Discrete element and finite element methods provide similar estimations for hip joint contact mechanics during walking gait
Finite element analysis (FEA) provides a powerful approach for estimating the in-vivo loading characteristics of the hip joint during various locomotory and functional activities. However, time-consuming procedures, such as the generation of high-quality FE meshes and setup of FE simulation, typical...
Saved in:
Published in | Journal of biomechanics Vol. 115; p. 110163 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
22.01.2021
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 0021-9290 1873-2380 1873-2380 |
DOI | 10.1016/j.jbiomech.2020.110163 |
Cover
Abstract | Finite element analysis (FEA) provides a powerful approach for estimating the in-vivo loading characteristics of the hip joint during various locomotory and functional activities. However, time-consuming procedures, such as the generation of high-quality FE meshes and setup of FE simulation, typically make the method impractical for rapid applications which could be used in clinical routine. Alternatively, discrete element analysis (DEA) has been developed to quantify mechanical conditions of the hip joint in a fraction of time compared to FEA. Although DEA has proven effective in the estimation of contact stresses and areas in various complex applications, it has not yet been well characterised by its ability to evaluate contact mechanics for the hip joint during gait cycle loading using data from several individuals. The objective of this work was to compare DEA modelling against well-established FEA for analysing contact mechanics of the hip joint during walking gait. Subject-specific models were generated from magnetic resonance images of the hip joints in five asymptomatic subjects. The DEA and FEA models were then simulated for 13 loading time-points extracted from a full gait cycle. Computationally, DEA was substantially more efficient compared to FEA (simulation times of seconds vs. hours). The DEA and FEA methods had similar predictions for contact pressure distribution for the hip joint during normal walking. In all 13 simulated loading time-points across five subjects, the maximum difference in average contact pressures between DEA and FEA was within ±0.06 MPa. Furthermore, the difference in contact area ratio computed using DEA and FEA was less than ±6%. |
---|---|
AbstractList | Finite element analysis (FEA) provides a powerful approach for estimating the in-vivo loading characteristics of the hip joint during various locomotory and functional activities. However, time-consuming procedures, such as the generation of high-quality FE meshes and setup of FE simulation, typically make the method impractical for rapid applications which could be used in clinical routine. Alternatively, discrete element analysis (DEA) has been developed to quantify mechanical conditions of the hip joint in a fraction of time compared to FEA. Although DEA has proven effective in the estimation of contact stresses and areas in various complex applications, it has not yet been well characterised by its ability to evaluate contact mechanics for the hip joint during gait cycle loading using data from several individuals. The objective of this work was to compare DEA modelling against well-established FEA for analysing contact mechanics of the hip joint during walking gait. Subject-specific models were generated from magnetic resonance images of the hip joints in five asymptomatic subjects. The DEA and FEA models were then simulated for 13 loading time-points extracted from a full gait cycle. Computationally, DEA was substantially more efficient compared to FEA (simulation times of seconds vs. hours). The DEA and FEA methods had similar predictions for contact pressure distribution for the hip joint during normal walking. In all 13 simulated loading time-points across five subjects, the maximum difference in average contact pressures between DEA and FEA was within ±0.06 MPa. Furthermore, the difference in contact area ratio computed using DEA and FEA was less than ±6%.Finite element analysis (FEA) provides a powerful approach for estimating the in-vivo loading characteristics of the hip joint during various locomotory and functional activities. However, time-consuming procedures, such as the generation of high-quality FE meshes and setup of FE simulation, typically make the method impractical for rapid applications which could be used in clinical routine. Alternatively, discrete element analysis (DEA) has been developed to quantify mechanical conditions of the hip joint in a fraction of time compared to FEA. Although DEA has proven effective in the estimation of contact stresses and areas in various complex applications, it has not yet been well characterised by its ability to evaluate contact mechanics for the hip joint during gait cycle loading using data from several individuals. The objective of this work was to compare DEA modelling against well-established FEA for analysing contact mechanics of the hip joint during walking gait. Subject-specific models were generated from magnetic resonance images of the hip joints in five asymptomatic subjects. The DEA and FEA models were then simulated for 13 loading time-points extracted from a full gait cycle. Computationally, DEA was substantially more efficient compared to FEA (simulation times of seconds vs. hours). The DEA and FEA methods had similar predictions for contact pressure distribution for the hip joint during normal walking. In all 13 simulated loading time-points across five subjects, the maximum difference in average contact pressures between DEA and FEA was within ±0.06 MPa. Furthermore, the difference in contact area ratio computed using DEA and FEA was less than ±6%. Finite element analysis (FEA) provides a powerful approach for estimating the in-vivo loading characteristics of the hip joint during various locomotory and functional activities. However, time-consuming procedures, such as the generation of high-quality FE meshes and setup of FE simulation, typically make the method