Discrete element and finite element methods provide similar estimations for hip joint contact mechanics during walking gait

Finite element analysis (FEA) provides a powerful approach for estimating the in-vivo loading characteristics of the hip joint during various locomotory and functional activities. However, time-consuming procedures, such as the generation of high-quality FE meshes and setup of FE simulation, typical...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomechanics Vol. 115; p. 110163
Main Authors Li, Mao, Venäläinen, Mikko S., Chandra, Shekhar S., Patel, Rushabh, Fripp, Jurgen, Engstrom, Craig, Korhonen, Rami K., Töyräs, Juha, Crozier, Stuart
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 22.01.2021
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0021-9290
1873-2380
1873-2380
DOI10.1016/j.jbiomech.2020.110163

Cover

Abstract Finite element analysis (FEA) provides a powerful approach for estimating the in-vivo loading characteristics of the hip joint during various locomotory and functional activities. However, time-consuming procedures, such as the generation of high-quality FE meshes and setup of FE simulation, typically make the method impractical for rapid applications which could be used in clinical routine. Alternatively, discrete element analysis (DEA) has been developed to quantify mechanical conditions of the hip joint in a fraction of time compared to FEA. Although DEA has proven effective in the estimation of contact stresses and areas in various complex applications, it has not yet been well characterised by its ability to evaluate contact mechanics for the hip joint during gait cycle loading using data from several individuals. The objective of this work was to compare DEA modelling against well-established FEA for analysing contact mechanics of the hip joint during walking gait. Subject-specific models were generated from magnetic resonance images of the hip joints in five asymptomatic subjects. The DEA and FEA models were then simulated for 13 loading time-points extracted from a full gait cycle. Computationally, DEA was substantially more efficient compared to FEA (simulation times of seconds vs. hours). The DEA and FEA methods had similar predictions for contact pressure distribution for the hip joint during normal walking. In all 13 simulated loading time-points across five subjects, the maximum difference in average contact pressures between DEA and FEA was within ±0.06 MPa. Furthermore, the difference in contact area ratio computed using DEA and FEA was less than ±6%.
AbstractList Finite element analysis (FEA) provides a powerful approach for estimating the in-vivo loading characteristics of the hip joint during various locomotory and functional activities. However, time-consuming procedures, such as the generation of high-quality FE meshes and setup of FE simulation, typically make the method impractical for rapid applications which could be used in clinical routine. Alternatively, discrete element analysis (DEA) has been developed to quantify mechanical conditions of the hip joint in a fraction of time compared to FEA. Although DEA has proven effective in the estimation of contact stresses and areas in various complex applications, it has not yet been well characterised by its ability to evaluate contact mechanics for the hip joint during gait cycle loading using data from several individuals. The objective of this work was to compare DEA modelling against well-established FEA for analysing contact mechanics of the hip joint during walking gait. Subject-specific models were generated from magnetic resonance images of the hip joints in five asymptomatic subjects. The DEA and FEA models were then simulated for 13 loading time-points extracted from a full gait cycle. Computationally, DEA was substantially more efficient compared to FEA (simulation times of seconds vs. hours). The DEA and FEA methods had similar predictions for contact pressure distribution for the hip joint during normal walking. In all 13 simulated loading time-points across five subjects, the maximum difference in average contact pressures between DEA and FEA was within ±0.06 MPa. Furthermore, the difference in contact area ratio computed using DEA and FEA was less than ±6%.Finite element analysis (FEA) provides a powerful approach for estimating the in-vivo loading characteristics of the hip joint during various locomotory and functional activities. However, time-consuming procedures, such as the generation of high-quality FE meshes and setup of FE simulation, typically make the method impractical for rapid applications which could be used in clinical routine. Alternatively, discrete element analysis (DEA) has been developed to quantify mechanical conditions of the hip joint in a fraction of time compared to FEA. Although DEA has proven effective in the estimation of contact stresses and areas in various complex applications, it has not yet been well characterised by its ability to evaluate contact mechanics for the hip joint during gait cycle loading using data from several individuals. The objective of this work was to compare DEA modelling against well-established FEA for analysing contact mechanics of the hip joint during walking gait. Subject-specific models were generated from magnetic resonance images of the hip joints in five asymptomatic subjects. The DEA and FEA models were then simulated for 13 loading time-points extracted from a full gait cycle. Computationally, DEA was substantially more efficient compared to FEA (simulation times of seconds vs. hours). The DEA and FEA methods had similar predictions for contact pressure distribution for the hip joint during normal walking. In all 13 simulated loading time-points across five subjects, the maximum difference in average contact pressures between DEA and FEA was within ±0.06 MPa. Furthermore, the difference in contact area ratio computed using DEA and FEA was less than ±6%.
Finite element analysis (FEA) provides a powerful approach for estimating the in-vivo loading characteristics of the hip joint during various locomotory and functional activities. However, time-consuming procedures, such as the generation of high-quality FE meshes and setup of FE simulation, typically make the method impractical for rapid applications which could be used in clinical routine. Alternatively, discrete element analysis (DEA) has been developed to quantify mechanical conditions of the hip joint in a fraction of time compared to FEA. Although DEA has proven effective in the estimation of contact stresses and areas in various complex applications, it has not yet been well characterised by its ability to evaluate contact mechanics for the hip joint during gait cycle loading using data from several individuals. The objective of this work was to compare DEA modelling against well-established FEA for analysing contact mechanics of the hip joint during walking gait. Subject-specific models were generated from magnetic resonance images of the hip joints in five asymptomatic subjects. The DEA and FEA models were then simulated for 13 loading time-points extracted from a full gait cycle. Computationally, DEA was substantially more efficient compared to FEA (simulation times of seconds vs. hours). The DEA and FEA methods had similar predictions for contact pressure distribution for the hip joint during normal walking. In all 13 simulated loading time-points across five subjects, the maximum difference in average contact pressures between DEA and FEA was within ±0.06 MPa. Furthermore, the difference in contact area ratio computed using DEA and FEA was less than ±6%.
Finite element analysis (FEA) provides a powerful approach for estimating the in-vivo loading characteristics of the hip joint during various locomotory and functional activities. However, time-consuming procedures, such as the generation of high-quality FE meshes and setup of FE simulation, typically make the method impractical for rapid applications which could be used in clinical routine. Alternatively, discrete element analysis (DEA) has been developed to quantify mechanical conditions of the hip joint in a fraction of time compared to FEA. Although DEA has proven effective in the estimation of contact stresses and areas in various complex applications, it has not yet been well characterised by its ability to evaluate contact mechanics for the hip joint during gait cycle loading using data from several individuals. The objective of this work was to compare DEA modelling against well-established FEA for analysing contact mechanics of the hip joint during walking gait. Subject-specific models were generated from magnetic resonance images of the hip joints in five asymptomatic subjects. The DEA and FEA models were then simulated for 13 loading time-points extracted from a full gait cycle. Computationally, DEA was substantially more efficient compared to FEA (simulation times of seconds vs. hours). The DEA and FEA methods had similar predictions for contact pressure distribution for the hip joint during normal walking. In all 13 simulated loading time-points across five subjects, the maximum difference in average contact pressures between DEA and FEA was within ±0.06 MPa. Furthermore, the difference in contact area ratio computed using DEA and FEA was less than ±6%.
