often have complex mechanical properties. However, due to the difficulty in completely decoupling the elastic and viscous components of hydrogel materials, the effect of complex composite materials on cellular responses has largely gone unreported. Here, we characterize a novel composite hydrogel system capable of decoupling and individually controlling both the bulk stiffness and surface viscoelasticity of the material by combining polyacrylamide (PA) gels with microgel thin films. By taking advantage of the high degree of control over stiffness offered by PA gels and viscoelasticity, in terms of surface loss tangent, of microgel thin films, it is possible to study the influence that bulk substrate stiffness and surface loss tangent have on complex fibroblast responses, including cellular and nuclear morphology and gene expression. This material system provides a facile method for investigating cellular responses to complex material mechanics with great precision and allows for a greater understanding of cellular mechanotransduction mechanisms than previously possible through current model material platforms.
A novel composite hydrogel system capable of decoupling and individually controlling both the bulk stiffness and surface viscoelasticity of the material by combining polyacrylamide gels with microgel thin films is described. Fibroblast cellular and nuclear morphological changes and changes in gene expression in response to a wide range of these parameters are characterized. Cells maintain tensional homeostasis by monitoring the mechanics of their microenvironment. In order to understand this mechanotransduction phenomenon, hydrogel materials have been developed with either controllable linear elastic or viscoelastic properties. Native biological tissues, and biomaterials used for medical purposes, often have complex mechanical properties. However, due to the difficulty in completely decoupling the elastic and viscous components of hydrogel materials, the effect of complex composite materials on cellular responses has largely gone unreported. Here, we characterize a novel composite hydrogel system capable of decoupling and individually controlling both the bulk stiffness and surface viscoelasticity of the material by combining polyacrylamide (PA) gels with microgel thin films. By taking advantage of the high degree of control over stiffness offered by PA gels and viscoelasticity, in terms of surface loss tangent, of microgel thin films, it is possible to study the influence that bulk substrate stiffness and surface loss tangent have on complex fibroblast responses, including cellular and nuclear morphology and gene expression. This material system provides a facile method for investigating cellular responses to complex material mechanics with great precision and allows for a greater understanding of cellular mechanotransduction mechanisms than previously possible through current model material platforms.Cells maintain tensional homeostasis by monitoring the mechanics of their microenvironment. In order to understand this mechanotransduction phenomenon, hydrogel materials have been developed with either controllable linear elastic or viscoelastic properties. Native biological tissues, and biomaterials used for medical purposes, often have complex mechanical properties. However, due to the difficulty in completely decoupling the elastic and viscous components of hydrogel materials, the effect of complex composite materials on cellular responses has largely gone unreported. Here, we characterize a novel composite hydrogel system capable of decoupling and individually controlling both the bulk stiffness and surface viscoelasticity of the material by combining polyacrylamide (PA) gels with microgel thin films. By taking advantage of the high degree of control over stiffness offered by PA gels and viscoelasticity, in terms of surface loss tangent, of microgel thin films, it is possible to study the influence that bulk substrate stiffness and surface loss tangent have on complex fibroblast responses, including cellular and nuclear morphology and gene expression. This material system provides a facile method for investigating