impractical for rapid applications which could be used in clinical routine. Alternatively, discrete element analysis (DEA) has been developed to quantify mechanical conditions of the hip joint in a fraction of time compared to FEA. Although DEA has proven effective in the estimation of contact stresses and areas in various complex applications, it has not yet been well characterised by its ability to evaluate contact mechanics for the hip joint during gait cycle loading using data from several individuals. The objective of this work was to compare DEA modelling against well-established FEA for analysing contact mechanics of the hip joint during walking gait. Subject-specific models were generated from magnetic resonance images of the hip joints in five asymptomatic subjects. The DEA and FEA models were then simulated for 13 loading time-points extracted from a full gait cycle. Computationally, DEA was substantially more efficient compared to FEA (simulation times of seconds vs. hours). The DEA and FEA methods had similar predictions for contact pressure distribution for the hip joint during normal walking. In all 13 simulated loading time-points across five subjects, the maximum difference in average contact pressures between DEA and FEA was within ±0.06 MPa. Furthermore, the difference in contact area ratio computed using DEA and FEA was less than ±6%. Finite element analysis (FEA) provides a powerful approach for estimating the in-vivo loading characteristics of the hip joint during various locomotory and functional activities. However, time-consuming procedures, such as the generation of high-quality FE meshes and setup of FE simulation, typically make the method impractical for rapid applications which could be used in clinical routine. Alternatively, discrete element analysis (DEA) has been developed to quantify mechanical conditions of the hip joint in a fraction of time compared to FEA. Although DEA has proven effective in the estimation of contact stresses and areas in various complex applications, it has not yet been well characterised by its ability to evaluate contact mechanics for the hip joint during gait cycle loading using data from several individuals. The objective of this work was to compare DEA modelling against well-established FEA for analysing contact mechanics of the hip joint during walking gait. Subject-specific models were generated from magnetic resonance images of the hip joints in five asymptomatic subjects. The DEA and FEA models were then simulated for 13 loading time-points extracted from a full gait cycle. Computationally, DEA was substantially more efficient compared to FEA (simulation times of seconds vs. hours). The DEA and FEA methods had similar predictions for contact pressure distribution for the hip joint during normal walking. In all 13 simulated loading time-points across five subjects, the maximum difference in average contact pressures between DEA and FEA was within ±0.06 MPa. Furthermore, the difference in contact area ratio computed using DEA and FEA was less than ±6%. |
ArticleNumber | 110163 |
Author | Töyräs, Juha Venäläinen, Mikko S. Engstrom, Craig Chandra, Shekhar S. Li, Mao Patel, Rushabh Fripp, Jurgen Korhonen, Rami K. Crozier, Stuart |
Author_xml | – sequence: 1 givenname: Mao orcidid: 0000-0002-6696-4780 surname: Li fullname: Li, Mao organization: School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Australia – sequence: 2 givenname: Mikko S. orcidid: 0000-0003-1777-4259 surname: Venäläinen fullname: Venäläinen, Mikko S. email: m.venalainen@uq.edu.au, mikko.venalainen@utu.fi organization: School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Australia – sequence: 3 givenname: Shekhar S. surname: Chandra fullname: Chandra, Shekhar S. organization: School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Australia – sequence: 4 givenname: Rushabh orcidid: 0000-0003-4836-149X surname: Patel fullname: Patel, Rushabh organization: School of Mechanical and Mining Engineering, University of Queensland, Brisbane, Australia – sequence: 5 givenname: Jurgen orcidid: 0000-0001-9705-0079 surname: Fripp fullname: Fripp, Jurgen organization: School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Australia – sequence: 6 givenname: Craig surname: Engstrom fullname: Engstrom, Craig organization: School of Human Movement Studies, University of Queensland, Brisbane, Australia – sequence: 7 givenname: Rami K. surname: Korhonen fullname: Korhonen, Rami K. organization: Department of Applied Physics, University of Eastern Finland, Kuopio, Finland – sequence: 8 givenname: Juha orcidid: 0000-0002-8035-1606 surname: Töyräs fullname: Töyräs, Juha organization: School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Australia – sequence: 9 givenname: Stuart surname: Crozier fullname: Crozier, Stuart organization: School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33338974$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk9v1DAQxS1URLeFr1BZ4sIlix0ncSIhBCp_pUpc4Gw540nXIbEX2ymq-PI4bIvQXooPHmn0e6Pxez4jJ847JOSCsy1nvHk5bsfe-hlhty1ZmZtrVzwiG95KUZSiZSdkw1jJi67s2Ck5i3FkjMlKdk_Iqcin7WS1Ib_e2QgBE1KccEaXqHaGDtbZf1ozpp03ke6Dv7EGabSznXSgGJOddbLeRTr4QHd2T0dvswK8SxpWJey0sxCpWYJ11_Snnr6v9Vrb9JQ8HvQU8dldPSffPrz_evmpuPry8fPl26sCqpqnYuiFrhtktRH5GvqKlaZkRhgtOWg-ALSyMdANjekkyrqCoS-FaXQvO912IM7Ji8PcvP-PJS-t5vxonCbt0C9RlZXkVcOlFBl9foSOfgkub7dSHRO8qlmmLu6opZ_RqH3INoRbdW9rBpoDAMHHGHD4i3Cm1qTUqO7zU2t-6pBfFr46EoJNfxxOQdvpYfmbgxyznTcWg4pg0QEaGxCSMt4-POL10QiY8m-AnBve_s-A31G-0cA |
CitedBy_id | crossref_primary_10_1186_s13018_022_03094_5 crossref_primary_10_1016_j_jbiomech_2023_111766 crossref_primary_10_3934_mbe_2023949 crossref_primary_10_1007_s11837_025_07147_y crossref_primary_10_1302_2046_3758_1212_BJR_2022_0461_R2 crossref_primary_10_3390_app112311440 crossref_primary_10_1177_15563316231193426 crossref_primary_10_1016_j_asmr_2022_04_020 crossref_primary_10_1016_j_jbiomech_2025_112568 |