ArticleNumber 110163
Author Töyräs, Juha
Venäläinen, Mikko S.
Engstrom, Craig
Chandra, Shekhar S.
Li, Mao
Patel, Rushabh
Fripp, Jurgen
Korhonen, Rami K.
Crozier, Stuart
Author_xml – sequence: 1
  givenname: Mao
  orcidid: 0000-0002-6696-4780
  surname: Li
  fullname: Li, Mao
  organization: School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Australia
– sequence: 2
  givenname: Mikko S.
  orcidid: 0000-0003-1777-4259
  surname: Venäläinen
  fullname: Venäläinen, Mikko S.
  email: m.venalainen@uq.edu.au, mikko.venalainen@utu.fi
  organization: School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Australia
– sequence: 3
  givenname: Shekhar S.
  surname: Chandra
  fullname: Chandra, Shekhar S.
  organization: School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Australia
– sequence: 4
  givenname: Rushabh
  orcidid: 0000-0003-4836-149X
  surname: Patel
  fullname: Patel, Rushabh
  organization: School of Mechanical and Mining Engineering, University of Queensland, Brisbane, Australia
– sequence: 5
  givenname: Jurgen
  orcidid: 0000-0001-9705-0079
  surname: Fripp
  fullname: Fripp, Jurgen
  organization: School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Australia
– sequence: 6
  givenname: Craig
  surname: Engstrom
  fullname: Engstrom, Craig
  organization: School of Human Movement Studies, University of Queensland, Brisbane, Australia
– sequence: 7
  givenname: Rami K.
  surname: Korhonen
  fullname: Korhonen, Rami K.
  organization: Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
– sequence: 8
  givenname: Juha
  orcidid: 0000-0002-8035-1606
  surname: Töyräs
  fullname: Töyräs, Juha
  organization: School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Australia
– sequence: 9
  givenname: Stuart
  surname: Crozier
  fullname: Crozier, Stuart
  organization: School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33338974$$D View this record in MEDLINE/PubMed
BookMark eNqNkk9v1DAQxS1URLeFr1BZ4sIlix0ncSIhBCp_pUpc4Gw540nXIbEX2ymq-PI4bIvQXooPHmn0e6Pxez4jJ847JOSCsy1nvHk5bsfe-hlhty1ZmZtrVzwiG95KUZSiZSdkw1jJi67s2Ck5i3FkjMlKdk_Iqcin7WS1Ib_e2QgBE1KccEaXqHaGDtbZf1ozpp03ke6Dv7EGabSznXSgGJOddbLeRTr4QHd2T0dvswK8SxpWJey0sxCpWYJ11_Snnr6v9Vrb9JQ8HvQU8dldPSffPrz_evmpuPry8fPl26sCqpqnYuiFrhtktRH5GvqKlaZkRhgtOWg-ALSyMdANjekkyrqCoS-FaXQvO912IM7Ji8PcvP-PJS-t5vxonCbt0C9RlZXkVcOlFBl9foSOfgkub7dSHRO8qlmmLu6opZ_RqH3INoRbdW9rBpoDAMHHGHD4i3Cm1qTUqO7zU2t-6pBfFr46EoJNfxxOQdvpYfmbgxyznTcWg4pg0QEaGxCSMt4-POL10QiY8m-AnBve_s-A31G-0cA
CitedBy_id crossref_primary_10_1186_s13018_022_03094_5
crossref_primary_10_1016_j_jbiomech_2023_111766
crossref_primary_10_3934_mbe_2023949
crossref_primary_10_1007_s11837_025_07147_y
crossref_primary_10_1302_2046_3758_1212_BJR_2022_0461_R2
crossref_primary_10_3390_app112311440
crossref_primary_10_1177_15563316231193426
crossref_primary_10_1016_j_asmr_2022_04_020
crossref_primary_10_1016_j_jbiomech_2025_112568
Cites_doi 10.1016/j.gaitpost.2010.09.001
10.1002/mrm.25598
10.1097/01.blo.0000203472.88926.c8
10.1002/jor.22040
10.1088/0031-9155/58/20/7375
10.7812/TPP/17-084
10.1002/cnm.1374
10.1007/s10439-018-02184-y
10.1016/j.media.2014.02.002
10.1016/j.joca.2016.11.016
10.1016/j.jbiomech.2013.01.012
10.1016/j.jmbbm.2013.04.012
10.1016/j.berh.2014.08.002
10.1109/TIP.2009.2023706
10.1016/j.berh.2011.11.013
10.1007/978-1-4939-0745-8_9
10.1016/j.jbiomech.2015.05.030
10.1002/cnm.887
10.1016/j.jbiomech.2014.12.020
10.1016/S0021-9290(97)85606-0
10.1177/0954411920905434
10.1371/journal.pone.0207014
10.1053/jars.2002.36120
10.1016/S0021-9290(01)00041-0
10.1002/jor.1100170411
10.1115/1.2953472
10.1016/j.media.2014.12.008
10.3109/17453670902947390
10.1016/j.joca.2012.09.012
10.1123/jab.26.2.215
10.2519/jospt.1998.28.1.51
10.1007/978-3-319-12057-7_6
10.1016/j.jbiomech.2005.06.026
10.1088/0031-9155/59/23/7245
10.1007/s11517-006-0074-9
10.1016/j.jbiomech.2011.05.006
10.1016/j.jbiomech.2017.11.014
10.1371/journal.pone.0155612
10.1093/rheumatology/38.2.124
10.1007/BFb0015544
10.1016/j.cma.2010.06.037
10.1016/j.joca.2016.10.023
10.1016/j.joca.2013.06.008
10.1016/j.jbiomech.2004.05.006
10.1016/j.jbiomech.2018.07.036
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
2020. Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
– notice: 2020. Elsevier Ltd
DBID AAYXX
CITATION
NPM
3V.
7QP
7TB
7TS
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.jbiomech.2020.110163
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Research Library
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Physical Education Index
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed
Research Library Prep
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central - New (Subscription)
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Anatomy & Physiology
EISSN 1873-2380
ExternalDocumentID 33338974
10_1016_j_jbiomech_2020_110163
S002192902030587X
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGYEJ
AHHHB
AHJVU
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BJAXD
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HMCUK
IHE
J1W
JJJVA
KOM
LK8
M1P
M29
M2O
M31
M41
M7P
MO0
N9A
O-L
O9-
OAUVE
OH.
OT.
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
ROL
SCC
SDF
SDG
SDP
SEL
SES
SJN
SPC
SPCBC
SSH
SST
SSZ
T5K
UKHRP
UPT
X7M
YQT
Z5R
ZMT
~G-
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJOXV
AMFUW
EFLBG
LCYCR
.GJ
29J
53G
AAQQT
AAQXK
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ADMUD
ADNMO
AFJKZ
AGHFR
AGQPQ
AI.
