Elucidating the combinatorial effect of substrate stiffness and surface viscoelasticity on cellular phenotype

Cells maintain tensional homeostasis by monitoring the mechanics of their microenvironment. In order to understand this mechanotransduction phenomenon, hydrogel materials have been developed with either controllable linear elastic or viscoelastic properties. Native biological tissues, and biomateria...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomedical materials research. Part A Vol. 110; no. 6; pp. 1224 - 1237
Main Authors Chester, Daniel, Lee, Veronica, Wagner, Paul, Nordberg, Matthew, Fisher, Matthew B., Brown, Ashley C.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.06.2022
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1549-3296
1552-4965
1552-4965
DOI10.1002/jbm.a.37367

Cover

Abstract Cells maintain tensional homeostasis by monitoring the mechanics of their microenvironment. In order to understand this mechanotransduction phenomenon, hydrogel materials have been developed with either controllable linear elastic or viscoelastic properties. Native biological tissues, and biomaterials used for medical purposes, often have complex mechanical properties. However, due to the difficulty in completely decoupling the elastic and viscous components of hydrogel materials, the effect of complex composite materials on cellular responses has largely gone unreported. Here, we characterize a novel composite hydrogel system capable of decoupling and individually controlling both the bulk stiffness and surface viscoelasticity of the material by combining polyacrylamide (PA) gels with microgel thin films. By taking advantage of the high degree of control over stiffness offered by PA gels and viscoelasticity, in terms of surface loss tangent, of microgel thin films, it is possible to study the influence that bulk substrate stiffness and surface loss tangent have on complex fibroblast responses, including cellular and nuclear morphology and gene expression. This material system provides a facile method for investigating cellular responses to complex material mechanics with great precision and allows for a greater understanding of cellular mechanotransduction mechanisms than previously possible through current model material platforms. A novel composite hydrogel system capable of decoupling and individually controlling both the bulk stiffness and surface viscoelasticity of the material by combining polyacrylamide gels with microgel thin films is described. Fibroblast cellular and nuclear morphological changes and changes in gene expression in response to a wide range of these parameters are characterized.
AbstractList Cells maintain tensional homeostasis by monitoring the mechanics of their microenvironment. In order to understand this mechanotransduction phenomenon, hydrogel materials have been developed with either controllable linear elastic or viscoelastic properties. Native biological tissues, and biomaterials used for medical purposes, often have complex mechanical properties. However, due to the difficulty in completely decoupling the elastic and viscous components of hydrogel materials, the effect of complex composite materials on cellular responses has largely gone unreported. Here, we characterize a novel composite hydrogel system capable of decoupling and individually controlling both the bulk stiffness and surface viscoelasticity of the material by combining polyacrylamide (PA) gels with microgel thin films. By taking advantage of the high degree of control over stiffness offered by PA gels and viscoelasticity, in terms of surface loss tangent, of microgel thin films, it is possible to study the influence that bulk substrate stiffness and surface loss tangent have on complex fibroblast responses, including cellular and nuclear morphology and gene expression. This material system provides a facile method for investigating cellular responses to complex material mechanics with great precision and allows for a greater understanding of cellular mechanotransduction mechanisms than previously possible through current model material platforms. A novel composite hydrogel system capable of decoupling and individually controlling both the bulk stiffness and surface viscoelasticity of the material by combining polyacrylamide gels with microgel thin films is described. Fibroblast cellular and nuclear morphological changes and changes in gene expression in response to a wide range of these parameters are characterized.
Cells maintain tensional homeostasis by monitoring the mechanics of their microenvironment. In order to understand this mechanotransduction phenomenon, hydrogel materials have been developed with either controllable linear elastic or viscoelastic properties. Native biological tissues, and biomaterials used for medical purposes, often have complex mechanical properties. However, due to the difficulty in completely decoupling the elastic and viscous components of hydrogel materials, the effect of complex composite materials on cellular responses has largely gone unreported. Here, we characterize a novel composite hydrogel system capable of decoupling and individually controlling both the bulk stiffness and surface viscoelasticity of the material by combining polyacrylamide (PA) gels with microgel thin films. By taking advantage of the high degree of control over stiffness offered by PA gels and viscoelasticity, in terms of surface loss tangent, of microgel thin films, it is possible to study the influence that bulk substrate stiffness and surface loss tangent have on complex fibroblast responses, including cellular and nuclear morphology and gene expression. This material system provides a facile method for investigating cellular responses to complex material mechanics with great precision and allows for a greater understanding of cellular mechanotransduction mechanisms than previously possible through current model material platforms.Cells maintain tensional homeostasis by monitoring the mechanics of their microenvironment. In order to understand this mechanotransduction phenomenon, hydrogel materials have been developed with either controllable linear elastic or viscoelastic properties. Native biological tissues, and biomaterials used for medical purposes, often have complex mechanical properties. However, due to the difficulty in completely decoupling the elastic and viscous components of hydrogel materials, the effect of complex composite materials on cellular responses has largely gone unreported. Here, we characterize a novel composite hydrogel system capable of decoupling and individually controlling both the bulk stiffness and surface viscoelasticity of the material by combining polyacrylamide (PA) gels with microgel thin films. By taking advantage of the high degree of control over stiffness offered by PA gels and viscoelasticity, in terms of surface loss tangent, of microgel thin films, it is possible to study the influence that bulk substrate stiffness and surface loss tangent have on complex fibroblast responses, including cellular and nuclear morphology and gene expression. This material system provides a facile method for investigating cellular responses to complex material mechanics with great precision and allows for a greater understanding of cellular mechanotransduction mechanisms than previously possible through current model material platforms.