Cites_doi | 10.1016/j.gaitpost.2010.09.001 10.1002/mrm.25598 10.1097/01.blo.0000203472.88926.c8 10.1002/jor.22040 10.1088/0031-9155/58/20/7375 10.7812/TPP/17-084 10.1002/cnm.1374 10.1007/s10439-018-02184-y 10.1016/j.media.2014.02.002 10.1016/j.joca.2016.11.016 10.1016/j.jbiomech.2013.01.012 10.1016/j.jmbbm.2013.04.012 10.1016/j.berh.2014.08.002 10.1109/TIP.2009.2023706 10.1016/j.berh.2011.11.013 10.1007/978-1-4939-0745-8_9 10.1016/j.jbiomech.2015.05.030 10.1002/cnm.887 10.1016/j.jbiomech.2014.12.020 10.1016/S0021-9290(97)85606-0 10.1177/0954411920905434 10.1371/journal.pone.0207014 10.1053/jars.2002.36120 10.1016/S0021-9290(01)00041-0 10.1002/jor.1100170411 10.1115/1.2953472 10.1016/j.media.2014.12.008 10.3109/17453670902947390 10.1016/j.joca.2012.09.012 10.1123/jab.26.2.215 10.2519/jospt.1998.28.1.51 10.1007/978-3-319-12057-7_6 10.1016/j.jbiomech.2005.06.026 10.1088/0031-9155/59/23/7245 10.1007/s11517-006-0074-9 10.1016/j.jbiomech.2011.05.006 10.1016/j.jbiomech.2017.11.014 10.1371/journal.pone.0155612 10.1093/rheumatology/38.2.124 10.1007/BFb0015544 10.1016/j.cma.2010.06.037 10.1016/j.joca.2016.10.023 10.1016/j.joca.2013.06.008 10.1016/j.jbiomech.2004.05.006 10.1016/j.jbiomech.2018.07.036 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright © 2020 Elsevier Ltd. All rights reserved. 2020. Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright © 2020 Elsevier Ltd. All rights reserved. – notice: 2020. Elsevier Ltd |
DBID | AAYXX CITATION NPM 3V. 7QP 7TB 7TS 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1016/j.jbiomech.2020.110163 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Physical Education Index ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Research Library Prep |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central - New (Subscription) url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Anatomy & Physiology |
EISSN | 1873-2380 |
ExternalDocumentID | 33338974 10_1016_j_jbiomech_2020_110163 S002192902030587X |
Genre | Journal Article |
GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFS ACIEU ACIUM ACIWK ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGYEJ AHHHB AHJVU AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GUQSH HCIFZ HMCUK IHE J1W JJJVA KOM LK8 M1P M29 M2O M31 M41 M7P MO0 N9A O-L O9- OAUVE OH. OT. OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 ROL SCC SDF SDG SDP SEL SES SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT X7M YQT Z5R ZMT ~G- AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AJOXV AMFUW EFLBG LCYCR .GJ 29J 53G AAQQT AAQXK AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ADMUD ADNMO AFJKZ AGHFR AGQPQ AI. ASPBG AVWKF AZFZN CITATION EBD EJD FEDTE FGOYB G-2 HEE HMK HMO HVGLF HZ~ H~9 I-F ML~ MVM OHT R2- RPZ SAE SEW VH1 WUQ XOL XPP ZGI ~HD ALIPV NPM 3V. 7QP 7TB 7TS 7XB 8FD 8FK FR3 K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c451t-fb3a56e05d3e05fb402d20d3da71ca1fcc876dc9f6d97e754cfb23d6ab79a89c3 |
IEDL.DBID | .~1 |
ISSN | 0021-9290 1873-2380 |
IngestDate | Sun Sep 28 12:10:14 EDT 2025 Wed Aug 13 09:15:35 EDT 2025 Thu Apr 03 06:58:14 EDT 2025 Wed Oct 01 05:20:47 EDT 2025 Thu Apr 24 22:59:54 EDT 2025 Fri Feb 23 02:48:25 EST 2024 Tue Aug 26 17:09:46 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Hip joint Walking gait Discrete element Contact mechanics Finite element |
Language | English |
License | Copyright © 2020 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-fb3a56e05d3e05fb402d20d3da71ca1fcc876dc9f6d97e754cfb23d6ab79a89c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8035-1606 0000-0003-4836-149X 0000-0002-6696-4780 0000-0001-9705-0079 0000-0003-1777-4259 |
PMID | 33338974 |
PQID | 2479031450 |
PQPubID | 1226346 |
ParticipantIDs | proquest_miscellaneous_2471461773 proquest_journals_2479031450 pubmed_primary_33338974 crossref_primary_10_1016_j_jbiomech_2020_110163 crossref_citationtrail_10_1016_j_jbiomech_2020_110163 elsevier_sciencedirect_doi_10_1016_j_jbiomech_2020_110163 elsevier_clinicalkey_doi_10_1016_j_jbiomech_2020_110163 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-22 |
PublicationDateYYYYMMDD | 2021-01-22 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Kidlington |
PublicationTitle | Journal of biomechanics |
PublicationTitleAlternate | J Biomech |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Henak, Carruth, Anderson, Harris, Ellis, Peters, Weiss (b0105) 2013; 21 Li, Miller, Joldes, Doyle, Garlapati, Kikinis, Wittek (b0150) 2015; 22 March, Smith, Hoy, Cross, Sanchez-Riera, Blyth, Buchbinder, Vos, Woolf (b0165) 2014; 28 Li, M., Wittek, A., Joldes, G., Zhang, G., Dong, F., Kikinis, R., Miller, K., 2014b. Year whole-body image registration using patient-specific nonlinear finite element model. In: Computational Biomechanics for Medicine. New York, NY. Shepherd, Seedhom (b0190) 1999; 38 Xia, Fripp, Chandra, Schwarz, Engstrom, Crozier (b0235) 2013; 58 Chandra, Surowiec, Ho, Xia, Engstrom, Crozier, Fripp (b0060) 2016; 75 Harris, Anderson, Henak, Ellis, Peters, Weiss (b0100) 2012; 30 von Eisenhart, Adam, Steinlechner, Muller-Gerbl, Eckstein (b0225) 1999; 17 Ateshian, Henak, Weiss (b0030) 2015; 48 Benemerito, Modenese, Montefiori, Mazza, Viceconti, Lacroix, Guo (b0045) 2020; 234 Abraham, Maas, Weiss, Ellis, Peters, Anderson (b0010) 2013; 46 Dienst, Seil, Godde, Brang, Becker, Georg, Kohn (b0080) 2002; 18 Felson (b0085) 2013; 21 Ni, Nguyen (b0180) 2009; 18 Lespasio, Sultan, Piuzzi, Khlopas, Husni, Muschler, Mont (b0135) 2018; 22 Anderson, Ellis, Maas, Peters, Weiss (b0015) 2008; 130 Chao, Volokh, Yoshida, Shiba, Ide (b0070) 2010; 7 Genda, Iwasaki, Li, MacWilliams, Barrance, Chao (b0090) 2001; 34 Guilak (b0095) 2011; 25 Lewis, Sahrmann, Moran (b0140) 2010; 32 Daniel, Herman, Dolinar, Iglic, Sochor, Kralj-Iglic (b0075) 2006 Horton, Wittek, Joldes, Miller (b0110) 2010; 26 Vafaeian, Zonoobi, Mabee, Hareendranathan, El-Rich, Adeeb, Jaremko (b0215) 2017; 25 Kern, Anderson (b0125) 2015; 48 Ateshian, Warden, Kim, Grelsamer, Mow (b0035) 1997; 30 Bergmann, Bender, Dymke, Duda, Damm (b0050) 2016; 11 Townsend, Thomas-Aitken, Rudert, Kern, Willey, Anderson, Goetz (b0210) 2018; 67 Xia, Chandra, Engstrom, Strudwick, Crozier, Fripp (b0230) 2014; 59 Mononen, Liukkonen, Korhonen (b0175) 2019; 47 Huang, Stankiewicz, Ateshian, Mow (b0115) 2005; 38 Chandra, Xia, Engstrom, Crozier, Schwarz, Fripp (b0065) 