ASPBG
AVWKF
AZFZN
CITATION
EBD
EJD
FEDTE
FGOYB
G-2
HEE
HMK
HMO
HVGLF
HZ~
H~9
I-F
ML~
MVM
OHT
R2-
RPZ
SAE
SEW
VH1
WUQ
XOL
XPP
ZGI
~HD
ALIPV
NPM
3V.
7QP
7TB
7TS
7XB
8FD
8FK
FR3
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c451t-fb3a56e05d3e05fb402d20d3da71ca1fcc876dc9f6d97e754cfb23d6ab79a89c3
IEDL.DBID .~1
ISSN 0021-9290
1873-2380
IngestDate Sun Sep 28 12:10:14 EDT 2025
Wed Aug 13 09:15:35 EDT 2025
Thu Apr 03 06:58:14 EDT 2025
Wed Oct 01 05:20:47 EDT 2025
Thu Apr 24 22:59:54 EDT 2025
Fri Feb 23 02:48:25 EST 2024
Tue Aug 26 17:09:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Hip joint
Walking gait
Discrete element
Contact mechanics
Finite element
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-fb3a56e05d3e05fb402d20d3da71ca1fcc876dc9f6d97e754cfb23d6ab79a89c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8035-1606
0000-0003-4836-149X
0000-0002-6696-4780
0000-0001-9705-0079
0000-0003-1777-4259
PMID 33338974
PQID 2479031450
PQPubID 1226346
ParticipantIDs proquest_miscellaneous_2471461773
proquest_journals_2479031450
pubmed_primary_33338974
crossref_primary_10_1016_j_jbiomech_2020_110163
crossref_citationtrail_10_1016_j_jbiomech_2020_110163
elsevier_sciencedirect_doi_10_1016_j_jbiomech_2020_110163
elsevier_clinicalkey_doi_10_1016_j_jbiomech_2020_110163
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-22
PublicationDateYYYYMMDD 2021-01-22
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-22
  day: 22
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Kidlington
PublicationTitle Journal of biomechanics
PublicationTitleAlternate J Biomech
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Henak, Carruth, Anderson, Harris, Ellis, Peters, Weiss (b0105) 2013; 21
Li, Miller, Joldes, Doyle, Garlapati, Kikinis, Wittek (b0150) 2015; 22
March, Smith, Hoy, Cross, Sanchez-Riera, Blyth, Buchbinder, Vos, Woolf (b0165) 2014; 28
Li, M., Wittek, A., Joldes, G., Zhang, G., Dong, F., Kikinis, R., Miller, K., 2014b. Year whole-body image registration using patient-specific nonlinear finite element model. In: Computational Biomechanics for Medicine. New York, NY.
Shepherd, Seedhom (b0190) 1999; 38
Xia, Fripp, Chandra, Schwarz, Engstrom, Crozier (b0235) 2013; 58
Chandra, Surowiec, Ho, Xia, Engstrom, Crozier, Fripp (b0060) 2016; 75
Harris, Anderson, Henak, Ellis, Peters, Weiss (b0100) 2012; 30
von Eisenhart, Adam, Steinlechner, Muller-Gerbl, Eckstein (b0225) 1999; 17
Ateshian, Henak, Weiss (b0030) 2015; 48
Benemerito, Modenese, Montefiori, Mazza, Viceconti, Lacroix, Guo (b0045) 2020; 234
Abraham, Maas, Weiss, Ellis, Peters, Anderson (b0010) 2013; 46
Dienst, Seil, Godde, Brang, Becker, Georg, Kohn (b0080) 2002; 18
Felson (b0085) 2013; 21
Ni, Nguyen (b0180) 2009; 18
Lespasio, Sultan, Piuzzi, Khlopas, Husni, Muschler, Mont (b0135) 2018; 22
Anderson, Ellis, Maas, Peters, Weiss (b0015) 2008; 130
Chao, Volokh, Yoshida, Shiba, Ide (b0070) 2010; 7
Genda, Iwasaki, Li, MacWilliams, Barrance, Chao (b0090) 2001; 34
Guilak (b0095) 2011; 25
Lewis, Sahrmann, Moran (b0140) 2010; 32
Daniel, Herman, Dolinar, Iglic, Sochor, Kralj-Iglic (b0075) 2006
Horton, Wittek, Joldes, Miller (b0110) 2010; 26
Vafaeian, Zonoobi, Mabee, Hareendranathan, El-Rich, Adeeb, Jaremko (b0215) 2017; 25
Kern, Anderson (b0125) 2015; 48
Ateshian, Warden, Kim, Grelsamer, Mow (b0035) 1997; 30
Bergmann, Bender, Dymke, Duda, Damm (b0050) 2016; 11
Townsend, Thomas-Aitken, Rudert, Kern, Willey, Anderson, Goetz (b0210) 2018; 67
Xia, Chandra, Engstrom, Strudwick, Crozier, Fripp (b0230) 2014; 59
Mononen, Liukkonen, Korhonen (b0175) 2019; 47
Huang, Stankiewicz, Ateshian, Mow (b0115) 2005; 38
Chandra, Xia, Engstrom, Crozier, Schwarz, Fripp (b0065) 2014; 18
Miller, Joldes, Lance, Wittek (b0170) 2007; 23
Li, Miller, Joldes, Kikinis, Wittek (b0145) 2014; 8789
Volokh, Chao, Armand (b0220) 2007; 4
Li, Miller, Joldes, Kikinis, Wittek (b0155) 2016; 32
Anderson, Iyer, Segal, Lynch, Brown (b0020) 2010; 26
Richard, Villars, Thibaud (b0185) 2013; 24
Armiger, Armand, Tallroth, Lepisto, Mears (b0025) 2009; 80
Yoshida, Faust, Wilckens, Kitagawa, Fetto, Chao (b0240) 2006; 39
Abraham, Knight, Peters, Weiss, Anderson (b0005) 2017; 25
Bergmann, Kutzner, Bender, Dymke, Trepczynski, Duda, Felsenberg, Damm (b0055) 2018; 13
Thomas-Aitken, Willey, Goetz (b0205) 2018; 79
Joldes, Wittek, Miller (b0120) 2010; 199
Tadepalli, Erdemir, Cavanagh (b0195) 2011; 44
Taubin, G., Zhang, T., Golub, G., 1996. Year Optimal surface smoothing as filter design. Berlin, Heidelberg.