Cells maintain tensional homeostasis by monitoring the mechanics of their microenvironment. In order to understand this mechanotransduction phenomenon, hydrogel materials have been developed with either controllable linear elastic or viscoelastic properties. Native biological tissues, and biomaterials used for medical purposes, often have complex mechanical properties. However, due to the difficulty in completely decoupling the elastic and viscous components of hydrogel materials, the effect of complex composite materials on cellular responses has largely gone unreported. Here, we characterize a novel composite hydrogel system capable of decoupling and individually controlling both the bulk stiffness and surface viscoelasticity of the material by combining polyacrylamide (PA) gels with microgel thin films. By taking advantage of the high degree of control over stiffness offered by PA gels and viscoelasticity, in terms of surface loss tangent, of microgel thin films, it is possible to study the influence that bulk substrate stiffness and surface loss tangent have on complex fibroblast responses, including cellular and nuclear morphology and gene expression. This material system provides a facile method for investigating cellular responses to complex material mechanics with great precision and allows for a greater understanding of cellular mechanotransduction mechanisms than previously possible through current model material platforms.
Author Brown, Ashley C.
Chester, Daniel
Lee, Veronica
Nordberg, Matthew
Wagner, Paul
Fisher, Matthew B.
AuthorAffiliation 2 Comparative Medicine Institute North Carolina State University Raleigh North Carolina USA
1 Joint Department of Biomedical Engineering University of North Carolina at Chapel Hill and North Carolina State University Raleigh North Carolina USA
3 Department of Materials Science and Engineering North Carolina State University Raleigh North Carolina USA
AuthorAffiliation_xml – name: 1 Joint Department of Biomedical Engineering University of North Carolina at Chapel Hill and North Carolina State University Raleigh North Carolina USA
– name: 2 Comparative Medicine Institute North Carolina State University Raleigh North Carolina USA
– name: 3 Department of Materials Science and Engineering North Carolina State University Raleigh North Carolina USA
Author_xml – sequence: 1
  givenname: Daniel
  surname: Chester
  fullname: Chester, Daniel
  organization: North Carolina State University
– sequence: 2
  givenname: Veronica
  surname: Lee
  fullname: Lee, Veronica
  organization: University of North Carolina at Chapel Hill and North Carolina State University
– sequence: 3
  givenname: Paul
  surname: Wagner
  fullname: Wagner, Paul
  organization: North Carolina State University
– sequence: 4
  givenname: Matthew
  surname: Nordberg
  fullname: Nordberg, Matthew
  organization: University of North Carolina at Chapel Hill and North Carolina State University
– sequence: 5
  givenname: Matthew B.
  orcidid: 0000-0002-3212-0870
  surname: Fisher
  fullname: Fisher, Matthew B.
  organization: North Carolina State University
– sequence: 6
  givenname: Ashley C.
  orcidid: 0000-0001-6995-1785
  surname: Brown
  fullname: Brown, Ashley C.
  email: aecarso2@ncsu.edu
  organization: North Carolina State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35107204$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1rVDEUxYNU7Ieu3EvAjSAz5uXjZd5GaEv9ouJG1yEvuelkyEvGJK8y_70ZpxUt4ioh93cP5-ScoqOYIiD0vCPLjhD6ZjNOS71kkvXyETrphKALPvTiaH_nw4LRoT9Gp6VsGtwTQZ-gYyY6IinhJ2i6CrPxVlcfb3BdAzZpGn3UNWWvAwbnwFScHC7zWGrWFXCp3rkIpWAdbXvPThvAt76YBEG3qfF1h1PEBkKYg854u4aY6m4LT9Fjp0OBZ3fnGfr27urr5YfF9Zf3Hy_PrxeGCyoXIzgQ1K64cIPjxlqq2cox0RvLxo7AqCXso1hrO8ZBODJYYwzlo7SOrRg7Q28Putt5nMAaiM16UNvsJ513Kmmv_p5Ev1Y36VYNjIhOkibw6k4gp-8zlKqmlq_l0RHSXBTtKR-4lJQ29OUDdJPmHFu8RnFJ-lXP-ka9-NPRbyv3TTSgOwAmp1IyONW-sdWS9gZ9UB1R-7ZVa1tp9avttvP6wc697L9peqB_-AC7_6Hq08Xn88PST2ssv0w
CitedBy_id crossref_primary_10_1111_wrr_13168
crossref_primary_10_1002_adfm_202304674
crossref_primary_10_1016_j_mbplus_2024_100150
crossref_primary_10_1038_s41598_023_29252_1
crossref_primary_10_1021_acs_macromol_3c00557
crossref_primary_10_1002_asia_202200797
Cites_doi 10.1038/s41467-018-02906-9
10.1016/j.bpj.2014.04.051