2014; 18 Miller, Joldes, Lance, Wittek (b0170) 2007; 23 Li, Miller, Joldes, Kikinis, Wittek (b0145) 2014; 8789 Volokh, Chao, Armand (b0220) 2007; 4 Li, Miller, Joldes, Kikinis, Wittek (b0155) 2016; 32 Anderson, Iyer, Segal, Lynch, Brown (b0020) 2010; 26 Richard, Villars, Thibaud (b0185) 2013; 24 Armiger, Armand, Tallroth, Lepisto, Mears (b0025) 2009; 80 Yoshida, Faust, Wilckens, Kitagawa, Fetto, Chao (b0240) 2006; 39 Abraham, Knight, Peters, Weiss, Anderson (b0005) 2017; 25 Bergmann, Kutzner, Bender, Dymke, Trepczynski, Duda, Felsenberg, Damm (b0055) 2018; 13 Thomas-Aitken, Willey, Goetz (b0205) 2018; 79 Joldes, Wittek, Miller (b0120) 2010; 199 Tadepalli, Erdemir, Cavanagh (b0195) 2011; 44 Taubin, G., Zhang, T., Golub, G., 1996. Year Optimal surface smoothing as filter design. Berlin, Heidelberg. Krebs, Robbins, Lavine, Mann (b0130) 1998; 28 Bachtar, Chen, Hisada (b0040) 2006; 44 Lewis (10.1016/j.jbiomech.2020.110163_b0140) 2010; 32 Yoshida (10.1016/j.jbiomech.2020.110163_b0240) 2006; 39 Bergmann (10.1016/j.jbiomech.2020.110163_b0050) 2016; 11 Mononen (10.1016/j.jbiomech.2020.110163_b0175) 2019; 47 Anderson (10.1016/j.jbiomech.2020.110163_b0015) 2008; 130 Shepherd (10.1016/j.jbiomech.2020.110163_b0190) 1999; 38 Ateshian (10.1016/j.jbiomech.2020.110163_b0030) 2015; 48 Genda (10.1016/j.jbiomech.2020.110163_b0090) 2001; 34 Benemerito (10.1016/j.jbiomech.2020.110163_b0045) 2020; 234 Townsend (10.1016/j.jbiomech.2020.110163_b0210) 2018; 67 Harris (10.1016/j.jbiomech.2020.110163_b0100) 2012; 30 Anderson (10.1016/j.jbiomech.2020.110163_b0020) 2010; 26 Xia (10.1016/j.jbiomech.2020.110163_b0230) 2014; 59 Henak (10.1016/j.jbiomech.2020.110163_b0105) 2013; 21 10.1016/j.jbiomech.2020.110163_b0200 Abraham (10.1016/j.jbiomech.2020.110163_b0005) 2017; 25 Dienst (10.1016/j.jbiomech.2020.110163_b0080) 2002; 18 Miller (10.1016/j.jbiomech.2020.110163_b0170) 2007; 23 Chandra (10.1016/j.jbiomech.2020.110163_b0060) 2016; 75 Ateshian (10.1016/j.jbiomech.2020.110163_b0035) 1997; 30 Tadepalli (10.1016/j.jbiomech.2020.110163_b0195) 2011; 44 Ni (10.1016/j.jbiomech.2020.110163_b0180) 2009; 18 Richard (10.1016/j.jbiomech.2020.110163_b0185) 2013; 24 Volokh (10.1016/j.jbiomech.2020.110163_b0220) 2007; 4 Krebs (10.1016/j.jbiomech.2020.110163_b0130) 1998; 28 Vafaeian (10.1016/j.jbiomech.2020.110163_b0215) 2017; 25 Li (10.1016/j.jbiomech.2020.110163_b0150) 2015; 22 Abraham (10.1016/j.jbiomech.2020.110163_b0010) 2013; 46 Bachtar (10.1016/j.jbiomech.2020.110163_b0040) 2006; 44 Guilak (10.1016/j.jbiomech.2020.110163_b0095) 2011; 25 Xia (10.1016/j.jbiomech.2020.110163_b0235) 2013; 58 10.1016/j.jbiomech.2020.110163_b0160 Li (10.1016/j.jbiomech.2020.110163_b0145) 2014; 8789 Daniel (10.1016/j.jbiomech.2020.110163_b0075) 2006 Felson (10.1016/j.jbiomech.2020.110163_b0085) 2013; 21 Armiger (10.1016/j.jbiomech.2020.110163_b0025) 2009; 80 Bergmann (10.1016/j.jbiomech.2020.110163_b0055) 2018; 13 Kern (10.1016/j.jbiomech.2020.110163_b0125) 2015; 48 Horton (10.1016/j.jbiomech.2020.110163_b0110) 2010; 26 Thomas-Aitken (10.1016/j.jbiomech.2020.110163_b0205) 2018; 79 Li (10.1016/j.jbiomech.2020.110163_b0155) 2016; 32 Chandra (10.1016/j.jbiomech.2020.110163_b0065) 2014; 18 Chao (10.1016/j.jbiomech.2020.110163_b0070) 2010; 7 Joldes (10.1016/j.jbiomech.2020.110163_b0120) 2010; 199 March (10.1016/j.jbiomech.2020.110163_b0165) 2014; 28 Lespasio (10.1016/j.jbiomech.2020.110163_b0135) 2018; 22 von Eisenhart (10.1016/j.jbiomech.2020.110163_b0225) 1999; 17 Huang (10.1016/j.jbiomech.2020.110163_b0115) 2005; 38 |
References_xml | – volume: 47 start-page: 813 year: 2019 end-page: 825 ident: b0175 article-title: Utilizing atlas-based modeling to predict knee joint cartilage degeneration: data from the osteoarthritis initiative publication-title: Ann. Biomed. Eng. – volume: 25 start-page: 815 year: 2011 end-page: 823 ident: b0095 article-title: Biomechanical factors in osteoarthritis publication-title: Best Pract. Res. Cl Rh – volume: 4 start-page: 67 year: 2007 end-page: 73 ident: b0220 article-title: On foundations of discrete element analysis of contact in diarthrodial joints publication-title: Mol. Cell. Biomech. – volume: 18 start-page: 1976 year: 2009 end-page: 1987 ident: b0180 article-title: An adaptable k-nearest neighbors algorithm for MMSE image interpolation publication-title: IEEE Trans. Image Process. – volume: 39 start-page: 1996 year: 2006 end-page: 2004 ident: b0240 article-title: Three-dimensional dynamic hip contact area and pressure distribution during activities of daily living publication-title: J. Biomech. – volume: 130 year: 2008 ident: b0015 article-title: Validation of finite element predictions of cartilage contact pressure in the human hip joint publication-title: J. Biomech. Eng.-Trans. Asme – volume: 18 start-page: 865 year: 2002 end-page: 871 ident: b0080 article-title: Effects of traction, distension, and joint position on distraction of the hip joint: an experimental study in cadavers publication-title: Arthrosc.-J. Arthrosc. Relat. Surg. – volume: 234 start-page: 507 year: 2020 end-page: 516 ident: b0045 article-title: An extended discrete element method for the estimation of contact pressure at the ankle joint during stance phase publication-title: P. I. Mech. Eng. H – volume: 30 start-page: 1157 year: 1997 end-page: 1164 ident: b0035 article-title: Finite deformation biphasic material properties of bovine articular cartilage from confined compression experiments publication-title: J. Biomech. – volume: 44 start-page: 643 year: 2006 end-page: 651 ident: b0040 article-title: Finite element contact analysis of the hip joint publication-title: Med. Biol. Eng. Compu. – volume: 28 start-page: 51 year: 1998 end-page: 59 ident: b0130 article-title: Hip biomechanics during gait publication-title: J. Orthop. Sports Phys. Ther. – volume: 34 start-page: 895 year: 2001 end-page: 905 ident: b0090 article-title: Normal hip joint contact pressure distribution in single-leg standing – effect of gender and anatomic parameters publication-title: J. Biomech. – volume: 11 year: 2016 ident: b0050 article-title: Standardized Loads Acting in Hip Implants publication-title: PLoS