Unraveling hierarchical genetic structure in a marine metapopulation: A comparison of three high‐throughput genotyping approaches

Marine metapopulations often exhibit subtle population structure that can be difficult to detect. Given recent advances in high‐throughput sequencing, an emerging question is whether various genotyping approaches, in concert with improved sampling designs, will substantially improve our understandin...

Full description

Saved in:
Bibliographic Details
Published inMolecular ecology Vol. 29; no. 12; pp. 2189 - 2203
Main Authors D’Aloia, Cassidy C., Andrés, Jose A., Bogdanowicz, Steven M., McCune, Amy R., Harrison, Richard G., Buston, Peter M.
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.06.2020
Subjects
Online AccessGet full text
ISSN0962-1083
1365-294X
1365-294X
DOI10.1111/mec.15405

Cover

Abstract Marine metapopulations often exhibit subtle population structure that can be difficult to detect. Given recent advances in high‐throughput sequencing, an emerging question is whether various genotyping approaches, in concert with improved sampling designs, will substantially improve our understanding of genetic structure in the sea. To address this question, we explored hierarchical patterns of structure in the coral reef fish Elacatinus lori using a high‐resolution approach with respect to both genetic and geographic sampling. Previously, we identified three putative E. lori populations within Belize using traditional genetic markers and sparse geographic sampling: barrier reef and Turneffe Atoll; Glover's Atoll; and Lighthouse Atoll. Here, we systematically sampled individuals at ~10 km intervals throughout these reefs (1,129 individuals from 35 sites) and sequenced all individuals at three sets of markers: 2,418 SNPs; 89 microsatellites; and 57 nonrepetitive nuclear loci. At broad spatial scales, the markers were consistent with each other and with previous findings. At finer spatial scales, there was new evidence of genetic substructure, but our three marker sets differed slightly in their ability to detect these patterns. Specifically, we found subtle structure between the barrier reef and Turneffe Atoll, with SNPs resolving this pattern most effectively. We also documented isolation by distance within the barrier reef. Sensitivity analyses revealed that the number of loci (and alleles) had a strong effect on the detection of structure for all three marker sets, particularly at small spatial scales. Taken together, these results illustrate empirically that high‐throughput genotyping data can elucidate subtle genetic structure at previously‐undetected scales in a dispersive marine fish. see also the Perspective by Laura E. Timm.
AbstractList Marine metapopulations often exhibit subtle population structure that can be difficult to detect. Given recent advances in high-throughput sequencing, an emerging question is whether various genotyping approaches, in concert with improved sampling designs, will substantially improve our understanding of genetic structure in the sea. To address this question, we explored hierarchical patterns of structure in the coral reef fish Elacatinus lori using a high-resolution approach with respect to both genetic and geographic sampling. Previously, we identified three putative E. lori populations within Belize using traditional genetic markers and sparse geographic sampling: barrier reef and Turneffe Atoll; Glover's Atoll; and Lighthouse Atoll. Here, we systematically sampled individuals at ~10 km intervals throughout these reefs (1,129 individuals from 35 sites) and sequenced all individuals at three sets of markers: 2,418 SNPs; 89 microsatellites; and 57 nonrepetitive nuclear loci. At broad spatial scales, the markers were consistent with each other and with previous findings. At finer spatial scales, there was new evidence of genetic substructure, but our three marker sets differed slightly in their ability to detect these patterns. Specifically, we found subtle structure between the barrier reef and Turneffe Atoll, with SNPs resolving this pattern most effectively. We also documented isolation by distance within the barrier reef. Sensitivity analyses revealed that the number of loci (and alleles) had a strong effect on the detection of structure for all three marker sets, particularly at small spatial scales. Taken together, these results illustrate empirically that high-throughput genotyping data can elucidate subtle genetic structure at previously-undetected scales in a dispersive marine fish.
Marine metapopulations often exhibit subtle population structure that can be difficult to detect. Given recent advances in high‐throughput sequencing, an emerging question is whether various genotyping approaches, in concert with improved sampling designs, will substantially improve our understanding of genetic structure in the sea. To address this question, we explored hierarchical patterns of structure in the coral reef fish Elacatinus lori using a high‐resolution approach with respect to both genetic and geographic sampling. Previously, we identified three putative E. lori populations within Belize using traditional genetic markers and sparse geographic sampling: barrier reef and Turneffe Atoll; Glover's Atoll; and Lighthouse Atoll. Here, we systematically sampled individuals at ~10 km intervals throughout these reefs (1,129 individuals from 35 sites) and sequenced all individuals at three sets of markers: 2,418 SNPs; 89 microsatellites; and 57 nonrepetitive nuclear loci. At broad spatial scales, the markers were consistent with each other and with previous findings. At finer spatial scales, there was new evidence of genetic substructure, but our three marker sets differed slightly in their ability to detect these patterns. Specifically, we found subtle structure between the barrier reef and Turneffe Atoll, with SNPs resolving this pattern most effectively. We also documented isolation by distance within the barrier reef. Sensitivity analyses revealed that the number of loci (and alleles) had a strong effect on the detection of structure for all three marker sets, particularly at small spatial scales. Taken together, these results illustrate empirically that high‐throughput genotyping data can elucidate subtle genetic structure at previously‐undetected scales in a dispersive marine fish. see also the Perspective by Laura E. Timm.
Marine metapopulations often exhibit subtle population structure that can be difficult to detect. Given recent advances in high‐throughput sequencing, an emerging question is whether various genotyping approaches, in concert with improved sampling designs, will substantially improve our understanding of genetic structure in the sea. To address this question, we explored hierarchical patterns of structure in the coral reef fish Elacatinus lori using a high‐resolution approach with respect to both genetic and geographic sampling. Previously, we identified three putative E. lori populations within Belize using traditional genetic markers and sparse geographic sampling: barrier reef and Turneffe Atoll; Glover's Atoll; and Lighthouse Atoll. Here, we systematically sampled individuals at ~10 km intervals throughout these reefs (1,129 individuals from 35 sites) and sequenced all individuals at three sets of markers: 2,418 SNPs; 89 microsatellites; and 57 nonrepetitive nuclear loci. At broad spatial scales, the markers were consistent with each other and with previous findings. At finer spatial scales, there was new evidence of genetic substructure, but our three marker sets differed slightly in their ability to detect these patterns. Specifically, we found subtle structure between the barrier reef and Turneffe Atoll, with SNPs resolving this pattern most effectively. We also documented isolation by distance within the barrier reef. Sensitivity analyses revealed that the number of loci (and alleles) had a strong effect on the detection of structure for all three marker sets, particularly at small spatial scales. Taken together, these results illustrate empirically that high‐throughput genotyping data can elucidate subtle genetic structure at previously‐undetected scales in a dispersive marine fish.
Marine metapopulations often exhibit subtle population structure that can be difficult to detect. Given recent advances in high-throughput sequencing, an emerging question is whether various genotyping approaches, in concert with improved sampling designs, will substantially improve our understanding of genetic structure in the sea. To address this question, we explored hierarchical patterns of structure in the coral reef fish Elacatinus lori using a high-resolution approach with respect to both genetic and geographic sampling. Previously, we identified three putative E. lori populations within Belize using traditional genetic markers and sparse geographic sampling: barrier reef and Turneffe Atoll; Glover's Atoll; and Lighthouse Atoll. Here, we systematically sampled individuals at ~10 km intervals throughout these reefs (1,129 individuals from 35 sites) and sequenced all individuals at three sets of markers: 2,418 SNPs; 89 microsatellites; and 57 nonrepetitive nuclear loci. At broad spatial scales, the markers were consistent with each other and with previous findings. At finer spatial scales, there was new evidence of genetic substructure, but our three marker sets differed slightly in their ability to detect these patterns. Specifically, we found subtle structure between the barrier reef and Turneffe Atoll, with SNPs resolving this pattern most effectively. We also documented isolation by distance within the barrier reef. Sensitivity analyses revealed that the number of loci (and alleles) had a strong effect on the detection of structure for all three marker sets, particularly at small spatial scales. Taken together, these results illustrate empirically that high-throughput genotyping data can elucidate subtle genetic structure at previously-undetected scales in a dispersive marine fish.Marine metapopulations often exhibit subtle population structure that can be difficult to detect. Given recent advances in high-throughput sequencing, an emerging question is whether various genotyping approaches, in concert with improved sampling designs, will substantially improve our understanding of genetic structure in the sea. To address this question, we explored hierarchical patterns of structure in the coral reef fish Elacatinus lori using a high-resolution approach with respect to both genetic and geographic sampling. Previously, we identified three putative E. lori populations within Belize using traditional genetic markers and sparse geographic sampling: barrier reef and Turneffe Atoll; Glover's Atoll; and Lighthouse Atoll. Here, we systematically sampled individuals at ~10 km intervals throughout these reefs (1,129 individuals from 35 sites) and sequenced all individuals at three sets of markers: 2,418 SNPs; 89 microsatellites; and 57 nonrepetitive nuclear loci. At broad spatial scales, the markers were consistent with each other and with previous findings. At finer spatial scales, there was new evidence of genetic substructure, but our three marker sets differed slightly in their ability to detect these patterns. Specifically, we found subtle structure between the barrier reef and Turneffe Atoll, with SNPs resolving this pattern most effectively. We also documented isolation by distance within the barrier reef. Sensitivity analyses revealed that the number of loci (and alleles) had a strong effect on the detection of structure for all three marker sets, particularly at small spatial scales. Taken together, these results illustrate empirically that high-throughput genotyping data can elucidate subtle genetic structure at previously-undetected scales in a dispersive marine fish.
Marine metapopulations often exhibit subtle population structure that can be difficult to detect. Given recent advances in high‐throughput sequencing, an emerging question is whether various genotyping approaches, in concert with improved sampling designs, will substantially improve our understanding of genetic structure in the sea. To address this question, we explored hierarchical patterns of structure in the coral reef fish Elacatinus lori using a high‐resolution approach with respect to both genetic and geographic sampling. Previously, we identified three putative E. lori populations within Belize using traditional genetic markers and sparse geographic sampling: barrier reef and Turneffe Atoll; Glover's Atoll; and Lighthouse Atoll. Here, we systematically sampled individuals at ~10 km intervals throughout these reefs (1,129 individuals from 35 sites) and sequenced all individuals at three sets of markers: 2,418 SNPs; 89 microsatellites; and 57 nonrepetitive nuclear loci. At broad spatial scales, the markers were consistent with each other and with previous findings. At finer spatial scales, there was new evidence of genetic substructure, but our three marker sets differed slightly in their ability to detect these patterns. Specifically, we found subtle structure between the barrier reef and Turneffe Atoll, with SNPs resolving this pattern most effectively. We also documented isolation by distance within the barrier reef. Sensitivity analyses revealed that the number of loci (and alleles) had a strong effect on the detection of structure for all three marker sets, particularly at small spatial scales. Taken together, these results illustrate empirically that high‐throughput genotyping data can elucidate subtle genetic structure at previously‐undetected scales in a dispersive marine fish. see also the Perspective by Laura E. Timm.
Author D’Aloia, Cassidy C.
Andrés, Jose A.
Buston, Peter M.
McCune, Amy R.
Bogdanowicz, Steven M.
Harrison, Richard G.
Author_xml – sequence: 1
  givenname: Cassidy C.
  surname: D’Aloia
  fullname: D’Aloia, Cassidy C.
  email: cdaloia@unb.ca
  organization: University of New Brunswick
– sequence: 2
  givenname: Jose A.
  surname: Andrés
  fullname: Andrés, Jose A.
  organization: Cornell University
– sequence: 3
  givenname: Steven M.
  surname: Bogdanowicz
  fullname: Bogdanowicz, Steven M.
  organization: Cornell University
– sequence: 4
  givenname: Amy R.
  surname: McCune
  fullname: McCune, Amy R.
  organization: Cornell University
– sequence: 5
  givenname: Richard G.
  surname: Harrison
  fullname: Harrison, Richard G.
  organization: Cornell University
– sequence: 6
  givenname: Peter M.
  surname: Buston
  fullname: Buston, Peter M.
  organization: Boston University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32147850$$D View this record in MEDLINE/PubMed
BookMark eNqNkc9u1DAQhy1URLeFAy-ALHGBw7Yex14n3KpV-SMVcaESt8jxjjeuEjvYDmhvSLwAz8iT4O0WDpVA-DKy_M1v5PlOyJEPHgl5CuwMyjkf0ZyBFEw-IAuoVnLJG_HpiCxYs-JLYHV1TE5SumEMKi7lI3JccRCqlmxBvl_7qL_g4PyW9g6jjqZ3Rg90ix6zMzTlOJs8R6TOU01HHZ1HOmLWU5jmQWcX_Ct6QU0Yp_KWgqfB0txHxBK47X9--1EuYd7205z3qSHvpv00PU0xaNNjekweWj0kfHJXT8n168uP67fLqw9v3q0vrpZGSC6XQlprNSjVdY1QrLJcWMkaIWtjYdMA18ICdLDpTGctqErUHd8ItgJmrDGqOiUvDrll8OcZU25HlwwOg_YY5tTyppZKSc7-A62UlEzxhhf0-T30JszRl4-0XEBTVw0HKNSzO2ruRty0U3Rllbv2t4kCvDwAJoaUIto_CLB2b7ktlttby4U9v8cal29N5Kjd8K-Or27A3d-j2_eX60PHL5H6ur0
CitedBy_id crossref_primary_10_1643_CG_19_341
crossref_primary_10_3389_fevo_2023_1072825
crossref_primary_10_1111_mec_15473
crossref_primary_10_1002_ece3_9945
crossref_primary_10_1111_mec_16653
crossref_primary_10_1111_mec_16465
crossref_primary_10_3354_meps13736
crossref_primary_10_7717_peerj_10201
crossref_primary_10_1002_ecy_3559
crossref_primary_10_1007_s00338_021_02145_3
crossref_primary_10_1016_j_tree_2022_09_006
crossref_primary_10_1111_ecog_05600
crossref_primary_10_1111_mec_17668
crossref_primary_10_1111_1365_2656_13623
crossref_primary_10_1111_mec_17031
crossref_primary_10_1016_j_pld_2022_07_002
crossref_primary_10_3390_genes11121503
crossref_primary_10_3389_fmars_2020_557146
crossref_primary_10_1016_j_biocon_2020_108770
crossref_primary_10_1371_journal_pone_0241429
crossref_primary_10_3390_fishes8100510
crossref_primary_10_1643_i2022029
crossref_primary_10_1038_s41598_025_90274_y
Cites_doi 10.1016/j.sedgeo.2003.10.006
10.2307/2265814
10.1086/519795
10.3354/meps12792
10.1038/sj.hdy.6800917
10.1016/j.ympev.2018.10.020
10.1111/ddi.12851
10.1111/mec.12274
10.1111/mec.13650
10.1038/s41437-018-0087-9
10.1111/j.1471-8286.2004.00828.x
10.1007/s00227-018-3380-5
10.1111/j.0014-3820.2005.tb01747.x
10.1186/1471-2156-11-94
10.1111/mec.13395
10.1111/mec.13245
10.1038/s41598-017-16810-7
10.1093/bioinformatics/btm308
10.1046/j.1365-294X.2003.01731.x
10.1111/j.1755-0998.2011.03077.x
10.1093/beheco/arx189
10.1098/rsos.160548
10.1093/bioinformatics/btr330
10.1371/journal.pone.0165881
10.1371/journal.pone.0163052
10.1111/gec3.12032
10.1093/bioinformatics/btl117
10.3354/meps12648
10.18637/jss.v022.i04
10.1111/1755-0998.12998
10.1111/ddi.12302
10.1038/s41598-018-25138-9
10.1007/s10592-014-0593-0
10.1111/eva.12639
10.1038/nrg2844
10.1111/mec.14443
10.1007/s10592-016-0895-5
10.1111/mec.14589
10.1111/1755-0998.12745
10.1146/annurev-marine-121211-172234
10.1073/pnas.1513754112
10.3354/meps09238
10.1007/s10592-012-0415-1
10.1007/s00227-019-3517-1
10.1111/mec.12804
10.1002/ece3.725
10.1111/eva.12259
10.1002/ece3.5240
10.1111/mec.13613
10.1111/j.1558-5646.1984.tb05657.x
10.3354/meps11628
10.1002/ece3.2221
10.1534/genetics.112.144758
10.1111/ddi.12969
10.1111/eva.12432
10.1016/j.ocemod.2016.09.010
10.3354/meps11792
10.1038/nrg.2016.66
10.1111/j.0014-3820.2005.tb00977.x
10.1016/j.tree.2012.05.012
10.3354/meps12009
10.1111/eva.12638
10.1007/BF00397680
10.11646/zootaxa.106.1.1
10.1111/mec.12228
10.1111/2041-210X.12968
10.1111/2041-210X.13141
10.32614/CRAN.package.adespatial
10.1046/j.1365-294X.2001.01294.x
10.1111/mec.13454
10.1111/mec.12782
10.1371/journal.pone.0037135
10.1111/j.1365-294X.2012.05578.x
10.1093/icesjms/fst103
10.1093/bioinformatics/btp696
10.1098/rsos.150565
10.1890/0012-9615(1999)069[0001:DBRATM]2.0.CO;2
ContentType Journal Article
Copyright 2020 John Wiley & Sons Ltd
2020 John Wiley & Sons Ltd.
Copyright © 2020 John Wiley & Sons Ltd
Copyright_xml – notice: 2020 John Wiley & Sons Ltd
– notice: 2020 John Wiley & Sons Ltd.
– notice: Copyright © 2020 John Wiley & Sons Ltd
DBID AAYXX
CITATION
NPM
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/mec.15405
DatabaseName CrossRef
PubMed
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed

AGRICOLA
MEDLINE - Academic
CrossRef
Entomology Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1365-294X
EndPage 2203
ExternalDocumentID 32147850
10_1111_mec_15405
MEC15405
Genre article
Journal Article
GeographicLocations Belize
GeographicLocations_xml – name: Belize
GrantInformation_xml – fundername: Division of Ocean Sciences
  funderid: OCE‐1260424
– fundername: Division of Ocean Sciences
  grantid: OCE-1260424
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
29M
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XJT
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
NPM
7SN
7SS
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c4525-45fffa177bb94703f24f509458cf1d912a4f11b1dbcbff17348b2d40610cfcc73
IEDL.DBID DR2
ISSN 0962-1083
1365-294X
IngestDate Fri Sep 05 17:23:44 EDT 2025
Thu Sep 04 20:53:24 EDT 2025
Wed Aug 13 06:19:26 EDT 2025
Wed Feb 19 02:31:12 EST 2025
Tue Jul 01 03:22:07 EDT 2025
Thu Apr 24 23:05:28 EDT 2025
Wed Jan 22 16:34:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Elacatinus lori
population genomics
seascape genetics
amplicon sequencing
coral reef
SNP
Language English
License 2020 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4525-45fffa177bb94703f24f509458cf1d912a4f11b1dbcbff17348b2d40610cfcc73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PMID 32147850
PQID 2419839211
PQPubID 31465
PageCount 15
ParticipantIDs proquest_miscellaneous_2985775207
proquest_miscellaneous_2375507292
proquest_journals_2419839211
pubmed_primary_32147850
crossref_primary_10_1111_mec_15405
crossref_citationtrail_10_1111_mec_15405
wiley_primary_10_1111_mec_15405_MEC15405
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2020
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Molecular ecology
PublicationTitleAlternate Mol Ecol
PublicationYear 2020
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2010; 11
2017; 7
2004; 164
2018; 165
2013; 3
2011; 436
2017; 4
2013; 22
2018; 601
2016; 548
2019; 10
2019; 19
2016; 106
2018; 607
2013; 7
2013; 5
2012; 12
2014; 23
2019; 122
2019; 166
2018; 9
2018; 8
2013; 14
2010; 26
2000
2006; 22
2019; 25
2002; 106
2014; 15
1982
2012; 27
2016; 554
2011; 27
2007; 22
2007; 23
2013; 193
2017; 565
2012; 21
2001; 10
2018; 29
2019; 9
1982; 70
1999; 69
2016; 17
2007; 98
2015; 8
2003; 299
2018; 27
2016; 11
2015; 24
2016; 6
2018; 18
2016; 3
1984; 38
2015; 112
2017; 10
2015; 21
2005; 5
1943; 28
2018
2017
2007; 81
2017; 18
2005; 59
2018; 11
2012; 7
2019; 130
2014; 71
2016; 25
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
Burke R. B. (e_1_2_8_9_1) 1982
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
Gonzalez E. B. (e_1_2_8_29_1) 2016; 11
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_79_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 7
  start-page: 17598
  year: 2017
  article-title: Adding loci improves phylogeographic resolution in red mangroves despite increased missing data: Comparing microsatellites and RAD‐Seq and investigating loci filtering
  publication-title: Scientific Reports
– volume: 17
  start-page: 523
  year: 2016
  end-page: 534
  article-title: The life aquatic: Advances in marine vertebrate genomics
  publication-title: Nature Reviews Genetics
– volume: 106
  start-page: 1
  year: 2002
  end-page: 7
  article-title: A new species of sponge‐dwelling (Pisces: Gobiidae) from the western Caribbean
  publication-title: Zootaxa
– volume: 106
  start-page: 74
  year: 2016
  end-page: 89
  article-title: Description of surface transport in the region of the Belizean Barrier Reef based on observations and alternative high‐resolution models
  publication-title: Ocean Modelling
– volume: 4
  start-page: 160548
  year: 2017
  article-title: RAD sequencing resolves fine‐scale population structure in a benthic invertebrate: Implications for understanding phenotypic plasticity
  publication-title: Royal Society Open Science
– volume: 14
  start-page: 275
  year: 2013
  end-page: 285
  article-title: Sample design effects in landscape genetics
  publication-title: Conservation Genetics
– volume: 25
  start-page: 2997
  year: 2016
  end-page: 3018
  article-title: Comparing RADseq and microsatellites to infer complex phylogeographic patterns, an empirical perspective in the Crucian carp, L
  publication-title: Molecular Ecology
– volume: 7
  year: 2012
  article-title: Double digest RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and non‐model species
  publication-title: PLoS ONE
– volume: 98
  start-page: 128
  year: 2007
  end-page: 142
  article-title: Putting the ‘landscape’ in landscape genetics
  publication-title: Heredity
– volume: 12
  start-page: 276
  year: 2012
  end-page: 284
  article-title: Effects of sample size, number of markers, and allelic richness on the detection of spatial genetic pattern
  publication-title: Molecular Ecology Resources
– volume: 22
  start-page: 2953
  year: 2013
  end-page: 2970
  article-title: Going where traditional markers have not gone before: Utility of and promise for RAD sequencing in marine invertebrate phylogeography and population genomics
  publication-title: Molecular Ecology
– year: 2018
– volume: 436
  start-page: 291
  year: 2011
  end-page: 305
  article-title: Marine connectivity: A new look at pelagic larval duration and genetic metrics of dispersal
  publication-title: Marine Ecology Progress Series
– volume: 6
  start-page: 4502
  year: 2016
  end-page: 4512
  article-title: Digital fragment analysis of short tandem repeats by high‐throughput amplicon sequencing
  publication-title: Ecology and Evolution
– volume: 22
  start-page: 1
  year: 2007
  end-page: 20
  article-title: The package: Implementing the duality diagram for ecologists
  publication-title: Journal of Statistical Software
– volume: 21
  start-page: 2839
  year: 2012
  end-page: 2846
  article-title: The trouble with isolation by distance
  publication-title: Molecular Ecology
– volume: 130
  start-page: 269
  year: 2019
  end-page: 285
  article-title: The evolutionary history of the goby in the tropical eastern pacific: Effects of habitat discontinuities and local environmental variability
  publication-title: Molecular Phylogenetics and Evolution
– volume: 607
  start-page: 143
  year: 2018
  end-page: 154
  article-title: Limited dispersal explains the spatial distribution of siblings in a reef fish population
  publication-title: Marine Ecology Progress Series
– volume: 24
  start-page: 3299
  year: 2015
  end-page: 3315
  article-title: RAD genotyping reveals fine‐scale genetic structuring and provides powerful population assignment in a widely distributed marine species, the American lobster ( )
  publication-title: Molecular Ecology
– volume: 27
  start-page: 2156
  year: 2011
  end-page: 2158
  article-title: The variant call format and
  publication-title: Bioinformatics
– volume: 193
  start-page: 515
  year: 2013
  end-page: 528
  article-title: The relationship between and the frequency of the most frequent allele
  publication-title: Genetics
– volume: 8
  start-page: 8448
  year: 2018
  article-title: Mitochondrial DNA is unsuitable to test for isolation by distance
  publication-title: Scientific Reports
– volume: 27
  start-page: 352
  year: 2018
  end-page: 368
  article-title: Evidence for interannual variation in genetic structure of Dungeness crab ( ) along the California Current System
  publication-title: Molecular Ecology
– volume: 23
  start-page: 2633
  year: 2007
  end-page: 2635
  article-title: : Software for association mapping of complex traits in diverse samples
  publication-title: Bioinformatics
– volume: 29
  start-page: 429
  year: 2018
  end-page: 439
  article-title: Differential persistence favors habitat preferences that determine the distribution of a reef fish
  publication-title: Behavioral Ecology
– volume: 22
  start-page: 2563
  year: 2013
  end-page: 2572
  article-title: Self‐recruitment in a Caribbean reef fish: A method for approximating dispersal kernels accounting for seascape
  publication-title: Molecular Ecology
– start-page: 509
  year: 1982
  end-page: 526
– volume: 69
  start-page: 1
  year: 1999
  end-page: 24
  article-title: Distance‐based redundancy analysis: Testing multispecies responses in multifactorial ecological experiments
  publication-title: Ecological Monographs
– volume: 70
  start-page: 157
  year: 1982
  end-page: 164
  article-title: Chaotic genetic patchiness in an intertidal limpet, sp
  publication-title: Marine Biology
– volume: 601
  start-page: 153
  year: 2018
  end-page: 166
  article-title: Complex genetic structure revealed in the circum‐Antarctic broadcast spawning sea urchin
  publication-title: Marine Ecology Progress Series
– volume: 11
  year: 2016
  article-title: Habitat discontinuities separate genetically divergent populations of a rocky shore marine fish
  publication-title: PLoS ONE
– volume: 19
  start-page: 795
  year: 2019
  end-page: 803
  article-title: The future is now: Amplicon sequencing and sequence capture usher in the conservation genomics era
  publication-title: Molecular Ecology Resources
– volume: 8
  start-page: 486
  year: 2015
  end-page: 509
  article-title: Oceanography and life history predict contrasting genetic population structure in two Antarctic fish species
  publication-title: Evolutionary Applications
– volume: 565
  start-page: 79
  year: 2017
  end-page: 93
  article-title: Temporal genetic change in North American Pacific oyster populations suggests caution in seascape genetics analyses of high gene‐flow species
  publication-title: Marine Ecology Progress Series
– volume: 27
  start-page: 489
  year: 2012
  end-page: 496
  article-title: Harnessing genomics for delineating conservation units
  publication-title: Trends in Ecology & Evolution
– volume: 11
  start-page: 1448
  year: 2018
  end-page: 1464
  article-title: Population assignment and local adaptation along an isolation‐by‐distance gradient in Pacific cod ( )
  publication-title: Evolutionary Applications
– volume: 5
  start-page: 184
  year: 2005
  end-page: 186
  article-title: , a package for r to compute and test hierarchical ‐statistics
  publication-title: Molecular Ecology Notes
– volume: 11
  start-page: 697
  year: 2010
  end-page: 709
  article-title: Genomics and the future of conservation genetics
  publication-title: Nature Reviews Genetics
– volume: 164
  start-page: 223
  year: 2004
  end-page: 236
  article-title: Holocene development of the Belize Barrier Reef
  publication-title: Sedimentary Geology
– volume: 18
  start-page: 691
  year: 2018
  end-page: 699
  article-title: : An r package to facilitate analysis of SNP data generated from reduced representation genome sequencing
  publication-title: Molecular Ecology Resources
– volume: 3
  start-page: 3455
  year: 2013
  end-page: 3470
  article-title: How many marker loci are necessary? Analysis of dominant marker data sets using two popular population genetic algorithms
  publication-title: Ecology and Evolution
– volume: 10
  start-page: 1439
  year: 2001
  end-page: 1453
  article-title: Population subdivision in marine environments: The contributions of biogeography, geographical distance and discontinuous habitat to genetic differentiation in a blennioid fish,
  publication-title: Molecular Ecology
– volume: 165
  start-page: 124
  year: 2018
  article-title: Full mitochondrial genome sequences reveal new insights about post‐glacial expansion and regional phylogeographic structure in the Atlantic silverside ( )
  publication-title: Marine Biology
– volume: 7
  start-page: 197
  year: 2013
  end-page: 216
  article-title: Seascape genetics: Populations, individuals, and genes marooned and adrift
  publication-title: Geography Compass
– volume: 9
  start-page: 6606
  year: 2019
  end-page: 6623
  article-title: Comparing Pool‐seq, Rapture, and GBS genotyping for inferring weak population structure: The American lobster ( ) as a case study
  publication-title: Ecology and Evolution
– volume: 22
  start-page: 1540
  year: 2006
  end-page: 1542
  article-title: : An R package for assessing the uncertainty in hierarchical clustering
  publication-title: Bioinformatics
– volume: 25
  start-page: 3048
  year: 2016
  end-page: 3064
  article-title: Using dense locality sampling resolves the subtle genetic population structure of the dispersive fish species
  publication-title: Molecular Ecology
– year: 2000
– volume: 25
  start-page: 298
  year: 2019
  end-page: 309
  article-title: Habitat discontinuities form strong barriers to gene flow among mangrove populations, despite the capacity for long‐distance dispersal
  publication-title: Diversity and Distributions
– volume: 11
  start-page: 1437
  year: 2018
  end-page: 1447
  article-title: Geographic isolation and larval dispersal shape seascape genetic patterns differently according to spatial scale
  publication-title: Evolutionary Applications
– volume: 25
  start-page: 1684
  year: 2019
  end-page: 1696
  article-title: Asymmetric dispersal is a critical element of concordance between biophysical dispersal models and spatial genetic structure in Great Barrier Reef corals
  publication-title: Diversity and Distributions
– volume: 23
  start-page: 2902
  year: 2014
  end-page: 2913
  article-title: Seascape continuity plays an important role in determining patterns of spatial genetic structure in a coral reef fish
  publication-title: Molecular Ecology
– volume: 26
  start-page: 419
  year: 2010
  end-page: 442
  article-title: : An R package for population genetics with an integrated–modular approach
  publication-title: Bioinformatics
– volume: 11
  year: 2016
  article-title: High interannual variability in connectivity and genetic pool of a temperate clingfish matches oceanographic transport predictions
  publication-title: PLoS ONE
– volume: 81
  start-page: 559
  year: 2007
  end-page: 575
  article-title: PLINK: A toolset for whole‐genome association and population‐based linkage analysis
  publication-title: American Journal of Human Genetics
– volume: 554
  start-page: 1
  year: 2016
  end-page: 19
  article-title: A decade of seascape genetics: Contributions to basic and applied marine connectivity
  publication-title: Marine Ecology Progress Series
– volume: 299
  start-page: 107
  year: 2003
  end-page: 109
  article-title: Genetic evidence for local retention of pelagic larvae in a Caribbean reef fish
  publication-title: Science
– volume: 28
  start-page: 114
  year: 1943
  end-page: 138
  article-title: Isolation by distance
  publication-title: Genetics
– volume: 10
  start-page: 532
  year: 2019
  end-page: 540
  article-title: Testing the Mantel statistic with a spatially‐constrained permutation procedure
  publication-title: Methods in Ecology and Evolution
– volume: 9
  start-page: 1006
  year: 2018
  end-page: 1016
  article-title: A fast likelihood solution to the genetic clustering problem
  publication-title: Methods in Ecology and Evolution
– volume: 27
  start-page: 2347
  year: 2018
  end-page: 2364
  article-title: Asymmetric oceanographic processes mediate connectivity and population genetic structure, as revealed by RADseq, in a highly dispersive marine invertebrate ( )
  publication-title: Molecular Ecology
– volume: 166
  start-page: 66
  year: 2019
  article-title: Disentangling the spatial distributions of a sponge‐dwelling fish and its host sponge
  publication-title: Marine Biology
– volume: 23
  start-page: 3064
  year: 2014
  end-page: 3079
  article-title: Emergent patterns of population genetic structure for a coral reef community
  publication-title: Molecular Ecology
– volume: 59
  start-page: 705
  year: 2005
  end-page: 719
  article-title: Reproductive isolation caused by natural selection against immigrants from divergent habitats
  publication-title: Evolution
– volume: 24
  start-page: 6021
  year: 2015
  end-page: 6040
  article-title: Landscape genetics in a changing world: Disentangling historical and contemporary influences and inferring change
  publication-title: Molecular Ecology
– volume: 11
  start-page: 94
  year: 2010
  article-title: Discriminant analysis of principal components: A new method for the analysis of genetically structured populations
  publication-title: BMC Genetics
– volume: 24
  start-page: 5130
  year: 2015
  end-page: 5144
  article-title: Transatlantic secondary contact in Atlantic Salmon, comparing microsatellites, a single nucleotide polymorphism array and restriction‐site associated DNA sequencing for the resolution of complex spatial structure
  publication-title: Molecular Ecology
– volume: 18
  start-page: 211
  year: 2017
  end-page: 223
  article-title: Cryptic genetic diversity and spatial patterns of admixture within Belizean marine reserves
  publication-title: Conservation Genetics
– volume: 5
  start-page: 165
  year: 2013
  end-page: 190
  article-title: Deglacial origin of barrier reefs along low‐latitude mixed siliciclastic and carbonate continental shelf edges
  publication-title: Annual Review of Marine Science
– volume: 38
  start-page: 1358
  year: 1984
  end-page: 1370
  article-title: Estimating ‐statistics for the analysis of population structure
  publication-title: Evolution
– volume: 3
  start-page: 150565
  year: 2016
  article-title: A novel method of microsatellite genotyping‐by‐sequencing using individual combinatorial barcoding
  publication-title: Royal Society Open Science
– year: 2017
– volume: 122
  start-page: 69
  year: 2019
  end-page: 80
  article-title: Fine‐scale temperature‐associated genetic structure between inshore and offshore populations of sea scallop ( )
  publication-title: Heredity
– volume: 548
  start-page: 139
  year: 2016
  end-page: 152
  article-title: Chaotic genetic patchiness without sweepstakes reproduction in the shore crab
  publication-title: Marine Ecology Progress Series
– volume: 15
  start-page: 981
  year: 2014
  end-page: 992
  article-title: Evaluating sample allocation and effort in detecting population differentiation for discrete and continuously distributed individuals
  publication-title: Conservation Genetics
– volume: 112
  start-page: 13940
  year: 2015
  end-page: 13945
  article-title: Patterns, causes, and consequences of marine larval dispersal
  publication-title: Proceedings of the National Academy of Sciences
– volume: 71
  start-page: 918
  year: 2014
  end-page: 924
  article-title: Modelling larval fish navigation: The way forward
  publication-title: ICES Journal of Marine Science
– volume: 21
  start-page: 698
  year: 2015
  end-page: 710
  article-title: Genetic isolation by distance reveals restricted dispersal across a range of life histories: Implications for biodiversity conservation planning across highly variable marine environments
  publication-title: Diversity and Distributions
– volume: 10
  start-page: 102
  year: 2017
  end-page: 117
  article-title: Identifying patterns of dispersal, connectivity and selection in the sea scallop, using RADseq‐derived SNPs
  publication-title: Evolutionary Applications
– ident: e_1_2_8_28_1
  doi: 10.1016/j.sedgeo.2003.10.006
– ident: e_1_2_8_71_1
  doi: 10.2307/2265814
– ident: e_1_2_8_57_1
  doi: 10.1086/519795
– ident: e_1_2_8_17_1
  doi: 10.3354/meps12792
– ident: e_1_2_8_67_1
  doi: 10.1038/sj.hdy.6800917
– ident: e_1_2_8_62_1
  doi: 10.1016/j.ympev.2018.10.020
– ident: e_1_2_8_6_1
  doi: 10.1111/ddi.12851
– ident: e_1_2_8_16_1
  doi: 10.1111/mec.12274
– ident: e_1_2_8_70_1
  doi: 10.1111/mec.13650
– ident: e_1_2_8_43_1
  doi: 10.1038/s41437-018-0087-9
– ident: e_1_2_8_30_1
  doi: 10.1111/j.1471-8286.2004.00828.x
– ident: e_1_2_8_46_1
  doi: 10.1007/s00227-018-3380-5
– ident: e_1_2_8_52_1
  doi: 10.1111/j.0014-3820.2005.tb01747.x
– start-page: 509
  volume-title: The Atlantic barrier reef ecosystem at Carrie Bow Cay, Belize
  year: 1982
  ident: e_1_2_8_9_1
– ident: e_1_2_8_37_1
  doi: 10.1186/1471-2156-11-94
– ident: e_1_2_8_7_1
  doi: 10.1111/mec.13395
– ident: e_1_2_8_4_1
  doi: 10.1111/mec.13245
– ident: e_1_2_8_32_1
  doi: 10.1038/s41598-017-16810-7
– ident: e_1_2_8_8_1
  doi: 10.1093/bioinformatics/btm308
– ident: e_1_2_8_3_1
  doi: 10.1046/j.1365-294X.2003.01731.x
– ident: e_1_2_8_40_1
  doi: 10.1111/j.1755-0998.2011.03077.x
– ident: e_1_2_8_47_1
  doi: 10.1093/beheco/arx189
– ident: e_1_2_8_75_1
  doi: 10.1098/rsos.160548
– ident: e_1_2_8_19_1
  doi: 10.1093/bioinformatics/btr330
– ident: e_1_2_8_39_1
  doi: 10.1371/journal.pone.0165881
– volume: 11
  start-page: e0163052
  year: 2016
  ident: e_1_2_8_29_1
  article-title: Habitat discontinuities separate genetically divergent populations of a rocky shore marine fish
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0163052
– ident: e_1_2_8_60_1
  doi: 10.1111/gec3.12032
– ident: e_1_2_8_69_1
  doi: 10.1093/bioinformatics/btl117
– ident: e_1_2_8_50_1
  doi: 10.3354/meps12648
– ident: e_1_2_8_53_1
– ident: e_1_2_8_23_1
  doi: 10.18637/jss.v022.i04
– ident: e_1_2_8_48_1
  doi: 10.1111/1755-0998.12998
– ident: e_1_2_8_77_1
  doi: 10.1111/ddi.12302
– ident: e_1_2_8_72_1
  doi: 10.1038/s41598-018-25138-9
– ident: e_1_2_8_41_1
  doi: 10.1007/s10592-014-0593-0
– ident: e_1_2_8_24_1
  doi: 10.1111/eva.12639
– ident: e_1_2_8_2_1
  doi: 10.1038/nrg2844
– ident: e_1_2_8_33_1
  doi: 10.1111/mec.14443
– ident: e_1_2_8_15_1
  doi: 10.1007/s10592-016-0895-5
– ident: e_1_2_8_79_1
  doi: 10.1111/mec.14589
– ident: e_1_2_8_31_1
  doi: 10.1111/1755-0998.12745
– ident: e_1_2_8_25_1
  doi: 10.1146/annurev-marine-121211-172234
– ident: e_1_2_8_13_1
  doi: 10.1073/pnas.1513754112
– ident: e_1_2_8_65_1
  doi: 10.3354/meps09238
– ident: e_1_2_8_54_1
  doi: 10.1007/s10592-012-0415-1
– ident: e_1_2_8_44_1
  doi: 10.1007/s00227-019-3517-1
– ident: e_1_2_8_64_1
  doi: 10.1111/mec.12804
– ident: e_1_2_8_51_1
  doi: 10.1002/ece3.725
– ident: e_1_2_8_80_1
  doi: 10.1111/eva.12259
– ident: e_1_2_8_21_1
  doi: 10.1002/ece3.5240
– ident: e_1_2_8_35_1
  doi: 10.1111/mec.13613
– ident: e_1_2_8_76_1
  doi: 10.1111/j.1558-5646.1984.tb05657.x
– ident: e_1_2_8_11_1
  doi: 10.3354/meps11628
– ident: e_1_2_8_20_1
  doi: 10.1002/ece3.2221
– ident: e_1_2_8_34_1
  doi: 10.1534/genetics.112.144758
– ident: e_1_2_8_59_1
  doi: 10.1111/ddi.12969
– ident: e_1_2_8_73_1
  doi: 10.1111/eva.12432
– ident: e_1_2_8_45_1
  doi: 10.1016/j.ocemod.2016.09.010
– ident: e_1_2_8_63_1
  doi: 10.3354/meps11792
– ident: e_1_2_8_38_1
  doi: 10.1038/nrg.2016.66
– ident: e_1_2_8_78_1
  doi: 10.1111/j.0014-3820.2005.tb00977.x
– ident: e_1_2_8_27_1
  doi: 10.1016/j.tree.2012.05.012
– ident: e_1_2_8_68_1
  doi: 10.3354/meps12009
– ident: e_1_2_8_18_1
  doi: 10.1111/eva.12638
– ident: e_1_2_8_36_1
  doi: 10.1007/BF00397680
– ident: e_1_2_8_10_1
  doi: 10.11646/zootaxa.106.1.1
– ident: e_1_2_8_58_1
  doi: 10.1111/mec.12228
– ident: e_1_2_8_5_1
  doi: 10.1111/2041-210X.12968
– ident: e_1_2_8_12_1
  doi: 10.1111/2041-210X.13141
– ident: e_1_2_8_22_1
  doi: 10.32614/CRAN.package.adespatial
– ident: e_1_2_8_61_1
  doi: 10.1046/j.1365-294X.2001.01294.x
– ident: e_1_2_8_26_1
  doi: 10.1111/mec.13454
– ident: e_1_2_8_14_1
  doi: 10.1111/mec.12782
– ident: e_1_2_8_56_1
  doi: 10.1371/journal.pone.0037135
– ident: e_1_2_8_49_1
  doi: 10.1111/j.1365-294X.2012.05578.x
– ident: e_1_2_8_66_1
  doi: 10.1093/icesjms/fst103
– ident: e_1_2_8_55_1
  doi: 10.1093/bioinformatics/btp696
– ident: e_1_2_8_74_1
  doi: 10.1098/rsos.150565
– ident: e_1_2_8_42_1
  doi: 10.1890/0012-9615(1999)069[0001:DBRATM]2.0.CO;2
SSID ssj0013255
Score 2.4651268
Snippet Marine metapopulations often exhibit subtle population structure that can be difficult to detect. Given recent advances in high‐throughput sequencing, an...
Marine metapopulations often exhibit subtle population structure that can be difficult to detect. Given recent advances in high-throughput sequencing, an...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2189
SubjectTerms amplicon sequencing
Atolls
Belize
coral reef
Coral reefs
Elacatinus
Elacatinus lori
Genetic markers
Genetic structure
Genotyping
Lighthouses
Loci
Marine fish
Markers
Metapopulations
microsatellite repeats
Microsatellites
population genomics
Population structure
Questions
Reef fish
Sampling
Sampling designs
Scales
seascape genetics
Sensitivity analysis
Single-nucleotide polymorphism
SNP
Structural hierarchy
Substructures
Title Unraveling hierarchical genetic structure in a marine metapopulation: A comparison of three high‐throughput genotyping approaches
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmec.15405
https://www.ncbi.nlm.nih.gov/pubmed/32147850
https://www.proquest.com/docview/2419839211
https://www.proquest.com/docview/2375507292
https://www.proquest.com/docview/2985775207
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSxxBEG5ECHjRJEbduAkdySGXkemenkcnJzErEkgOkgUPwtBPEN3ZxZ09rCfBP5DfmF-Sqp4HmkQRbwNTM_R0V3V_U931fYR8tFnhpE1cVEhjI5EoH0kdq0hwA2jXxkjhhactfmTHY_HtND1dIV-6WpiGH6JPuGFkhPkaA1zp-Z0gnziDaZHAX8qSDHnzv57wOzsIQfEUEDqHqaZIWlYhPMXTP3l_LfoHYN7Hq2HBOdogZ11Tm3MmF_uLWu-b679YHJ_5LS_JegtE6UHjOa_IiqtekxeNNOUSrkaBznq5SW7HFUoUYdk6ReHssPUAI0vB9bACkjYUtIsrR88rquhEYUEhnbhazXp1sM_0gJpe8pBOPa3BiRxFtuTfN79ataDZosa3TuslVnHRju_czd-Q8dHo5-Fx1Eo3RAY3SiOReu8Vy3OtpYBJxXPhkaovLYxnVjKuhGdMM6uN9p4hxY7mFsFFbLwxebJFVqtp5XawqNwmMsFsrWEiV_BHoAUsqcamrPBZpgbkUzeIpWl5zVFe47Ls_m-gd8vQuwOy15vOGjKP_xkNO08o23iel4BzJEJJxgbkQ38bIhG3V1TlpguwSXIkh-OSP2IjizTPUx7nA7LdeFnfkiAZVaQxfFDwlYebWH4fHYaLt0833SVrHFMFIYE0JKvgGu4d4Klavw-B8wcu5B18
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRQgu5Q0LBQziwCVV7DibGHGpqq0WaHtAXakXFPkpVbDZVZs9LCck_gC_kV_CjPNQy0uIW6RMIieZsb_MeL4P4IUbl165zCelsi6RmQ6JMqlOpLCIdl1KFF602-JoPJ3Jtyf5yQa87nthWn6IIeFGkRHnawpwSkhfiPK5t5QXIQLTK7E-R5DovbhQQ4iap4jRBU42ZdbxCtE-nuHSy6vRLxDzMmKNS87-DfjQD7bdafJxZ9WYHfv5Jx7H_32am7DVYVG22zrPLdjw9W242qpTrvFoEhmt13fg66wmlSLqXGeknR2rD_hxGXofNUGyloV2debZac00m2vqKWRz3-jlIBD2iu0yO6geskVgDfqRZ0SY_P3Lt04waLlq6K6LZk2NXKynPPfnd2G2PznemyadekNiqVaayDyEoHlRGKMkzitByEBsfXlpA3eKCy0D54Y7Y00InFh2jHCEL1IbrC2ye7BZL2r_gPrKXaYySthaLguNPwVG4qpqXc7LMB7rEbzsv2JlO2pzUtj4VPW_OPh2q_h2R_B8MF22fB6_M9ruXaHqQvq8QqijCE1yPoJnw2kMRqqw6NovVmiTFcQPJ5T4i40q86LIRVqM4H7rZsNIompUmaf4QNFZ_jzE6nCyFw8e_rvpU7g2PT48qA7eHL17BNcFZQ5iPmkbNtFN_GOEV415EqPoB_G1IZo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9RAEC6WFcWL78foqq148JIl3ek8Wk_LOsP6WkQc2IMQ-gmikxnczGE8Cf4Bf6O_xKrOg11fiLdAKqHTXdX9pbrr-wAeuqLyymU-qZR1icx0SJRJdSKFRbTrUqLwotMWh8XBXD4_yo-24MlQC9PxQ4wJN4qMOF9TgK9cOBHkC28pLUL8pWdkgcskIaI34sQWQpQ8RYgucK6psp5WiI7xjI-eXox-QZinAWtccWYX4d3Q1u6gyYfddWt27eefaBz_82MuwYUeibK9znUuw5ZvrsDZTptyg1fTyGe9uQpf5w1pFFHdOiPl7Lj3gEPL0PeoBJJ1HLTrT569b5hmC00VhWzhW70a5cEesz1mR81DtgysRS_yjOiSv3_51ssFrdYtvXXZbqiMiw2E5_74Gsxn07f7B0mv3ZBY2ilNZB5C0LwsjVESZ5UgZCCuvryygTvFhZaBc8OdsSYEThw7RjhCF6kN1pbZddhulo2_SVXlLlMZpWstl6XGXwIjcU21LudVKAo9gUfDINa2JzYnfY2P9fCDg71bx96dwIPRdNWxefzOaGfwhLoP6OMagY4iLMn5BO6PtzEUaX9FN365RpusJHY4ocRfbFSVl2Uu0nICNzovG1sSNaOqPMUPir7y5ybWr6b78eLWv5veg3Ovn87ql88OX9yG84LSBjGZtAPb6CX-DmKr1tyNMfQDey8gSQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unraveling+hierarchical+genetic+structure+in+a+marine+metapopulation%3A+A+comparison+of+three+high%E2%80%90throughput+genotyping+approaches&rft.jtitle=Molecular+ecology&rft.au=D%E2%80%99Aloia%2C+Cassidy+C.&rft.au=Andr%C3%A9s%2C+Jose+A.&rft.au=Bogdanowicz%2C+Steven+M.&rft.au=McCune%2C+Amy+R.&rft.date=2020-06-01&rft.issn=0962-1083&rft.eissn=1365-294X&rft.volume=29&rft.issue=12&rft.spage=2189&rft.epage=2203&rft_id=info:doi/10.1111%2Fmec.15405&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_mec_15405
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-1083&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-1083&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-1083&client=summon