cellular responses to complex material mechanics with great precision and allows for a greater understanding of cellular mechanotransduction mechanisms than previously possible through current model material platforms. Cells maintain tensional homeostasis by monitoring the mechanics of their microenvironment. In order to understand this mechanotransduction phenomenon, hydrogel materials have been developed with either controllable linear elastic or viscoelastic properties. Native biological tissues, and biomaterials used for medical purposes, often have complex mechanical properties. However, due to the difficulty in completely decoupling the elastic and viscous components of hydrogel materials, the effect of complex composite materials on cellular responses has largely gone unreported. Here, we characterize a novel composite hydrogel system capable of decoupling and individually controlling both the bulk stiffness and surface viscoelasticity of the material by combining polyacrylamide (PA) gels with microgel thin films. By taking advantage of the high degree of control over stiffness offered by PA gels and viscoelasticity, in terms of surface loss tangent, of microgel thin films, it is possible to study the influence that bulk substrate stiffness and surface loss tangent have on complex fibroblast responses, including cellular and nuclear morphology and gene expression. This material system provides a facile method for investigating cellular responses to complex material mechanics with great precision and allows for a greater understanding of cellular mechanotransduction mechanisms than previously possible through current model material platforms. |
Author | Brown, Ashley C. Chester, Daniel Lee, Veronica Nordberg, Matthew Wagner, Paul Fisher, Matthew B. |
AuthorAffiliation | 2 Comparative Medicine Institute North Carolina State University Raleigh North Carolina USA 1 Joint Department of Biomedical Engineering University of North Carolina at Chapel Hill and North Carolina State University Raleigh North Carolina USA 3 Department of Materials Science and Engineering North Carolina State University Raleigh North Carolina USA |
AuthorAffiliation_xml | – name: 1 Joint Department of Biomedical Engineering University of North Carolina at Chapel Hill and North Carolina State University Raleigh North Carolina USA – name: 2 Comparative Medicine Institute North Carolina State University Raleigh North Carolina USA – name: 3 Department of Materials Science and Engineering North Carolina State University Raleigh North Carolina USA |
Author_xml | – sequence: 1 givenname: Daniel surname: Chester fullname: Chester, Daniel organization: North Carolina State University – sequence: 2 givenname: Veronica surname: Lee fullname: Lee, Veronica organization: University of North Carolina at Chapel Hill and North Carolina State University – sequence: 3 givenname: Paul surname: Wagner fullname: Wagner, Paul organization: North Carolina State University – sequence: 4 givenname: Matthew surname: Nordberg fullname: Nordberg, Matthew organization: University of North Carolina at Chapel Hill and North Carolina State University – sequence: 5 givenname: Matthew B. orcidid: 0000-0002-3212-0870 surname: Fisher fullname: Fisher, Matthew B. organization: North Carolina State University – sequence: 6 givenname: Ashley C. orcidid: 0000-0001-6995-1785 surname: Brown fullname: Brown, Ashley C. email: aecarso2@ncsu.edu organization: North Carolina State University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35107204$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1rVDEUxYNU7Ieu3EvAjSAz5uXjZd5GaEv9ouJG1yEvuelkyEvGJK8y_70ZpxUt4ioh93cP5-ScoqOYIiD0vCPLjhD6ZjNOS71kkvXyETrphKALPvTiaH_nw4LRoT9Gp6VsGtwTQZ-gYyY6IinhJ2i6CrPxVlcfb3BdAzZpGn3UNWWvAwbnwFScHC7zWGrWFXCp3rkIpWAdbXvPThvAt76YBEG3qfF1h1PEBkKYg854u4aY6m4LT9Fjp0OBZ3fnGfr27urr5YfF9Zf3Hy_PrxeGCyoXIzgQ1K64cIPjxlqq2cox0RvLxo7AqCXso1hrO8ZBODJYYwzlo7SOrRg7Q28Putt5nMAaiM16UNvsJ513Kmmv_p5Ev1Y36VYNjIhOkibw6k4gp-8zlKqmlq_l0RHSXBTtKR-4lJQ29OUDdJPmHFu8RnFJ-lXP-ka9-NPRbyv3TTSgOwAmp1IyONW-sdWS9gZ9UB1R-7ZVa1tp9avttvP6wc697L9peqB_-AC7_6Hq08Xn88PST2ssv0w |