ONE – start-page: 92 year: 2006 end-page: 99 ident: b0075 article-title: Contact stress in hips with osteonecrosis of the femoral head publication-title: Clin. Orthop. Relat. Res. – volume: 26 start-page: 977 year: 2010 end-page: 998 ident: b0110 article-title: A meshless Total Lagrangian explicit dynamics algorithm for surgical simulation publication-title: Int. J. Numer. Meth. Bio. – volume: 7 start-page: 175 year: 2010 end-page: 192 ident: b0070 article-title: Discrete element analysis in musculoskeletal biomechanics publication-title: Mol. Cell. Biomech. – volume: 13 year: 2018 ident: b0055 article-title: Loading of the hip and knee joints during whole body vibration training publication-title: PLoS ONE – volume: 8789 start-page: 50 year: 2014 end-page: 57 ident: b0145 article-title: Patient-specific meshless model for whole-body image registration publication-title: Lect. Notes Comput. Sci. – volume: 59 start-page: 7245 year: 2014 end-page: 7266 ident: b0230 article-title: Automatic hip cartilage segmentation from 3D MR images using arc-weighted graph searching publication-title: Phys. Med. Biol. – volume: 30 start-page: 1133 year: 2012 end-page: 1139 ident: b0100 article-title: Finite element prediction of cartilage contact stresses in normal human hips publication-title: J. Orthop. Res. – volume: 80 start-page: 155 year: 2009 end-page: 161 ident: b0025 article-title: Three-dimensional mechanical evaluation of joint contact pressure in 12 periacetabular osteotomy patients with 10-year follow-up publication-title: Acta Orthop. – volume: 46 start-page: 1121 year: 2013 end-page: 1127 ident: b0010 article-title: A new discrete element analysis method for predicting hip joint contact stresses publication-title: J. Biomech. – volume: 26 start-page: 215 year: 2010 end-page: 223 ident: b0020 article-title: Implementation of discrete element analysis for subject-specific, population-wide investigations of habitual contact stress exposure publication-title: J. Appl. Biomech. – reference: Li, M., Wittek, A., Joldes, G., Zhang, G., Dong, F., Kikinis, R., Miller, K., 2014b. Year whole-body image registration using patient-specific nonlinear finite element model. In: Computational Biomechanics for Medicine. New York, NY. – volume: 28 start-page: 353 year: 2014 end-page: 366 ident: b0165 article-title: Burden of disability due to musculoskeletal (MSK) disorders publication-title: Best Pract. Res. Cl Rh – volume: 24 start-page: 41 year: 2013 end-page: 52 ident: b0185 article-title: Viscoelastic modeling and quantitative experimental characterization of normal and osteoarthritic human articular cartilage using indentation publication-title: J. Mech. Behav. Biomed. – volume: 48 start-page: 779 year: 2015 end-page: 786 ident: b0030 article-title: Toward patient-specific articular contact mechanics publication-title: J. Biomech. – volume: 25 start-page: 438 year: 2017 end-page: 447 ident: b0215 article-title: Finite element analysis of mechanical behavior of human dysplastic hip joints: a systematic review publication-title: Osteoarthr. Cartilage – reference: Taubin, G., Zhang, T., Golub, G., 1996. Year Optimal surface smoothing as filter design. Berlin, Heidelberg. – volume: 32 year: 2016 ident: b0155 article-title: Biomechanical model for computing deformations for whole-body image registration: a meshless approach publication-title: Int. J. Numer. Meth. Bio. – volume: 67 start-page: 9 year: 2018 end-page: 17 ident: b0210 article-title: Discrete element analysis is a valid method for computing joint contact stress in the hip before and after acetabular fracture publication-title: J. Biomech. – volume: 21 start-page: 10 year: 2013 end-page: 15 ident: b0085 article-title: Osteoarthritis as a disease of mechanics publication-title: Osteoarthr. Cartilage – volume: 199 start-page: 3305 year: 2010 end-page: 3314 ident: b0120 article-title: Real-time nonlinear finite element computations on GPU – application to neurosurgical simulation publication-title: Comput. Method Appl. M. – volume: 25 start-page: 676 year: 2017 end-page: 684 ident: b0005 article-title: Patient-specific chondrolabral contact mechanics in patients with acetabular dysplasia following treatment with peri-acetabular osteotomy publication-title: Osteoarthr. Cartilage – volume: 18 start-page: 567 year: 2014 end-page: 578 ident: b0065 article-title: Focused shape models for hip joint segmentation in 3D magnetic resonance images publication-title: Med. Image Anal. – volume: 23 start-page: 121 year: 2007 end-page: 134 ident: b0170 article-title: Total Lagrangian explicit dynamics finite element algorithm for computing soft tissue deformation publication-title: Commun. Numer. Meth. Eng. – volume: 22 start-page: 22 year: 2015 end-page: 34 ident: b0150 article-title: Patient-specific biomechanical model as whole-body CT image registration tool publication-title: Med. Image Anal. – volume: 75 start-page: 403 year: 2016 end-page: 413 ident: b0060 article-title: Automated analysis of hip joint cartilage combining MR T2 and three-dimensional fast-spin-echo images publication-title: Magnet. Reson. Med. – volume: 38 start-page: 799 year: 2005 end-page: 809 ident: b0115 article-title: Anisotropy, inhomogeneity, and tension-compression nonlinearity of human glenohumeral cartilage in finite deformation publication-title: J. Biomech. – volume: 38 start-page: 124 year: 1999 end-page: 132 ident: b0190 article-title: The 'instantaneous' compressive modulus of human articular cartilage in joints of the lower limb publication-title: Rheumatology – volume: 48 start-page: 3427 year: 2015 end-page: 3432 ident: b0125 article-title: Expedited patient-specific assessment of contact stress exposure in the ankle joint following definitive articular fracture reduction publication-title: J. Biomech. – volume: 58 start-page: 7375 year: 2013 end-page: 7390 ident: b0235 article-title: Automated bone segmentation from large field of view 3D MR images of the hip joint publication-title: Phys. Med. Biol. – volume: 32 start-page: 603 year: 2010 end-page: 607 ident: b0140 article-title: Effect of hip angle on anterior hip joint force during gait publication-title: Gait Posture – volume: 44 start-page: 2337 year: 2011 end-page: 2343 ident: b0195 article-title: Comparison of hexahedral and tetrahedral elements in finite element analysis of the foot and footwear publication-title: J. Biomech. – volume: 79 start-page: 45 year: 2018 end-page: 53 ident: b0205 article-title: Joint contact stresses calculated for acetabular dysplasia patients using discrete element analysis are significantly influenced by the applied gait pattern publication-title: J. Biomech. – volume: 21 start-page: 1522 year: 2013 end-page: 1529 ident: b0105 article-title: Finite element predictions of cartilage contact mechanics in hips with retroverted acetabula publication-title: Osteoarthr. Cartilage – volume: 22 start-page: 17 year: 2018 end-page: 084 ident: b0135 article-title: Hip osteoarthritis: a primer publication-title: Perm J. – volume: 17 start-page: 532 year: 1999 end-page: 539 ident: b0225 article-title: Quantitative determination of joint incongruity and pressure distribution during simulated gait and cartilage thickness in the human hip joint publication-title: J. Orthop. Res. – volume: 32 start-page: 603 year: 2010 ident: 10.1016/j.jbiomech.2020.110163_b0140 article-title: Effect of hip angle on anterior hip joint force during gait publication-title: Gait Posture doi: 10.1016/j.gaitpost.2010.09.001 – volume: 75 start-page: 403 year: 2016 ident: 10.1016/j.jbiomech.2020.110163_b0060 article-title: Automated analysis of hip joint cartilage combining MR T2 and three-dimensional fast-spin-echo images publication-title: Magnet. Reson. Med. doi: 10.1002/mrm.25598 – start-page: 92 year: 2006 ident: 10.1016/j.jbiomech.2020.110163_b0075 article-title: Contact stress in hips with osteonecrosis of the femoral head publication-title: Clin. Orthop. Relat. Res. doi: 10.1097/01.blo.0000203472.88926.c8 – volume: 30 start-page: 1133 year: 2012 ident: 10.1016/j.jbiomech.2020.110163_b0100 article-title: Finite element prediction of cartilage contact stresses in normal human hips publication-title: J. Orthop. Res. doi: 10.1002/jor.22040 – volume: 58 start-page: 7375 year: 2013 ident: 10.1016/j.jbiomech.2020.110163_b0235 article-title: Automated bone segmentation from large field of view 3D MR images of the hip joint publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/58/20/7375 – volume: 22 start-page: 17 year: 2018 ident: 10.1016/j.jbiomech.2020.110163_b0135 article-title: Hip osteoarthritis: a primer publication-title: Perm J. doi: 10.7812/TPP/17-084 – volume: 26 start-page: 977 year: 2010 ident: 10.1016/j.jbiomech.2020.110163_b0110 article-title: A meshless Total Lagrangian explicit dynamics algorithm for surgical simulation publication-title: Int. J. Numer. Meth. Bio. doi: 10.1002/cnm.1374 – volume: 47 start-page: 813 year: 2019 ident: 10.1016/j.jbiomech.2020.110163_b0175 article-title: Utilizing atlas-based modeling to predict knee joint cartilage degeneration: data from the osteoarthritis initiative publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-018-02184-y – volume: 18 start-page: 567 year: 2014 ident: 10.1016/j.jbiomech.2020.110163_b0065 article-title: Focused shape models for hip joint segmentation in 3D magnetic resonance images publication-title: Med. Image Anal. doi: 10.1016/j.media.2014.02.002 – volume: 7 start-page: 175 year: 2010 ident: 10.1016/j.jbiomech.2020.110163_b0070 article-title: Discrete element analysis in musculoskeletal biomechanics publication-title: Mol. Cell. Biomech. – volume: 25 start-page: 676 year: 2017 ident: 10.1016/j.jbiomech.2020.110163_b0005 article-title: Patient-specific chondrolabral contact mechanics in patients with acetabular dysplasia following treatment with peri-acetabular osteotomy publication-title: Osteoarthr. Cartilage doi: 10.1016/j.joca.2016.11.016 – volume: 4 start-page: 67 year: 2007 ident: 10.1016/j.jbiomech.2020.110163_b0220 article-title: On foundations of discrete element analysis of contact in diarthrodial joints publication-title: Mol. Cell. Biomech. – volume: 46 start-page: 1121 year: 2013 ident: 10.1016/j.jbiomech.2020.110163_b0010 article-title: A new discrete element analysis method for predicting hip joint contact stresses publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2013.01.012 – volume: 24 start-page: 41 year: 2013 ident: 10.1016/j.jbiomech.2020.110163_b0185 article-title: Viscoelastic modeling and quantitative experimental characterization of normal and osteoarthritic human articular cartilage using indentation publication-title: J. Mech. Behav. Biomed. doi: 10.1016/j.jmbbm.2013.04.012 – volume: 28 start-page: 353 year: 2014 ident: 10.1016/j.jbiomech.2020.110163_b0165 article-title: Burden of disability due to musculoskeletal (MSK) disorders publication-title: Best Pract. Res. Cl Rh doi: 10.1016/j.berh.2014.08.002 – volume: 18 start-page: 1976 year: 2009 ident: 10.1016/j.jbiomech.2020.110163_b0180 article-title: An adaptable k-nearest neighbors algorithm for MMSE image interpolation publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2009.2023706 – volume: 25 start-page: 815 year: 2011 ident: 10.1016/j.jbiomech.2020.110163_b0095 article-title: Biomechanical factors in osteoarthritis publication-title: Best Pract. Res. Cl Rh doi: 10.1016/j.berh.2011.11.013 – ident: 10.1016/j.jbiomech.2020.110163_b0160 doi: 10.1007/978-1-4939-0745-8_9 – volume: 48 start-page: 3427 year: 2015 ident: 10.1016/j.jbiomech.2020.110163_b0125 article-title: Expedited patient-specific assessment of contact stress exposure in the ankle joint following definitive articular fracture reduction publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2015.05.030 – volume: 23 start-page: 121 year: 2007 ident: 10.1016/j.jbiomech.2020.110163_b0170 article-title: Total Lagrangian explicit dynamics finite element algorithm for computing soft tissue deformation publication-title: Commun. Numer. Meth. Eng. doi: 10.1002/cnm.887 – volume: 48 start-page: 779 year: 2015 ident: 10.1016/j.jbiomech.2020.110163_b0030 article-title: Toward patient-specific articular contact mechanics publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2014.12.020 – volume: 30 start-page: 1157 year: 1997 ident: 10.1016/j.jbiomech.2020.110163_b0035 article-title: Finite deformation biphasic material properties of bovine articular cartilage from confined compression experiments publication-title: J. Biomech. doi: 10.1016/S0021-9290(97)85606-0 – volume: 234 start-page: 507 year: 2020 ident: 10.1016/j.jbiomech.2020.110163_b0045 article-title: An extended discrete element method for the estimation of contact pressure at the ankle joint during stance phase publication-title: P. I. Mech. Eng. H doi: 10.1177/0954411920905434 – volume: 13 year: 2018 ident: 10.1016/j.jbiomech.2020.110163_b0055 article-title: Loading of the hip and knee joints during whole body vibration training publication-title: PLoS ONE doi: 10.1371/journal.pone.0207014 – volume: 18 start-page: 865 year: 2002 ident: 10.1016/j.jbiomech.2020.110163_b0080 article-title: Effects of traction, distension, and joint position on distraction of the hip joint: an experimental study in cadavers publication-title: Arthrosc.-J. Arthrosc. Relat. Surg. doi: 10.1053/jars.2002.36120 – volume: 34 start-page: 895 year: 2001 ident: 10.1016/j.jbiomech.2020.110163_b0090 article-title: Normal hip joint contact pressure distribution in single-leg standing – effect of gender and anatomic parameters publication-title: J. Biomech. doi: 10.1016/S0021-9290(01)00041-0 – volume: 17 start-page: 532 year: 1999 ident: 10.1016/j.jbiomech.2020.110163_b0225 article-title: Quantitative determination of joint incongruity and pressure distribution during simulated gait and cartilage thickness in the human hip joint publication-title: J. Orthop. Res. doi: 10.1002/jor.1100170411 – volume: 130 year: 2008 ident: 10.1016/j.jbiomech.2020.110163_b0015 article-title: Validation of finite element predictions of cartilage contact pressure in the human hip joint publication-title: J. Biomech. Eng.-Trans. Asme doi: 10.1115/1.2953472 – volume: 22 start-page: 22 year: 2015 ident: 10.1016/j.jbiomech.2020.110163_b0150 article-title: Patient-specific biomechanical model as whole-body CT image registration tool publication-title: Med. Image Anal. doi: 10.1016/j.media.2014.12.008 – volume: 80 start-page: 155 year: 2009 ident: 10.1016/j.jbiomech.2020.110163_b0025 article-title: Three-dimensional mechanical evaluation of joint contact pressure in 12 periacetabular osteotomy patients with 10-year follow-up publication-title: Acta Orthop. doi: 10.3109/17453670902947390 – volume: 21 start-page: 10 year: 2013 ident: 10.1016/j.jbiomech.2020.110163_b0085 article-title: Osteoarthritis as a disease of mechanics publication-title: Osteoarthr. Cartilage doi: 10.1016/j.joca.2012.09.012 – volume: 26 start-page: 215 year: 2010 ident: 10.1016/j.jbiomech.2020.110163_b0020 article-title: Implementation of discrete element analysis for subject-specific, population-wide investigations of habitual contact stress exposure publication-title: J. Appl. Biomech. doi: 10.1123/jab.26.2.215 – volume: 28 start-page: 51 year: 1998 ident: 10.1016/j.jbiomech.2020.110163_b0130 article-title: Hip biomechanics during gait publication-title: J. Orthop. Sports Phys. Ther. doi: 10.2519/jospt.1998.28.1.51 – volume: 8789 start-page: 50 year: 2014 ident: 10.1016/j.jbiomech.2020.110163_b0145 article-title: Patient-specific meshless model for whole-body image registration publication-title: Lect. Notes Comput. Sci. doi: 10.1007/978-3-319-12057-7_6 – volume: 39 start-page: 1996 year: 2006 ident: 10.1016/j.jbiomech.2020.110163_b0240 article-title: Three-dimensional dynamic hip contact area and pressure distribution during activities of daily living publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2005.06.026 – volume: 59 start-page: 7245 year: 2014 ident: 10.1016/j.jbiomech.2020.110163_b0230 article-title: Automatic hip cartilage segmentation from 3D MR images using arc-weighted graph searching publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/59/23/7245 – volume: 44 start-page: 643 year: 2006 ident: 10.1016/j.jbiomech.2020.110163_b0040 article-title: Finite element contact analysis of the hip joint publication-title: Med. Biol. Eng. Compu. doi: 10.1007/s11517-006-0074-9 – volume: 44 start-page: 2337 year: 2011 ident: 10.1016/j.jbiomech.2020.110163_b0195 article-title: Comparison of hexahedral and tetrahedral elements in finite element analysis of the foot and footwear publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2011.05.006 – volume: 67 start-page: 9 year: 2018 ident: 10.1016/j.jbiomech.2020.110163_b0210 article-title: Discrete element analysis is a valid method for computing joint contact stress in the hip before and after acetabular fracture publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2017.11.014 – volume: 11 year: 2016 ident: 10.1016/j.jbiomech.2020.110163_b0050 article-title: Standardized Loads Acting in Hip Implants publication-title: PLoS ONE doi: 10.1371/journal.pone.0155612 – volume: 38 start-page: 124 year: 1999 ident: 10.1016/j.jbiomech.2020.110163_b0190 article-title: The 'instantaneous' compressive modulus of human articular cartilage in joints of the lower limb publication-title: Rheumatology doi: 10.1093/rheumatology/38.2.124 – ident: 10.1016/j.jbiomech.2020.110163_b0200 doi: 10.1007/BFb0015544 – volume: 199 start-page: 3305 year: 2010 ident: 10.1016/j.jbiomech.2020.110163_b0120 article-title: Real-time nonlinear finite element computations on GPU – application to neurosurgical simulation publication-title: Comput. Method Appl. M. doi: 10.1016/j.cma.2010.06.037 – volume: 25 start-page: 438 year: 2017 ident: 10.1016/j.jbiomech.2020.110163_b0215 article-title: Finite element analysis of mechanical behavior of human dysplastic hip joints: a systematic review publication-title: Osteoarthr. Cartilage doi: 10.1016/j.joca.2016.10.023 – volume: 21 start-page: 1522 year: 2013 ident: 10.1016/j.jbiomech.2020.110163_b0105 article-title: Finite element predictions of cartilage contact mechanics in hips with retroverted acetabula publication-title: Osteoarthr. Cartilage doi: 10.1016/j.joca.2013.06.008 – volume: 38 start-page: 799 year: 2005 ident: 10.1016/j.jbiomech.2020.110163_b0115 article-title: Anisotropy, inhomogeneity, and tension-compression nonlinearity of human glenohumeral cartilage in finite deformation publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2004.05.006 – volume: 32 year: 2016 ident: 10.1016/j.jbiomech.2020.110163_b0155 article-title: Biomechanical model for computing deformations for whole-body image registration: a meshless approach publication-title: Int. J. Numer. Meth. Bio. – volume: 79 start-page: 45 year: 2018 ident: 10.1016/j.jbiomech.2020.110163_b0205 article-title: Joint contact stresses calculated for acetabular dysplasia patients using discrete element analysis are significantly influenced by the applied gait pattern publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2018.07.036 |
