Hetnet connectivity search provides rapid insights into how biomedical entities are related

Abstract Background Hetnets, short for “heterogeneous networks,” contain multiple node and relationship types and offer a way to encode biomedical knowledge. One such example, Hetionet, connects 11 types of nodes—including genes, diseases, drugs, pathways, and anatomical structures—with over 2 milli...

Full description

Saved in:
Bibliographic Details
Published inGigascience Vol. 12
Main Authors Himmelstein, Daniel S, Zietz, Michael, Rubinetti, Vincent, Kloster, Kyle, Heil, Benjamin J, Alquaddoomi, Faisal, Hu, Dongbo, Nicholson, David N, Hao, Yun, Sullivan, Blair D, Nagle, Michael W, Greene, Casey S
Format Journal Article
LanguageEnglish
Published United States Oxford University Press 2023
Subjects
Online AccessGet full text
ISSN2047-217X
2047-217X
DOI10.1093/gigascience/giad047

Cover

Abstract Abstract Background Hetnets, short for “heterogeneous networks,” contain multiple node and relationship types and offer a way to encode biomedical knowledge. One such example, Hetionet, connects 11 types of nodes—including genes, diseases, drugs, pathways, and anatomical structures—with over 2 million edges of 24 types. Previous work has demonstrated that supervised machine learning methods applied to such networks can identify drug repurposing opportunities. However, a training set of known relationships does not exist for many types of node pairs, even when it would be useful to examine how nodes of those types are meaningfully connected. For example, users may be curious about not only how metformin is related to breast cancer but also how a given gene might be involved in insomnia. Findings We developed a new procedure, termed hetnet connectivity search, that proposes important paths between any 2 nodes without requiring a supervised gold standard. The algorithm behind connectivity search identifies types of paths that occur more frequently than would be expected by chance (based on node degree alone). Several optimizations were required to precompute significant instances of node connectivity at the scale of large knowledge graphs. Conclusion We implemented the method on Hetionet and provide an online interface at https://het.io/search. We provide an open-source implementation of these methods in our new Python package named hetmatpy.
AbstractList Hetnets, short for "heterogeneous networks," contain multiple node and relationship types and offer a way to encode biomedical knowledge. One such example, Hetionet, connects 11 types of nodes-including genes, diseases, drugs, pathways, and anatomical structures-with over 2 million edges of 24 types. Previous work has demonstrated that supervised machine learning methods applied to such networks can identify drug repurposing opportunities. However, a training set of known relationships does not exist for many types of node pairs, even when it would be useful to examine how nodes of those types are meaningfully connected. For example, users may be curious about not only how metformin is related to breast cancer but also how a given gene might be involved in insomnia.BACKGROUNDHetnets, short for "heterogeneous networks," contain multiple node and relationship types and offer a way to encode biomedical knowledge. One such example, Hetionet, connects 11 types of nodes-including genes, diseases, drugs, pathways, and anatomical structures-with over 2 million edges of 24 types. Previous work has demonstrated that supervised machine learning methods applied to such networks can identify drug repurposing opportunities. However, a training set of known relationships does not exist for many types of node pairs, even when it would be useful to examine how nodes of those types are meaningfully connected. For example, users may be curious about not only how metformin is related to breast cancer but also how a given gene might be involved in insomnia.We developed a new procedure, termed hetnet connectivity search, that proposes important paths between any 2 nodes without requiring a supervised gold standard. The algorithm behind connectivity search identifies types of paths that occur more frequently than would be expected by chance (based on node degree alone). Several optimizations were required to precompute significant instances of node connectivity at the scale of large knowledge graphs.FINDINGSWe developed a new procedure, termed hetnet connectivity search, that proposes important paths between any 2 nodes without requiring a supervised gold standard. The algorithm behind connectivity search identifies types of paths that occur more frequently than would be expected by chance (based on node degree alone). Several optimizations were required to precompute significant instances of node connectivity at the scale of large knowledge graphs.We implemented the method on Hetionet and provide an online interface at https://het.io/search. We provide an open-source implementation of these methods in our new Python package named hetmatpy.CONCLUSIONWe implemented the method on Hetionet and provide an online interface at https://het.io/search. We provide an open-source implementation of these methods in our new Python package named hetmatpy.
Abstract Background Hetnets, short for “heterogeneous networks,” contain multiple node and relationship types and offer a way to encode biomedical knowledge. One such example, Hetionet, connects 11 types of nodes—including genes, diseases, drugs, pathways, and anatomical structures—with over 2 million edges of 24 types. Previous work has demonstrated that supervised machine learning methods applied to such networks can identify drug repurposing opportunities. However, a training set of known relationships does not exist for many types of node pairs, even when it would be useful to examine how nodes of those types are meaningfully connected. For example, users may be curious about not only how metformin is related to breast cancer but also how a given gene might be involved in insomnia. Findings We developed a new procedure, termed hetnet connectivity search, that proposes important paths between any 2 nodes without requiring a supervised gold standard. The algorithm behind connectivity search identifies types of paths that occur more frequently than would be expected by chance (based on node degree alone). Several optimizations were required to precompute significant instances of node connectivity at the scale of large knowledge graphs. Conclusion We implemented the method on Hetionet and provide an online interface at https://het.io/search. We provide an open-source implementation of these methods in our new Python package named hetmatpy.
Hetnets, short for "heterogeneous networks," contain multiple node and relationship types and offer a way to encode biomedical knowledge. One such example, Hetionet, connects 11 types of nodes-including genes, diseases, drugs, pathways, and anatomical structures-with over 2 million edges of 24 types. Previous work has demonstrated that supervised machine learning methods applied to such networks can identify drug repurposing opportunities. However, a training set of known relationships does not exist for many types of node pairs, even when it would be useful to examine how nodes of those types are meaningfully connected. For example, users may be curious about not only how metformin is related to breast cancer but also how a given gene might be involved in insomnia. We developed a new procedure, termed hetnet connectivity search, that proposes important paths between any 2 nodes without requiring a supervised gold standard. The algorithm behind connectivity search identifies types of paths that occur more frequently than would be expected by chance (based on node degree alone). Several optimizations were required to precompute significant instances of node connectivity at the scale of large knowledge graphs. We implemented the method on Hetionet and provide an online interface at https://het.io/search. We provide an open-source implementation of these methods in our new Python package named hetmatpy.
Background Hetnets, short for “heterogeneous networks,” contain multiple node and relationship types and offer a way to encode biomedical knowledge. One such example, Hetionet, connects 11 types of nodes—including genes, diseases, drugs, pathways, and anatomical structures—with over 2 million edges of 24 types. Previous work has demonstrated that supervised machine learning methods applied to such networks can identify drug repurposing opportunities. However, a training set of known relationships does not exist for many types of node pairs, even when it would be useful to examine how nodes of those types are meaningfully connected. For example, users may be curious about not only how metformin is related to breast cancer but also how a given gene might be involved in insomnia. Findings We developed a new procedure, termed hetnet connectivity search, that proposes important paths between any 2 nodes without requiring a supervised gold standard. The algorithm behind connectivity search identifies types of paths that occur more frequently than would be expected by chance (based on node degree alone). Several optimizations were required to precompute significant instances of node connectivity at the scale of large knowledge graphs. Conclusion We implemented the method on Hetionet and provide an online interface at https://het.io/search. We provide an open-source implementation of these methods in our new Python package named hetmatpy.
Author Kloster, Kyle
Hu, Dongbo
Himmelstein, Daniel S
Zietz, Michael
Nicholson, David N
Alquaddoomi, Faisal
Sullivan, Blair D
Rubinetti, Vincent
Heil, Benjamin J
Hao, Yun
Nagle, Michael W
Greene, Casey S
Author_xml – sequence: 1
  givenname: Daniel S
  orcidid: 0000-0002-3012-7446
  surname: Himmelstein
  fullname: Himmelstein, Daniel S
– sequence: 2
  givenname: Michael
  orcidid: 0000-0003-0539-630X
  surname: Zietz
  fullname: Zietz, Michael
– sequence: 3
  givenname: Vincent
  orcidid: 0000-0002-4655-3773
  surname: Rubinetti
  fullname: Rubinetti, Vincent
– sequence: 4
  givenname: Kyle
  orcidid: 0000-0001-5678-7197
  surname: Kloster
  fullname: Kloster, Kyle
– sequence: 5
  givenname: Benjamin J
  orcidid: 0000-0002-2811-1031
  surname: Heil
  fullname: Heil, Benjamin J
– sequence: 6
  givenname: Faisal
  orcidid: 0000-0003-4297-8747
  surname: Alquaddoomi
  fullname: Alquaddoomi, Faisal
– sequence: 7
  givenname: Dongbo
  orcidid: 0000-0001-7870-8242
  surname: Hu
  fullname: Hu, Dongbo
  email: casey.s.greene@cuanschutz.edu
– sequence: 8
  givenname: David N
  orcidid: 0000-0003-0002-5761
  surname: Nicholson
  fullname: Nicholson, David N
– sequence: 9
  givenname: Yun
  orcidid: 0000-0002-1684-0085
  surname: Hao
  fullname: Hao, Yun
– sequence: 10
  givenname: Blair D
  orcidid: 0000-0001-7720-6208
  surname: Sullivan
  fullname: Sullivan, Blair D
– sequence: 11
  givenname: Michael W
  orcidid: 0000-0002-4677-7582
  surname: Nagle
  fullname: Nagle, Michael W
– sequence: 12
  givenname: Casey S
  orcidid: 0000-0001-8713-9213
  surname: Greene
  fullname: Greene, Casey S
  email: casey.s.greene@cuanschutz.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37503959$$D View this record in MEDLINE/PubMed
BookMark eNqNkUFv1DAQhS1UREvpL0BCkbhw2WLHSRyfEKqAIlXi0gMSB2viTHanytrBdrbaf1-vdoGlB6gvM5K_9zzz_JKdOO-QsdeCXwqu5fslLSFaQmcx99DzSj1jZ2Uui1Ko7ydH_Sm7iPGO56NU2yr5gp1KVXOpa33GflxjcpgK651Dm2hDaVtEhGBXxRT8hnqMRYCJ-oJcpOUqxdwkX6z8fdGRX2NPFsYCXaJEmYWARcAREvav2PMBxogXh3rObj9_ur26Xtx8-_L16uPNwlZ1KRZdKVve9N2AUA6gLHTdMNRSIu9smZFaWNvyQWilSi3atm3qbmhA64pL1EKes2pvO7sJtvcwjmYKtIawNYKbXVrmKC1zSCvLPuxl09zlLWzeIMAfqQcyf984Wpml32THHF8tdg7vDg7B_5wxJrOmaHEcwaGfoynbquJaKCEz-vYReufn4HIqRoqmVU2tVflvSnKtZC131JvjwX9P_OtTMyD3gA0-xoDDE_PQj1SWEiTyu-1p_I_2cq_18_Skxx4AZsnhtw
CitedBy_id crossref_primary_10_1093_bib_bbae561
crossref_primary_10_1093_gigascience_giae001
Cites_doi 10.1093/jamia/ocy117
10.7554/eLife.52614
10.1145/3097983.3098036
10.1145/3132847.3133161
10.1371/journal.pcbi.1007128
10.1038/s41598-020-74922-z
10.1002/asi.20591
10.1186/s12859-019-2914-2
10.1016/j.bdr.2020.100174
10.1145/2983323.2983778
10.1093/bioinformatics/bts591
10.1145/3289600.3290990
10.7554/eLife.26726
10.1093/bioinformatics/bty559
10.1186/s12859-022-04932-3
10.1007/978-3-319-25007-6_36
10.1109/BIBM47256.2019.8983134
10.2196/17645
10.1145/3184558.3186978
10.1186/s13059-019-1716-1
10.1137/1.9781611972795.67
10.1186/s12920-019-0627-z
10.1145/2736277.2741123
10.1145/2939672.2939754
10.1186/s12859-019-3297-0
10.1016/j.physa.2010.11.027
10.1371/journal.pcbi.1004259
10.1016/j.websem.2017.06.002
10.1109/TPAMI.2014.2343973
10.1093/nar/gky1032
10.1109/BIBM.2018.8621568
ContentType Journal Article
Copyright The Author(s) 2023. Published by Oxford University Press GigaScience. 2023
The Author(s) 2023. Published by Oxford University Press GigaScience.
The Author(s) 2023. Published by Oxford University Press GigaScience. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023. Published by Oxford University Press GigaScience. 2023
– notice: The Author(s) 2023. Published by Oxford University Press GigaScience.
– notice: The Author(s) 2023. Published by Oxford University Press GigaScience. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
K9.
7X8
5PM
ADTOC
UNPAY
DOI 10.1093/gigascience/giad047
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Library & Information Science
EISSN 2047-217X
ExternalDocumentID 10.1093/gigascience/giad047
PMC10375517
37503959
10_1093_gigascience_giad047
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NICHD NIH HHS
  grantid: R01 HD109765
– fundername: NCI NIH HHS
  grantid: R01 CA237170
– fundername: NHGRI NIH HHS
  grantid: T32 HG000046
– fundername: NHGRI NIH HHS
  grantid: R01 HG010067
– fundername: NIH HHS
  grantid: T32 HG000046
– fundername: ;
– fundername: ;
  grantid: R01 HD109765
– fundername: ;
  grantid: T32 HG000046
– fundername: ;
  grantid: R01 CA237170
– fundername: ;
  grantid: GBMF4552; GBMF4560
– fundername: ;
  grantid: R01 HG010067
GroupedDBID -A0
0R~
3V.
4.4
53G
5VS
7X7
88E
88I
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAHBH
AAPPN
AAPXW
AAVAP
ABDBF
ABEJV
ABPTD
ABUWG
ABXVV
ACGFS
ACPRK
ACRMQ
ACUHS
ADBBV
ADINQ
ADRAZ
ADUKV
AEGXH
AENZO
AFKRA
AFULF
AHBYD
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
BAWUL
BAYMD
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BTTYL
BVXVI
C24
C6C
CCPQU
DIK
DWQXO
EBS
EJD
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IHR
IHW
INH
INR
IPNFZ
ITC
K6V
K7-
KQ8
KSI
LK8
M0N
M1P
M2P
M48
M7P
M~E
O9-
OK1
P62
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RIG
RNS
ROL
ROX
RPM
RSV
SBL
SOJ
TJX
TOX
UKHRP
AAYXX
ABGNP
AFPKN
AMNDL
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
K9.
7X8
5PM
ADTOC
IGS
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
UNPAY
ID FETCH-LOGICAL-c4521-b23806dbfea2fa7cabbff533e0bc2c4551cc80f197729188865bf6a99403e913
IEDL.DBID M48
ISSN 2047-217X
IngestDate Sun Oct 26 04:14:29 EDT 2025
Tue Sep 30 17:12:53 EDT 2025
Sat Sep 27 22:53:59 EDT 2025
Tue Oct 07 06:32:29 EDT 2025
Tue Oct 07 06:29:53 EDT 2025
Mon Jul 21 06:02:04 EDT 2025
Thu Apr 24 23:02:41 EDT 2025
Wed Oct 01 02:41:45 EDT 2025
Mon Dec 16 07:45:55 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords matrix multiplication
algorithms
search
connectivity
Hetionet
path counts
bioinformatics
hetnets
knowledge graphs
networks
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
The Author(s) 2023. Published by Oxford University Press GigaScience.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4521-b23806dbfea2fa7cabbff533e0bc2c4551cc80f197729188865bf6a99403e913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0539-630X
0000-0001-7870-8242
0000-0002-1684-0085
0000-0002-4677-7582
0000-0001-5678-7197
0000-0002-2811-1031
0000-0001-8713-9213
0000-0002-4655-3773
0000-0003-4297-8747
0000-0003-0002-5761
0000-0002-3012-7446
0000-0001-7720-6208
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1093/gigascience/giad047
PMID 37503959
PQID 3130973532
PQPubID 2040230
ParticipantIDs unpaywall_primary_10_1093_gigascience_giad047
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10375517
proquest_miscellaneous_2844091713
proquest_journals_3168765972
proquest_journals_3130973532
pubmed_primary_37503959
crossref_primary_10_1093_gigascience_giad047
crossref_citationtrail_10_1093_gigascience_giad047
oup_primary_10_1093_gigascience_giad047
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-00-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023-00-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Gigascience
PublicationTitleAlternate Gigascience
PublicationYear 2023
Publisher Oxford University Press
Publisher_xml – sequence: 0
  name: Oxford University Press
– name: Oxford University Press
References Himmelstein (2024111706313637800_bib4) 2016
Meng (2024111706313637800_bib29) 2015
Dong (2024111706313637800_bib13) 2017
Rubinetti (2024111706313637800_bib62) 2021
Gao (2024111706313637800_bib14) 2019; 20
Bordes (2024111706313637800_bib17) 2013
Wood (2024111706313637800_bib41) 2022; 23
Schriml (2024111706313637800_bib33) 2019; 7
Wang (2024111706313637800_bib19) 2019
Himmelstein (2024111706313637800_bib59) 2022
Abdelaziz (2024111706313637800_bib8) 2017; 4
Mayers (2024111706313637800_bib30) 2022
Himmelstein (2024111706313637800_bib45) 2015
Grover (2024111706313637800_bib12) 2016
Himmelstein (2024111706313637800_bib31) 2016
Himmelstein (2024111706313637800_bib54) 2019; 5
Alshahrani (2024111706313637800_bib21) 2018; 4
Lü (2024111706313637800_bib6) 2011; 390
Lizee (2024111706313637800_bib51) 2016
Kilicoglu (2024111706313637800_bib37) 2012; 8
Himmelstein (2024111706313637800_bib42) 2015; 11
Fernández-Torras (2024111706313637800_bib18) 2022; 3
Himmelstein (2024111706313637800_bib34) 2015
Rubinetti (2024111706313637800_bib58) 2023
2024111706313637800_bib63
Himmelstein (2024111706313637800_bib49) 2016
Seufert (2024111706313637800_bib27) 2016
Behrens (2024111706313637800_bib28) 2018
Zietz (2024111706313637800_bib46) 2017
Xu (2024111706313637800_bib22) 2019; 12
Himmelstein (2024111706313637800_bib61) 2023
Himmelstein (2024111706313637800_bib1) 2015
Pirrò (2024111706313637800_bib24) 2015
Himmelstein (2024111706313637800_bib56) 2023
Cong (2024111706313637800_bib38) 2018
Gong (2024111706313637800_bib9) 2021; 3
Mayers (2024111706313637800_bib47)
Zietz (2024111706313637800_bib50) 2023
Wang (2024111706313637800_bib26) 2017
Liben-Nowell (2024111706313637800_bib5) 2007; 58
Mayers (2024111706313637800_bib39) 2019; 20
Yang (2024111706313637800_bib7) 2018; 5
Bonner (2024111706313637800_bib35) 2022; 3
Ghazimatin (2024111706313637800_bib25) 2019
Morris (2024111706313637800_bib40) 2023
Waagmeester (2024111706313637800_bib36) 2020; 9
Ali (2024111706313637800_bib10) 2021; 22
Himmelstein (2024111706313637800_bib57) 2023
Himmelstein (2024111706313637800_bib43) 2015
Himmelstein (2024111706313637800_bib2) 2017; 6
Hanhijärvi (2024111706313637800_bib48) 2009
Paliwal (2024111706313637800_bib15) 2020; 10
Himmelstein (2024111706313637800_bib44) 2016
Zong (2024111706313637800_bib23) 2017
Himmelstein (2024111706313637800_bib55) 2023
Korthauer (2024111706313637800_bib53) 2019; 20
Bonner (2024111706313637800_bib11) 2022; 2
Zitnik (2024111706313637800_bib16) 2015; 37
Himmelstein (2024111706313637800_bib32) 2016
Himmelstein (2024111706313637800_bib60) 2021
Li (2024111706313637800_bib20) 2020; 8
Himmelstein (2024111706313637800_bib52) 2018
Himmelstein (2024111706313637800_bib3) 2016
36711546 - bioRxiv. 2023 Jan 07:2023.01.05.522941. doi: 10.1101/2023.01.05.522941
References_xml – volume-title: Announcing PharmacotherapyDB: The Open Catalog of Drug Therapies for Disease
  year: 2016
  ident: 2024111706313637800_bib3
– volume-title: GitHub - mmayers12/hetnet_ml: Software to quickly extract features from heterogeneous networks for machine learning
  ident: 2024111706313637800_bib47
– volume: 5
  start-page: 1452
  year: 2018
  ident: 2024111706313637800_bib7
  article-title: Heterogeneous network embedding for identifying symptom candidate genes
  publication-title: J Am Med Inform Assoc
  doi: 10.1093/jamia/ocy117
– volume-title: Assessing the Effectiveness of Our Hetnet Permutations
  year: 2016
  ident: 2024111706313637800_bib49
– year: 2023
  ident: 2024111706313637800_bib56
– volume: 9
  year: 2020
  ident: 2024111706313637800_bib36
  article-title: Wikidata as a knowledge graph for the life sciences
  publication-title: eLife
  doi: 10.7554/eLife.52614
– volume-title: Bioinformatics
  year: 2017
  ident: 2024111706313637800_bib23
  article-title: Deep mining heterogeneous networks of biomedical linked data to predict novel drug–target associations
– volume: 3
  year: 2022
  ident: 2024111706313637800_bib35
  article-title: A review of biomedical datasets relating to drug discovery: a knowledge graph perspective
  publication-title: Briefings Bioinf
– volume-title: KDD '17: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
  year: 2017
  ident: 2024111706313637800_bib13
  article-title: metapath2vec: scalable representation learning for heterogeneous networks
  doi: 10.1145/3097983.3098036
– volume-title: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management
  year: 2017
  ident: 2024111706313637800_bib26
  article-title: Using knowledge graphs to explain entity co-occurrence in Twitter
  doi: 10.1145/3132847.3133161
– volume: 5
  start-page: e1007128
  year: 2019
  ident: 2024111706313637800_bib54
  article-title: Open collaborative writing with Manubot
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1007128
– volume-title: Using the neo4j Graph Database for Hetnets
  year: 2015
  ident: 2024111706313637800_bib43
– year: 2023
  ident: 2024111706313637800_bib58
– volume: 22
  start-page: 1
  year: 2021
  ident: 2024111706313637800_bib10
  article-title: PyKEEN 1.0: a Python library for training and evaluating knowledge graph embeddings
  publication-title: J Machine Learn Res
– volume-title: Zenodo
  year: 2018
  ident: 2024111706313637800_bib52
  article-title: Node connectivity measurements for Hetionet v1.0 metapaths
– volume: 10
  start-page: 18250
  year: 2020
  ident: 2024111706313637800_bib15
  article-title: Preclinical validation of therapeutic targets predicted by tensor factorization on heterogeneous graphs
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-74922-z
– ident: 2024111706313637800_bib63
– volume: 58
  start-page: 1019
  year: 2007
  ident: 2024111706313637800_bib5
  article-title: The link-prediction problem for social networks
  publication-title: J Am Soc Inf Sci
  doi: 10.1002/asi.20591
– volume: 20
  year: 2019
  ident: 2024111706313637800_bib14
  article-title: edge2vec: representation learning using edge semantics for biomedical knowledge discovery
  publication-title: BMC Bioinf
  doi: 10.1186/s12859-019-2914-2
– volume: 3
  start-page: 100174
  year: 2021
  ident: 2024111706313637800_bib9
  article-title: SMR: medical knowledge graph embedding for safe medicine recommendation
  publication-title: Big Data Res
  doi: 10.1016/j.bdr.2020.100174
– volume-title: Bioinformatics
  year: 2022
  ident: 2024111706313637800_bib30
  article-title: Design and application of a knowledge network for automatic prioritization of drug mechanisms
– volume-title: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management
  year: 2016
  ident: 2024111706313637800_bib27
  article-title: ESPRESSO: explaining relationships between entity sets
  doi: 10.1145/2983323.2983778
– volume: 8
  start-page: 3158
  year: 2012
  ident: 2024111706313637800_bib37
  article-title: SemMedDB: a PubMed-scale repository of biomedical semantic predications
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts591
– year: 2021
  ident: 2024111706313637800_bib62
– volume-title: Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining
  year: 2019
  ident: 2024111706313637800_bib25
  article-title: FAIRY: a framework for understanding relationships between users' actions and their social feeds
  doi: 10.1145/3289600.3290990
– volume-title: Path Exclusion Conditions
  year: 2015
  ident: 2024111706313637800_bib45
– year: 2023
  ident: 2024111706313637800_bib55
  article-title: greenelab/connectivity-search-manuscript repository: manuscript source code for
  publication-title: Hetnet Connectivity Search.
– start-page: 2787
  volume-title: Proceedings of the 26th International Conference on Neural Information Processing Systems
  year: 2013
  ident: 2024111706313637800_bib17
  article-title: Translating embeddings for modeling multi-relational data
– volume: 6
  start-page: e26726
  year: 2017
  ident: 2024111706313637800_bib2
  article-title: Systematic integration of biomedical knowledge prioritizes drugs for repurposing
  publication-title: eLife
  doi: 10.7554/eLife.26726
– volume: 4
  start-page: i901
  year: 2018
  ident: 2024111706313637800_bib21
  article-title: Semantic Disease Gene Embeddings (SmuDGE): phenotype-based disease gene prioritization without phenotypes
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty559
– volume: 23
  year: 2022
  ident: 2024111706313637800_bib41
  article-title: RTX-KG2: a system for building a semantically standardized knowledge graph for translational biomedicine
  publication-title: BMC Bioinf
  doi: 10.1186/s12859-022-04932-3
– volume-title: The Semantic Web—ISWC 2015
  year: 2015
  ident: 2024111706313637800_bib24
  article-title: Explaining and suggesting relatedness in knowledge graphs
  doi: 10.1007/978-3-319-25007-6_36
– volume: 2
  start-page: 100036
  year: 2022
  ident: 2024111706313637800_bib11
  article-title: Understanding the performance of knowledge graph embeddings in drug discovery
  publication-title: Artif Intell Life Sci
– volume-title: 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
  year: 2019
  ident: 2024111706313637800_bib19
  article-title: Predicting gene-disease associations from the heterogeneous network using graph embedding
  doi: 10.1109/BIBM47256.2019.8983134
– volume-title: Figshare
  year: 2017
  ident: 2024111706313637800_bib46
  article-title: Vagelos Report Summer 2017
– volume-title: Renaming ‘Heterogeneous Networks’ to a More Concise and Catchy Term
  year: 2015
  ident: 2024111706313637800_bib1
– volume: 8
  start-page: e17645
  year: 2020
  ident: 2024111706313637800_bib20
  article-title: A method to learn embedding of a probabilistic medical knowledge graph: algorithm development
  publication-title: JMIR Med Inform
  doi: 10.2196/17645
– year: 2021
  ident: 2024111706313637800_bib60
– volume: 3
  year: 2022
  ident: 2024111706313637800_bib18
  article-title: Integrating and formatting biomedical data as pre-calculated knowledge graph embeddings in the Bioteque
  publication-title: Nat Commun
– volume-title: WWW '18: Companion Proceedings of the The Web Conference 2018
  year: 2018
  ident: 2024111706313637800_bib28
  article-title: MetaExp: interactive explanation and exploration of large knowledge graphs
  doi: 10.1145/3184558.3186978
– volume-title: Unifying Disease Vocabularies
  year: 2015
  ident: 2024111706313637800_bib34
– volume: 20
  year: 2019
  ident: 2024111706313637800_bib53
  article-title: A practical guide to methods controlling false discoveries in computational biology
  publication-title: Genome Biol
  doi: 10.1186/s13059-019-1716-1
– volume-title: Proceedings of the 2009 SIAM International Conference on Data Mining
  year: 2009
  ident: 2024111706313637800_bib48
  article-title: Randomization techniques for graphs
  doi: 10.1137/1.9781611972795.67
– year: 2023
  ident: 2024111706313637800_bib50
  article-title: The probability of edge existence due to node degree: a baseline for network-based predictions
  publication-title: Biorxiv
– year: 2022
  ident: 2024111706313637800_bib59
– volume-title: Bioinformatics
  year: 2023
  ident: 2024111706313637800_bib40
  article-title: The scalable precision medicine open knowledge engine (SPOKE): a massive knowledge graph of biomedical information
– volume: 12
  year: 2019
  ident: 2024111706313637800_bib22
  article-title: A network embedding model for pathogenic genes prediction by multi-path random walking on heterogeneous network
  publication-title: BMC Med Genomics
  doi: 10.1186/s12920-019-0627-z
– volume-title: Network Edge Prediction: Estimating the Prior
  year: 2016
  ident: 2024111706313637800_bib51
– volume-title: Transforming DWPCs for Hetnet Edge Prediction
  year: 2016
  ident: 2024111706313637800_bib31
– volume-title: Estimating the Complexity of Hetnet Traversal
  year: 2016
  ident: 2024111706313637800_bib44
– volume-title: Decomposing the DWPC to Assess Intermediate Node or Edge Contributions
  year: 2016
  ident: 2024111706313637800_bib32
– volume-title: Proceedings of the 24th International Conference on World Wide Web. International World Wide Web Conferences Steering Committee
  year: 2015
  ident: 2024111706313637800_bib29
  article-title: Discovering meta-paths in large heterogeneous information networks
  doi: 10.1145/2736277.2741123
– volume-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
  year: 2016
  ident: 2024111706313637800_bib12
  article-title: node2vec: scalable feature learning for networks
  doi: 10.1145/2939672.2939754
– year: 2023
  ident: 2024111706313637800_bib57
– year: 2023
  ident: 2024111706313637800_bib61
– volume: 20
  year: 2019
  ident: 2024111706313637800_bib39
  article-title: Time-resolved evaluation of compound repositioning predictions on a text-mined knowledge network
  publication-title: BMC Bioinf
  doi: 10.1186/s12859-019-3297-0
– volume: 390
  start-page: 1150
  year: 2011
  ident: 2024111706313637800_bib6
  article-title: Link prediction in complex networks: a survey
  publication-title: Physica A
  doi: 10.1016/j.physa.2010.11.027
– volume: 11
  start-page: e1004259
  year: 2015
  ident: 2024111706313637800_bib42
  article-title: Heterogeneous network edge prediction: a data integration approach to prioritize disease-associated genes
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1004259
– volume: 4
  start-page: 104
  year: 2017
  ident: 2024111706313637800_bib8
  article-title: Large-scale structural and textual similarity-based mining of knowledge graph to predict drug–drug interactions
  publication-title: J Web Semantics
  doi: 10.1016/j.websem.2017.06.002
– volume: 37
  start-page: 41
  year: 2015
  ident: 2024111706313637800_bib16
  article-title: Data fusion by matrix factorization
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2014.2343973
– volume: 7
  start-page: D955
  year: 2019
  ident: 2024111706313637800_bib33
  article-title: Human Disease Ontology 2018 update: classification, content and workflow expansion
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1032
– volume-title: Our Hetnet Edge Prediction Methodology: The Modeling Framework for Project Rephetio
  year: 2016
  ident: 2024111706313637800_bib4
– volume-title: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
  year: 2018
  ident: 2024111706313637800_bib38
  article-title: Constructing biomedical knowledge graph based on SemMedDB and linked open data
  doi: 10.1109/BIBM.2018.8621568
– reference: 36711546 - bioRxiv. 2023 Jan 07:2023.01.05.522941. doi: 10.1101/2023.01.05.522941
SSID ssj0000778873
Score 2.2920206
Snippet Abstract Background Hetnets, short for “heterogeneous networks,” contain multiple node and relationship types and offer a way to encode biomedical knowledge....
Hetnets, short for "heterogeneous networks," contain multiple node and relationship types and offer a way to encode biomedical knowledge. One such example,...
Background Hetnets, short for “heterogeneous networks,” contain multiple node and relationship types and offer a way to encode biomedical knowledge. One such...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Algorithms
Breast cancer
Connectivity
Graph theory
Insomnia
Knowledge representation
Machine learning
Metformin
Nodes
Probability
Searching
Sleep disorders
Supervised learning
Technical Note
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2V7QEu5RsWWmQkBBeyJHHixMcKUa2QqDi00iIOke3Y24hVdrXJqio_gN_NeO2EDV8qB25RPImS8dh-Y_s9A7yQXBlEDYjcDKNBkguNTSqWgSpzKbSOy3LL8P5wyqbnyftZOtsD3XFhhN8VPukoDfNqLvxg8MY7M1iV5ofyAKcDm3klyjDBLD_k2PEy1t2Y4EM3YJ-lCNlHsH9--vH4kz14bqtUEGWzTpHo968bjFoDJtwOIP11X-XNTb0SV5disdgZtE5uw7fud91elS-TTSsn6utPSpD_3R934MDDXnLsXnUX9nR9D448aYK8JJ4VZaOE-O7mPnye6rbWLVF2M45yx1wQ1zSJZxA2ZC1WVUmqurGzDA1etEtysbwkTlfAhiDpdGOJWGuyJe_o8gGcnbw7ezsN_GEQgUoQYgQSsUXISmm0iI3IlJDSGMSqOpQqRpM0UioPTcRtuhBhXs9SaZjgPAmp5hF9CKN6WevHQHSaGMxrc21XkNEp3GSW3ZuaUkSZyNkY4q6uC-WF0u15HYvCLdjTYse_hXfnGF73D62cTsjfzV9hhV7P8rALtMJ3L01BEXnwjKY0_kMxw0EOU0Usft4XY79hF4NErZebpkBYgql9lEV0DI9c2PafQ-3iNk_5GPJBQPcGVpN8WFJXF1ttcks7xbrAzw762L_Obz75R_uncCtGuOkmww5h1K43-gjhYSuf-cb9Hcgwbdk
  priority: 102
  providerName: Unpaywall
Title Hetnet connectivity search provides rapid insights into how biomedical entities are related
URI https://www.ncbi.nlm.nih.gov/pubmed/37503959
https://www.proquest.com/docview/3130973532
https://www.proquest.com/docview/3168765972
https://www.proquest.com/docview/2844091713
https://pubmed.ncbi.nlm.nih.gov/PMC10375517
https://academic.oup.com/gigascience/article-pdf/doi/10.1093/gigascience/giad047/50984766/giad047.pdf
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central_OA刊
  customDbUrl:
  eissn: 2047-217X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000778873
  issn: 2047-217X
  databaseCode: RBZ
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2047-217X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000778873
  issn: 2047-217X
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2047-217X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000778873
  issn: 2047-217X
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2047-217X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000778873
  issn: 2047-217X
  databaseCode: ABDBF
  dateStart: 20131201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2047-217X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000778873
  issn: 2047-217X
  databaseCode: DIK
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2047-217X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000778873
  issn: 2047-217X
  databaseCode: GX1
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2047-217X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000778873
  issn: 2047-217X
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2047-217X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000778873
  issn: 2047-217X
  databaseCode: RPM
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 2047-217X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000778873
  issn: 2047-217X
  databaseCode: TOX
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2047-217X
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000778873
  issn: 2047-217X
  databaseCode: M48
  dateStart: 20120701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED-6Fra-lH0vW1s0GNvLvNqWv_QwRhktYdBuDwlk7MFIstQGgpPFDm1f9rfvzpZNwtrRFyOQBLLuzvc7S787gHdKaIuoAZGbTbgXZdKgSYXK00WmpDFhUTQM77PzZDiOvk3iyRZ0VVHdBla3hnZUT2q8nH26_n3zBQ3-s0uGdHQxvZDOX2BbFn6UPoAddFWCajmcObzffJpTujzHu-xDt8_dhYecTvcE5S9dc1YbBLg1HPrvdcpHq3Ihb67kbLbmq04fw54Dmey41YonsGXKp3DgKArsPXMcJJIJc8b9DH4NTV2ammm6-qLbohKsNQTm-HoVW8rFtGDTsqKYvsJGPWeX8yvWsvhJ4KzL0srk0rCGKmOK5zA6PRl9HXqu9IKnI3TonkJP7ieFskaGVqZaKmUtIkPjKx3ikDjQOvNtIAicBxhFJ7GyiRQi8rkRAX8B2-W8NK-AmTiyGEVmhs5rRRYJmxKXNraFDFKZJQMIuy3OtUtLTtUxZnl7PM7zNRHlTkQD-NhPWrRZOf4__APK7n4j9zv55p0u5hz9vEh5zMM7uhN0KRiYYffbvhutlI5eZGnmqypHEIDqGKQBH8DLVlv65XTKNoBsQ4_6AZQBfLOnnF42mcCJ5ImywGV7vcrd5zVf37mIN7AbIoxrfzLtw3a9XJkDhF21OmxMiZ5_TvA5-j45hJ3x-Y_jn38BQqY27w
linkProvider Scholars Portal
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2V7QEu5RsWWmQkBBeyJHHixMcKUa2QqDi00iIOke3Y24hVdrXJqio_gN_NeO2EDV8qB25RPImS8dh-Y_s9A7yQXBlEDYjcDKNBkguNTSqWgSpzKbSOy3LL8P5wyqbnyftZOtsD3XFhhN8VPukoDfNqLvxg8MY7M1iV5ofyAKcDm3klyjDBLD_k2PEy1t2Y4EM3YJ-lCNlHsH9--vH4kz14bqtUEGWzTpHo968bjFoDJtwOIP11X-XNTb0SV5disdgZtE5uw7fud91elS-TTSsn6utPSpD_3R934MDDXnLsXnUX9nR9D448aYK8JJ4VZaOE-O7mPnye6rbWLVF2M45yx1wQ1zSJZxA2ZC1WVUmqurGzDA1etEtysbwkTlfAhiDpdGOJWGuyJe_o8gGcnbw7ezsN_GEQgUoQYgQSsUXISmm0iI3IlJDSGMSqOpQqRpM0UioPTcRtuhBhXs9SaZjgPAmp5hF9CKN6WevHQHSaGMxrc21XkNEp3GSW3ZuaUkSZyNkY4q6uC-WF0u15HYvCLdjTYse_hXfnGF73D62cTsjfzV9hhV7P8rALtMJ3L01BEXnwjKY0_kMxw0EOU0Usft4XY79hF4NErZebpkBYgql9lEV0DI9c2PafQ-3iNk_5GPJBQPcGVpN8WFJXF1ttcks7xbrAzw762L_Obz75R_uncCtGuOkmww5h1K43-gjhYSuf-cb9Hcgwbdk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hetnet+connectivity+search+provides+rapid+insights+into+how+biomedical+entities+are+related&rft.jtitle=Gigascience&rft.au=Himmelstein%2C+Daniel+S&rft.au=Zietz%2C+Michael&rft.au=Rubinetti%2C+Vincent&rft.au=Kloster%2C+Kyle&rft.date=2023&rft.eissn=2047-217X&rft.volume=12&rft_id=info:doi/10.1093%2Fgigascience%2Fgiad047&rft_id=info%3Apmid%2F37503959&rft.externalDocID=37503959
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-217X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-217X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-217X&client=summon