CitedBy_id | crossref_primary_10_1111_wrr_13168 crossref_primary_10_1002_adfm_202304674 crossref_primary_10_1016_j_mbplus_2024_100150 crossref_primary_10_1038_s41598_023_29252_1 crossref_primary_10_1021_acs_macromol_3c00557 crossref_primary_10_1002_asia_202200797 |
Cites_doi | 10.1038/s41467-018-02906-9 10.1016/j.bpj.2014.04.051 10.1021/am9005435 10.1038/nnano.2012.163 10.1021/acsmacrolett.5b00016 10.1038/nmat4489 10.1016/j.medengphy.2014.04.002 10.1513/pats.200708-146DR 10.1097/HJH.0b013e3280112ce5 10.1038/nature05915 10.1016/j.jmbbm.2018.09.031 10.3390/ma10080889 10.1016/j.jmbbm.2016.07.018 10.1002/path.4114 10.1016/j.bbadis.2016.11.006 10.3390/polym7121539 10.1002/cm.20041 10.1016/j.bpj.2013.10.008 10.1164/ajrccm.162.4.9912011 10.1088/0953-8984/22/19/194116 10.1016/j.biomaterials.2009.09.002 10.1016/j.cell.2006.06.044 10.1186/1755-1536-5-S1-S24 10.1002/term.136 10.1148/radiol.2017160622 10.1021/acsnano.8b01977 10.1039/b906051k 10.1089/wound.2011.0321 10.1126/science.1116995 10.1096/fj.03-0699com 10.1039/C7BM00261K 10.1021/acsami.5b09344 10.1161/CIRCRESAHA.108.173989 10.1529/biophysj.106.101386 10.1242/dmm.004077 10.1016/j.biomaterials.2007.08.006 10.1088/0967-3334/34/1/53 10.1007/s41048-020-00110-1 10.1038/s41409-019-0679-x 10.1016/j.biomaterials.2011.04.003 10.1073/pnas.1618239114 10.1007/s12195-013-0270-2 10.1098/rsob.140046 10.1016/S0006-3495(04)74140-5 10.1039/C3SM52518J 10.1083/jcb.111.1.1 10.1021/la402062t 10.1002/adbi.201800042 10.1016/j.biomaterials.2018.09.012 10.1002/0471143030.cb1016s47 10.1021/acs.langmuir.7b02801 10.1103/PhysRevE.82.041918 10.1074/jbc.M010722200 10.1016/B978-0-12-394624-9.00007-5 10.1167/iovs.11-8450 10.1007/s11926-007-0008-z 10.1111/j.1742-4658.2006.05360.x |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by Wiley Periodicals LLC. 2022 The Authors. Journal of Biomedical Materials Research Part A published by Wiley Periodicals LLC. 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. published by Wiley Periodicals LLC. – notice: 2022 The Authors. Journal of Biomedical Materials Research Part A published by Wiley Periodicals LLC. – notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 5PM |
DOI | 10.1002/jbm.a.37367 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Chester et al |
EISSN | 1552-4965 |
EndPage | 1237 |
ExternalDocumentID | PMC9305170 35107204 10_1002_jbm_a_37367 JBMA37367 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Division of Civil, Mechanical and Manufacturing Innovation funderid: 1825398 – fundername: Division of Civil, Mechanical and Manufacturing Innovation grantid: 1825398 – fundername: ; grantid: 1825398 |
GroupedDBID | --- -~X .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 1ZS 24P 31~ 33P 4.4 4ZD 50Z 51W 51X 52N 52O 52P 52S 52T 52W 52X 53G 5GY 5VS 66C 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AZBYB AZFZN BAFTC BDRZF BFHJK BROTX BRXPI BY8 CO8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ J0M JPC KQQ LATKE LAW LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O9- OIG P2P P2W P2X P4D PQQKQ Q.N QB0 QRW R.K RNS ROL RWI RYL SUPJJ SV3 UB1 V2E W8V W99 WIH WIK WJL WQJ WRC WXSBR XG1 XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 1OB 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 5PM |
ID | FETCH-LOGICAL-c4527-befe52d845f9f4cdd2a38f356cd3b10eba7e2605ddd134e5f09dccc24b7df3833 |
IEDL.DBID | DR2 |
ISSN | 1549-3296 1552-4965 |
IngestDate | Thu Aug 21 14:14:34 EDT 2025 Thu Sep 04 22:56:34 EDT 2025 Wed Aug 13 06:57:20 EDT 2025 Thu Apr 03 07:09:31 EDT 2025 Thu Apr 24 22:58:54 EDT 2025 Tue Jul 01 00:57:52 EDT 2025 Wed Jan 22 16:24:49 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | microgel loss tangent mechanotransduction viscoelasticity |
Language | English |
License | Attribution-NonCommercial 2022 The Authors. Journal of Biomedical Materials Research Part A published by Wiley Periodicals LLC. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4527-befe52d845f9f4cdd2a38f356cd3b10eba7e2605ddd134e5f09dccc24b7df3833 |
Notes | Funding information Division of Civil, Mechanical and Manufacturing Innovation, Grant/Award Number: 1825398 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Funding information Division of Civil, Mechanical and Manufacturing Innovation, Grant/Award Number: 1825398 |