SSID | ssj0007479 |
Score | 2.4052305 |
Snippet | Finite element analysis (FEA) provides a powerful approach for estimating the in-vivo loading characteristics of the hip joint during various locomotory and... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 110163 |
SubjectTerms | Asymptomatic Automation Cartilage Contact mechanics Contact pressure Contact stresses Discrete element Finite element Finite element method Gait Geometry Hip Hip joint Magnetic resonance imaging Mathematical models Mechanical properties Mechanics Mechanics (physics) Methods Partial differential equations Pressure distribution Prostheses Simulation Stress concentration Walking Walking gait |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSAgOFWx5bCnISIibaZzE8fpUVUBVIcGJSnuL_ISs2uxCtkKIP98Z2wm9lJJDDnHGUjLj8TfjeRDyRnitTGg4a0plWK1tzQwXlgknQH60xdYOGG3xpTk9qz8txTI73IYcVjnqxKio3dqij_ywrKXCUuuiONr8YNg1Ck9XcwuNu-QeB6iCUi2Xk8GFteFziAdnMFpcyxBevVvF_PZ4IFHGaHjeVDdtTjeBz7gJnTwiuxk90uPE7sfkju9nZO-4B8v54jd9S2M8Z3SUz8jDa6UGZ-T-53yIvkf-fOhAVwBYpj7FjlPdOxo6RJ_To9RZeqA5U48O3UUHRjDFohwp23GggHfp925DV-sOKDDoXVukxGTizg40pUDSX_oc_fH0m-62T8jZycev709Z7sHAbC34lgVTadH4QrgKbsGAuenKwlVOS241D9aCOnVWhcYp6aWobTBl5RptpNILZaunZKdf9_45oRWgrSY44ZQWNSADDVMaVeuFXAQTvJgTMf781uYC5dgn47wdI9FW7ci0FpnWJqbNyeFEt0klOm6lkCNv2zEBFVRmC7vIrZRqoswQJUGP_6I9GMWozYpiaP-K9Zy8noZhieO5je79-jK-g93XpYQpniXxmz60gmsBNuH-vyd_QR6UuAoKzsrygOxsf176l4CmtuZVXDJXqG0f9A priority: 102 providerName: ProQuest |
Title | Discrete element and finite element methods provide similar estimations for hip joint contact mechanics during walking gait |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S002192902030587X https://dx.doi.org/10.1016/j.jbiomech.2020.110163 https://www.ncbi.nlm.nih.gov/pubmed/33338974 https://www.proquest.com/docview/2479031450 https://www.proquest.com/docview/2471461773 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-2380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-2380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 customDbUrl: eissn: 1873-2380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: AKRWK dateStart: 19680101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health Medical collection customDbUrl: eissn: 1873-2380 dateEnd: 20250804 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central - New (Subscription) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1873-2380 dateEnd: 20250804 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhgdIeSrrpY9s0qFB6c9YvWdZxmyZsW7qU0sDehB5WqyXxLvWGEAr57ZmxZTc9hBTqgw22R9jWaPTJ-j4NIW9ZpYR2RRIVqdBRrkwe6YSZiFkG_qMMpnZAtsW8mJ3mnxZssUWOei0M0ipD7O9iehutw5lJ-JqTtfeo8YXWlgqcSotZyReoYM8LpPUdXv-heQBcDjSPJMK7b6mEl4fLVuPeTkqkLSM-KbK7Oqi7AGjbEZ3skscBQdJp95BPyFZVj8jetIbR8_kVfUdbTmf7s3xEHt1abnBEHnwJE-l75PcHD_ECADOtOv44VbWlziMCHU512aUbGtR6tPHnHgbCFBfm6BSPDQXMS3_6NV2uPFgg8V0ZtERBsTcN7WSQ9FKd4T95-kP5zVNyenL8_WgWhTwMkclZsomczhQrqpjZDHZOw5DTprHNrOKJUYkzBkKqNcIVVvCKs9w4nWa2UJoLVQqTPSPb9aquXhCaAeIqnGVWKJYDOlBQpBa5KnnptKvYmLD-40sTFinHXBlnsmejLWVfaRIrTXaVNiaTwW7dLdNxrwXv61b2IlQImxJ6knstxWD5l6v-k-1-70YyBItGpuCimEWAxWPyZrgMzRznblRdrS7aezADO-dQxPPO_YYXzWArYVz48j8e7BV5mGITiZMoTffJ9ubXRfUa4NZGH7TtCfZ8wQ_IzvTj59kcju-P51-_3QDbwC5x |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKkYAeKpiyTClgJODmNnHseHyoUEWppnQ5tdLcjOMFMmozA5mqqvhP_Eae4yT0UsqlOeSQybOUeYu_57ch9I47LQufpySnsiBMG0aKlBvCLQf50SaMdgjZFsf5-JR9mfDJEvrd1cKEtMrOJjaG2s5MOCPfokzI0GqdJx_nP0iYGhWiq90IjSgWB-7qEly2ent_F_j7ntK9zyefxqSdKkAM4-mC-CLTPHcJtxncfAEOlKWJzawWqdGpNwYMhDXS51YKJzgzvqCZzXUhpB5Jk8G699B9liUs9OoXk97BC73o25SSlADsSK5VJE83p009fRMAoU32fZpnN22GN4HdZtPbe4xWW7SKd6J4PUFLrhqgtZ0KPPXzK_wBN_mjzcH8AK1ca204QA-O2qD9Gvq1W4JtAnCOXcxVx7qy2JcB7faP4iTrGreVgbguz0twunFoAhKrK2sM-Bp_L-d4OiuBIiTZaxMoQ_FyaWocSy7xpT4L5__4my4XT9HpnXDnGVquZpV7gXAG6C73llupOQMkomHJQjI9EiNfeMeHiHd_vjJtQ_Qwl-NMdZlvU9UxTQWmqci0Idrq6eaxJcitFKLjreoKXsFEK9i1bqWUPWULiSLU-S_ajU6MVGuYavVXjYbobf8zmJQQJ9KVm10074Rp70LAEs-j-PUfmsE1Ah90_d-Lv0EPxydHh-pw__jgJXpEg0YkKaF0Ay0vfl64V4DkFsXrRn0w-nrX-voHuoRe1g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGkCZ4mKCD0THASMCbaWLHcf2A0ESpNgYTD0zqm_GPGFJtaSGdpon_jL-Oc5yEvYzxsj7koc1ZSu98_i733R1CL3ihpfF5SnIqDcm0zYhJuSXccbAfbcNoh8C2OMr3j7MPMz5bQ7-7WphAq-x8YuOo3cKGd-QjmgkZWq3zZORbWsTnyfTt8gcJE6RCprUbpxFN5LC4OIfwrX5zMAFdv6R0-v7Lu33SThggNuPpinjDNM-LhDsGF28gmHI0ccxpkVqdemvBWTgrfe6kKATPrDeUuVwbIfVYWgbr3kK3BctYoJOJWR_shb70Lb0kJQBBkkvVyfPX86a2vkmG0IaJn-bsqoPxKuDbHIDTe2izRa54L5rafbRWVAO0tVdB1H56gV_hhkvavKQfoLuX2hwO0ManNoG_hX5NSvBTANRxEXnrWFcO-zIg3_6rONW6xm2VIK7L0xICcBwagsRKyxoD1sbfyyWeL0qQCIR7bYNkKGQubY1j-SU-1ychF4C_6XL1AB3fiHYeovVqURWPEGaA9HLvuJOaZ4BKNCxpZKbHYuyNL_gQ8e7PV7Ztjh5mdJyojgU3V53SVFCaikobolEvt4ztQa6VEJ1uVVf8Cu5awQl2raTsJVt4FGHPf8nudmakWidVq79baoie9z-Dewk5I10Vi7PmnjD5XQhYYjuaX_-gDD5jiEd3_r34M7QBO1V9PDg6fIzu0LAhkpRQuovWVz_PiicA6lbmabN7MPp609v1D_hfYxE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discrete+element+and+finite+element+methods+provide+similar+estimations+for+hip+joint+contact+mechanics+during+walking+gait&rft.jtitle=Journal+of+biomechanics&rft.au=Li%2C+Mao&rft.au=Ven%C3%A4l%C3%A4inen%2C+Mikko+S.&rft.au=Chandra%2C+Shekhar+S.&rft.au=Patel%2C+Rushabh&rft.date=2021-01-22&rft.issn=0021-9290&rft.volume=115&rft.spage=110163&rft_id=info:doi/10.1016%2Fj.jbiomech.2020.110163&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jbiomech_2020_110163 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon |