Hetnet connectivity search provides rapid insights into how biomedical entities are related
Abstract Background Hetnets, short for “heterogeneous networks,” contain multiple node and relationship types and offer a way to encode biomedical knowledge. One such example, Hetionet, connects 11 types of nodes—including genes, diseases, drugs, pathways, and anatomical structures—with over 2 milli...
        Saved in:
      
    
          | Published in | Gigascience Vol. 12 | 
|---|---|
| Main Authors | , , , , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Oxford University Press
    
        2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2047-217X 2047-217X  | 
| DOI | 10.1093/gigascience/giad047 | 
Cover
| Abstract | Abstract
Background
Hetnets, short for “heterogeneous networks,” contain multiple node and relationship types and offer a way to encode biomedical knowledge. One such example, Hetionet, connects 11 types of nodes—including genes, diseases, drugs, pathways, and anatomical structures—with over 2 million edges of 24 types. Previous work has demonstrated that supervised machine learning methods applied to such networks can identify drug repurposing opportunities. However, a training set of known relationships does not exist for many types of node pairs, even when it would be useful to examine how nodes of those types are meaningfully connected. For example, users may be curious about not only how metformin is related to breast cancer but also how a given gene might be involved in insomnia.
Findings
We developed a new procedure, termed hetnet connectivity search, that proposes important paths between any 2 nodes without requiring a supervised gold standard. The algorithm behind connectivity search identifies types of paths that occur more frequently than would be expected by chance (based on node degree alone). Several optimizations were required to precompute significant instances of node connectivity at the scale of large knowledge graphs.
Conclusion
We implemented the method on Hetionet and provide an online interface at https://het.io/search. We provide an open-source implementation of these methods in our new Python package named hetmatpy. | 
    
|---|---|
| AbstractList | Hetnets, short for "heterogeneous networks," contain multiple node and relationship types and offer a way to encode biomedical knowledge. One such example, Hetionet, connects 11 types of nodes-including genes, diseases, drugs, pathways, and anatomical structures-with over 2 million edges of 24 types. Previous work has demonstrated that supervised machine learning methods applied to such networks can identify drug repurposing opportunities. However, a training set of known relationships does not exist for many types of node pairs, even when it would be useful to examine how nodes of those types are meaningfully connected. For example, users may be curious about not only how metformin is related to breast cancer but also how a given gene might be involved in insomnia.BACKGROUNDHetnets, short for "heterogeneous networks," contain multiple node and relationship types and offer a way to encode biomedical knowledge. One such example, Hetionet, connects 11 types of nodes-including genes, diseases, drugs, pathways, and anatomical structures-with over 2 million edges of 24 types. Previous work has demonstrated that supervised machine learning methods applied to such networks can identify drug repurposing opportunities. However, a training set of known relationships does not exist for many types of node pairs, even when it would be useful to examine how nodes of those types are meaningfully connected. For example, users may be curious about not only how metformin is related to breast cancer but also how a given gene might be involved in insomnia.We developed a new procedure, termed hetnet connectivity search, that proposes important paths between any 2 nodes without requiring a supervised gold standard. The algorithm behind connectivity search identifies types of paths that occur more frequently than would be expected by chance (based on node degree alone). Several optimizations were required to precompute significant instances of node connectivity at the scale of large knowledge graphs.FINDINGSWe developed a new procedure, termed hetnet connectivity search, that proposes important paths between any 2 nodes without requiring a supervised gold standard. The algorithm behind connectivity search identifies types of paths that occur more frequently than would be expected by chance (based on node degree alone). Several optimizations were required to precompute significant instances of node connectivity at the scale of large knowledge graphs.We implemented the method on Hetionet and provide an online interface at https://het.io/search. We provide an open-source implementation of these methods in our new Python package named hetmatpy.CONCLUSIONWe implemented the method on Hetionet and provide an online interface at https://het.io/search. We provide an open-source implementation of these methods in our new Python package named hetmatpy. Abstract Background Hetnets, short for “heterogeneous networks,” contain multiple node and relationship types and offer a way to encode biomedical knowledge. One such example, Hetionet, connects 11 types of nodes—including genes, diseases, drugs, pathways, and anatomical structures—with over 2 million edges of 24 types. Previous work has demonstrated that supervised machine learning methods applied to such networks can identify drug repurposing opportunities. However, a training set of known relationships does not exist for many types of node pairs, even when it would be useful to examine how nodes of those types are meaningfully connected. For example, users may be curious about not only how metformin is related to breast cancer but also how a given gene might be involved in insomnia. Findings We developed a new procedure, termed hetnet connectivity search, that proposes important paths between any 2 nodes without requiring a supervised gold standard. The algorithm behind connectivity search identifies types of paths that occur more frequently than would be expected by chance (based on node degree alone). Several optimizations were required to precompute significant instances of node connectivity at the scale of large knowledge graphs. Conclusion We implemented the method on Hetionet and provide an online interface at https://het.io/search. We provide an open-source implementation of these methods in our new Python package named hetmatpy. Hetnets, short for "heterogeneous networks," contain multiple node and relationship types and offer a way to encode biomedical knowledge. One such example, Hetionet, connects 11 types of nodes-including genes, diseases, drugs, pathways, and anatomical structures-with over 2 million edges of 24 types. Previous work has demonstrated that supervised machine learning methods applied to such networks can identify drug repurposing opportunities. However, a training set of known relationships does not exist for many types of node pairs, even when it would be useful to examine how nodes of those types are meaningfully connected. For example, users may be curious about not only how metformin is related to breast cancer but also how a given gene might be involved in insomnia. We developed a new procedure, termed hetnet connectivity search, that proposes important paths between any 2 nodes without requiring a supervised gold standard. The algorithm behind connectivity search identifies types of paths that occur more frequently than would be expected by chance (based on node degree alone). Several optimizations were required to precompute significant instances of node connectivity at the scale of large knowledge graphs. We implemented the method on Hetionet and provide an online interface at https://het.io/search. We provide an open-source implementation of these methods in our new Python package named hetmatpy. Background Hetnets, short for “heterogeneous networks,” contain multiple node and relationship types and offer a way to encode biomedical knowledge. One such example, Hetionet, connects 11 types of nodes—including genes, diseases, drugs, pathways, and anatomical structures—with over 2 million edges of 24 types. Previous work has demonstrated that supervised machine learning methods applied to such networks can identify drug repurposing opportunities. However, a training set of known relationships does not exist for many types of node pairs, even when it would be useful to examine how nodes of those types are meaningfully connected. For example, users may be curious about not only how metformin is related to breast cancer but also how a given gene might be involved in insomnia. Findings We developed a new procedure, termed hetnet connectivity search, that proposes important paths between any 2 nodes without requiring a supervised gold standard. The algorithm behind connectivity search identifies types of paths that occur more frequently than would be expected by chance (based on node degree alone). Several optimizations were required to precompute significant instances of node connectivity at the scale of large knowledge graphs. Conclusion We implemented the method on Hetionet and provide an online interface at https://het.io/search. We provide an open-source implementation of these methods in our new Python package named hetmatpy.  | 
    
| Author | Kloster, Kyle Hu, Dongbo Himmelstein, Daniel S Zietz, Michael Nicholson, David N Alquaddoomi, Faisal Sullivan, Blair D Rubinetti, Vincent Heil, Benjamin J Hao, Yun Nagle, Michael W Greene, Casey S  | 
    
| Author_xml | – sequence: 1 givenname: Daniel S orcidid: 0000-0002-3012-7446 surname: Himmelstein fullname: Himmelstein, Daniel S – sequence: 2 givenname: Michael orcidid: 0000-0003-0539-630X surname: Zietz fullname: Zietz, Michael – sequence: 3 givenname: Vincent orcidid: 0000-0002-4655-3773 surname: Rubinetti fullname: Rubinetti, Vincent – sequence: 4 givenname: Kyle orcidid: 0000-0001-5678-7197 surname: Kloster fullname: Kloster, Kyle – sequence: 5 givenname: Benjamin J orcidid: 0000-0002-2811-1031 surname: Heil fullname: Heil, Benjamin J – sequence: 6 givenname: Faisal orcidid: 0000-0003-4297-8747 surname: Alquaddoomi fullname: Alquaddoomi, Faisal – sequence: 7 givenname: Dongbo orcidid: 0000-0001-7870-8242 surname: Hu fullname: Hu, Dongbo email: casey.s.greene@cuanschutz.edu – sequence: 8 givenname: David N orcidid: 0000-0003-0002-5761 surname: Nicholson fullname: Nicholson, David N – sequence: 9 givenname: Yun orcidid: 0000-0002-1684-0085 surname: Hao fullname: Hao, Yun – sequence: 10 givenname: Blair D orcidid: 0000-0001-7720-6208 surname: Sullivan fullname: Sullivan, Blair D – sequence: 11 givenname: Michael W orcidid: 0000-0002-4677-7582 surname: Nagle fullname: Nagle, Michael W – sequence: 12 givenname: Casey S orcidid: 0000-0001-8713-9213 surname: Greene fullname: Greene, Casey S email: casey.s.greene@cuanschutz.edu  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37503959$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkUFv1DAQhS1UREvpL0BCkbhw2WLHSRyfEKqAIlXi0gMSB2viTHanytrBdrbaf1-vdoGlB6gvM5K_9zzz_JKdOO-QsdeCXwqu5fslLSFaQmcx99DzSj1jZ2Uui1Ko7ydH_Sm7iPGO56NU2yr5gp1KVXOpa33GflxjcpgK651Dm2hDaVtEhGBXxRT8hnqMRYCJ-oJcpOUqxdwkX6z8fdGRX2NPFsYCXaJEmYWARcAREvav2PMBxogXh3rObj9_ur26Xtx8-_L16uPNwlZ1KRZdKVve9N2AUA6gLHTdMNRSIu9smZFaWNvyQWilSi3atm3qbmhA64pL1EKes2pvO7sJtvcwjmYKtIawNYKbXVrmKC1zSCvLPuxl09zlLWzeIMAfqQcyf984Wpml32THHF8tdg7vDg7B_5wxJrOmaHEcwaGfoynbquJaKCEz-vYReufn4HIqRoqmVU2tVflvSnKtZC131JvjwX9P_OtTMyD3gA0-xoDDE_PQj1SWEiTyu-1p_I_2cq_18_Skxx4AZsnhtw | 
    
| CitedBy_id | crossref_primary_10_1093_bib_bbae561 crossref_primary_10_1093_gigascience_giae001  | 
    
| Cites_doi | 10.1093/jamia/ocy117 10.7554/eLife.52614 10.1145/3097983.3098036 10.1145/3132847.3133161 10.1371/journal.pcbi.1007128 10.1038/s41598-020-74922-z 10.1002/asi.20591 10.1186/s12859-019-2914-2 10.1016/j.bdr.2020.100174 10.1145/2983323.2983778 10.1093/bioinformatics/bts591 10.1145/3289600.3290990 10.7554/eLife.26726 10.1093/bioinformatics/bty559 10.1186/s12859-022-04932-3 10.1007/978-3-319-25007-6_36 10.1109/BIBM47256.2019.8983134 10.2196/17645 10.1145/3184558.3186978 10.1186/s13059-019-1716-1 10.1137/1.9781611972795.67 10.1186/s12920-019-0627-z 10.1145/2736277.2741123 10.1145/2939672.2939754 10.1186/s12859-019-3297-0 10.1016/j.physa.2010.11.027 10.1371/journal.pcbi.1004259 10.1016/j.websem.2017.06.002 10.1109/TPAMI.2014.2343973 10.1093/nar/gky1032 10.1109/BIBM.2018.8621568  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2023. Published by Oxford University Press GigaScience. 2023 The Author(s) 2023. Published by Oxford University Press GigaScience. The Author(s) 2023. Published by Oxford University Press GigaScience. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: The Author(s) 2023. Published by Oxford University Press GigaScience. 2023 – notice: The Author(s) 2023. Published by Oxford University Press GigaScience. – notice: The Author(s) 2023. Published by Oxford University Press GigaScience. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM JQ2 K9. 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1093/gigascience/giad047 | 
    
| DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) ProQuest Computer Science Collection MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Complete (Alumni)  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Library & Information Science | 
    
| EISSN | 2047-217X | 
    
| ExternalDocumentID | 10.1093/gigascience/giad047 PMC10375517 37503959 10_1093_gigascience_giad047  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural  | 
    
| GrantInformation_xml | – fundername: NICHD NIH HHS grantid: R01 HD109765 – fundername: NCI NIH HHS grantid: R01 CA237170 – fundername: NHGRI NIH HHS grantid: T32 HG000046 – fundername: NHGRI NIH HHS grantid: R01 HG010067 – fundername: NIH HHS grantid: T32 HG000046 – fundername: ; – fundername: ; grantid: R01 HD109765 – fundername: ; grantid: T32 HG000046 – fundername: ; grantid: R01 CA237170 – fundername: ; grantid: GBMF4552; GBMF4560 – fundername: ; grantid: R01 HG010067  | 
    
| GroupedDBID | -A0 0R~ 3V. 4.4 53G 5VS 7X7 88E 88I 8FE 8FG 8FH 8FI 8FJ AAFWJ AAHBH AAPPN AAPXW AAVAP ABDBF ABEJV ABPTD ABUWG ABXVV ACGFS ACPRK ACRMQ ACUHS ADBBV ADINQ ADRAZ ADUKV AEGXH AENZO AFKRA AFULF AHBYD AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC BAWUL BAYMD BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BTTYL BVXVI C24 C6C CCPQU DIK DWQXO EBS EJD FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IHR IHW INH INR IPNFZ ITC K6V K7- KQ8 KSI LK8 M0N M1P M2P M48 M7P M~E O9- OK1 P62 PIMPY PQQKQ PROAC PSQYO RBZ RIG RNS ROL ROX RPM RSV SBL SOJ TJX TOX UKHRP AAYXX ABGNP AFPKN AMNDL CITATION CGR CUY CVF ECM EIF NPM JQ2 K9. 7X8 5PM ADTOC IGS PHGZM PHGZT PJZUB PPXIY PQGLB UNPAY  | 
    
| ID | FETCH-LOGICAL-c4521-b23806dbfea2fa7cabbff533e0bc2c4551cc80f197729188865bf6a99403e913 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 2047-217X | 
    
| IngestDate | Sun Oct 26 04:14:29 EDT 2025 Tue Sep 30 17:12:53 EDT 2025 Sat Sep 27 22:53:59 EDT 2025 Tue Oct 07 06:32:29 EDT 2025 Tue Oct 07 06:29:53 EDT 2025 Mon Jul 21 06:02:04 EDT 2025 Thu Apr 24 23:02:41 EDT 2025 Wed Oct 01 02:41:45 EDT 2025 Mon Dec 16 07:45:55 EST 2024  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | matrix multiplication algorithms search connectivity Hetionet path counts bioinformatics hetnets knowledge graphs networks  | 
    
| Language | English | 
    
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 The Author(s) 2023. Published by Oxford University Press GigaScience. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c4521-b23806dbfea2fa7cabbff533e0bc2c4551cc80f197729188865bf6a99403e913 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0003-0539-630X 0000-0001-7870-8242 0000-0002-1684-0085 0000-0002-4677-7582 0000-0001-5678-7197 0000-0002-2811-1031 0000-0001-8713-9213 0000-0002-4655-3773 0000-0003-4297-8747 0000-0003-0002-5761 0000-0002-3012-7446 0000-0001-7720-6208  | 
    
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1093/gigascience/giad047 | 
    
| PMID | 37503959 | 
    
| PQID | 3130973532 | 
    
| PQPubID | 2040230 | 
    
| ParticipantIDs | unpaywall_primary_10_1093_gigascience_giad047 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10375517 proquest_miscellaneous_2844091713 proquest_journals_3168765972 proquest_journals_3130973532 pubmed_primary_37503959 crossref_primary_10_1093_gigascience_giad047 crossref_citationtrail_10_1093_gigascience_giad047 oup_primary_10_1093_gigascience_giad047  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-00-00 | 
    
| PublicationDateYYYYMMDD | 2023-01-01 | 
    
| PublicationDate_xml | – year: 2023 text: 2023-00-00  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Oxford  | 
    
| PublicationTitle | Gigascience | 
    
| PublicationTitleAlternate | Gigascience | 
    
| PublicationYear | 2023 | 
    
| Publisher | Oxford University Press | 
    
| Publisher_xml | – sequence: 0 name: Oxford University Press – name: Oxford University Press  | 
    
| References | Himmelstein (2024111706313637800_bib4) 2016 Meng (2024111706313637800_bib29) 2015 Dong (2024111706313637800_bib13) 2017 Rubinetti (2024111706313637800_bib62) 2021 Gao (2024111706313637800_bib14) 2019; 20 Bordes (2024111706313637800_bib17) 2013 Wood (2024111706313637800_bib41) 2022; 23 Schriml (2024111706313637800_bib33) 2019; 7 Wang (2024111706313637800_bib19) 2019 Himmelstein (2024111706313637800_bib59) 2022 Abdelaziz (2024111706313637800_bib8) 2017; 4 Mayers (2024111706313637800_bib30) 2022 Himmelstein (2024111706313637800_bib45) 2015 Grover (2024111706313637800_bib12) 2016 Himmelstein (2024111706313637800_bib31) 2016 Himmelstein (2024111706313637800_bib54) 2019; 5 Alshahrani (2024111706313637800_bib21) 2018; 4 Lü (2024111706313637800_bib6) 2011; 390 Lizee (2024111706313637800_bib51) 2016 Kilicoglu (2024111706313637800_bib37) 2012; 8 Himmelstein (2024111706313637800_bib42) 2015; 11 Fernández-Torras (2024111706313637800_bib18) 2022; 3 Himmelstein (2024111706313637800_bib34) 2015 Rubinetti (2024111706313637800_bib58) 2023 2024111706313637800_bib63 Himmelstein (2024111706313637800_bib49) 2016 Seufert (2024111706313637800_bib27) 2016 Behrens (2024111706313637800_bib28) 2018 Zietz (2024111706313637800_bib46) 2017 Xu (2024111706313637800_bib22) 2019; 12 Himmelstein (2024111706313637800_bib61) 2023 Himmelstein (2024111706313637800_bib1) 2015 Pirrò (2024111706313637800_bib24) 2015 Himmelstein (2024111706313637800_bib56) 2023 Cong (2024111706313637800_bib38) 2018 Gong (2024111706313637800_bib9) 2021; 3 Mayers (2024111706313637800_bib47) Zietz (2024111706313637800_bib50) 2023 Wang (2024111706313637800_bib26) 2017 Liben-Nowell (2024111706313637800_bib5) 2007; 58 Mayers (2024111706313637800_bib39) 2019; 20 Yang (2024111706313637800_bib7) 2018; 5 Bonner (2024111706313637800_bib35) 2022; 3 Ghazimatin (2024111706313637800_bib25) 2019 Morris (2024111706313637800_bib40) 2023 Waagmeester (2024111706313637800_bib36) 2020; 9 Ali (2024111706313637800_bib10) 2021; 22 Himmelstein (2024111706313637800_bib57) 2023 Himmelstein (2024111706313637800_bib43) 2015 Himmelstein (2024111706313637800_bib2) 2017; 6 Hanhijärvi (2024111706313637800_bib48) 2009 Paliwal (2024111706313637800_bib15) 2020; 10 Himmelstein (2024111706313637800_bib44) 2016 Zong (2024111706313637800_bib23) 2017 Himmelstein (2024111706313637800_bib55) 2023 Korthauer (2024111706313637800_bib53) 2019; 20 Bonner (2024111706313637800_bib11) 2022; 2 Zitnik (2024111706313637800_bib16) 2015; 37 Himmelstein (2024111706313637800_bib32) 2016 Himmelstein (2024111706313637800_bib60) 2021 Li (2024111706313637800_bib20) 2020; 8 Himmelstein (2024111706313637800_bib52) 2018 Himmelstein (2024111706313637800_bib3) 2016 36711546 - bioRxiv. 2023 Jan 07:2023.01.05.522941. doi: 10.1101/2023.01.05.522941  | 
    
| References_xml | – volume-title: Announcing PharmacotherapyDB: The Open Catalog of Drug Therapies for Disease year: 2016 ident: 2024111706313637800_bib3 – volume-title: GitHub - mmayers12/hetnet_ml: Software to quickly extract features from heterogeneous networks for machine learning ident: 2024111706313637800_bib47 – volume: 5 start-page: 1452 year: 2018 ident: 2024111706313637800_bib7 article-title: Heterogeneous network embedding for identifying symptom candidate genes publication-title: J Am Med Inform Assoc doi: 10.1093/jamia/ocy117 – volume-title: Assessing the Effectiveness of Our Hetnet Permutations year: 2016 ident: 2024111706313637800_bib49 – year: 2023 ident: 2024111706313637800_bib56 – volume: 9 year: 2020 ident: 2024111706313637800_bib36 article-title: Wikidata as a knowledge graph for the life sciences publication-title: eLife doi: 10.7554/eLife.52614 – volume-title: Bioinformatics year: 2017 ident: 2024111706313637800_bib23 article-title: Deep mining heterogeneous networks of biomedical linked data to predict novel drug–target associations – volume: 3 year: 2022 ident: 2024111706313637800_bib35 article-title: A review of biomedical datasets relating to drug discovery: a knowledge graph perspective publication-title: Briefings Bioinf – volume-title: KDD '17: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining year: 2017 ident: 2024111706313637800_bib13 article-title: metapath2vec: scalable representation learning for heterogeneous networks doi: 10.1145/3097983.3098036 – volume-title: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management year: 2017 ident: 2024111706313637800_bib26 article-title: Using knowledge graphs to explain entity co-occurrence in Twitter doi: 10.1145/3132847.3133161 – volume: 5 start-page: e1007128 year: 2019 ident: 2024111706313637800_bib54 article-title: Open collaborative writing with Manubot publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1007128 – volume-title: Using the neo4j Graph Database for Hetnets year: 2015 ident: 2024111706313637800_bib43 – year: 2023 ident: 2024111706313637800_bib58 – volume: 22 start-page: 1 year: 2021 ident: 2024111706313637800_bib10 article-title: PyKEEN 1.0: a Python library for training and evaluating knowledge graph embeddings publication-title: J Machine Learn Res – volume-title: Zenodo year: 2018 ident: 2024111706313637800_bib52 article-title: Node connectivity measurements for Hetionet v1.0 metapaths – volume: 10 start-page: 18250 year: 2020 ident: 2024111706313637800_bib15 article-title: Preclinical validation of therapeutic targets predicted by tensor factorization on heterogeneous graphs publication-title: Sci Rep doi: 10.1038/s41598-020-74922-z – ident: 2024111706313637800_bib63 – volume: 58 start-page: 1019 year: 2007 ident: 2024111706313637800_bib5 article-title: The link-prediction problem for social networks publication-title: J Am Soc Inf Sci doi: 10.1002/asi.20591 – volume: 20 year: 2019 ident: 2024111706313637800_bib14 article-title: edge2vec: representation learning using edge semantics for biomedical knowledge discovery publication-title: BMC Bioinf doi: 10.1186/s12859-019-2914-2 – volume: 3 start-page: 100174 year: 2021 ident: 2024111706313637800_bib9 article-title: SMR: medical knowledge graph embedding for safe medicine recommendation publication-title: Big Data Res doi: 10.1016/j.bdr.2020.100174 – volume-title: Bioinformatics year: 2022 ident: 2024111706313637800_bib30 article-title: Design and application of a knowledge network for automatic prioritization of drug mechanisms – volume-title: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management year: 2016 ident: 2024111706313637800_bib27 article-title: ESPRESSO: explaining relationships between entity sets doi: 10.1145/2983323.2983778 – volume: 8 start-page: 3158 year: 2012 ident: 2024111706313637800_bib37 article-title: SemMedDB: a PubMed-scale repository of biomedical semantic predications publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts591 – year: 2021 ident: 2024111706313637800_bib62 – volume-title: Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining year: 2019 ident: 2024111706313637800_bib25 article-title: FAIRY: a framework for understanding relationships between users' actions and their social feeds doi: 10.1145/3289600.3290990 – volume-title: Path Exclusion Conditions year: 2015 ident: 2024111706313637800_bib45 – year: 2023 ident: 2024111706313637800_bib55 article-title: greenelab/connectivity-search-manuscript repository: manuscript source code for publication-title: Hetnet Connectivity Search. – start-page: 2787 volume-title: Proceedings of the 26th International Conference on Neural Information Processing Systems year: 2013 ident: 2024111706313637800_bib17 article-title: Translating embeddings for modeling multi-relational data – volume: 6 start-page: e26726 year: 2017 ident: 2024111706313637800_bib2 article-title: Systematic integration of biomedical knowledge prioritizes drugs for repurposing publication-title: eLife doi: 10.7554/eLife.26726 – volume: 4 start-page: i901 year: 2018 ident: 2024111706313637800_bib21 article-title: Semantic Disease Gene Embeddings (SmuDGE): phenotype-based disease gene prioritization without phenotypes publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty559 – volume: 23 year: 2022 ident: 2024111706313637800_bib41 article-title: RTX-KG2: a system for building a semantically standardized knowledge graph for translational biomedicine publication-title: BMC Bioinf doi: 10.1186/s12859-022-04932-3 – volume-title: The Semantic Web—ISWC 2015 year: 2015 ident: 2024111706313637800_bib24 article-title: Explaining and suggesting relatedness in knowledge graphs doi: 10.1007/978-3-319-25007-6_36 – volume: 2 start-page: 100036 year: 2022 ident: 2024111706313637800_bib11 article-title: Understanding the performance of knowledge graph embeddings in drug discovery publication-title: Artif Intell Life Sci – volume-title: 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) year: 2019 ident: 2024111706313637800_bib19 article-title: Predicting gene-disease associations from the heterogeneous network using graph embedding doi: 10.1109/BIBM47256.2019.8983134 – volume-title: Figshare year: 2017 ident: 2024111706313637800_bib46 article-title: Vagelos Report Summer 2017 – volume-title: Renaming ‘Heterogeneous Networks’ to a More Concise and Catchy Term year: 2015 ident: 2024111706313637800_bib1 – volume: 8 start-page: e17645 year: 2020 ident: 2024111706313637800_bib20 article-title: A method to learn embedding of a probabilistic medical knowledge graph: algorithm development publication-title: JMIR Med Inform doi: 10.2196/17645 – year: 2021 ident: 2024111706313637800_bib60 – volume: 3 year: 2022 ident: 2024111706313637800_bib18 article-title: Integrating and formatting biomedical data as pre-calculated knowledge graph embeddings in the Bioteque publication-title: Nat Commun – volume-title: WWW '18: Companion Proceedings of the The Web Conference 2018 year: 2018 ident: 2024111706313637800_bib28 article-title: MetaExp: interactive explanation and exploration of large knowledge graphs doi: 10.1145/3184558.3186978 – volume-title: Unifying Disease Vocabularies year: 2015 ident: 2024111706313637800_bib34 – volume: 20 year: 2019 ident: 2024111706313637800_bib53 article-title: A practical guide to methods controlling false discoveries in computational biology publication-title: Genome Biol doi: 10.1186/s13059-019-1716-1 – volume-title: Proceedings of the 2009 SIAM International Conference on Data Mining year: 2009 ident: 2024111706313637800_bib48 article-title: Randomization techniques for graphs doi: 10.1137/1.9781611972795.67 – year: 2023 ident: 2024111706313637800_bib50 article-title: The probability of edge existence due to node degree: a baseline for network-based predictions publication-title: Biorxiv – year: 2022 ident: 2024111706313637800_bib59 – volume-title: Bioinformatics year: 2023 ident: 2024111706313637800_bib40 article-title: The scalable precision medicine open knowledge engine (SPOKE): a massive knowledge graph of biomedical information – volume: 12 year: 2019 ident: 2024111706313637800_bib22 article-title: A network embedding model for pathogenic genes prediction by multi-path random walking on heterogeneous network publication-title: BMC Med Genomics doi: 10.1186/s12920-019-0627-z – volume-title: Network Edge Prediction: Estimating the Prior year: 2016 ident: 2024111706313637800_bib51 – volume-title: Transforming DWPCs for Hetnet Edge Prediction year: 2016 ident: 2024111706313637800_bib31 – volume-title: Estimating the Complexity of Hetnet Traversal year: 2016 ident: 2024111706313637800_bib44 – volume-title: Decomposing the DWPC to Assess Intermediate Node or Edge Contributions year: 2016 ident: 2024111706313637800_bib32 – volume-title: Proceedings of the 24th International Conference on World Wide Web. International World Wide Web Conferences Steering Committee year: 2015 ident: 2024111706313637800_bib29 article-title: Discovering meta-paths in large heterogeneous information networks doi: 10.1145/2736277.2741123 – volume-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining year: 2016 ident: 2024111706313637800_bib12 article-title: node2vec: scalable feature learning for networks doi: 10.1145/2939672.2939754 – year: 2023 ident: 2024111706313637800_bib57 – year: 2023 ident: 2024111706313637800_bib61 – volume: 20 year: 2019 ident: 2024111706313637800_bib39 article-title: Time-resolved evaluation of compound repositioning predictions on a text-mined knowledge network publication-title: BMC Bioinf doi: 10.1186/s12859-019-3297-0 – volume: 390 start-page: 1150 year: 2011 ident: 2024111706313637800_bib6 article-title: Link prediction in complex networks: a survey publication-title: Physica A doi: 10.1016/j.physa.2010.11.027 – volume: 11 start-page: e1004259 year: 2015 ident: 2024111706313637800_bib42 article-title: Heterogeneous network edge prediction: a data integration approach to prioritize disease-associated genes publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1004259 – volume: 4 start-page: 104 year: 2017 ident: 2024111706313637800_bib8 article-title: Large-scale structural and textual similarity-based mining of knowledge graph to predict drug–drug interactions publication-title: J Web Semantics doi: 10.1016/j.websem.2017.06.002 – volume: 37 start-page: 41 year: 2015 ident: 2024111706313637800_bib16 article-title: Data fusion by matrix factorization publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2014.2343973 – volume: 7 start-page: D955 year: 2019 ident: 2024111706313637800_bib33 article-title: Human Disease Ontology 2018 update: classification, content and workflow expansion publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1032 – volume-title: Our Hetnet Edge Prediction Methodology: The Modeling Framework for Project Rephetio year: 2016 ident: 2024111706313637800_bib4 – volume-title: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) year: 2018 ident: 2024111706313637800_bib38 article-title: Constructing biomedical knowledge graph based on SemMedDB and linked open data doi: 10.1109/BIBM.2018.8621568 – reference: 36711546 - bioRxiv. 2023 Jan 07:2023.01.05.522941. doi: 10.1101/2023.01.05.522941  | 
    
| SSID | ssj0000778873 | 
    
| Score | 2.2920206 | 
    
| Snippet | Abstract
Background
Hetnets, short for “heterogeneous networks,” contain multiple node and relationship types and offer a way to encode biomedical knowledge.... Hetnets, short for "heterogeneous networks," contain multiple node and relationship types and offer a way to encode biomedical knowledge. One such example,... Background Hetnets, short for “heterogeneous networks,” contain multiple node and relationship types and offer a way to encode biomedical knowledge. One such...  | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref oup  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| SubjectTerms | Algorithms Breast cancer Connectivity Graph theory Insomnia Knowledge representation Machine learning Metformin Nodes Probability Searching Sleep disorders Supervised learning Technical Note  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2V7QEu5RsWWmQkBBeyJHHixMcKUa2QqDi00iIOke3Y24hVdrXJqio_gN_NeO2EDV8qB25RPImS8dh-Y_s9A7yQXBlEDYjcDKNBkguNTSqWgSpzKbSOy3LL8P5wyqbnyftZOtsD3XFhhN8VPukoDfNqLvxg8MY7M1iV5ofyAKcDm3klyjDBLD_k2PEy1t2Y4EM3YJ-lCNlHsH9--vH4kz14bqtUEGWzTpHo968bjFoDJtwOIP11X-XNTb0SV5disdgZtE5uw7fud91elS-TTSsn6utPSpD_3R934MDDXnLsXnUX9nR9D448aYK8JJ4VZaOE-O7mPnye6rbWLVF2M45yx1wQ1zSJZxA2ZC1WVUmqurGzDA1etEtysbwkTlfAhiDpdGOJWGuyJe_o8gGcnbw7ezsN_GEQgUoQYgQSsUXISmm0iI3IlJDSGMSqOpQqRpM0UioPTcRtuhBhXs9SaZjgPAmp5hF9CKN6WevHQHSaGMxrc21XkNEp3GSW3ZuaUkSZyNkY4q6uC-WF0u15HYvCLdjTYse_hXfnGF73D62cTsjfzV9hhV7P8rALtMJ3L01BEXnwjKY0_kMxw0EOU0Usft4XY79hF4NErZebpkBYgql9lEV0DI9c2PafQ-3iNk_5GPJBQPcGVpN8WFJXF1ttcks7xbrAzw762L_Obz75R_uncCtGuOkmww5h1K43-gjhYSuf-cb9Hcgwbdk priority: 102 providerName: Unpaywall  | 
    
| Title | Hetnet connectivity search provides rapid insights into how biomedical entities are related | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37503959 https://www.proquest.com/docview/3130973532 https://www.proquest.com/docview/3168765972 https://www.proquest.com/docview/2844091713 https://pubmed.ncbi.nlm.nih.gov/PMC10375517 https://academic.oup.com/gigascience/article-pdf/doi/10.1093/gigascience/giad047/50984766/giad047.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 12 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central_OA刊 customDbUrl: eissn: 2047-217X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000778873 issn: 2047-217X databaseCode: RBZ dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2047-217X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000778873 issn: 2047-217X databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2047-217X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000778873 issn: 2047-217X databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2047-217X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000778873 issn: 2047-217X databaseCode: ABDBF dateStart: 20131201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2047-217X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000778873 issn: 2047-217X databaseCode: DIK dateStart: 20120101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2047-217X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000778873 issn: 2047-217X databaseCode: GX1 dateStart: 20120101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2047-217X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000778873 issn: 2047-217X databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2047-217X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000778873 issn: 2047-217X databaseCode: RPM dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 2047-217X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000778873 issn: 2047-217X databaseCode: TOX dateStart: 20110101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2047-217X dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000778873 issn: 2047-217X databaseCode: M48 dateStart: 20120701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED-6Fra-lH0vW1s0GNvLvNqWv_QwRhktYdBuDwlk7MFIstQGgpPFDm1f9rfvzpZNwtrRFyOQBLLuzvc7S787gHdKaIuoAZGbTbgXZdKgSYXK00WmpDFhUTQM77PzZDiOvk3iyRZ0VVHdBla3hnZUT2q8nH26_n3zBQ3-s0uGdHQxvZDOX2BbFn6UPoAddFWCajmcObzffJpTujzHu-xDt8_dhYecTvcE5S9dc1YbBLg1HPrvdcpHq3Ihb67kbLbmq04fw54Dmey41YonsGXKp3DgKArsPXMcJJIJc8b9DH4NTV2ammm6-qLbohKsNQTm-HoVW8rFtGDTsqKYvsJGPWeX8yvWsvhJ4KzL0srk0rCGKmOK5zA6PRl9HXqu9IKnI3TonkJP7ieFskaGVqZaKmUtIkPjKx3ikDjQOvNtIAicBxhFJ7GyiRQi8rkRAX8B2-W8NK-AmTiyGEVmhs5rRRYJmxKXNraFDFKZJQMIuy3OtUtLTtUxZnl7PM7zNRHlTkQD-NhPWrRZOf4__APK7n4j9zv55p0u5hz9vEh5zMM7uhN0KRiYYffbvhutlI5eZGnmqypHEIDqGKQBH8DLVlv65XTKNoBsQ4_6AZQBfLOnnF42mcCJ5ImywGV7vcrd5zVf37mIN7AbIoxrfzLtw3a9XJkDhF21OmxMiZ5_TvA5-j45hJ3x-Y_jn38BQqY27w | 
    
| linkProvider | Scholars Portal | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2V7QEu5RsWWmQkBBeyJHHixMcKUa2QqDi00iIOke3Y24hVdrXJqio_gN_NeO2EDV8qB25RPImS8dh-Y_s9A7yQXBlEDYjcDKNBkguNTSqWgSpzKbSOy3LL8P5wyqbnyftZOtsD3XFhhN8VPukoDfNqLvxg8MY7M1iV5ofyAKcDm3klyjDBLD_k2PEy1t2Y4EM3YJ-lCNlHsH9--vH4kz14bqtUEGWzTpHo968bjFoDJtwOIP11X-XNTb0SV5disdgZtE5uw7fud91elS-TTSsn6utPSpD_3R934MDDXnLsXnUX9nR9D448aYK8JJ4VZaOE-O7mPnye6rbWLVF2M45yx1wQ1zSJZxA2ZC1WVUmqurGzDA1etEtysbwkTlfAhiDpdGOJWGuyJe_o8gGcnbw7ezsN_GEQgUoQYgQSsUXISmm0iI3IlJDSGMSqOpQqRpM0UioPTcRtuhBhXs9SaZjgPAmp5hF9CKN6WevHQHSaGMxrc21XkNEp3GSW3ZuaUkSZyNkY4q6uC-WF0u15HYvCLdjTYse_hXfnGF73D62cTsjfzV9hhV7P8rALtMJ3L01BEXnwjKY0_kMxw0EOU0Usft4XY79hF4NErZebpkBYgql9lEV0DI9c2PafQ-3iNk_5GPJBQPcGVpN8WFJXF1ttcks7xbrAzw762L_Obz75R_uncCtGuOkmww5h1K43-gjhYSuf-cb9Hcgwbdk | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hetnet+connectivity+search+provides+rapid+insights+into+how+biomedical+entities+are+related&rft.jtitle=Gigascience&rft.au=Himmelstein%2C+Daniel+S&rft.au=Zietz%2C+Michael&rft.au=Rubinetti%2C+Vincent&rft.au=Kloster%2C+Kyle&rft.date=2023&rft.eissn=2047-217X&rft.volume=12&rft_id=info:doi/10.1093%2Fgigascience%2Fgiad047&rft_id=info%3Apmid%2F37503959&rft.externalDocID=37503959 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-217X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-217X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-217X&client=summon |