10.1021/am9005435
10.1038/nnano.2012.163
10.1021/acsmacrolett.5b00016
10.1038/nmat4489
10.1016/j.medengphy.2014.04.002
10.1513/pats.200708-146DR
10.1097/HJH.0b013e3280112ce5
10.1038/nature05915
10.1016/j.jmbbm.2018.09.031
10.3390/ma10080889
10.1016/j.jmbbm.2016.07.018
10.1002/path.4114
10.1016/j.bbadis.2016.11.006
10.3390/polym7121539
10.1002/cm.20041
10.1016/j.bpj.2013.10.008
10.1164/ajrccm.162.4.9912011
10.1088/0953-8984/22/19/194116
10.1016/j.biomaterials.2009.09.002
10.1016/j.cell.2006.06.044
10.1186/1755-1536-5-S1-S24
10.1002/term.136
10.1148/radiol.2017160622
10.1021/acsnano.8b01977
10.1039/b906051k
10.1089/wound.2011.0321
10.1126/science.1116995
10.1096/fj.03-0699com
10.1039/C7BM00261K
10.1021/acsami.5b09344
10.1161/CIRCRESAHA.108.173989
10.1529/biophysj.106.101386
10.1242/dmm.004077
10.1016/j.biomaterials.2007.08.006
10.1088/0967-3334/34/1/53
10.1007/s41048-020-00110-1
10.1038/s41409-019-0679-x
10.1016/j.biomaterials.2011.04.003
10.1073/pnas.1618239114
10.1007/s12195-013-0270-2
10.1098/rsob.140046
10.1016/S0006-3495(04)74140-5
10.1039/C3SM52518J
10.1083/jcb.111.1.1
10.1021/la402062t
10.1002/adbi.201800042
10.1016/j.biomaterials.2018.09.012
10.1002/0471143030.cb1016s47
10.1021/acs.langmuir.7b02801
10.1103/PhysRevE.82.041918
10.1074/jbc.M010722200
10.1016/B978-0-12-394624-9.00007-5
10.1167/iovs.11-8450
10.1007/s11926-007-0008-z
10.1111/j.1742-4658.2006.05360.x
ContentType Journal Article
Copyright 2022 The Authors. published by Wiley Periodicals LLC.
2022 The Authors. Journal of Biomedical Materials Research Part A published by Wiley Periodicals LLC.
2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by Wiley Periodicals LLC.
– notice: 2022 The Authors. Journal of Biomedical Materials Research Part A published by Wiley Periodicals LLC.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
5PM
DOI 10.1002/jbm.a.37367
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

CrossRef
Materials Research Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Chester et al
EISSN 1552-4965
EndPage 1237
ExternalDocumentID PMC9305170
35107204
10_1002_jbm_a_37367
JBMA37367
Genre article
Journal Article
GrantInformation_xml – fundername: Division of Civil, Mechanical and Manufacturing Innovation
  funderid: 1825398
– fundername: Division of Civil, Mechanical and Manufacturing Innovation
  grantid: 1825398
– fundername: ;
  grantid: 1825398
GroupedDBID ---
-~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
1ZS
24P
31~
33P
4.4
4ZD
50Z
51W
51X
52N
52O
52P
52S
52T
52W
52X
53G
5GY
5VS
66C
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AZBYB
AZFZN
BAFTC
BDRZF
BFHJK
BROTX
BRXPI
BY8
CO8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
J0M
JPC
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
QB0
QRW
R.K
RNS
ROL
RWI
RYL
SUPJJ
SV3
UB1
V2E
W8V
W99
WIH
WIK
WJL
WQJ
WRC
WXSBR
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
1OB
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
5PM
ID FETCH-LOGICAL-c4527-befe52d845f9f4cdd2a38f356cd3b10eba7e2605ddd134e5f09dccc24b7df3833
IEDL.DBID DR2
ISSN 1549-3296
1552-4965
IngestDate Thu Aug 21 14:14:34 EDT 2025
Thu Sep 04 22:56:34 EDT 2025
Wed Aug 13 06:57:20 EDT 2025
Thu Apr 03 07:09:31 EDT 2025
Thu Apr 24 22:58:54 EDT 2025
Tue Jul 01 00:57:52 EDT 2025
Wed Jan 22 16:24:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords microgel
loss tangent
mechanotransduction
viscoelasticity
Language English
License Attribution-NonCommercial
2022 The Authors. Journal of Biomedical Materials Research Part A published by Wiley Periodicals LLC.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4527-befe52d845f9f4cdd2a38f356cd3b10eba7e2605ddd134e5f09dccc24b7df3833
Notes Funding information
Division of Civil, Mechanical and Manufacturing Innovation, Grant/Award Number: 1825398
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Funding information Division of Civil, Mechanical and Manufacturing Innovation, Grant/Award Number: 1825398
ORCID 0000-0002-3212-0870
0000-0001-6995-1785
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbm.a.37367
PMID 35107204
PQID 2647068636
PQPubID 2034572
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9305170
proquest_miscellaneous_2624947722
proquest_journals_2647068636
pubmed_primary_35107204
crossref_citationtrail_10_1002_jbm_a_37367
crossref_primary_10_1002_jbm_a_37367
wiley_primary_10_1002_jbm_a_37367_JBMA37367
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2022
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Mount Laurel
PublicationTitle Journal of biomedical materials research. Part A
PublicationTitleAlternate J Biomed Mater Res A
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2017; 5
2013; 29
2013; 2
2017; 1863
2008; 5
2020; 55
2005; 60
2008; 102
2017; 114
2013; 6
2012; 53
2007; 28
2010; 22
2018; 9
2020; 6
2018; 2
2014; 4
2007; 9
2000; 162
2017; 284
2018; 34
2006; 126
2014; 126
2007; 25
2014; 10
2018; 185
2004; 86
2015; 4
2007; 447
2013; 229
2005; 310
1857; 2014
2013; 105
2006; 273
2011; 32
2007; 93
2011; 4
2016; 15
2015; 7
2010; 82
2014; 107
2001; 276
1972; 2002
2009; 30
2010; 47
2018; 2015
2004; 18
2013; 34
2017; 10
2019; 89
2016; 64
2014; 36
2009; 5
2009; 3
2018; 12
2012; 7
2009; 1
2000; 2013
1990; 111
2012; 5
2016; 8
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Cameron AR (e_1_2_8_9_1) 1857; 2014
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
Thomas CH (e_1_2_8_44_1) 1972; 2002
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_48_1
Bachman H (e_1_2_8_27_1) 2018; 2015
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_40_1
e_1_2_8_61_1
Hinz B (e_1_2_8_7_1) 2000; 2013
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 93
  start-page: 4453
  year: 2007
  end-page: 4461
  article-title: Fibroblast adaptation and stiffness matching to soft elastic substrates
  publication-title: Biophys J
– volume: 12
  start-page: 7826
  year: 2018
  end-page: 7837
  article-title: Targeted treatment of ischemic and fibrotic complications of myocardial infarction using a dual‐delivery microgel therapeutic
  publication-title: ACS Nano
– volume: 64
  start-page: 10
  year: 2016
  end-page: 17
  article-title: Frequency‐modulated atomic force microscopy localises viscoelastic remodelling in the ageing sheep aorta
  publication-title: J Mech Behav Biomed Mater
– volume: 29
  start-page: 9581
  year: 2013
  end-page: 9591
  article-title: Controlling the synthesis and characterization of micrometer‐sized PNIPAM microgels with tailored morphologies
  publication-title: Langmuir
– volume: 3
  start-page: 77
  year: 2009
  end-page: 84
  article-title: Close dependence of fibroblast proliferation on collagen scaffold matrix stiffness
  publication-title: J Tissue Eng Regen Med
– volume: 102
  start-page: 1307
  year: 2008
  end-page: 1318
  article-title: Nuclear shape, mechanics, and mechanotransduction
  publication-title: Circ Res
– volume: 10
  start-page: 889
  issue: 8
  year: 2017
  article-title: Micro‐mechanical viscoelastic properties of crosslinked hydrogels using the nano‐epsilon dot method
  publication-title: Materials
– volume: 2002
  start-page: 99
  year: 1972
  end-page: 1977
  article-title: Engineering gene expression and protein synthesis by modulation of nuclear shape
  publication-title: Proc Natl Acad Sci USA
– volume: 447
  start-page: 407
  year: 2007
  end-page: 412
  article-title: The complex language of chromatin regulation during transcription
  publication-title: Nature
– volume: 8
  start-page: 21893
  year: 2016
  end-page: 21902
  article-title: Tuning the range of polyacrylamide gel stiffness for mechanobiology applications
  publication-title: ACS Appl Mater Interfaces
– volume: 114
  start-page: 5647
  year: 2017
  end-page: 5652
  article-title: Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels
  publication-title: Proc Natl Acad Sci
– volume: 105
  start-page: 2240
  year: 2013
  end-page: 2251
  article-title: Cells actively stiffen fibrin networks by generating contractile stress
  publication-title: Biophys J
– volume: 32
  start-page: 5979
  year: 2011
  end-page: 5993
  article-title: The influence of substrate creep on mesenchymal stem cell behaviour and phenotype
  publication-title: Biomaterials
– volume: 9
  start-page: 449
  year: 2018
  article-title: Control of cell morphology and differentiation by substrates with independently tunable elasticity and viscous dissipation
  publication-title: Nat Commun
– volume: 4
  start-page: 302
  year: 2015
  end-page: 307
  article-title: Thin films constructed by centrifugal deposition of highly deformable, charged microgels
  publication-title: ACS Macro Lett
– volume: 4
  year: 2014
  article-title: Atomic force microscopy‐based microrheology reveals significant differences in the viscoelastic response between malign and benign cell lines
  publication-title: Open Biol
– volume: 9
  start-page: 136
  year: 2007
  end-page: 143
  article-title: New developments in fibroblast and myofibroblast biology: implications for fibrosis and scleroderma
  publication-title: Curr Rheumatol Rep
– volume: 276
  start-page: 16797
  year: 2001
  end-page: 16803
  article-title: Static pressure regulates connective tissue growth factor expression in human mesangial cells
  publication-title: J Biol Chem
– volume: 310
  start-page: 1139
  year: 2005
  end-page: 1143
  article-title: Tissue cells feel and respond to the stiffness of their substrate
  publication-title: Science
– volume: 7
  start-page: 733
  year: 2012
  end-page: 736
  article-title: Determination of the elastic moduli of thin samples and adherent cells using conical atomic force microscope tips
  publication-title: Nat Nanotechnol
– volume: 34
  start-page: 53
  year: 2013
  end-page: 66
  article-title: Effect of viscoelastic properties of plantar soft tissues on plantar pressures at the first metatarsal head in diabetics with peripheral neuropathy
  publication-title: Physiol Meas
– volume: 6
  start-page: 137
  year: 2020
  end-page: 145
  article-title: Measurement of viscoelastic properties of injured mouse brain after controlled cortical impact
  publication-title: Biophys Rep
– volume: 10
  start-page: 1356
  year: 2014
  end-page: 1364
  article-title: Microgel film dynamics modulate cell adhesion behavior
  publication-title: Soft Matter
– volume: 5
  start-page: 1480
  year: 2017
  end-page: 1490
  article-title: Viscoelastic hydrogels for 3D cell culture
  publication-title: Biomater Sci
– volume: 273
  start-page: 3639
  year: 2006
  end-page: 3649
  article-title: Mechanical regulation of the Cyr61/CCN1 and CTGF/CCN2 proteins
  publication-title: FEBS J
– volume: 5
  start-page: 3682
  year: 2009
  article-title: Mechanical properties of individual microgel particles through the deswelling transition
  publication-title: Soft Matter
– volume: 22
  year: 2010
  article-title: How deeply cells feel: methods for thin gels
  publication-title: J Phys Condens Matter
– volume: 89
  start-page: 162
  year: 2019
  end-page: 167
  article-title: Engineering hydrogel viscoelasticity
  publication-title: J Mech Behav Biomed Mater
– volume: 162
  start-page: 1569
  year: 2000
  end-page: 1576
  article-title: Changes in extracellular matrix and tissue viscoelasticity in bleomycin‐induced lung fibrosis
  publication-title: Am J Respir Crit Care Med
– volume: 111
  start-page: 1
  year: 1990
  end-page: 8
  article-title: The permeability of the nuclear envelope in dividing and nondividing cell cultures
  publication-title: J Cell Biol
– volume: 229
  start-page: 25
  year: 2013
  end-page: 35
  article-title: Physical and chemical microenvironmental cues orthogonally control the degree and duration of fibrosis‐associated epithelial‐to‐mesenchymal transitions
  publication-title: J Pathol
– volume: 82
  year: 2010
  article-title: Mechanosensing of substrate thickness
  publication-title: Phys Rev E Stat Nonlinear Soft Matter Phys
– volume: 5
  start-page: S24
  year: 2012
  article-title: CTGF is a central mediator of tissue remodeling and fibrosis and its inhibition can reverse the process of fibrosis
  publication-title: Fibrogenesis Tissue Repair
– volume: 5
  start-page: 334
  year: 2008
  end-page: 337
  article-title: Biology of fibroblasts and myofibroblasts
  publication-title: Proc Am Thorac Soc
– volume: 30
  start-page: 6867
  year: 2009
  end-page: 6878
  article-title: The effect of substrate stiffness on adult neural stem cell behavior
  publication-title: Biomaterials
– volume: 284
  start-page: 694
  year: 2017
  end-page: 705
  article-title: Distinguishing between hepatic inflammation and fibrosis with MR elastography
  publication-title: Radiology
– volume: 1
  start-page: 2747
  year: 2009
  end-page: 2754
  article-title: Centrifugal deposition of microgels for the rapid assembly of nonfouling thin films
  publication-title: ACS Appl Mater Interfaces
– volume: 86
  start-page: 617
  year: 2004
  end-page: 628
  article-title: Substrate compliance versus ligand density in cell on gel responses
  publication-title: Biophys J
– volume: 2015
  start-page: 11
  year: 2018
  end-page: 2028
  article-title: Ultrasoft, highly deformable microgels
  publication-title: Soft Matter
– volume: 4
  start-page: 165
  year: 2011
  end-page: 178
  article-title: Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer
  publication-title: Dis Model Mech
– volume: 36
  start-page: 1401
  year: 2014
  end-page: 1407
  article-title: Quantitative analysis of liver fibrosis in rats with shearwave dispersion ultrasound vibrometry: comparison with dynamic mechanical analysis
  publication-title: Med Eng Phys
– volume: 47
  start-page: 10
  issue: 1
  year: 2010
  end-page: 16
  article-title: Preparation of hydrogel substrates with tunable mechanical properties
  publication-title: Curr Protoc Cell Biol
– volume: 107
  start-page: 146
  year: 2014
  end-page: 155
  article-title: Tensional homeostasis in single fibroblasts
  publication-title: Biophys J
– volume: 34
  start-page: 1457
  year: 2018
  end-page: 1465
  article-title: Study of poly(N‐isopropylacrylamide‐co‐acrylic acid) (pNIPAM) microgel particle induced deformations of tissue‐mimicking phantom by ultrasound stimulation
  publication-title: Langmuir
– volume: 126
  start-page: 157
  year: 2014
  article-title: The cellular mastermind(?)—mechanotransduction and the nucleus
  publication-title: Prog Mol Biol Transl Sci
– volume: 2014
  start-page: 35
  year: 1857
  end-page: 1868
  article-title: The effect of time‐dependent deformation of viscoelastic hydrogels on myogenic induction and Rac1 activity in mesenchymal stem cells
  publication-title: Biomaterials
– volume: 1863
  start-page: 298
  year: 2017
  end-page: 309
  article-title: The role of α‐smooth muscle actin in fibroblast‐mediated matrix contraction and remodeling
  publication-title: Biochim Biophys Acta Mol Basis Dis
– volume: 15
  start-page: 326
  year: 2016
  end-page: 334
  article-title: Hydrogels with tunable stress relaxation regulate stem cell fate and activity
  publication-title: Nat Mater
– volume: 6
  start-page: 230
  year: 2013
  end-page: 238
  article-title: Modulation of nuclear shape by substrate rigidity
  publication-title: Cell Mol Bioeng
– volume: 53
  start-page: 3014
  year: 2012
  end-page: 3019
  article-title: Müller cell expression of genes implicated in proliferative vitreoretinopathy is influenced by substrate elastic modulus
  publication-title: Investig Opthalmol Visual Sci
– volume: 60
  start-page: 24
  year: 2005
  end-page: 34
  article-title: Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion
  publication-title: Cell Motil Cytoskeleton
– volume: 2
  start-page: 2
  year: 2018
  article-title: Biomimetic microgels with controllable deformability improve healing outcomes
  publication-title: Adv Biosyst
– volume: 18
  start-page: 469
  year: 2004
  end-page: 479
  article-title: Combinatorial signaling pathways determine fibroblast proliferation and myofibroblast differentiation
  publication-title: FASEB J
– volume: 185
  start-page: 371
  year: 2018
  end-page: 382
  article-title: Viscoelastic properties of microgel thin films control fibroblast modes of migration and pro‐fibrotic responses
  publication-title: Biomaterials
– volume: 55
  start-page: 675
  year: 2020
  end-page: 680
  article-title: Cubic splines to model relationships between continuous variables and outcomes: a guide for clinicians
  publication-title: Bone Marrow Transplant
– volume: 25
  start-page: 629
  year: 2007
  end-page: 638
  article-title: Interactions between aldosterone and connective tissue growth factor in vascular and renal damage in spontaneously hypertensive rats
  publication-title: J Hypertens
– volume: 2013
  start-page: 14
  issue: 63
  year: 2000
  end-page: 28
  article-title: Matrix mechanics and regulation of the fibroblast phenotype
  publication-title: Periodontol
– volume: 7
  start-page: 2650
  year: 2015
  end-page: 2669
  article-title: Tailoring hydrogel viscoelasticity with physical and chemical crosslinking
  publication-title: Polymers
– volume: 2
  start-page: 37
  year: 2013
  end-page: 43
  article-title: Biomechanics of scar tissue and uninjured skin
  publication-title: Adv Wound Care
– volume: 126
  start-page: 677
  year: 2006
  end-page: 689
  article-title: Matrix elasticity directs stem cell lineage specification
  publication-title: Cell
– volume: 28
  start-page: 4968
  year: 2007
  end-page: 4977
  article-title: The mechanical properties of the skin epidermis in relation to targeted gene and drug delivery
  publication-title: Biomaterials
– ident: e_1_2_8_12_1
  doi: 10.1038/s41467-018-02906-9
– ident: e_1_2_8_47_1
  doi: 10.1016/j.bpj.2014.04.051
– ident: e_1_2_8_20_1
  doi: 10.1021/am9005435
– ident: e_1_2_8_49_1
  doi: 10.1038/nnano.2012.163
– ident: e_1_2_8_21_1
  doi: 10.1021/acsmacrolett.5b00016
– ident: e_1_2_8_10_1
  doi: 10.1038/nmat4489
– ident: e_1_2_8_39_1
  doi: 10.1016/j.medengphy.2014.04.002
– ident: e_1_2_8_41_1
  doi: 10.1513/pats.200708-146DR
– volume: 2002
  start-page: 99
  year: 1972
  ident: e_1_2_8_44_1
  article-title: Engineering gene expression and protein synthesis by modulation of nuclear shape
  publication-title: Proc Natl Acad Sci USA
– ident: e_1_2_8_61_1
  doi: 10.1097/HJH.0b013e3280112ce5
– ident: e_1_2_8_42_1
  doi: 10.1038/nature05915
– ident: e_1_2_8_14_1
  doi: 10.1016/j.jmbbm.2018.09.031
– volume: 2014
  start-page: 35
  year: 1857
  ident: e_1_2_8_9_1
  article-title: The effect of time‐dependent deformation of viscoelastic hydrogels on myogenic induction and Rac1 activity in mesenchymal stem cells
  publication-title: Biomaterials
– ident: e_1_2_8_13_1
  doi: 10.3390/ma10080889
– ident: e_1_2_8_52_1
  doi: 10.1016/j.jmbbm.2016.07.018
– ident: e_1_2_8_33_1
  doi: 10.1002/path.4114
– ident: e_1_2_8_46_1
  doi: 10.1016/j.bbadis.2016.11.006
– ident: e_1_2_8_53_1
  doi: 10.3390/polym7121539
– ident: e_1_2_8_35_1
  doi: 10.1002/cm.20041
– ident: e_1_2_8_54_1
  doi: 10.1016/j.bpj.2013.10.008
– ident: e_1_2_8_38_1
  doi: 10.1164/ajrccm.162.4.9912011
– ident: e_1_2_8_30_1
  doi: 10.1088/0953-8984/22/19/194116
– ident: e_1_2_8_5_1
  doi: 10.1016/j.biomaterials.2009.09.002
– ident: e_1_2_8_3_1
  doi: 10.1016/j.cell.2006.06.044
– ident: e_1_2_8_58_1
  doi: 10.1186/1755-1536-5-S1-S24
– ident: e_1_2_8_4_1
  doi: 10.1002/term.136
– ident: e_1_2_8_37_1
  doi: 10.1148/radiol.2017160622
– ident: e_1_2_8_19_1
  doi: 10.1021/acsnano.8b01977
– ident: e_1_2_8_16_1
  doi: 10.1039/b906051k
– volume: 2013
  start-page: 14
  issue: 63
  year: 2000
  ident: e_1_2_8_7_1
  article-title: Matrix mechanics and regulation of the fibroblast phenotype
  publication-title: Periodontol
– ident: e_1_2_8_55_1
  doi: 10.1089/wound.2011.0321
– ident: e_1_2_8_36_1
  doi: 10.1126/science.1116995
– ident: e_1_2_8_59_1
  doi: 10.1096/fj.03-0699com
– ident: e_1_2_8_11_1
  doi: 10.1039/C7BM00261K
– ident: e_1_2_8_22_1
  doi: 10.1021/acsami.5b09344
– ident: e_1_2_8_29_1
  doi: 10.1161/CIRCRESAHA.108.173989
– ident: e_1_2_8_48_1
  doi: 10.1529/biophysj.106.101386
– ident: e_1_2_8_6_1
  doi: 10.1242/dmm.004077
– ident: e_1_2_8_51_1
  doi: 10.1016/j.biomaterials.2007.08.006
– ident: e_1_2_8_56_1
  doi: 10.1088/0967-3334/34/1/53
– ident: e_1_2_8_57_1
  doi: 10.1007/s41048-020-00110-1
– ident: e_1_2_8_26_1
  doi: 10.1038/s41409-019-0679-x
– ident: e_1_2_8_8_1
  doi: 10.1016/j.biomaterials.2011.04.003
– ident: e_1_2_8_31_1
  doi: 10.1073/pnas.1618239114
– ident: e_1_2_8_32_1
  doi: 10.1007/s12195-013-0270-2
– ident: e_1_2_8_50_1
  doi: 10.1098/rsob.140046
– ident: e_1_2_8_2_1
  doi: 10.1016/S0006-3495(04)74140-5
– ident: e_1_2_8_28_1
  doi: 10.1039/C3SM52518J
– ident: e_1_2_8_43_1
  doi: 10.1083/jcb.111.1.1
– ident: e_1_2_8_15_1
  doi: 10.1021/la402062t
– ident: e_1_2_8_17_1
  doi: 10.1002/adbi.201800042
– ident: e_1_2_8_23_1
  doi: 10.1016/j.biomaterials.2018.09.012
– volume: 2015
  start-page: 11
  year: 2018
  ident: e_1_2_8_27_1
  article-title: Ultrasoft, highly deformable microgels
  publication-title: Soft Matter
– ident: e_1_2_8_25_1
  doi: 10.1002/0471143030.cb1016s47
– ident: e_1_2_8_18_1
  doi: 10.1021/acs.langmuir.7b02801
– ident: e_1_2_8_24_1
  doi: 10.1103/PhysRevE.82.041918
– ident: e_1_2_8_60_1
  doi: 10.1074/jbc.M010722200
– ident: e_1_2_8_45_1
  doi: 10.1016/B978-0-12-394624-9.00007-5
– ident: e_1_2_8_34_1
  doi: 10.1167/iovs.11-8450
– ident: e_1_2_8_40_1
  doi: 10.1007/s11926-007-0008-z
– ident: e_1_2_8_62_1
  doi: 10.1111/j.1742-4658.2006.05360.x
SSID ssj0026052
Score 2.4161315
Snippet Cells maintain tensional homeostasis by monitoring the mechanics of their microenvironment. In order to understand this mechanotransduction phenomenon,...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1224
SubjectTerms Biocompatible Materials - chemistry
Biological properties
Biomaterials
Biomedical materials
Combinatorial analysis
Composite materials
Controllability
Decoupling
Elastic properties
Gene expression
Homeostasis
Hydrogels
Hydrogels - chemistry
Hydrogels - pharmacology
loss tangent
Mechanical properties
Mechanics (physics)
Mechanotransduction
Mechanotransduction, Cellular - physiology
Microenvironments
microgel
Microgels
Phenotype
Phenotypes
Polyacrylamide
Stiffness
Substrates
Thin films
Tissues
Viscoelasticity
Viscosity
Title Elucidating the combinatorial effect of substrate stiffness and surface viscoelasticity on cellular phenotype
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbm.a.37367
https://www.ncbi.nlm.nih.gov/pubmed/35107204
https://www.proquest.com/docview/2647068636
https://www.proquest.com/docview/2624947722
https://pubmed.ncbi.nlm.nih.gov/PMC9305170
Volume 110
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4VTuVAHzwaSpGROIGyZG0n2RxpC0JIIIRA4hb5CdtCgshupfbXd8YJ6W6pKrW3KJ687JnxfM7MZ4AdpxBXZUUWG1nYWCrErBhloC4nfphrqUZah2yLs-z4Sp5cp9ddbg7VwrT8EP2CG1lG8Ndk4Eo3-79IQ7_o-4EaiFxkVEs-FBkx53--6MmjKFAP_zoRAcWCF1lXnYct-zPXzs9Hz4LM57mSszFsmISOXrU7rTaBu5ByT74OphM9MD9-Y3b87-97DctdeMoOWn16Ay9c9RaWZkgLV-D-8G5qxlQVUd0wDB8Z3hjhNYF31GXWJoiw2rMGfVLgvmXoRrwnn8pUZfH8o1fGsW_jxtQOo3dK7J58Z3XF6DcC5cUyyjyraXl4Fa6ODi8_Hcfdpg042inPY-28S7kdydQXXhpruRIjL9LMWKGHidMqdzQ01tqhkC71SWGNMVzq3HqEy2INFqu6cu-AFcKYNE88oVC6d6HROdGMihjTe28i2H0autJ0jOa0scZd2XIx8xL7sFRl6MMIdnrhh5bI489im086UHbW3JQYNOZUSiOyCLb7ZrRD6hVVuXpKMghkJWIVHsF6qzL9cwQ6PtoMKIJ8Tpl6AeL4nm-pxreB67sQRKKWRLAXdOVvr16efDw9CEcb_yT9Hl5yqukIS0ubsDh5nLoPGGlN9BYscHm-FczqJ9kjKN4
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB619ND2UNEXNYWylTi1MjjetTc-AgIFCqgHkLit9gmpwK5IgtR_35m1cROBKnGzspPY2dmZnW888y3ApteIq8qqTK2oXCo0YlaMMnAtZ2EgjdBDY2K1xWk5OhdHF8VFl3CjXpiWH6JPuJFlRH9NBk4J6e1_rKG_zM2W3uKSl_I5vBAlghdidhY_e8CFoXp824kYKOV5VXb9eTiyPfflxR3pQZj5sFpyPoqN29DBMrzp4ke20yr8LTzz9Tt4Pccq-B5u9q9ndkxtC_Ulw_iO4T9D_EvoGhcbays4WBPYBJ1GJKdlaOchkNNjunb4-W3Q1rO78cQ2HsNrqrye_mFNzSjPT4WrjErDGsrffoDzg_2zvVHanaqA6ihymRoffJG7oShCFYR1Ltd8GHhRWsfNIPNGS08z55wbcOGLkFXOWpsLI11APMs_wlLd1P4TsIpbW8gsEEyk364Meg_a8hAEhhBsAt_uZ1bZjnKcTr64Vi1Zcq5QDUqrqIYENnvh3y3TxuNia_cqUp25TRRGdZJ6XXiZwNd-GA2FZkXXvpmRDCJNgWAiT2Cl1Wh_H46eiU7rSUAu6LoXIBLuxZF6fBXJuCtOLGdZAt_jqvjfo6uj3ZOdeLX6JOkNeDk6OzlWx4enPz7Dq5waMGIeaA2Wprczv45h0dR8iWv_L0dkCtQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkRAcEG8CLRipJ1DarO3Em2Nfq1Kg6oFKvVl-lkVtUnV3kfj3zDhp2FURErdoPbvJeh6ez5n5DLAZDOKqqq5yJ2ufS4OYFbMMtOUijpSVZmxtqrY4rg5P5dFZedbX5lAvTMcPMWy4kWekeE0OfuXj9h_S0B_2cstsCSUqdRfuSbQ8MnAuTwa8hZl6etmJECgXvK769jwc2V768uqCdCvLvF0suZzEplVo8hge9ekj2-n0_QTuhOYpPFwiFXwGlwcXCzelroXmnGF6x_CPIfwlcI22xroCDtZGNsOYkbhpGbp5jBTzmGk8fn4djQvs53Tm2oDZNRVez3-xtmG0zU91q4wqw1ravn0Op5ODb3uHeX-oAmqj5Cq3IYaS-7EsYx2l854bMY6irJwXdlQEa1SgmfPej4QMZSxq75zj0iofEc6KF7DWtE14BawWzpWqiIQS6bdri8GDVjzEgDFGl8GHm5nVrmccp4MvLnTHlcw1qkEbndSQweYgfNURbfxdbP1GRbr3tpnGpE5Rq4uoMng_DKOf0KyYJrQLkkGgKRFL8Axedhod7iMwMNFhPRmoFV0PAsTBvTrSTL8nLu5aEMlZkcHHZBX_enR9tPt1J129_i_pd3D_ZH-iv3w6_vwGHnBqv0i7QOuwNr9ehA1Miub2bTL939FHCg8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elucidating+the+combinatorial+effect+of+substrate+stiffness+and+surface+viscoelasticity+on+cellular+phenotype&rft.jtitle=Journal+of+biomedical+materials+research.+Part+A&rft.au=Chester%2C+Daniel&rft.au=Lee%2C+Veronica&rft.au=Wagner%2C+Paul&rft.au=Nordberg%2C+Matthew&rft.date=2022-06-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1549-3296&rft.eissn=1552-4965&rft.volume=110&rft.issue=6&rft.spage=1224&rft.epage=1237&rft_id=info:doi/10.1002%2Fjbm.a.37367&rft_id=info%3Apmid%2F35107204&rft.externalDocID=PMC9305170
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-3296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-3296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-3296&client=summon