Krebs, Robbins, Lavine, Mann (b0130) 1998; 28
Bachtar, Chen, Hisada (b0040) 2006; 44
Lewis (10.1016/j.jbiomech.2020.110163_b0140) 2010; 32
Yoshida (10.1016/j.jbiomech.2020.110163_b0240) 2006; 39
Bergmann (10.1016/j.jbiomech.2020.110163_b0050) 2016; 11
Mononen (10.1016/j.jbiomech.2020.110163_b0175) 2019; 47
Anderson (10.1016/j.jbiomech.2020.110163_b0015) 2008; 130
Shepherd (10.1016/j.jbiomech.2020.110163_b0190) 1999; 38
Ateshian (10.1016/j.jbiomech.2020.110163_b0030) 2015; 48
Genda (10.1016/j.jbiomech.2020.110163_b0090) 2001; 34
Benemerito (10.1016/j.jbiomech.2020.110163_b0045) 2020; 234
Townsend (10.1016/j.jbiomech.2020.110163_b0210) 2018; 67
Harris (10.1016/j.jbiomech.2020.110163_b0100) 2012; 30
Anderson (10.1016/j.jbiomech.2020.110163_b0020) 2010; 26
Xia (10.1016/j.jbiomech.2020.110163_b0230) 2014; 59
Henak (10.1016/j.jbiomech.2020.110163_b0105) 2013; 21
10.1016/j.jbiomech.2020.110163_b0200
Abraham (10.1016/j.jbiomech.2020.110163_b0005) 2017; 25
Dienst (10.1016/j.jbiomech.2020.110163_b0080) 2002; 18
Miller (10.1016/j.jbiomech.2020.110163_b0170) 2007; 23
Chandra (10.1016/j.jbiomech.2020.110163_b0060) 2016; 75
Ateshian (10.1016/j.jbiomech.2020.110163_b0035) 1997; 30
Tadepalli (10.1016/j.jbiomech.2020.110163_b0195) 2011; 44
Ni (10.1016/j.jbiomech.2020.110163_b0180) 2009; 18
Richard (10.1016/j.jbiomech.2020.110163_b0185) 2013; 24
Volokh (10.1016/j.jbiomech.2020.110163_b0220) 2007; 4
Krebs (10.1016/j.jbiomech.2020.110163_b0130) 1998; 28
Vafaeian (10.1016/j.jbiomech.2020.110163_b0215) 2017; 25
Li (10.1016/j.jbiomech.2020.110163_b0150) 2015; 22
Abraham (10.1016/j.jbiomech.2020.110163_b0010) 2013; 46
Bachtar (10.1016/j.jbiomech.2020.110163_b0040) 2006; 44
Guilak (10.1016/j.jbiomech.2020.110163_b0095) 2011; 25
Xia (10.1016/j.jbiomech.2020.110163_b0235) 2013; 58
10.1016/j.jbiomech.2020.110163_b0160
Li (10.1016/j.jbiomech.2020.110163_b0145) 2014; 8789
Daniel (10.1016/j.jbiomech.2020.110163_b0075) 2006
Felson (10.1016/j.jbiomech.2020.110163_b0085) 2013; 21
Armiger (10.1016/j.jbiomech.2020.110163_b0025) 2009; 80
Bergmann (10.1016/j.jbiomech.2020.110163_b0055) 2018; 13
Kern (10.1016/j.jbiomech.2020.110163_b0125) 2015; 48
Horton (10.1016/j.jbiomech.2020.110163_b0110) 2010; 26
Thomas-Aitken (10.1016/j.jbiomech.2020.110163_b0205) 2018; 79
Li (10.1016/j.jbiomech.2020.110163_b0155) 2016; 32
Chandra (10.1016/j.jbiomech.2020.110163_b0065) 2014; 18
Chao (10.1016/j.jbiomech.2020.110163_b0070) 2010; 7
Joldes (10.1016/j.jbiomech.2020.110163_b0120) 2010; 199
March (10.1016/j.jbiomech.2020.110163_b0165) 2014; 28
Lespasio (10.1016/j.jbiomech.2020.110163_b0135) 2018; 22
von Eisenhart (10.1016/j.jbiomech.2020.110163_b0225) 1999; 17
Huang (10.1016/j.jbiomech.2020.110163_b0115) 2005; 38
References_xml – volume: 47
  start-page: 813
  year: 2019
  end-page: 825
  ident: b0175
  article-title: Utilizing atlas-based modeling to predict knee joint cartilage degeneration: data from the osteoarthritis initiative
  publication-title: Ann. Biomed. Eng.
– volume: 25
  start-page: 815
  year: 2011
  end-page: 823
  ident: b0095
  article-title: Biomechanical factors in osteoarthritis
  publication-title: Best Pract. Res. Cl Rh
– volume: 4
  start-page: 67
  year: 2007
  end-page: 73
  ident: b0220
  article-title: On foundations of discrete element analysis of contact in diarthrodial joints
  publication-title: Mol. Cell. Biomech.
– volume: 18
  start-page: 1976
  year: 2009
  end-page: 1987
  ident: b0180
  article-title: An adaptable k-nearest neighbors algorithm for MMSE image interpolation
  publication-title: IEEE Trans. Image Process.
– volume: 39
  start-page: 1996
  year: 2006
  end-page: 2004
  ident: b0240
  article-title: Three-dimensional dynamic hip contact area and pressure distribution during activities of daily living
  publication-title: J. Biomech.
– volume: 130
  year: 2008
  ident: b0015
  article-title: Validation of finite element predictions of cartilage contact pressure in the human hip joint
  publication-title: J. Biomech. Eng.-Trans. Asme
– volume: 18
  start-page: 865
  year: 2002
  end-page: 871
  ident: b0080
  article-title: Effects of traction, distension, and joint position on distraction of the hip joint: an experimental study in cadavers
  publication-title: Arthrosc.-J. Arthrosc. Relat. Surg.
– volume: 234
  start-page: 507
  year: 2020
  end-page: 516
  ident: b0045
  article-title: An extended discrete element method for the estimation of contact pressure at the ankle joint during stance phase
  publication-title: P. I. Mech. Eng. H
– volume: 30
  start-page: 1157
  year: 1997
  end-page: 1164
  ident: b0035
  article-title: Finite deformation biphasic material properties of bovine articular cartilage from confined compression experiments
  publication-title: J. Biomech.
– volume: 44
  start-page: 643
  year: 2006
  end-page: 651
  ident: b0040
  article-title: Finite element contact analysis of the hip joint
  publication-title: Med. Biol. Eng. Compu.
– volume: 28
  start-page: 51
  year: 1998
  end-page: 59
  ident: b0130
  article-title: Hip biomechanics during gait
  publication-title: J. Orthop. Sports Phys. Ther.
– volume: 34
  start-page: 895
  year: 2001
  end-page: 905
  ident: b0090
  article-title: Normal hip joint contact pressure distribution in single-leg standing – effect of gender and anatomic parameters
  publication-title: J. Biomech.
– volume: 11
  year: 2016
  ident: b0050
  article-title: Standardized Loads Acting in Hip Implants
  publication-title: PLoS ONE
– start-page: 92
  year: 2006
  end-page: 99
  ident: b0075
  article-title: Contact stress in hips with osteonecrosis of the femoral head
  publication-title: Clin. Orthop. Relat. Res.
– volume: 26
  start-page: 977
  year: 2010
  end-page: 998
  ident: b0110
  article-title: A meshless Total Lagrangian explicit dynamics algorithm for surgical simulation
  publication-title: Int. J. Numer. Meth. Bio.
– volume: 7
  start-page: 175
  year: 2010
  end-page: 192
  ident: b0070
  article-title: Discrete element analysis in musculoskeletal biomechanics
  publication-title: Mol. Cell. Biomech.
– volume: 13
  year: 2018
  ident: b0055
  article-title: Loading of the hip and knee joints during whole body vibration training
  publication-title: PLoS ONE
– volume: 8789
  start-page: 50
  year: 2014
  end-page: 57
  ident: b0145
  article-title: Patient-specific meshless model for whole-body image registration
  publication-title: Lect. Notes Comput. Sci.
– volume: 59
  start-page: 7245
  year: 2014
  end-page: 7266
  ident: b0230
  article-title: Automatic hip cartilage segmentation from 3D MR images using arc-weighted graph searching
  publication-title: Phys. Med. Biol.
– volume: 30
  start-page: 1133
  year: 2012
  end-page: 1139
  ident: b0100
  article-title: Finite element prediction of cartilage contact stresses in normal human hips
  publication-title: J. Orthop. Res.
– volume: 80
  start-page: 155
  year: 2009
  end-page: 161
  ident: b0025
  article-title: Three-dimensional mechanical evaluation of joint contact pressure in 12 periacetabular osteotomy patients with 10-year follow-up
  publication-title: Acta Orthop.
– volume: 46
  start-page: 1121
  year: 2013
  end-page: 1127
  ident: b0010
  article-title: A new discrete element analysis method for predicting hip joint contact stresses
  publication-title: J. Biomech.
– volume: 26
  start-page: 215
  year: 2010
  end-page: 223
  ident: b0020
  article-title: Implementation of discrete element analysis for subject-specific, population-wide investigations of habitual contact stress exposure
  publication-title: J. Appl. Biomech.
– reference: Li, M., Wittek, A., Joldes, G., Zhang, G., Dong, F., Kikinis, R., Miller, K., 2014b. Year whole-body image registration using patient-specific nonlinear finite element model. In: Computational Biomechanics for Medicine. New York, NY.
– volume: 28
  start-page: 353
  year: 2014
  end-page: 366
  ident: b0165
  article-title: Burden of disability due to musculoskeletal (MSK) disorders
  publication-title: Best Pract. Res. Cl Rh
– volume: 24
  start-page: 41
  year: 2013
  end-page: 52
  ident: b0185
  article-title: Viscoelastic modeling and quantitative experimental characterization of normal and osteoarthritic human articular cartilage using indentation
  publication-title: J. Mech. Behav. Biomed.
– volume: 48
  start-page: 779
  year: 2015
  end-page: 786
  ident: b0030
  article-title: Toward patient-specific articular contact mechanics
  publication-title: J. Biomech.
– volume: 25
  start-page: 438
  year: 2017
  end-page: 447
  ident: b0215
  article-title: Finite element analysis of mechanical behavior of human dysplastic hip joints: a systematic review
  publication-title: Osteoarthr. Cartilage
– reference: Taubin, G., Zhang, T., Golub, G., 1996. Year Optimal surface smoothing as filter design. Berlin, Heidelberg.
– volume: 32
  year: 2016
  ident: b0155
  article-title: Biomechanical model for computing deformations for whole-body image registration: a meshless approach
  publication-title: Int. J. Numer. Meth. Bio.
– volume: 67
  start-page: 9
  year: 2018
  end-page: 17
  ident: b0210
  article-title: Discrete element analysis is a valid method for computing joint contact stress in the hip before and after acetabular fracture
  publication-title: J. Biomech.
– volume: 21
  start-page: 10
  year: 2013
  end-page: 15
  ident: b0085
  article-title: Osteoarthritis as a disease of mechanics
  publication-title: Osteoarthr. Cartilage
– volume: 199
  start-page: 3305
  year: 2010
  end-page: 3314
  ident: b0120
  article-title: Real-time nonlinear finite element computations on GPU – application to neurosurgical simulation
  publication-title: Comput. Method Appl. M.
– volume: 25
  start-page: 676
  year: 2017
  end-page: 684
  ident: b0005
  article-title: Patient-specific chondrolabral contact mechanics in patients with acetabular dysplasia following treatment with peri-acetabular osteotomy
  publication-title: Osteoarthr. Cartilage
– volume: 18
  start-page: 567
  year: 2014
  end-page: 578
  ident: b0065
  article-title: Focused shape models for hip joint segmentation in 3D magnetic resonance images
  publication-title: Med. Image Anal.
– volume: 23
  start-page: 121
  year: 2007
  end-page: 134
  ident: b0170
  article-title: Total Lagrangian explicit dynamics finite element algorithm for computing soft tissue deformation
  publication-title: Commun. Numer. Meth. Eng.
– volume: 22
  start-page: 22
  year: 2015
  end-page: 34
  ident: b0150
  article-title: Patient-specific biomechanical model as whole-body CT image registration tool
  publication-title: Med. Image Anal.
– volume: 75
  start-page: 403
  year: 2016
  end-page: 413
  ident: b0060
  article-title: Automated analysis of hip joint cartilage combining MR T2 and three-dimensional fast-spin-echo images
  publication-title: Magnet. Reson. Med.
– volume: 38
  start-page: 799
  year: 2005
  end-page: 809
  ident: b0115
  article-title: Anisotropy, inhomogeneity, and tension-compression nonlinearity of human glenohumeral cartilage in finite deformation
  publication-title: J. Biomech.
– volume: 38
  start-page: 124
  year: 1999
  end-page: 132
  ident: b0190
  article-title: The 'instantaneous' compressive modulus of human articular cartilage in joints of the lower limb
  publication-title: Rheumatology
– volume: 48
  start-page: 3427
  year: 2015
  end-page: 3432
  ident: b0125
  article-title: Expedited patient-specific assessment of contact stress exposure in the ankle joint following definitive articular fracture reduction
  publication-title: J. Biomech.
– volume: 58
  start-page: 7375
  year: 2013
  end-page: 7390
  ident: b0235
  article-title: Automated bone segmentation from large field of view 3D MR images of the hip joint
  publication-title: Phys. Med. Biol.
– volume: 32
  start-page: 603
  year: 2010
  end-page: 607
  ident: b0140
  article-title: Effect of hip angle on anterior hip joint force during gait
  publication-title: Gait Posture
– volume: 44
  start-page: 2337
  year: 2011
  end-page: 2343
  ident: b0195
  article-title: Comparison of hexahedral and tetrahedral elements in finite element analysis of the foot and footwear
  publication-title: J. Biomech.
– volume: 79
  start-page: 45
  year: 2018
  end-page: 53
  ident: b0205
  article-title: Joint contact stresses calculated for acetabular dysplasia patients using discrete element analysis are significantly influenced by the applied gait pattern
  publication-title: J. Biomech.
– volume: 21
  start-page: 1522
  year: 2013
  end-page: 1529
  ident: b0105
  article-title: Finite element predictions of cartilage contact mechanics in hips with retroverted acetabula
  publication-title: Osteoarthr. Cartilage
– volume: 22
  start-page: 17
  year: 2018
  end-page: 084
  ident: b0135
  article-title: Hip osteoarthritis: a primer
  publication-title: Perm J.
– volume: 17
  start-page: 532
  year: 1999
  end-page: 539
  ident: b0225
  article-title: Quantitative determination of joint incongruity and pressure distribution during simulated gait and cartilage thickness in the human hip joint
  publication-title: J. Orthop. Res.