ORCID | 0000-0002-3212-0870 0000-0001-6995-1785 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbm.a.37367 |
PMID | 35107204 |
PQID | 2647068636 |
PQPubID | 2034572 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9305170 proquest_miscellaneous_2624947722 proquest_journals_2647068636 pubmed_primary_35107204 crossref_citationtrail_10_1002_jbm_a_37367 crossref_primary_10_1002_jbm_a_37367 wiley_primary_10_1002_jbm_a_37367_JBMA37367 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2022 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Mount Laurel |
PublicationTitle | Journal of biomedical materials research. Part A |
PublicationTitleAlternate | J Biomed Mater Res A |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2017; 5 2013; 29 2013; 2 2017; 1863 2008; 5 2020; 55 2005; 60 2008; 102 2017; 114 2013; 6 2012; 53 2007; 28 2010; 22 2018; 9 2020; 6 2018; 2 2014; 4 2007; 9 2000; 162 2017; 284 2018; 34 2006; 126 2014; 126 2007; 25 2014; 10 2018; 185 2004; 86 2015; 4 2007; 447 2013; 229 2005; 310 1857; 2014 2013; 105 2006; 273 2011; 32 2007; 93 2011; 4 2016; 15 2015; 7 2010; 82 2014; 107 2001; 276 1972; 2002 2009; 30 2010; 47 2018; 2015 2004; 18 2013; 34 2017; 10 2019; 89 2016; 64 2014; 36 2009; 5 2009; 3 2018; 12 2012; 7 2009; 1 2000; 2013 1990; 111 2012; 5 2016; 8 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Cameron AR (e_1_2_8_9_1) 1857; 2014 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 Thomas CH (e_1_2_8_44_1) 1972; 2002 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_48_1 Bachman H (e_1_2_8_27_1) 2018; 2015 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_40_1 e_1_2_8_61_1 Hinz B (e_1_2_8_7_1) 2000; 2013 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 93 start-page: 4453 year: 2007 end-page: 4461 article-title: Fibroblast adaptation and stiffness matching to soft elastic substrates publication-title: Biophys J – volume: 12 start-page: 7826 year: 2018 end-page: 7837 article-title: Targeted treatment of ischemic and fibrotic complications of myocardial infarction using a dual‐delivery microgel therapeutic publication-title: ACS Nano – volume: 64 start-page: 10 year: 2016 end-page: 17 article-title: Frequency‐modulated atomic force microscopy localises viscoelastic remodelling in the ageing sheep aorta publication-title: J Mech Behav Biomed Mater – volume: 29 start-page: 9581 year: 2013 end-page: 9591 article-title: Controlling the synthesis and characterization of micrometer‐sized PNIPAM microgels with tailored morphologies publication-title: Langmuir – volume: 3 start-page: 77 year: 2009 end-page: 84 article-title: Close dependence of fibroblast proliferation on collagen scaffold matrix stiffness publication-title: J Tissue Eng Regen Med – volume: 102 start-page: 1307 year: 2008 end-page: 1318 article-title: Nuclear shape, mechanics, and mechanotransduction publication-title: Circ Res – volume: 10 start-page: 889 issue: 8 year: 2017 article-title: Micro‐mechanical viscoelastic properties of crosslinked hydrogels using the nano‐epsilon dot method publication-title: Materials – volume: 2002 start-page: 99 year: 1972 end-page: 1977 article-title: Engineering gene expression and protein synthesis by modulation of nuclear shape publication-title: Proc Natl Acad Sci USA – volume: 447 start-page: 407 year: 2007 end-page: 412 article-title: The complex language of chromatin regulation during transcription publication-title: Nature – volume: 8 start-page: 21893 year: 2016 end-page: 21902 article-title: Tuning the range of polyacrylamide gel stiffness for mechanobiology applications publication-title: ACS Appl Mater Interfaces – volume: 114 start-page: 5647 year: 2017 end-page: 5652 article-title: Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels publication-title: Proc Natl Acad Sci – volume: 105 start-page: 2240 year: 2013 end-page: 2251 article-title: Cells actively stiffen fibrin networks by generating contractile stress publication-title: Biophys J – volume: 32 start-page: 5979 year: 2011 end-page: 5993 article-title: The influence of substrate creep on mesenchymal stem cell behaviour and phenotype publication-title: Biomaterials – volume: 9 start-page: 449 year: 2018 article-title: Control of cell morphology and differentiation by substrates with independently tunable elasticity and viscous dissipation publication-title: Nat Commun – volume: 4 start-page: 302 year: 2015 end-page: 307 article-title: Thin films constructed by centrifugal deposition of highly deformable, charged microgels publication-title: ACS Macro Lett – volume: 4 year: 2014 article-title: Atomic force microscopy‐based microrheology reveals significant differences in the viscoelastic response between malign and benign cell lines publication-title: Open Biol – volume: 9 start-page: 136 year: 2007 end-page: 143 article-title: New developments in fibroblast and myofibroblast biology: implications for fibrosis and scleroderma publication-title: Curr Rheumatol Rep – volume: 276 start-page: 16797 year: 2001 end-page: 16803 article-title: Static pressure regulates connective tissue growth factor expression in human mesangial cells publication-title: J Biol Chem – volume: 310 start-page: 1139 year: 2005 end-page: 1143 article-title: Tissue cells feel and respond to the stiffness of their substrate publication-title: Science – volume: 7 start-page: 733 year: 2012 end-page: 736 article-title: Determination of the elastic moduli of thin samples and adherent cells using conical atomic force microscope tips publication-title: Nat Nanotechnol – volume: 34 start-page: 53 year: 2013 end-page: 66 article-title: Effect of viscoelastic properties of plantar soft tissues on plantar pressures at the first metatarsal head in diabetics with peripheral neuropathy publication-title: Physiol Meas – volume: 6 start-page: 137 year: 2020 end-page: 145 article-title: Measurement of viscoelastic properties of injured mouse brain after controlled cortical impact publication-title: Biophys Rep – volume: 10 start-page: 1356 year: 2014 end-page: 1364 article-title: Microgel film dynamics modulate cell adhesion behavior publication-title: Soft Matter – volume: 5 start-page: 1480 year: 2017 end-page: 1490 article-title: Viscoelastic hydrogels for 3D cell culture publication-title: Biomater Sci – volume: 273 start-page: 3639 year: 2006 end-page: 3649 article-title: Mechanical regulation of the Cyr61/CCN1 and CTGF/CCN2 proteins publication-title: FEBS J – volume: 5 start-page: 3682 year: 2009 article-title: Mechanical properties of individual microgel particles through the deswelling transition publication-title: Soft Matter – volume: 22 year: 2010 article-title: How deeply cells feel: methods for thin gels publication-title: J Phys Condens Matter – volume: 89 start-page: 162 year: 2019 end-page: 167 article-title: Engineering hydrogel viscoelasticity publication-title: J Mech Behav Biomed Mater – volume: 162 start-page: 1569 year: 2000 end-page: 1576 article-title: Changes in extracellular matrix and tissue viscoelasticity in bleomycin‐induced lung fibrosis publication-title: Am J Respir Crit Care Med – volume: 111 start-page: 1 year: 1990 end-page: 8 article-title: The permeability of the nuclear envelope in dividing and nondividing cell cultures publication-title: J Cell Biol – volume: 229 start-page: 25 year: 2013 end-page: 35 article-title: Physical and chemical microenvironmental cues orthogonally control the degree and duration of fibrosis‐associated epithelial‐to‐mesenchymal transitions publication-title: J Pathol – volume: 82 year: 2010 article-title: Mechanosensing of substrate thickness publication-title: Phys Rev E Stat Nonlinear Soft Matter Phys – volume: 5 start-page: S24 year: 2012 article-title: CTGF is a central mediator of tissue remodeling and fibrosis and its inhibition can reverse the process of fibrosis publication-title: Fibrogenesis Tissue Repair – volume: 5 start-page: 334 year: 2008 end-page: 337 article-title: Biology of fibroblasts and myofibroblasts publication-title: Proc Am Thorac Soc – volume: 30 start-page: 6867 year: 2009 end-page: 6878 article-title: The effect of substrate stiffness on adult neural stem cell behavior publication-title: Biomaterials – volume: 284 start-page: 694 year: 2017 end-page: 705 article-title: Distinguishing between hepatic inflammation and fibrosis with MR elastography publication-title: Radiology – volume: 1 start-page: 2747 year: 2009 end-page: 2754 article-title: Centrifugal deposition of microgels for the rapid assembly of nonfouling thin films publication-title: ACS Appl Mater Interfaces – volume: 86 start-page: 617 year: 2004 end-page: 628 article-title: Substrate compliance versus ligand density in cell on gel responses publication-title: Biophys J – volume: 2015 start-page: 11 year: 2018 end-page: 2028 article-title: Ultrasoft, highly deformable microgels publication-title: Soft Matter – volume: 4 start-page: 165 year: 2011 end-page: 178 article-title: Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer publication-title: Dis Model Mech – volume: 36 start-page: 1401 year: 2014 end-page: 1407 article-title: Quantitative analysis of liver fibrosis in rats with shearwave dispersion ultrasound vibrometry: comparison with dynamic mechanical analysis publication-title: Med Eng Phys – volume: 47 start-page: 10 issue: 1 year: 2010 end-page: 16 article-title: Preparation of hydrogel substrates with tunable mechanical properties publication-title: Curr Protoc Cell Biol – volume: 107 start-page: 146 year: 2014 end-page: 155 article-title: Tensional homeostasis in single fibroblasts publication-title: Biophys J – volume: 34 start-page: 1457 year: 2018 end-page: 1465 article-title: Study of poly(N‐isopropylacrylamide‐co‐acrylic acid) (pNIPAM) microgel particle induced deformations of tissue‐mimicking phantom by ultrasound stimulation publication-title: Langmuir – volume: 126 start-page: 157 year: 2014 article-title: The cellular mastermind(?)—mechanotransduction and the nucleus publication-title: Prog Mol Biol Transl Sci – volume: 2014 start-page: 35 year: 1857 end-page: 1868 article-title: The effect of time‐dependent deformation of viscoelastic hydrogels on myogenic induction and Rac1 activity in mesenchymal stem cells publication-title: Biomaterials – volume: 1863 start-page: 298 year: 2017 end-page: 309 article-title: The role of α‐smooth muscle actin in fibroblast‐mediated matrix contraction and remodeling publication-title: Biochim Biophys Acta Mol Basis Dis – volume: 15 start-page: 326 year: 2016 end-page: 334 article-title: Hydrogels with tunable stress relaxation regulate stem cell fate and activity publication-title: Nat Mater – volume: 6 start-page: 230 year: 2013 end-page: 238 article-title: Modulation of nuclear shape by substrate rigidity publication-title: Cell Mol Bioeng – volume: 53 start-page: 3014 year: 2012 end-page: 3019 article-title: Müller cell expression of genes implicated in proliferative vitreoretinopathy is influenced by substrate elastic modulus publication-title: Investig Opthalmol Visual Sci – volume: 60 start-page: 24 year: 2005 end-page: 34 article-title: Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion publication-title: Cell Motil Cytoskeleton – volume: 2 start-page: 2 year: 2018 article-title: Biomimetic microgels with controllable deformability improve healing outcomes publication-title: Adv Biosyst – volume: 18 start-page: 469 year: 2004 end-page: 479 article-title: Combinatorial signaling pathways determine fibroblast proliferation and myofibroblast differentiation publication-title: FASEB J – volume: 185 start-page: 371 year: 2018 end-page: 382 article-title: Viscoelastic properties of microgel thin films control fibroblast modes of migration and pro‐fibrotic responses publication-title: Biomaterials – volume: 55 start-page: 675 year: 2020 end-page: 680 article-title: Cubic splines to model relationships between continuous variables and outcomes: a guide for clinicians publication-title: Bone Marrow Transplant – volume: 25 start-page: 629 year: 2007 end-page: 638 article-title: Interactions between aldosterone and connective tissue growth factor in vascular and renal damage in spontaneously hypertensive rats publication-title: J Hypertens – volume: 2013 start-page: 14 issue: 63 year: 2000 end-page: 28 article-title: Matrix mechanics and regulation of the fibroblast phenotype publication-title: Periodontol – volume: 7 start-page: 2650 year: 2015 end-page: 2669 article-title: Tailoring hydrogel viscoelasticity with physical and chemical crosslinking publication-title: Polymers – volume: 2 start-page: 37 year: 2013 end-page: 43 article-title: Biomechanics of scar tissue and uninjured skin publication-title: Adv Wound Care – volume: 126 start-page: 677 year: 2006 end-page: 689 article-title: Matrix elasticity directs stem cell lineage specification publication-title: Cell – volume: 28 start-page: 4968 year: 2007 end-page: 4977 article-title: The mechanical properties of the skin epidermis in relation to targeted gene and drug delivery publication-title: Biomaterials – ident: e_1_2_8_12_1 doi: 10.1038/s41467-018-02906-9 – ident: e_1_2_8_47_1 doi: 10.1016/j.bpj.2014.04.051 – ident: e_1_2_8_20_1 doi: 10.1021/am9005435 – ident: e_1_2_8_49_1 doi: 10.1038/nnano.2012.163 – ident: e_1_2_8_21_1 doi: 10.1021/acsmacrolett.5b00016 – ident: e_1_2_8_10_1 doi: 10.1038/nmat4489 – ident: e_1_2_8_39_1 doi: 10.1016/j.medengphy.2014.04.002 – ident: e_1_2_8_41_1 doi: 10.1513/pats.200708-146DR – volume: 2002 start-page: 99 year: 1972 ident: e_1_2_8_44_1 article-title: Engineering gene expression and protein synthesis by modulation of nuclear shape publication-title: Proc Natl Acad Sci USA – ident: e_1_2_8_61_1 doi: 10.1097/HJH.0b013e3280112ce5 – ident: e_1_2_8_42_1 doi: 10.1038/nature05915 – ident: e_1_2_8_14_1 doi: 10.1016/j.jmbbm.2018.09.031 – volume: 2014 start-page: 35 year: 1857 ident: e_1_2_8_9_1 article-title: The effect of time‐dependent deformation of viscoelastic hydrogels on myogenic induction and Rac1 activity in mesenchymal stem cells publication-title: Biomaterials – ident: e_1_2_8_13_1 doi: 10.3390/ma10080889 – ident: e_1_2_8_52_1 doi: 10.1016/j.jmbbm.2016.07.018 – ident: e_1_2_8_33_1 doi: 10.1002/path.4114 – ident: e_1_2_8_46_1 doi: 10.1016/j.bbadis.2016.11.006 – ident: e_1_2_8_53_1 doi: 10.3390/polym7121539 – ident: e_1_2_8_35_1 doi: 10.1002/cm.20041 – ident: e_1_2_8_54_1 doi: 10.1016/j.bpj.2013.10.008 – ident: e_1_2_8_38_1 doi: 10.1164/ajrccm.162.4.9912011 – ident: e_1_2_8_30_1 doi: 10.1088/0953-8984/22/19/194116 – ident: e_1_2_8_5_1 doi: 10.1016/j.biomaterials.2009.09.002 – ident: e_1_2_8_3_1 doi: 10.1016/j.cell.2006.06.044 – ident: e_1_2_8_58_1 doi: 10.1186/1755-1536-5-S1-S24 – ident: e_1_2_8_4_1 doi: 10.1002/term.136 – ident: e_1_2_8_37_1 doi: 10.1148/radiol.2017160622 – ident: e_1_2_8_19_1 doi: 10.1021/acsnano.8b01977 – ident: e_1_2_8_16_1 doi: 10.1039/b906051k – volume: 2013 start-page: 14 issue: 63 year: 2000 ident: e_1_2_8_7_1 article-title: Matrix mechanics and regulation of the fibroblast phenotype publication-title: Periodontol – ident: e_1_2_8_55_1 doi: 10.1089/wound.2011.0321 – ident: e_1_2_8_36_1 doi: 10.1126/science.1116995 – ident: e_1_2_8_59_1 doi: 10.1096/fj.03-0699com – ident: e_1_2_8_11_1 doi: 10.1039/C7BM00261K – ident: e_1_2_8_22_1 doi: 10.1021/acsami.5b09344 – ident: e_1_2_8_29_1 doi: 10.1161/CIRCRESAHA.108.173989 – ident: e_1_2_8_48_1 doi: 10.1529/biophysj.106.101386 – ident: e_1_2_8_6_1 doi: 10.1242/dmm.004077 – ident: e_1_2_8_51_1 doi: 10.1016/j.biomaterials.2007.08.006 – ident: e_1_2_8_56_1 doi: 10.1088/0967-3334/34/1/53 – ident: e_1_2_8_57_1 doi: 10.1007/s41048-020-00110-1 – ident: e_1_2_8_26_1 doi: 10.1038/s41409-019-0679-x – ident: e_1_2_8_8_1 doi: 10.1016/j.biomaterials.2011.04.003 – ident: e_1_2_8_31_1 doi: 10.1073/pnas.1618239114 – ident: e_1_2_8_32_1 doi: 10.1007/s12195-013-0270-2 – ident: e_1_2_8_50_1 doi: 10.1098/rsob.140046 – ident: e_1_2_8_2_1 doi: 10.1016/S0006-3495(04)74140-5 – ident: e_1_2_8_28_1 doi: 10.1039/C3SM52518J – ident: e_1_2_8_43_1 doi: 10.1083/jcb.111.1.1 – ident: e_1_2_8_15_1 doi: 10.1021/la402062t – ident: e_1_2_8_17_1 doi: 10.1002/adbi.201800042 – ident: e_1_2_8_23_1 doi: 10.1016/j.biomaterials.2018.09.012 – volume: 2015 start-page: 11 year: 2018 ident: e_1_2_8_27_1 article-title: Ultrasoft, highly deformable microgels publication-title: Soft Matter – ident: e_1_2_8_25_1 doi: 10.1002/0471143030.cb1016s47 – ident: e_1_2_8_18_1 doi: 10.1021/acs.langmuir.7b02801 – ident: e_1_2_8_24_1 doi: 10.1103/PhysRevE.82.041918 – ident: e_1_2_8_60_1 doi: 10.1074/jbc.M010722200 – ident: e_1_2_8_45_1 doi: 10.1016/B978-0-12-394624-9.00007-5 – ident: e_1_2_8_34_1 doi: 10.1167/iovs.11-8450 – ident: e_1_2_8_40_1 doi: 10.1007/s11926-007-0008-z – ident: e_1_2_8_62_1 doi: 10.1111/j.1742-4658.2006.05360.x |
SSID | ssj0026052 |
Score | 2.4161315 |
Snippet | Cells maintain tensional homeostasis by monitoring the mechanics of their microenvironment. In order to understand this mechanotransduction phenomenon,... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1224 |
SubjectTerms | Biocompatible Materials - chemistry Biological properties Biomaterials Biomedical materials Combinatorial analysis Composite materials Controllability Decoupling Elastic properties Gene expression Homeostasis Hydrogels Hydrogels - chemistry Hydrogels - pharmacology loss tangent Mechanical properties Mechanics (physics) Mechanotransduction Mechanotransduction, Cellular - physiology Microenvironments microgel Microgels Phenotype Phenotypes Polyacrylamide Stiffness Substrates Thin films Tissues Viscoelasticity Viscosity |
Title | Elucidating the combinatorial effect of substrate stiffness and surface viscoelasticity on cellular phenotype |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbm.a.37367 https://www.ncbi.nlm.nih.gov/pubmed/35107204 https://www.proquest.com/docview/2647068636 https://www.proquest.com/docview/2624947722 https://pubmed.ncbi.nlm.nih.gov/PMC9305170 |
Volume | 110 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4VTuVAHzwaSpGROIGyZG0n2RxpC0JIIIRA4hb5CdtCgshupfbXd8YJ6W6pKrW3KJ687JnxfM7MZ4AdpxBXZUUWG1nYWCrErBhloC4nfphrqUZah2yLs-z4Sp5cp9ddbg7VwrT8EP2CG1lG8Ndk4Eo3-79IQ7_o-4EaiFxkVEs-FBkx53--6MmjKFAP_zoRAcWCF1lXnYct-zPXzs9Hz4LM57mSszFsmISOXrU7rTaBu5ByT74OphM9MD9-Y3b87-97DctdeMoOWn16Ay9c9RaWZkgLV-D-8G5qxlQVUd0wDB8Z3hjhNYF31GXWJoiw2rMGfVLgvmXoRrwnn8pUZfH8o1fGsW_jxtQOo3dK7J58Z3XF6DcC5cUyyjyraXl4Fa6ODi8_Hcfdpg042inPY-28S7kdydQXXhpruRIjL9LMWKGHidMqdzQ01tqhkC71SWGNMVzq3HqEy2INFqu6cu-AFcKYNE88oVC6d6HROdGMihjTe28i2H0autJ0jOa0scZd2XIx8xL7sFRl6MMIdnrhh5bI489im086UHbW3JQYNOZUSiOyCLb7ZrRD6hVVuXpKMghkJWIVHsF6qzL9cwQ6PtoMKIJ8Tpl6AeL4nm-pxreB67sQRKKWRLAXdOVvr16efDw9CEcb_yT9Hl5yqukIS0ubsDh5nLoPGGlN9BYscHm-FczqJ9kjKN4 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB619ND2UNEXNYWylTi1MjjetTc-AgIFCqgHkLit9gmpwK5IgtR_35m1cROBKnGzspPY2dmZnW888y3ApteIq8qqTK2oXCo0YlaMMnAtZ2EgjdBDY2K1xWk5OhdHF8VFl3CjXpiWH6JPuJFlRH9NBk4J6e1_rKG_zM2W3uKSl_I5vBAlghdidhY_e8CFoXp824kYKOV5VXb9eTiyPfflxR3pQZj5sFpyPoqN29DBMrzp4ke20yr8LTzz9Tt4Pccq-B5u9q9ndkxtC_Ulw_iO4T9D_EvoGhcbays4WBPYBJ1GJKdlaOchkNNjunb4-W3Q1rO78cQ2HsNrqrye_mFNzSjPT4WrjErDGsrffoDzg_2zvVHanaqA6ihymRoffJG7oShCFYR1Ltd8GHhRWsfNIPNGS08z55wbcOGLkFXOWpsLI11APMs_wlLd1P4TsIpbW8gsEEyk364Meg_a8hAEhhBsAt_uZ1bZjnKcTr64Vi1Zcq5QDUqrqIYENnvh3y3TxuNia_cqUp25TRRGdZJ6XXiZwNd-GA2FZkXXvpmRDCJNgWAiT2Cl1Wh_H46eiU7rSUAu6LoXIBLuxZF6fBXJuCtOLGdZAt_jqvjfo6uj3ZOdeLX6JOkNeDk6OzlWx4enPz7Dq5waMGIeaA2Wprczv45h0dR8iWv_L0dkCtQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkRAcEG8CLRipJ1DarO3Em2Nfq1Kg6oFKvVl-lkVtUnV3kfj3zDhp2FURErdoPbvJeh6ez5n5DLAZDOKqqq5yJ2ufS4OYFbMMtOUijpSVZmxtqrY4rg5P5dFZedbX5lAvTMcPMWy4kWekeE0OfuXj9h_S0B_2cstsCSUqdRfuSbQ8MnAuTwa8hZl6etmJECgXvK769jwc2V768uqCdCvLvF0suZzEplVo8hge9ekj2-n0_QTuhOYpPFwiFXwGlwcXCzelroXmnGF6x_CPIfwlcI22xroCDtZGNsOYkbhpGbp5jBTzmGk8fn4djQvs53Tm2oDZNRVez3-xtmG0zU91q4wqw1ravn0Op5ODb3uHeX-oAmqj5Cq3IYaS-7EsYx2l854bMY6irJwXdlQEa1SgmfPej4QMZSxq75zj0iofEc6KF7DWtE14BawWzpWqiIQS6bdri8GDVjzEgDFGl8GHm5nVrmccp4MvLnTHlcw1qkEbndSQweYgfNURbfxdbP1GRbr3tpnGpE5Rq4uoMng_DKOf0KyYJrQLkkGgKRFL8Axedhod7iMwMNFhPRmoFV0PAsTBvTrSTL8nLu5aEMlZkcHHZBX_enR9tPt1J129_i_pd3D_ZH-iv3w6_vwGHnBqv0i7QOuwNr9ehA1Miub2bTL939FHCg8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elucidating+the+combinatorial+effect+of+substrate+stiffness+and+surface+viscoelasticity+on+cellular+phenotype&rft.jtitle=Journal+of+biomedical+materials+research.+Part+A&rft.au=Chester%2C+Daniel&rft.au=Lee%2C+Veronica&rft.au=Wagner%2C+Paul&rft.au=Nordberg%2C+Matthew&rft.date=2022-06-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1549-3296&rft.eissn=1552-4965&rft.volume=110&rft.issue=6&rft.spage=1224&rft.epage=1237&rft_id=info:doi/10.1002%2Fjbm.a.37367&rft_id=info%3Apmid%2F35107204&rft.externalDocID=PMC9305170 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-3296&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-3296&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-3296&client=summon |