– volume: 32
  start-page: 603
  year: 2010
  ident: 10.1016/j.jbiomech.2020.110163_b0140
  article-title: Effect of hip angle on anterior hip joint force during gait
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2010.09.001
– volume: 75
  start-page: 403
  year: 2016
  ident: 10.1016/j.jbiomech.2020.110163_b0060
  article-title: Automated analysis of hip joint cartilage combining MR T2 and three-dimensional fast-spin-echo images
  publication-title: Magnet. Reson. Med.
  doi: 10.1002/mrm.25598
– start-page: 92
  year: 2006
  ident: 10.1016/j.jbiomech.2020.110163_b0075
  article-title: Contact stress in hips with osteonecrosis of the femoral head
  publication-title: Clin. Orthop. Relat. Res.
  doi: 10.1097/01.blo.0000203472.88926.c8
– volume: 30
  start-page: 1133
  year: 2012
  ident: 10.1016/j.jbiomech.2020.110163_b0100
  article-title: Finite element prediction of cartilage contact stresses in normal human hips
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.22040
– volume: 58
  start-page: 7375
  year: 2013
  ident: 10.1016/j.jbiomech.2020.110163_b0235
  article-title: Automated bone segmentation from large field of view 3D MR images of the hip joint
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/58/20/7375
– volume: 22
  start-page: 17
  year: 2018
  ident: 10.1016/j.jbiomech.2020.110163_b0135
  article-title: Hip osteoarthritis: a primer
  publication-title: Perm J.
  doi: 10.7812/TPP/17-084
– volume: 26
  start-page: 977
  year: 2010
  ident: 10.1016/j.jbiomech.2020.110163_b0110
  article-title: A meshless Total Lagrangian explicit dynamics algorithm for surgical simulation
  publication-title: Int. J. Numer. Meth. Bio.
  doi: 10.1002/cnm.1374
– volume: 47
  start-page: 813
  year: 2019
  ident: 10.1016/j.jbiomech.2020.110163_b0175
  article-title: Utilizing atlas-based modeling to predict knee joint cartilage degeneration: data from the osteoarthritis initiative
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-018-02184-y
– volume: 18
  start-page: 567
  year: 2014
  ident: 10.1016/j.jbiomech.2020.110163_b0065
  article-title: Focused shape models for hip joint segmentation in 3D magnetic resonance images
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2014.02.002
– volume: 7
  start-page: 175
  year: 2010
  ident: 10.1016/j.jbiomech.2020.110163_b0070
  article-title: Discrete element analysis in musculoskeletal biomechanics
  publication-title: Mol. Cell. Biomech.
– volume: 25
  start-page: 676
  year: 2017
  ident: 10.1016/j.jbiomech.2020.110163_b0005
  article-title: Patient-specific chondrolabral contact mechanics in patients with acetabular dysplasia following treatment with peri-acetabular osteotomy
  publication-title: Osteoarthr. Cartilage
  doi: 10.1016/j.joca.2016.11.016
– volume: 4
  start-page: 67
  year: 2007
  ident: 10.1016/j.jbiomech.2020.110163_b0220
  article-title: On foundations of discrete element analysis of contact in diarthrodial joints
  publication-title: Mol. Cell. Biomech.
– volume: 46
  start-page: 1121
  year: 2013
  ident: 10.1016/j.jbiomech.2020.110163_b0010
  article-title: A new discrete element analysis method for predicting hip joint contact stresses
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2013.01.012
– volume: 24
  start-page: 41
  year: 2013
  ident: 10.1016/j.jbiomech.2020.110163_b0185
  article-title: Viscoelastic modeling and quantitative experimental characterization of normal and osteoarthritic human articular cartilage using indentation
  publication-title: J. Mech. Behav. Biomed.
  doi: 10.1016/j.jmbbm.2013.04.012
– volume: 28
  start-page: 353
  year: 2014
  ident: 10.1016/j.jbiomech.2020.110163_b0165
  article-title: Burden of disability due to musculoskeletal (MSK) disorders
  publication-title: Best Pract. Res. Cl Rh
  doi: 10.1016/j.berh.2014.08.002
– volume: 18
  start-page: 1976
  year: 2009
  ident: 10.1016/j.jbiomech.2020.110163_b0180
  article-title: An adaptable k-nearest neighbors algorithm for MMSE image interpolation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2009.2023706
– volume: 25
  start-page: 815
  year: 2011
  ident: 10.1016/j.jbiomech.2020.110163_b0095
  article-title: Biomechanical factors in osteoarthritis
  publication-title: Best Pract. Res. Cl Rh
  doi: 10.1016/j.berh.2011.11.013
– ident: 10.1016/j.jbiomech.2020.110163_b0160
  doi: 10.1007/978-1-4939-0745-8_9
– volume: 48
  start-page: 3427
  year: 2015
  ident: 10.1016/j.jbiomech.2020.110163_b0125
  article-title: Expedited patient-specific assessment of contact stress exposure in the ankle joint following definitive articular fracture reduction
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2015.05.030
– volume: 23
  start-page: 121
  year: 2007
  ident: 10.1016/j.jbiomech.2020.110163_b0170
  article-title: Total Lagrangian explicit dynamics finite element algorithm for computing soft tissue deformation
  publication-title: Commun. Numer. Meth. Eng.
  doi: 10.1002/cnm.887
– volume: 48
  start-page: 779
  year: 2015
  ident: 10.1016/j.jbiomech.2020.110163_b0030
  article-title: Toward patient-specific articular contact mechanics
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2014.12.020
– volume: 30
  start-page: 1157
  year: 1997
  ident: 10.1016/j.jbiomech.2020.110163_b0035
  article-title: Finite deformation biphasic material properties of bovine articular cartilage from confined compression experiments
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(97)85606-0
– volume: 234
  start-page: 507
  year: 2020
  ident: 10.1016/j.jbiomech.2020.110163_b0045
  article-title: An extended discrete element method for the estimation of contact pressure at the ankle joint during stance phase
  publication-title: P. I. Mech. Eng. H
  doi: 10.1177/0954411920905434
– volume: 13
  year: 2018
  ident: 10.1016/j.jbiomech.2020.110163_b0055
  article-title: Loading of the hip and knee joints during whole body vibration training
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0207014
– volume: 18
  start-page: 865
  year: 2002
  ident: 10.1016/j.jbiomech.2020.110163_b0080
  article-title: Effects of traction, distension, and joint position on distraction of the hip joint: an experimental study in cadavers
  publication-title: Arthrosc.-J. Arthrosc. Relat. Surg.
  doi: 10.1053/jars.2002.36120
– volume: 34
  start-page: 895
  year: 2001
  ident: 10.1016/j.jbiomech.2020.110163_b0090
  article-title: Normal hip joint contact pressure distribution in single-leg standing – effect of gender and anatomic parameters
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(01)00041-0
– volume: 17
  start-page: 532
  year: 1999
  ident: 10.1016/j.jbiomech.2020.110163_b0225
  article-title: Quantitative determination of joint incongruity and pressure distribution during simulated gait and cartilage thickness in the human hip joint
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.1100170411
– volume: 130
  year: 2008
  ident: 10.1016/j.jbiomech.2020.110163_b0015
  article-title: Validation of finite element predictions of cartilage contact pressure in the human hip joint
  publication-title: J. Biomech. Eng.-Trans. Asme
  doi: 10.1115/1.2953472
– volume: 22
  start-page: 22
  year: 2015
  ident: 10.1016/j.jbiomech.2020.110163_b0150
  article-title: Patient-specific biomechanical model as whole-body CT image registration tool
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2014.12.008
– volume: 80
  start-page: 155
  year: 2009
  ident: 10.1016/j.jbiomech.2020.110163_b0025
  article-title: Three-dimensional mechanical evaluation of joint contact pressure in 12 periacetabular osteotomy patients with 10-year follow-up
  publication-title: Acta Orthop.
  doi: 10.3109/17453670902947390
– volume: 21
  start-page: 10
  year: 2013
  ident: 10.1016/j.jbiomech.2020.110163_b0085
  article-title: Osteoarthritis as a disease of mechanics
  publication-title: Osteoarthr. Cartilage
  doi: 10.1016/j.joca.2012.09.012
– volume: 26
  start-page: 215
  year: 2010
  ident: 10.1016/j.jbiomech.2020.110163_b0020
  article-title: Implementation of discrete element analysis for subject-specific, population-wide investigations of habitual contact stress exposure
  publication-title: J. Appl. Biomech.
  doi: 10.1123/jab.26.2.215
– volume: 28
  start-page: 51
  year: 1998
  ident: 10.1016/j.jbiomech.2020.110163_b0130
  article-title: Hip biomechanics during gait
  publication-title: J. Orthop. Sports Phys. Ther.
  doi: 10.2519/jospt.1998.28.1.51
– volume: 8789
  start-page: 50
  year: 2014
  ident: 10.1016/j.jbiomech.2020.110163_b0145
  article-title: Patient-specific meshless model for whole-body image registration
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/978-3-319-12057-7_6
– volume: 39
  start-page: 1996
  year: 2006
  ident: 10.1016/j.jbiomech.2020.110163_b0240
  article-title: Three-dimensional dynamic hip contact area and pressure distribution during activities of daily living
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2005.06.026
– volume: 59
  start-page: 7245
  year: 2014
  ident: 10.1016/j.jbiomech.2020.110163_b0230
  article-title: Automatic hip cartilage segmentation from 3D MR images using arc-weighted graph searching
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/59/23/7245
– volume: 44
  start-page: 643
  year: 2006
  ident: 10.1016/j.jbiomech.2020.110163_b0040
  article-title: Finite element contact analysis of the hip joint
  publication-title: Med. Biol. Eng. Compu.
  doi: 10.1007/s11517-006-0074-9
– volume: 44
  start-page: 2337
  year: 2011
  ident: 10.1016/j.jbiomech.2020.110163_b0195
  article-title: Comparison of hexahedral and tetrahedral elements in finite element analysis of the foot and footwear
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2011.05.006
– volume: 67
  start-page: 9
  year: 2018
  ident: 10.1016/j.jbiomech.2020.110163_b0210
  article-title: Discrete element analysis is a valid method for computing joint contact stress in the hip before and after acetabular fracture
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2017.11.014
– volume: 11
  year: 2016
  ident: 10.1016/j.jbiomech.2020.110163_b0050
  article-title: Standardized Loads Acting in Hip Implants
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0155612
– volume: 38
  start-page: 124
  year: 1999
  ident: 10.1016/j.jbiomech.2020.110163_b0190
  article-title: The 'instantaneous' compressive modulus of human articular cartilage in joints of the lower limb
  publication-title: Rheumatology
  doi: 10.1093/rheumatology/38.2.124
– ident: 10.1016/j.jbiomech.2020.110163_b0200
  doi: 10.1007/BFb0015544
– volume: 199
  start-page: 3305
  year: 2010
  ident: 10.1016/j.jbiomech.2020.110163_b0120
  article-title: Real-time nonlinear finite element computations on GPU – application to neurosurgical simulation
  publication-title: Comput. Method Appl. M.
  doi: 10.1016/j.cma.2010.06.037
– volume: 25
  start-page: 438
  year: 2017
  ident: 10.1016/j.jbiomech.2020.110163_b0215
  article-title: Finite element analysis of mechanical behavior of human dysplastic hip joints: a systematic review
  publication-title: Osteoarthr. Cartilage
  doi: 10.1016/j.joca.2016.10.023
– volume: 21
  start-page: 1522
  year: 2013
  ident: 10.1016/j.jbiomech.2020.110163_b0105
  article-title: Finite element predictions of cartilage contact mechanics in hips with retroverted acetabula
  publication-title: Osteoarthr. Cartilage
  doi: 10.1016/j.joca.2013.06.008
– volume: 38
  start-page: 799
  year: 2005
  ident: 10.1016/j.jbiomech.2020.110163_b0115
  article-title: Anisotropy, inhomogeneity, and tension-compression nonlinearity of human glenohumeral cartilage in finite deformation
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2004.05.006
– volume: 32
  year: 2016
  ident: 10.1016/j.jbiomech.2020.110163_b0155
  article-title: Biomechanical model for computing deformations for whole-body image registration: a meshless approach
  publication-title: Int. J. Numer. Meth. Bio.
– volume: 79
  start-page: 45
  year: 2018
  ident: 10.1016/j.jbiomech.2020.110163_b0205
  article-title: Joint contact stresses calculated for acetabular dysplasia patients using discrete element analysis are significantly influenced by the applied gait pattern
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2018.07.036
SSID ssj0007479
Score 2.4052305
Snippet Finite element analysis (FEA) provides a powerful approach for estimating the in-vivo loading characteristics of the hip joint during various locomotory and...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 110163
SubjectTerms Asymptomatic
Automation
Cartilage
Contact mechanics
Contact pressure
Contact stresses
Discrete element
Finite element
Finite element method
Gait
Geometry
Hip
Hip joint
Magnetic resonance imaging
Mathematical models
Mechanical properties
Mechanics
Mechanics (physics)
Methods
Partial differential equations
Pressure distribution
Prostheses
Simulation
Stress concentration
Walking
Walking gait
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSAgOFWx5bCnISIibaZzE8fpUVUBVIcGJSnuL_ISs2uxCtkKIP98Z2wm9lJJDDnHGUjLj8TfjeRDyRnitTGg4a0plWK1tzQwXlgknQH60xdYOGG3xpTk9qz8txTI73IYcVjnqxKio3dqij_ywrKXCUuuiONr8YNg1Ck9XcwuNu-QeB6iCUi2Xk8GFteFziAdnMFpcyxBevVvF_PZ4IFHGaHjeVDdtTjeBz7gJnTwiuxk90uPE7sfkju9nZO-4B8v54jd9S2M8Z3SUz8jDa6UGZ-T-53yIvkf-fOhAVwBYpj7FjlPdOxo6RJ_To9RZeqA5U48O3UUHRjDFohwp23GggHfp925DV-sOKDDoXVukxGTizg40pUDSX_oc_fH0m-62T8jZycev709Z7sHAbC34lgVTadH4QrgKbsGAuenKwlVOS241D9aCOnVWhcYp6aWobTBl5RptpNILZaunZKdf9_45oRWgrSY44ZQWNSADDVMaVeuFXAQTvJgTMf781uYC5dgn47wdI9FW7ci0FpnWJqbNyeFEt0klOm6lkCNv2zEBFVRmC7vIrZRqoswQJUGP_6I9GMWozYpiaP-K9Zy8noZhieO5je79-jK-g93XpYQpniXxmz60gmsBNuH-vyd_QR6UuAoKzsrygOxsf176l4CmtuZVXDJXqG0f9A
  priority: 102
  providerName: ProQuest
Title Discrete element and finite element methods provide similar estimations for hip joint contact mechanics during walking gait
URI https://www.clinicalkey.com/#!/content/1-s2.0-S002192902030587X
https://dx.doi.org/10.1016/j.jbiomech.2020.110163
https://www.ncbi.nlm.nih.gov/pubmed/33338974
https://www.proquest.com/docview/2479031450
https://www.proquest.com/docview/2471461773
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2013
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2380
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: AKRWK
  dateStart: 19680101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health Medical collection
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 20250804
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central - New (Subscription)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1873-2380
  dateEnd: 20250804
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhgdIeSrrpY9s0qFB6c9YvWdZxmyZsW7qU0sDehB5WqyXxLvWGEAr57ZmxZTc9hBTqgw22R9jWaPTJ-j4NIW9ZpYR2RRIVqdBRrkwe6YSZiFkG_qMMpnZAtsW8mJ3mnxZssUWOei0M0ipD7O9iehutw5lJ-JqTtfeo8YXWlgqcSotZyReoYM8LpPUdXv-heQBcDjSPJMK7b6mEl4fLVuPeTkqkLSM-KbK7Oqi7AGjbEZ3skscBQdJp95BPyFZVj8jetIbR8_kVfUdbTmf7s3xEHt1abnBEHnwJE-l75PcHD_ECADOtOv44VbWlziMCHU512aUbGtR6tPHnHgbCFBfm6BSPDQXMS3_6NV2uPFgg8V0ZtERBsTcN7WSQ9FKd4T95-kP5zVNyenL8_WgWhTwMkclZsomczhQrqpjZDHZOw5DTprHNrOKJUYkzBkKqNcIVVvCKs9w4nWa2UJoLVQqTPSPb9aquXhCaAeIqnGVWKJYDOlBQpBa5KnnptKvYmLD-40sTFinHXBlnsmejLWVfaRIrTXaVNiaTwW7dLdNxrwXv61b2IlQImxJ6knstxWD5l6v-k-1-70YyBItGpuCimEWAxWPyZrgMzRznblRdrS7aezADO-dQxPPO_YYXzWArYVz48j8e7BV5mGITiZMoTffJ9ubXRfUa4NZGH7TtCfZ8wQ_IzvTj59kcju-P51-_3QDbwC5x
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKkYAeKpiyTClgJODmNnHseHyoUEWppnQ5tdLcjOMFMmozA5mqqvhP_Eae4yT0UsqlOeSQybOUeYu_57ch9I47LQufpySnsiBMG0aKlBvCLQf50SaMdgjZFsf5-JR9mfDJEvrd1cKEtMrOJjaG2s5MOCPfokzI0GqdJx_nP0iYGhWiq90IjSgWB-7qEly2ent_F_j7ntK9zyefxqSdKkAM4-mC-CLTPHcJtxncfAEOlKWJzawWqdGpNwYMhDXS51YKJzgzvqCZzXUhpB5Jk8G699B9liUs9OoXk97BC73o25SSlADsSK5VJE83p009fRMAoU32fZpnN22GN4HdZtPbe4xWW7SKd6J4PUFLrhqgtZ0KPPXzK_wBN_mjzcH8AK1ca204QA-O2qD9Gvq1W4JtAnCOXcxVx7qy2JcB7faP4iTrGreVgbguz0twunFoAhKrK2sM-Bp_L-d4OiuBIiTZaxMoQ_FyaWocSy7xpT4L5__4my4XT9HpnXDnGVquZpV7gXAG6C73llupOQMkomHJQjI9EiNfeMeHiHd_vjJtQ_Qwl-NMdZlvU9UxTQWmqci0Idrq6eaxJcitFKLjreoKXsFEK9i1bqWUPWULiSLU-S_ajU6MVGuYavVXjYbobf8zmJQQJ9KVm10074Rp70LAEs-j-PUfmsE1Ah90_d-Lv0EPxydHh-pw__jgJXpEg0YkKaF0Ay0vfl64V4DkFsXrRn0w-nrX-voHuoRe1g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGkCZ4mKCD0THASMCbaWLHcf2A0ESpNgYTD0zqm_GPGFJtaSGdpon_jL-Oc5yEvYzxsj7koc1ZSu98_i733R1CL3ihpfF5SnIqDcm0zYhJuSXccbAfbcNoh8C2OMr3j7MPMz5bQ7-7WphAq-x8YuOo3cKGd-QjmgkZWq3zZORbWsTnyfTt8gcJE6RCprUbpxFN5LC4OIfwrX5zMAFdv6R0-v7Lu33SThggNuPpinjDNM-LhDsGF28gmHI0ccxpkVqdemvBWTgrfe6kKATPrDeUuVwbIfVYWgbr3kK3BctYoJOJWR_shb70Lb0kJQBBkkvVyfPX86a2vkmG0IaJn-bsqoPxKuDbHIDTe2izRa54L5rafbRWVAO0tVdB1H56gV_hhkvavKQfoLuX2hwO0ManNoG_hX5NSvBTANRxEXnrWFcO-zIg3_6rONW6xm2VIK7L0xICcBwagsRKyxoD1sbfyyWeL0qQCIR7bYNkKGQubY1j-SU-1ychF4C_6XL1AB3fiHYeovVqURWPEGaA9HLvuJOaZ4BKNCxpZKbHYuyNL_gQ8e7PV7Ztjh5mdJyojgU3V53SVFCaikobolEvt4ztQa6VEJ1uVVf8Cu5awQl2raTsJVt4FGHPf8nudmakWidVq79baoie9z-Dewk5I10Vi7PmnjD5XQhYYjuaX_-gDD5jiEd3_r34M7QBO1V9PDg6fIzu0LAhkpRQuovWVz_PiicA6lbmabN7MPp609v1D_hfYxE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discrete+element+and+finite+element+methods+provide+similar+estimations+for+hip+joint+contact+mechanics+during+walking+gait&rft.jtitle=Journal+of+biomechanics&rft.au=Li%2C+Mao&rft.au=Ven%C3%A4l%C3%A4inen%2C+Mikko+S.&rft.au=Chandra%2C+Shekhar+S.&rft.au=Patel%2C+Rushabh&rft.date=2021-01-22&rft.issn=0021-9290&rft.volume=115&rft.spage=110163&rft_id=info:doi/10.1016%2Fj.jbiomech.2020.110163&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jbiomech_2020_110163
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon