Genomic context sensitizes regulatory elements to genetic disruption
Genomic context critically modulates regulatory function but is difficult to manipulate systematically. The murine insulin-like growth factor 2 (Igf2)/H19 locus is a paradigmatic model of enhancer selectivity, whereby CTCF occupancy at an imprinting control region directs downstream enhancers to act...
Saved in:
Published in | Molecular cell Vol. 84; no. 10; pp. 1842 - 1854.e7 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
16.05.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1097-2765 1097-4164 1097-4164 |
DOI | 10.1016/j.molcel.2024.04.013 |
Cover
Abstract | Genomic context critically modulates regulatory function but is difficult to manipulate systematically. The murine insulin-like growth factor 2 (Igf2)/H19 locus is a paradigmatic model of enhancer selectivity, whereby CTCF occupancy at an imprinting control region directs downstream enhancers to activate either H19 or Igf2. We used synthetic regulatory genomics to repeatedly replace the native locus with 157-kb payloads, and we systematically dissected its architecture. Enhancer deletion and ectopic delivery revealed previously uncharacterized long-range regulatory dependencies at the native locus. Exchanging the H19 enhancer cluster with the Sox2 locus control region (LCR) showed that the H19 enhancers relied on their native surroundings while the Sox2 LCR functioned autonomously. Analysis of regulatory DNA actuation across cell types revealed that these enhancer clusters typify broader classes of context sensitivity genome wide. These results show that unexpected dependencies influence even well-studied loci, and our approach permits large-scale manipulation of complete loci to investigate the relationship between regulatory architecture and function.
[Display omitted]
•Composite enhancer elements are subject to specific genomic context effects•The H19 enhancer cluster relies on regulatory elements outside the canonical Igf2/H19 locus•The Sox2 LCR functions autonomously of its surrounding context•Deletion or repositioning regulatory elements increases locus sensitivity to genomic context
Genomic context plays a key role in regulatory function but is difficult to manipulate systematically. Ordoñez et al. use synthetic regulatory genomics to manipulate regulatory architecture on a large scale, revealing unexpected context dependencies that influence even the most studied functional elements. |
---|---|
AbstractList | Genomic context critically modulates regulatory function but is difficult to manipulate systematically. The murine insulin-like growth factor 2 (Igf2)/H19 locus is a paradigmatic model of enhancer selectivity, whereby CTCF occupancy at an imprinting control region directs downstream enhancers to activate either H19 or Igf2. We used synthetic regulatory genomics to repeatedly replace the native locus with 157-kb payloads, and we systematically dissected its architecture. Enhancer deletion and ectopic delivery revealed previously uncharacterized long-range regulatory dependencies at the native locus. Exchanging the H19 enhancer cluster with the Sox2 locus control region (LCR) showed that the H19 enhancers relied on their native surroundings while the Sox2 LCR functioned autonomously. Analysis of regulatory DNA actuation across cell types revealed that these enhancer clusters typify broader classes of context sensitivity genome wide. These results show that unexpected dependencies influence even well-studied loci, and our approach permits large-scale manipulation of complete loci to investigate the relationship between regulatory architecture and function. Genomic context critically modulates regulatory function but is difficult to manipulate systematically. The murine insulin-like growth factor 2 (Igf2)/H19 locus is a paradigmatic model of enhancer selectivity, whereby CTCF occupancy at an imprinting control region directs downstream enhancers to activate either H19 or Igf2. We used synthetic regulatory genomics to repeatedly replace the native locus with 157-kb payloads, and we systematically dissected its architecture. Enhancer deletion and ectopic delivery revealed previously uncharacterized long-range regulatory dependencies at the native locus. Exchanging the H19 enhancer cluster with the Sox2 locus control region (LCR) showed that the H19 enhancers relied on their native surroundings while the Sox2 LCR functioned autonomously. Analysis of regulatory DNA actuation across cell types revealed that these enhancer clusters typify broader classes of context sensitivity genome wide. These results show that unexpected dependencies influence even well-studied loci, and our approach permits large-scale manipulation of complete loci to investigate the relationship between regulatory architecture and function.Genomic context critically modulates regulatory function but is difficult to manipulate systematically. The murine insulin-like growth factor 2 (Igf2)/H19 locus is a paradigmatic model of enhancer selectivity, whereby CTCF occupancy at an imprinting control region directs downstream enhancers to activate either H19 or Igf2. We used synthetic regulatory genomics to repeatedly replace the native locus with 157-kb payloads, and we systematically dissected its architecture. Enhancer deletion and ectopic delivery revealed previously uncharacterized long-range regulatory dependencies at the native locus. Exchanging the H19 enhancer cluster with the Sox2 locus control region (LCR) showed that the H19 enhancers relied on their native surroundings while the Sox2 LCR functioned autonomously. Analysis of regulatory DNA actuation across cell types revealed that these enhancer clusters typify broader classes of context sensitivity genome wide. These results show that unexpected dependencies influence even well-studied loci, and our approach permits large-scale manipulation of complete loci to investigate the relationship between regulatory architecture and function. Genomic context critically modulates regulatory function but is difficult to manipulate systematically. The murine Igf2 / H19 locus is a paradigmatic model of enhancer selectivity, whereby CTCF occupancy at an imprinting control region directs downstream enhancers to activate either H19 or Igf2 . We used synthetic regulatory genomics to repeatedly replace the native locus with 157-kilobase payloads and systematically dissected its architecture. Enhancer deletion and ectopic delivery revealed previously uncharacterized long-range regulatory dependencies at the native locus. Exchanging the H19 enhancer cluster with the Sox2 locus control region (LCR) showed that the H19 enhancers relied on their native surroundings while the Sox2 LCR functioned autonomously. Analysis of regulatory DNA actuation across cell types revealed that these enhancer clusters typify broader classes of context sensitivity genome-wide. These results show that unexpected dependencies influence even well-studied loci, and our approach permits large-scale manipulation of complete loci to investigate the relationship between regulatory architecture and function. Genomic context plays a key role in regulatory function, but is difficult to manipulate systematically. Ordoñez et al. use synthetic regulatory genomics to manipulate regulatory architecture on large scale, revealing unexpected context dependencies that influence even the most studied functional elements. Genomic context critically modulates regulatory function but is difficult to manipulate systematically. The murine insulin-like growth factor 2 (Igf2)/H19 locus is a paradigmatic model of enhancer selectivity, whereby CTCF occupancy at an imprinting control region directs downstream enhancers to activate either H19 or Igf2. We used synthetic regulatory genomics to repeatedly replace the native locus with 157-kb payloads, and we systematically dissected its architecture. Enhancer deletion and ectopic delivery revealed previously uncharacterized long-range regulatory dependencies at the native locus. Exchanging the H19 enhancer cluster with the Sox2 locus control region (LCR) showed that the H19 enhancers relied on their native surroundings while the Sox2 LCR functioned autonomously. Analysis of regulatory DNA actuation across cell types revealed that these enhancer clusters typify broader classes of context sensitivity genome wide. These results show that unexpected dependencies influence even well-studied loci, and our approach permits large-scale manipulation of complete loci to investigate the relationship between regulatory architecture and function. [Display omitted] •Composite enhancer elements are subject to specific genomic context effects•The H19 enhancer cluster relies on regulatory elements outside the canonical Igf2/H19 locus•The Sox2 LCR functions autonomously of its surrounding context•Deletion or repositioning regulatory elements increases locus sensitivity to genomic context Genomic context plays a key role in regulatory function but is difficult to manipulate systematically. Ordoñez et al. use synthetic regulatory genomics to manipulate regulatory architecture on a large scale, revealing unexpected context dependencies that influence even the most studied functional elements. |
Author | Ordoñez, Raquel Huang, Emily Maurano, Matthew T. Ribeiro-dos-Santos, André M. Hogan, Megan S. Zhang, Weimin Ellis, Gwen Brosh, Ran Zhu, Yinan Ashe, Hannah J. Boeke, Jef D. |
AuthorAffiliation | 9 These authors contributed equally 10 Lead contact 8 Present address: Neochromosome Inc., Long Island City, NY 11101, USA 7 Present address: Highmark Health, Pittsburgh, PA 15222, USA 1 Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA 2 Department of Biochemistry Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA 6 Present address: School of Medicine, University of Maryland, Baltimore, MD 21201, USA 4 Department of Pathology, NYU School of Medicine, New York, NY 10016, USA 3 Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA 5 Present address: Department of Biology, University of Vermont, Burlington, VT 05405, USA |
AuthorAffiliation_xml | – name: 9 These authors contributed equally – name: 6 Present address: School of Medicine, University of Maryland, Baltimore, MD 21201, USA – name: 1 Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA – name: 4 Department of Pathology, NYU School of Medicine, New York, NY 10016, USA – name: 8 Present address: Neochromosome Inc., Long Island City, NY 11101, USA – name: 3 Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA – name: 10 Lead contact – name: 7 Present address: Highmark Health, Pittsburgh, PA 15222, USA – name: 2 Department of Biochemistry Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA – name: 5 Present address: Department of Biology, University of Vermont, Burlington, VT 05405, USA |
Author_xml | – sequence: 1 givenname: Raquel surname: Ordoñez fullname: Ordoñez, Raquel organization: Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA – sequence: 2 givenname: Weimin surname: Zhang fullname: Zhang, Weimin organization: Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA – sequence: 3 givenname: Gwen surname: Ellis fullname: Ellis, Gwen organization: Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA – sequence: 4 givenname: Yinan surname: Zhu fullname: Zhu, Yinan organization: Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA – sequence: 5 givenname: Hannah J. surname: Ashe fullname: Ashe, Hannah J. organization: Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA – sequence: 6 givenname: André M. surname: Ribeiro-dos-Santos fullname: Ribeiro-dos-Santos, André M. organization: Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA – sequence: 7 givenname: Ran surname: Brosh fullname: Brosh, Ran organization: Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA – sequence: 8 givenname: Emily surname: Huang fullname: Huang, Emily organization: Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA – sequence: 9 givenname: Megan S. surname: Hogan fullname: Hogan, Megan S. organization: Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA – sequence: 10 givenname: Jef D. surname: Boeke fullname: Boeke, Jef D. organization: Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA – sequence: 11 givenname: Matthew T. orcidid: 0000-0002-2218-8628 surname: Maurano fullname: Maurano, Matthew T. email: maurano@nyu.edu organization: Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38759624$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU-LFDEQxYOsuH_0G4j00cuMVZ100u1BWVZdhQUveg7pdPWYoTsZk_Ti-unNMOOiHlQoSCC_93ipd85OfPDE2FOENQLKF9v1HCZL07qGWqyhDPIH7AyhUyuBUpwc77WSzSk7T2kLgKJpu0fslLeq6WQtztiba_JhdraywWf6lqtEPrnsvlOqIm2WyeQQ7yqaaCafU5VDtSFPuSgGl-Kyyy74x-zhaKZET47nBfv87u2nq_erm4_XH64ub1ZWNJhXpHjfjy3JuuecOiEGZUBZ5Ka1gGisqI2SigMMfFCDauVoe2OkhbEfDUh-wV4ffHdLP9NgS6JoJr2LbjbxTgfj9O8v3n3Rm3CrERFKhLY4PD86xPB1oZT17FJZ4mQ8hSVpjg1voZHNf6AFkwpkt0ef_ZrrPtDPNRdAHAAbQ0qRxnsEQe_b1Ft9aFPv29RQBnmRvfxDZl02-42X37npX-JXBzGVRm4dRZ2sI29pcJFs1kNwfzf4Aeb8v0U |
CitedBy_id | crossref_primary_10_1038_s41588_024_01981_7 crossref_primary_10_1126_science_adv1576 |
Cites_doi | 10.1101/gad.349160.121 10.1038/s41586-022-04877-w 10.1038/s41576-021-00398-w 10.1126/science.1246426 10.1016/j.celrep.2020.02.073 10.1016/S1097-2765(00)80433-5 10.1016/j.cell.2022.09.006 10.1016/j.cell.2023.11.030 10.1186/1471-2105-12-323 10.1038/s41594-022-00821-8 10.1038/35013100 10.1016/j.devcel.2014.01.017 10.1016/j.molcel.2023.02.027 10.1093/nar/gkaa872 10.1038/nprot.2013.143 10.1016/j.cell.2011.05.017 10.1038/s41467-021-27159-x 10.1186/s13059-023-02876-2 10.1038/nprot.2007.13 10.1038/nbt.4285 10.1016/j.molcel.2008.10.016 10.1016/j.molcel.2015.09.023 10.1101/gr.163519.113 10.1038/s41467-020-20714-y 10.1038/s41467-022-31241-3 10.1073/pnas.2023952118 10.1038/s41586-024-07128-2 10.1038/s41594-022-00787-7 10.1126/science.1160631 10.1038/nature09158 10.1101/gr.130502 10.1093/nar/gkad491 10.1101/gr.276449.121 10.1101/gad.552109 10.1038/s41467-021-23139-3 10.1038/s41588-021-00782-6 10.1128/MCB.20.24.9103-9112.2000 10.1016/j.molcel.2022.04.009 10.1016/j.cell.2014.11.021 10.1186/s13059-019-1896-8 10.1038/s42003-021-02939-9 10.1101/gr.210930.116 10.1016/S0168-9525(02)00004-5 10.1038/s41588-022-01210-z 10.1038/nature11232 10.1186/1471-2164-14-812 10.1242/dev.124.18.3621 10.1038/nature25461 10.1016/0092-8674(81)90413-X 10.1101/gad.248526.114 10.1093/bioinformatics/btp324 10.1186/s13072-019-0317-2 10.1101/gr.276025.121 10.1016/j.cell.2013.03.035 10.1038/ng887 10.1093/bioinformatics/bts277 10.1038/79896 10.1182/blood-2002-04-1104 10.1093/bioinformatics/bts635 10.1038/s41586-022-04570-y 10.1242/dev.186536 10.1242/dev.171736 10.1093/gigascience/giab007 10.1038/nature10413 10.1038/s41588-019-0466-z 10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2 10.1038/35013106 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Inc. Copyright © 2024 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2024 Elsevier Inc. – notice: Copyright © 2024 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.molcel.2024.04.013 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4164 |
EndPage | 1854.e7 |
ExternalDocumentID | PMC11104518 38759624 10_1016_j_molcel_2024_04_013 S1097276524003289 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R35 GM119703 – fundername: NHGRI NIH HHS grantid: RM1 HG009491 |
GroupedDBID | --- --K -DZ -~X 0R~ 0SF 123 1~5 4.4 457 4G. 5RE 62- 7-5 AACTN AAEDT AAEDW AAFTH AAHBH AAKRW AAKUH AALRI AAMRU AAVLU AAXUO ABJNI ABMAC ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE AEFWE AENEX AFFNX AFTJW AGKMS AITUG AKAPO AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS F5P FCP FDB FEDTE FIRID HVGLF IH2 IHE IXB J1W JIG KQ8 L7B M3Z M41 N9A O-L O9- OK1 P2P RCE RIG ROL RPZ SDG SES TR2 .55 .GJ 29M 2WC 3O- 53G 5VS AAIKJ AAQFI AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AEXQZ AFPUW AGCQF AGHFR AGQPQ AIGII AKBMS AKYEP APXCP CITATION EJD FGOYB HH5 HZ~ OZT R2- SSZ UHS X7M ZGI ZXP CGR CUY CVF ECM EIF NPM 7X8 EFKBS 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c451t-e73bbf8e62b33e944d7a07c13a8c011ac42a767300d3d7d786fcbaa6c0fbfa063 |
IEDL.DBID | IXB |
ISSN | 1097-2765 1097-4164 |
IngestDate | Thu Aug 21 18:31:17 EDT 2025 Sun Sep 28 02:54:02 EDT 2025 Sun Sep 28 11:10:14 EDT 2025 Sun May 18 01:30:16 EDT 2025 Tue Jul 01 04:49:46 EDT 2025 Thu Apr 24 23:05:16 EDT 2025 Sat Oct 12 15:52:59 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | genome writing enhancer selectivity gene regulation genomic regulatory architecture genetic engineering synthetic regulatory genomics |
Language | English |
License | Copyright © 2024 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-e73bbf8e62b33e944d7a07c13a8c011ac42a767300d3d7d786fcbaa6c0fbfa063 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 AUTHOR CONTRIBUTIONS R.O., M.S.H., and M.T.M. designed experiments. R.O., G.E., and R.B. performed experiments. W.Z. and Y.Z. assembled DNA payloads. G.E., H.J.A., and E.H. performed capture and sequencing. R.O. and A.M.R.-d.-S. performed computational analyses. R.O. and M.T.M. wrote the manuscript. All authors edited the manuscript. M.T.M. and J.D.B. supervised work. |
ORCID | 0000-0002-2218-8628 |
PMID | 38759624 |
PQID | 3056670698 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11104518 proquest_miscellaneous_3153805658 proquest_miscellaneous_3056670698 pubmed_primary_38759624 crossref_primary_10_1016_j_molcel_2024_04_013 crossref_citationtrail_10_1016_j_molcel_2024_04_013 elsevier_sciencedirect_doi_10_1016_j_molcel_2024_04_013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-16 |
PublicationDateYYYYMMDD | 2024-05-16 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular cell |
PublicationTitleAlternate | Mol Cell |
PublicationYear | 2024 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Georgolopoulos, Psatha, Iwata, Nishida, Som, Yiangou, Stamatoyannopoulos, Vierstra (bib71) 2021; 12 Osterwalder, Barozzi, Tissières, Fukuda-Yuzawa, Mannion, Afzal, Lee, Zhu, Plajzer-Frick, Pickle (bib56) 2018; 554 Bell, Felsenfeld (bib18) 2000; 405 Li, Peterson, Fang, Stamatoyannopoulos (bib14) 2002; 100 Richer, Tian, Schoenfelder, Hurst, Murrell, Pisignano (bib44) 2023; 24 Schübeler, Lorincz, Cimbora, Telling, Feng, Bouhassira, Groudine (bib27) 2000; 20 Maricque, Chaudhari, Cohen (bib11) 2018; 37 Thurman, Rynes, Humbert, Vierstra, Maurano, Haugen, Sheffield, Stergachis, Wang, Vernot (bib1) 2012; 489 Neph, Kuehn, Reynolds, Haugen, Thurman, Johnson, Rynes, Maurano, Vierstra, Thomas (bib63) 2012; 28 Hong, Hendrix, Levine (bib54) 2008; 321 Despang, Schöpflin, Franke, Ali, Jerković, Paliou, Chan, Timmermann, Wittler, Vingron (bib41) 2019; 51 Bolt, Duboule (bib49) 2020; 147 Lercher, Urrutia, Hurst (bib47) 2002; 31 Banerji, Rusconi, Schaffner (bib39) 1981; 27 Ye, Ma (bib43) 2020; 48 Cohen, Mitra, Hughes, Church (bib45) 2000; 26 Gietz, Schiestl (bib69) 2007; 2 Thomson, Liu, Zou, Smith, Meissner, Ramanathan (bib24) 2011; 145 Muro, ibn-Salem, Andrade-Navarro (bib48) 2019; 12 Kane, Williamson, Flyamer, Kumar, Hill, Lettice, Bickmore (bib51) 2022; 29 Ribeiro-Dos-Santos, Hogan, Luther, Brosh, Maurano (bib13) 2022; 32 Zhao, Coelho, Lauer, Majewski, Laurent, Brosh, Boeke (bib60) 2023; 51 Eckersley-Maslin, Thybert, Bergmann, Marioni, Flicek, Spector (bib23) 2014; 28 Bender, Bulger, Close, Groudine (bib50) 2000; 5 Bergman, Jones, Liu, Ray, Jagoda, Siraj, Kang, Nasser, Kane, Rios (bib2) 2022; 607 Rubin, Green (bib46) 2013; 14 (bib64) 2018 Camellato, Brosh, Ashe, Maurano, Boeke (bib30) 2024; 628 Hörnblad, Bastide, Langenfeld, Langa, Spitz (bib57) 2021; 12 de Wit, Vos, Holwerda, Valdes-Quezada, Verstegen, Teunissen, Splinter, Wijchers, Krijger, de Laat (bib34) 2015; 60 Rao, Huntley, Durand, Stamenova, Bochkov, Robinson, Sanborn, Machol, Omer, Lander, Aiden (bib42) 2014; 159 Peterson, Stamatoyannopoulos (bib4) 1993; 13 Ringel, Szabo, Chiariello, Chudzik, Schöpflin, Rothe, Mattei, Zehnder, Harnett, Laupert (bib7) 2022; 185 Butz, Schmolka, Karemaker, Villaseñor, Schwarz, Domcke, Uijttewaal, Jude, Lienert, Krebs (bib28) 2022; 54 Bolt, Lopez-Delisle, Hintermann, Mascrez, Rauseo, Andrey, Duboule (bib8) 2022; 13 Swanzey, McNamara, Apostolou, Tahiliani, Stadtfeld (bib26) 2020; 30 Dobin, Davis, Schlesinger, Drenkow, Zaleski, Jha, Batut, Chaisson, Gingeras (bib66) 2013; 29 Pachano, Haro, Rada-Iglesias (bib35) 2022; 149 Llères, Moindrot, Pathak, Piras, Matelot, Pignard, Marchand, Poncelet, Perrin, Tellier (bib31) 2019; 20 Wild, Hradecna, Szybalski (bib68) 2002; 12 Keane, Goodstadt, Danecek, White, Wong, Yalcin, Heger, Agam, Slater, Goodson (bib22) 2011; 477 Vierstra, Rynes, Sandstrom, Zhang, Canfield, Hansen, Stehling-Sun, Sabo, Byron, Humbert (bib36) 2014; 346 Moorthy, Davidson, Shchuka, Singh, Malek-Gilani, Langroudi, Martchenko, So, Macpherson, Mitchell (bib15) 2017; 27 Arney (bib17) 2003; 19 Zhou, Katsman, Dhaliwal, Davidson, Macpherson, Sakthidevi, Collura, Mitchell (bib32) 2014; 28 Li, Rivera, Ishii, Jin, Selvaraj, Lee, Dixon, Ren (bib33) 2014; 9 Karr, Ferrie, Tjian, Darzacq (bib53) 2022; 36 John, Sabo, Canfield, Lee, Vong, Weaver, Wang, Vierstra, Reynolds, Thurman, Stamatoyannopoulos (bib70) 2013; Chapter 27 Hong, Cohen (bib12) 2022; 32 Brosh, Laurent, Ordoñez, Huang, Hogan, Hitchcock, Mitchell, Pinglay, Cadley, Luther (bib21) 2021; 118 Ran, Hsu, Wright, Agarwala, Scott, Zhang (bib67) 2013; 8 Hark, Schoenherr, Katz, Ingram, Levorse, Tilghman (bib19) 2000; 405 Frankel, Davis, Vargas, Wang, Payre, Stern (bib55) 2010; 466 Li, Dewey (bib65) 2011; 12 Brachmann, Davies, Cost, Caputo, Li, Hieter, Boeke (bib58) 1998; 14 Brosh, Coelho, Ribeiro-Dos-Santos, Ellis, Hogan, Ashe, Somogyi, Ordoñez, Luther, Huang (bib10) 2023; 83 Blobel, Higgs, Mitchell, Notani, Young (bib16) 2021; 22 Ainscough, Koide, Tada, Barton, Surani (bib20) 1997; 124 Symmons, Uslu, Tsujimura, Ruf, Nassari, Schwarzer, Ettwiller, Spitz (bib6) 2014; 24 Bonfield, Marshall, Danecek, Li, Ohan, Whitwham, Keane, Davies (bib62) 2021; 10 Matsuzaki, Miyajima, Fukamizu, Tanimoto (bib40) 2021; 4 Zuin, Roth, Zhan, Cramard, Redolfi, Piskadlo, Mach, Kryzhanovska, Tihanyi, Kohler (bib5) 2022; 604 Sandhu, Shi, Sjölinder, Zhao, Göndör, Liu, Tiwari, Guibert, Emilsson, Imreh, Ohlsson (bib29) 2009; 23 Shen, Liu, Hsu, Fujiwara, Kim, Mao, Yuan, Orkin (bib25) 2008; 32 Avsec, Weilert, Shrikumar, Krueger, Alexandari, Dalal, Fropf, McAnany, Gagneur, Kundaje, Zeitlinger (bib59) 2021; 53 Martinez-Ara, Comoglio, van Arensbergen, van Steensel (bib3) 2022; 82 Whyte, Orlando, Hnisz, Abraham, Lin, Kagey, Rahl, Lee, Young (bib38) 2013; 153 Halow, Byron, Hogan, Ordoñez, Groudine, Bender, Stamatoyannopoulos, Maurano (bib37) 2021; 12 Blayney, Francis, Rampasekova, Camellato, Mitchell, Stolper, Cornell, Babbs, Boeke, Higgs, Kassouf (bib9) 2023; 186 Rinzema, Sofiadis, Tjalsma, Verstegen, Oz, Valdes-Quezada, Felder, Filipovska, van der Elst, de Andrade Dos Ramos (bib52) 2022; 29 Li, Durbin (bib61) 2009; 25 Bolt (10.1016/j.molcel.2024.04.013_bib8) 2022; 13 Blobel (10.1016/j.molcel.2024.04.013_bib16) 2021; 22 Cohen (10.1016/j.molcel.2024.04.013_bib45) 2000; 26 Ran (10.1016/j.molcel.2024.04.013_bib67) 2013; 8 Swanzey (10.1016/j.molcel.2024.04.013_bib26) 2020; 30 Halow (10.1016/j.molcel.2024.04.013_bib37) 2021; 12 Rao (10.1016/j.molcel.2024.04.013_bib42) 2014; 159 Thomson (10.1016/j.molcel.2024.04.013_bib24) 2011; 145 Neph (10.1016/j.molcel.2024.04.013_bib63) 2012; 28 Zhou (10.1016/j.molcel.2024.04.013_bib32) 2014; 28 Richer (10.1016/j.molcel.2024.04.013_bib44) 2023; 24 Bolt (10.1016/j.molcel.2024.04.013_bib49) 2020; 147 Peterson (10.1016/j.molcel.2024.04.013_bib4) 1993; 13 Karr (10.1016/j.molcel.2024.04.013_bib53) 2022; 36 Bonfield (10.1016/j.molcel.2024.04.013_bib62) 2021; 10 Ribeiro-Dos-Santos (10.1016/j.molcel.2024.04.013_bib13) 2022; 32 Muro (10.1016/j.molcel.2024.04.013_bib48) 2019; 12 Hark (10.1016/j.molcel.2024.04.013_bib19) 2000; 405 Matsuzaki (10.1016/j.molcel.2024.04.013_bib40) 2021; 4 Llères (10.1016/j.molcel.2024.04.013_bib31) 2019; 20 Keane (10.1016/j.molcel.2024.04.013_bib22) 2011; 477 Banerji (10.1016/j.molcel.2024.04.013_bib39) 1981; 27 Thurman (10.1016/j.molcel.2024.04.013_bib1) 2012; 489 Brosh (10.1016/j.molcel.2024.04.013_bib10) 2023; 83 Maricque (10.1016/j.molcel.2024.04.013_bib11) 2018; 37 Frankel (10.1016/j.molcel.2024.04.013_bib55) 2010; 466 Ye (10.1016/j.molcel.2024.04.013_bib43) 2020; 48 Bender (10.1016/j.molcel.2024.04.013_bib50) 2000; 5 Eckersley-Maslin (10.1016/j.molcel.2024.04.013_bib23) 2014; 28 Bell (10.1016/j.molcel.2024.04.013_bib18) 2000; 405 Li (10.1016/j.molcel.2024.04.013_bib14) 2002; 100 Hong (10.1016/j.molcel.2024.04.013_bib12) 2022; 32 Hörnblad (10.1016/j.molcel.2024.04.013_bib57) 2021; 12 Martinez-Ara (10.1016/j.molcel.2024.04.013_bib3) 2022; 82 Vierstra (10.1016/j.molcel.2024.04.013_bib36) 2014; 346 Rinzema (10.1016/j.molcel.2024.04.013_bib52) 2022; 29 Li (10.1016/j.molcel.2024.04.013_bib65) 2011; 12 (10.1016/j.molcel.2024.04.013_bib64) 2018 Bergman (10.1016/j.molcel.2024.04.013_bib2) 2022; 607 Whyte (10.1016/j.molcel.2024.04.013_bib38) 2013; 153 Kane (10.1016/j.molcel.2024.04.013_bib51) 2022; 29 Hong (10.1016/j.molcel.2024.04.013_bib54) 2008; 321 John (10.1016/j.molcel.2024.04.013_bib70) 2013; Chapter 27 Osterwalder (10.1016/j.molcel.2024.04.013_bib56) 2018; 554 Zhao (10.1016/j.molcel.2024.04.013_bib60) 2023; 51 Gietz (10.1016/j.molcel.2024.04.013_bib69) 2007; 2 Arney (10.1016/j.molcel.2024.04.013_bib17) 2003; 19 Butz (10.1016/j.molcel.2024.04.013_bib28) 2022; 54 Symmons (10.1016/j.molcel.2024.04.013_bib6) 2014; 24 Ainscough (10.1016/j.molcel.2024.04.013_bib20) 1997; 124 Dobin (10.1016/j.molcel.2024.04.013_bib66) 2013; 29 Avsec (10.1016/j.molcel.2024.04.013_bib59) 2021; 53 Georgolopoulos (10.1016/j.molcel.2024.04.013_bib71) 2021; 12 Shen (10.1016/j.molcel.2024.04.013_bib25) 2008; 32 Sandhu (10.1016/j.molcel.2024.04.013_bib29) 2009; 23 Despang (10.1016/j.molcel.2024.04.013_bib41) 2019; 51 Blayney (10.1016/j.molcel.2024.04.013_bib9) 2023; 186 Brachmann (10.1016/j.molcel.2024.04.013_bib58) 1998; 14 Zuin (10.1016/j.molcel.2024.04.013_bib5) 2022; 604 Wild (10.1016/j.molcel.2024.04.013_bib68) 2002; 12 Li (10.1016/j.molcel.2024.04.013_bib33) 2014; 9 Ringel (10.1016/j.molcel.2024.04.013_bib7) 2022; 185 Lercher (10.1016/j.molcel.2024.04.013_bib47) 2002; 31 de Wit (10.1016/j.molcel.2024.04.013_bib34) 2015; 60 Schübeler (10.1016/j.molcel.2024.04.013_bib27) 2000; 20 Camellato (10.1016/j.molcel.2024.04.013_bib30) 2024; 628 Moorthy (10.1016/j.molcel.2024.04.013_bib15) 2017; 27 Brosh (10.1016/j.molcel.2024.04.013_bib21) 2021; 118 Rubin (10.1016/j.molcel.2024.04.013_bib46) 2013; 14 Li (10.1016/j.molcel.2024.04.013_bib61) 2009; 25 Pachano (10.1016/j.molcel.2024.04.013_bib35) 2022; 149 37781588 - bioRxiv. 2024 Mar 12:2023.07.02.547201. doi: 10.1101/2023.07.02.547201. |
References_xml | – volume: 36 start-page: 7 year: 2022 end-page: 16 ident: bib53 article-title: The transcription factor activity gradient (TAG) model: contemplating a contact-independent mechanism for enhancer-promoter communication publication-title: Genes Dev. – volume: 60 start-page: 676 year: 2015 end-page: 684 ident: bib34 article-title: CTCF Binding Polarity Determines Chromatin Looping publication-title: Mol. Cell – volume: 48 year: 2020 ident: bib43 article-title: ASHIC: hierarchical Bayesian modeling of diploid chromatin contacts and structures publication-title: Nucleic Acids Res. – volume: 29 start-page: 15 year: 2013 end-page: 21 ident: bib66 article-title: STAR: ultrafast universal RNA-seq aligner publication-title: Bioinformatics – volume: Chapter 27 year: 2013 ident: bib70 article-title: Genome-scale mapping of DNase I hypersensitivity publication-title: Curr Protoc Mol Biol. – volume: 14 start-page: 812 year: 2013 ident: bib46 article-title: Expression-based segmentation of the Drosophila genome publication-title: BMC Genomics – volume: 153 start-page: 307 year: 2013 end-page: 319 ident: bib38 article-title: Master transcription factors and mediator establish super-enhancers at key cell identity genes publication-title: Cell – volume: 466 start-page: 490 year: 2010 end-page: 493 ident: bib55 article-title: Phenotypic robustness conferred by apparently redundant transcriptional enhancers publication-title: Nature – volume: 100 start-page: 3077 year: 2002 end-page: 3086 ident: bib14 article-title: Locus control regions publication-title: Blood – volume: 24 start-page: 40 year: 2023 ident: bib44 article-title: Widespread allele-specific topological domains in the human genome are not confined to imprinted gene clusters publication-title: Genome Biol. – volume: 2 start-page: 31 year: 2007 end-page: 34 ident: bib69 article-title: High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method publication-title: Nat. Protoc. – volume: 13 start-page: 3488 year: 2022 ident: bib8 article-title: Context-dependent enhancer function revealed by targeted inter-TAD relocation publication-title: Nat. Commun. – volume: 145 start-page: 875 year: 2011 end-page: 889 ident: bib24 article-title: Pluripotency factors in embryonic stem cells regulate differentiation into germ layers publication-title: Cell – volume: 149 year: 2022 ident: bib35 article-title: Enhancer-gene specificity in development and disease publication-title: Development – volume: 26 start-page: 183 year: 2000 end-page: 186 ident: bib45 article-title: A computational analysis of whole-genome expression data reveals chromosomal domains of gene expression publication-title: Nat. Genet. – volume: 346 start-page: 1007 year: 2014 end-page: 1012 ident: bib36 article-title: Mouse regulatory DNA landscapes reveal global principles of cis-regulatory evolution publication-title: Science – volume: 83 start-page: 1140 year: 2023 end-page: 1152.e7 ident: bib10 article-title: Synthetic regulatory genomics uncovers enhancer context dependence at the Sox2 locus publication-title: Mol. Cell – volume: 30 start-page: 3597 year: 2020 end-page: 3604.e3 ident: bib26 article-title: A Susceptibility Locus on Chromosome 13 Profoundly Impacts the Stability of Genomic Imprinting in Mouse Pluripotent Stem Cells publication-title: Cell Rep. – volume: 28 start-page: 2699 year: 2014 end-page: 2711 ident: bib32 article-title: A Sox2 distal enhancer cluster regulates embryonic stem cell differentiation potential publication-title: Genes Dev. – volume: 32 start-page: 425 year: 2022 end-page: 436 ident: bib13 article-title: Genomic context sensitivity of insulator function publication-title: Genome Res. – volume: 19 start-page: 17 year: 2003 end-page: 23 ident: bib17 article-title: H19 and Igf2--enhancing the confusion? publication-title: Trends Genet. – volume: 12 start-page: 2850 year: 2021 ident: bib37 article-title: Tissue context determines the penetrance of regulatory DNA variation publication-title: Nat. Commun. – volume: 12 start-page: 439 year: 2021 ident: bib57 article-title: Dissection of the Fgf8 regulatory landscape by in vivo CRISPR-editing reveals extensive intra- and inter-enhancer redundancy publication-title: Nat. Commun. – volume: 12 start-page: 323 year: 2011 ident: bib65 article-title: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome publication-title: BMC Bioinformatics – volume: 28 start-page: 1919 year: 2012 end-page: 1920 ident: bib63 article-title: BEDOPS: high-performance genomic feature operations publication-title: Bioinformatics – volume: 20 start-page: 9103 year: 2000 end-page: 9112 ident: bib27 article-title: Genomic targeting of methylated DNA: influence of methylation on transcription, replication, chromatin structure, and histone acetylation publication-title: Mol. Cell. Biol. – volume: 186 start-page: 5826 year: 2023 end-page: 5839.e18 ident: bib9 article-title: Super-enhancers include classical enhancers and facilitators to fully activate gene expression publication-title: Cell – volume: 29 start-page: 563 year: 2022 end-page: 574 ident: bib52 article-title: Building regulatory landscapes reveals that an enhancer can recruit cohesin to create contact domains, engage CTCF sites and activate distant genes publication-title: Nat. Struct. Mol. Biol. – volume: 82 start-page: 2519 year: 2022 end-page: 2531.e6 ident: bib3 article-title: Systematic analysis of intrinsic enhancer-promoter compatibility in the mouse genome publication-title: Mol. Cell – volume: 53 start-page: 354 year: 2021 end-page: 366 ident: bib59 article-title: Base-resolution models of transcription-factor binding reveal soft motif syntax publication-title: Nat. Genet. – volume: 185 start-page: 3689 year: 2022 end-page: 3704.e21 ident: bib7 article-title: Repression and 3D-restructuring resolves regulatory conflicts in evolutionarily rearranged genomes publication-title: Cell – volume: 29 start-page: 891 year: 2022 end-page: 897 ident: bib51 article-title: Cohesin is required for long-range enhancer action at the Shh locus publication-title: Nat. Struct. Mol. Biol. – volume: 159 start-page: 1665 year: 2014 end-page: 1680 ident: bib42 article-title: A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping publication-title: Cell – volume: 32 start-page: 85 year: 2022 end-page: 96 ident: bib12 article-title: Genomic environments scale the activities of diverse core promoters publication-title: Genome Res. – volume: 13 start-page: 4836 year: 1993 end-page: 4843 ident: bib4 article-title: Role of gene order in developmental control of human gamma- and beta-globin gene expression publication-title: Mol. Cell. Biol. – volume: 12 start-page: 72 year: 2019 ident: bib48 article-title: The distributions of protein coding genes within chromatin domains in relation to human disease publication-title: Epigenetics Chromatin – volume: 51 start-page: 1263 year: 2019 end-page: 1271 ident: bib41 article-title: Functional dissection of the Sox9-Kcnj2 locus identifies nonessential and instructive roles of TAD architecture publication-title: Nat. Genet. – volume: 31 start-page: 180 year: 2002 end-page: 183 ident: bib47 article-title: Clustering of housekeeping genes provides a unified model of gene order in the human genome publication-title: Nat. Genet. – volume: 405 start-page: 482 year: 2000 end-page: 485 ident: bib18 article-title: Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene publication-title: Nature – volume: 4 start-page: 1410 year: 2021 ident: bib40 article-title: Orientation of mouse H19 ICR affects imprinted H19 gene expression through promoter methylation-dependent and -independent mechanisms publication-title: Commun. Biol. – volume: 405 start-page: 486 year: 2000 end-page: 489 ident: bib19 article-title: CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus publication-title: Nature – volume: 14 start-page: 115 year: 1998 end-page: 132 ident: bib58 article-title: Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications publication-title: Yeast – volume: 25 start-page: 1754 year: 2009 end-page: 1760 ident: bib61 article-title: Fast and accurate short read alignment with Burrows-Wheeler transform publication-title: Bioinformatics – volume: 8 start-page: 2281 year: 2013 end-page: 2308 ident: bib67 article-title: Genome engineering using the CRISPR-Cas9 system publication-title: Nat. Protoc. – volume: 28 start-page: 351 year: 2014 end-page: 365 ident: bib23 article-title: Random monoallelic gene expression increases upon embryonic stem cell differentiation publication-title: Dev. Cell – volume: 607 start-page: 176 year: 2022 end-page: 184 ident: bib2 article-title: Compatibility rules of human enhancer and promoter sequences publication-title: Nature – volume: 37 start-page: 90 year: 2018 end-page: 95 ident: bib11 article-title: A massively parallel reporter assay dissects the influence of chromatin structure on cis-regulatory activity publication-title: Nat. Biotechnol. – volume: 54 start-page: 1702 year: 2022 end-page: 1710 ident: bib28 article-title: DNA sequence and chromatin modifiers cooperate to confer epigenetic bistability at imprinting control regions publication-title: Nat. Genet. – volume: 628 start-page: 373 year: 2024 end-page: 380 ident: bib30 article-title: Synthetic reversed sequences reveal default genomic states publication-title: Nature – volume: 147 year: 2020 ident: bib49 article-title: The regulatory landscapes of developmental genes publication-title: Development – year: 2018 ident: bib64 article-title: R: A Language and Environment for Statistical Computing – volume: 23 start-page: 2598 year: 2009 end-page: 2603 ident: bib29 article-title: Nonallelic transvection of multiple imprinted loci is organized by the H19 imprinting control region during germline development publication-title: Genes Dev. – volume: 27 start-page: 246 year: 2017 end-page: 258 ident: bib15 article-title: Enhancers and super-enhancers have an equivalent regulatory role in embryonic stem cells through regulation of single or multiple genes publication-title: Genome Res. – volume: 20 start-page: 272 year: 2019 ident: bib31 article-title: CTCF modulates allele-specific sub-TAD organization and imprinted gene activity at the mouse Dlk1-Dio3 and Igf2-H19 domains publication-title: Genome Biol. – volume: 554 start-page: 239 year: 2018 end-page: 243 ident: bib56 article-title: Enhancer redundancy provides phenotypic robustness in mammalian development publication-title: Nature – volume: 51 year: 2023 ident: bib60 article-title: CREEPY: CRISPR-mediated editing of synthetic episomes in yeast publication-title: Nucleic Acids Res. – volume: 477 start-page: 289 year: 2011 end-page: 294 ident: bib22 article-title: Mouse genomic variation and its effect on phenotypes and gene regulation publication-title: Nature – volume: 604 start-page: 571 year: 2022 end-page: 577 ident: bib5 article-title: Nonlinear control of transcription through enhancer-promoter interactions publication-title: Nature – volume: 32 start-page: 491 year: 2008 end-page: 502 ident: bib25 article-title: EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency publication-title: Mol. Cell – volume: 321 start-page: 1314 year: 2008 ident: bib54 article-title: Shadow enhancers as a source of evolutionary novelty publication-title: Science – volume: 124 start-page: 3621 year: 1997 end-page: 3632 ident: bib20 article-title: Imprinting of Igf2 and H19 from a 130 kb YAC transgene publication-title: Development – volume: 22 start-page: 749 year: 2021 end-page: 755 ident: bib16 article-title: Testing the super-enhancer concept publication-title: Nat. Rev. Genet. – volume: 24 start-page: 390 year: 2014 end-page: 400 ident: bib6 article-title: Functional and topological characteristics of mammalian regulatory domains publication-title: Genome Res. – volume: 12 start-page: 1434 year: 2002 end-page: 1444 ident: bib68 article-title: Conditionally amplifiable BACs: switching from single-copy to high-copy vectors and genomic clones publication-title: Genome Res. – volume: 489 start-page: 75 year: 2012 end-page: 82 ident: bib1 article-title: The accessible chromatin landscape of the human genome publication-title: Nature – volume: 10 year: 2021 ident: bib62 article-title: HTSlib: C library for reading/writing high-throughput sequencing data publication-title: GigaScience – volume: 12 start-page: 6790 year: 2021 ident: bib71 article-title: Discrete regulatory modules instruct hematopoietic lineage commitment and differentiation publication-title: Nat. Commun. – volume: 118 year: 2021 ident: bib21 article-title: A versatile platform for locus-scale genome rewriting and verification publication-title: Proc. Natl. Acad. Sci. USA – volume: 5 start-page: 387 year: 2000 end-page: 393 ident: bib50 article-title: Beta-globin gene switching and DNase I sensitivity of the endogenous beta-globin locus in mice do not require the locus control region publication-title: Mol. Cell – volume: 9 year: 2014 ident: bib33 article-title: CRISPR reveals a distal super-enhancer required for Sox2 expression in mouse embryonic stem cells publication-title: PLoS One – volume: 27 start-page: 299 year: 1981 end-page: 308 ident: bib39 article-title: Expression of a beta-globin gene is enhanced by remote SV40 DNA sequences publication-title: Cell – volume: 36 start-page: 7 year: 2022 ident: 10.1016/j.molcel.2024.04.013_bib53 article-title: The transcription factor activity gradient (TAG) model: contemplating a contact-independent mechanism for enhancer-promoter communication publication-title: Genes Dev. doi: 10.1101/gad.349160.121 – volume: 607 start-page: 176 year: 2022 ident: 10.1016/j.molcel.2024.04.013_bib2 article-title: Compatibility rules of human enhancer and promoter sequences publication-title: Nature doi: 10.1038/s41586-022-04877-w – volume: 22 start-page: 749 year: 2021 ident: 10.1016/j.molcel.2024.04.013_bib16 article-title: Testing the super-enhancer concept publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-021-00398-w – volume: 346 start-page: 1007 year: 2014 ident: 10.1016/j.molcel.2024.04.013_bib36 article-title: Mouse regulatory DNA landscapes reveal global principles of cis-regulatory evolution publication-title: Science doi: 10.1126/science.1246426 – volume: 30 start-page: 3597 year: 2020 ident: 10.1016/j.molcel.2024.04.013_bib26 article-title: A Susceptibility Locus on Chromosome 13 Profoundly Impacts the Stability of Genomic Imprinting in Mouse Pluripotent Stem Cells publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.02.073 – volume: 5 start-page: 387 year: 2000 ident: 10.1016/j.molcel.2024.04.013_bib50 article-title: Beta-globin gene switching and DNase I sensitivity of the endogenous beta-globin locus in mice do not require the locus control region publication-title: Mol. Cell doi: 10.1016/S1097-2765(00)80433-5 – volume: 185 start-page: 3689 year: 2022 ident: 10.1016/j.molcel.2024.04.013_bib7 article-title: Repression and 3D-restructuring resolves regulatory conflicts in evolutionarily rearranged genomes publication-title: Cell doi: 10.1016/j.cell.2022.09.006 – volume: 186 start-page: 5826 year: 2023 ident: 10.1016/j.molcel.2024.04.013_bib9 article-title: Super-enhancers include classical enhancers and facilitators to fully activate gene expression publication-title: Cell doi: 10.1016/j.cell.2023.11.030 – volume: 12 start-page: 323 year: 2011 ident: 10.1016/j.molcel.2024.04.013_bib65 article-title: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-323 – volume: 29 start-page: 891 year: 2022 ident: 10.1016/j.molcel.2024.04.013_bib51 article-title: Cohesin is required for long-range enhancer action at the Shh locus publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-022-00821-8 – volume: 405 start-page: 482 year: 2000 ident: 10.1016/j.molcel.2024.04.013_bib18 article-title: Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene publication-title: Nature doi: 10.1038/35013100 – volume: 28 start-page: 351 year: 2014 ident: 10.1016/j.molcel.2024.04.013_bib23 article-title: Random monoallelic gene expression increases upon embryonic stem cell differentiation publication-title: Dev. Cell doi: 10.1016/j.devcel.2014.01.017 – volume: 83 start-page: 1140 year: 2023 ident: 10.1016/j.molcel.2024.04.013_bib10 article-title: Synthetic regulatory genomics uncovers enhancer context dependence at the Sox2 locus publication-title: Mol. Cell doi: 10.1016/j.molcel.2023.02.027 – volume: 48 year: 2020 ident: 10.1016/j.molcel.2024.04.013_bib43 article-title: ASHIC: hierarchical Bayesian modeling of diploid chromatin contacts and structures publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa872 – volume: 8 start-page: 2281 year: 2013 ident: 10.1016/j.molcel.2024.04.013_bib67 article-title: Genome engineering using the CRISPR-Cas9 system publication-title: Nat. Protoc. doi: 10.1038/nprot.2013.143 – volume: 145 start-page: 875 year: 2011 ident: 10.1016/j.molcel.2024.04.013_bib24 article-title: Pluripotency factors in embryonic stem cells regulate differentiation into germ layers publication-title: Cell doi: 10.1016/j.cell.2011.05.017 – volume: 12 start-page: 6790 year: 2021 ident: 10.1016/j.molcel.2024.04.013_bib71 article-title: Discrete regulatory modules instruct hematopoietic lineage commitment and differentiation publication-title: Nat. Commun. doi: 10.1038/s41467-021-27159-x – volume: 24 start-page: 40 year: 2023 ident: 10.1016/j.molcel.2024.04.013_bib44 article-title: Widespread allele-specific topological domains in the human genome are not confined to imprinted gene clusters publication-title: Genome Biol. doi: 10.1186/s13059-023-02876-2 – volume: 2 start-page: 31 year: 2007 ident: 10.1016/j.molcel.2024.04.013_bib69 article-title: High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method publication-title: Nat. Protoc. doi: 10.1038/nprot.2007.13 – volume: 37 start-page: 90 year: 2018 ident: 10.1016/j.molcel.2024.04.013_bib11 article-title: A massively parallel reporter assay dissects the influence of chromatin structure on cis-regulatory activity publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4285 – volume: 32 start-page: 491 year: 2008 ident: 10.1016/j.molcel.2024.04.013_bib25 article-title: EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency publication-title: Mol. Cell doi: 10.1016/j.molcel.2008.10.016 – volume: 60 start-page: 676 year: 2015 ident: 10.1016/j.molcel.2024.04.013_bib34 article-title: CTCF Binding Polarity Determines Chromatin Looping publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.09.023 – volume: 24 start-page: 390 year: 2014 ident: 10.1016/j.molcel.2024.04.013_bib6 article-title: Functional and topological characteristics of mammalian regulatory domains publication-title: Genome Res. doi: 10.1101/gr.163519.113 – volume: 12 start-page: 439 year: 2021 ident: 10.1016/j.molcel.2024.04.013_bib57 article-title: Dissection of the Fgf8 regulatory landscape by in vivo CRISPR-editing reveals extensive intra- and inter-enhancer redundancy publication-title: Nat. Commun. doi: 10.1038/s41467-020-20714-y – volume: 13 start-page: 3488 year: 2022 ident: 10.1016/j.molcel.2024.04.013_bib8 article-title: Context-dependent enhancer function revealed by targeted inter-TAD relocation publication-title: Nat. Commun. doi: 10.1038/s41467-022-31241-3 – volume: 118 year: 2021 ident: 10.1016/j.molcel.2024.04.013_bib21 article-title: A versatile platform for locus-scale genome rewriting and verification publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2023952118 – volume: 628 start-page: 373 year: 2024 ident: 10.1016/j.molcel.2024.04.013_bib30 article-title: Synthetic reversed sequences reveal default genomic states publication-title: Nature doi: 10.1038/s41586-024-07128-2 – volume: 29 start-page: 563 year: 2022 ident: 10.1016/j.molcel.2024.04.013_bib52 article-title: Building regulatory landscapes reveals that an enhancer can recruit cohesin to create contact domains, engage CTCF sites and activate distant genes publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-022-00787-7 – volume: 321 start-page: 1314 year: 2008 ident: 10.1016/j.molcel.2024.04.013_bib54 article-title: Shadow enhancers as a source of evolutionary novelty publication-title: Science doi: 10.1126/science.1160631 – volume: 466 start-page: 490 year: 2010 ident: 10.1016/j.molcel.2024.04.013_bib55 article-title: Phenotypic robustness conferred by apparently redundant transcriptional enhancers publication-title: Nature doi: 10.1038/nature09158 – volume: 12 start-page: 1434 year: 2002 ident: 10.1016/j.molcel.2024.04.013_bib68 article-title: Conditionally amplifiable BACs: switching from single-copy to high-copy vectors and genomic clones publication-title: Genome Res. doi: 10.1101/gr.130502 – volume: 51 year: 2023 ident: 10.1016/j.molcel.2024.04.013_bib60 article-title: CREEPY: CRISPR-mediated editing of synthetic episomes in yeast publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkad491 – volume: 32 start-page: 425 year: 2022 ident: 10.1016/j.molcel.2024.04.013_bib13 article-title: Genomic context sensitivity of insulator function publication-title: Genome Res. doi: 10.1101/gr.276449.121 – volume: 23 start-page: 2598 year: 2009 ident: 10.1016/j.molcel.2024.04.013_bib29 article-title: Nonallelic transvection of multiple imprinted loci is organized by the H19 imprinting control region during germline development publication-title: Genes Dev. doi: 10.1101/gad.552109 – volume: 12 start-page: 2850 year: 2021 ident: 10.1016/j.molcel.2024.04.013_bib37 article-title: Tissue context determines the penetrance of regulatory DNA variation publication-title: Nat. Commun. doi: 10.1038/s41467-021-23139-3 – volume: 53 start-page: 354 year: 2021 ident: 10.1016/j.molcel.2024.04.013_bib59 article-title: Base-resolution models of transcription-factor binding reveal soft motif syntax publication-title: Nat. Genet. doi: 10.1038/s41588-021-00782-6 – volume: 20 start-page: 9103 year: 2000 ident: 10.1016/j.molcel.2024.04.013_bib27 article-title: Genomic targeting of methylated DNA: influence of methylation on transcription, replication, chromatin structure, and histone acetylation publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.20.24.9103-9112.2000 – volume: 82 start-page: 2519 year: 2022 ident: 10.1016/j.molcel.2024.04.013_bib3 article-title: Systematic analysis of intrinsic enhancer-promoter compatibility in the mouse genome publication-title: Mol. Cell doi: 10.1016/j.molcel.2022.04.009 – volume: 159 start-page: 1665 year: 2014 ident: 10.1016/j.molcel.2024.04.013_bib42 article-title: A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping publication-title: Cell doi: 10.1016/j.cell.2014.11.021 – volume: 20 start-page: 272 year: 2019 ident: 10.1016/j.molcel.2024.04.013_bib31 article-title: CTCF modulates allele-specific sub-TAD organization and imprinted gene activity at the mouse Dlk1-Dio3 and Igf2-H19 domains publication-title: Genome Biol. doi: 10.1186/s13059-019-1896-8 – volume: 4 start-page: 1410 year: 2021 ident: 10.1016/j.molcel.2024.04.013_bib40 article-title: Orientation of mouse H19 ICR affects imprinted H19 gene expression through promoter methylation-dependent and -independent mechanisms publication-title: Commun. Biol. doi: 10.1038/s42003-021-02939-9 – volume: 27 start-page: 246 year: 2017 ident: 10.1016/j.molcel.2024.04.013_bib15 article-title: Enhancers and super-enhancers have an equivalent regulatory role in embryonic stem cells through regulation of single or multiple genes publication-title: Genome Res. doi: 10.1101/gr.210930.116 – volume: 19 start-page: 17 year: 2003 ident: 10.1016/j.molcel.2024.04.013_bib17 article-title: H19 and Igf2--enhancing the confusion? publication-title: Trends Genet. doi: 10.1016/S0168-9525(02)00004-5 – volume: 13 start-page: 4836 year: 1993 ident: 10.1016/j.molcel.2024.04.013_bib4 article-title: Role of gene order in developmental control of human gamma- and beta-globin gene expression publication-title: Mol. Cell. Biol. – volume: 54 start-page: 1702 year: 2022 ident: 10.1016/j.molcel.2024.04.013_bib28 article-title: DNA sequence and chromatin modifiers cooperate to confer epigenetic bistability at imprinting control regions publication-title: Nat. Genet. doi: 10.1038/s41588-022-01210-z – volume: 489 start-page: 75 year: 2012 ident: 10.1016/j.molcel.2024.04.013_bib1 article-title: The accessible chromatin landscape of the human genome publication-title: Nature doi: 10.1038/nature11232 – volume: 14 start-page: 812 year: 2013 ident: 10.1016/j.molcel.2024.04.013_bib46 article-title: Expression-based segmentation of the Drosophila genome publication-title: BMC Genomics doi: 10.1186/1471-2164-14-812 – volume: 124 start-page: 3621 year: 1997 ident: 10.1016/j.molcel.2024.04.013_bib20 article-title: Imprinting of Igf2 and H19 from a 130 kb YAC transgene publication-title: Development doi: 10.1242/dev.124.18.3621 – volume: 554 start-page: 239 year: 2018 ident: 10.1016/j.molcel.2024.04.013_bib56 article-title: Enhancer redundancy provides phenotypic robustness in mammalian development publication-title: Nature doi: 10.1038/nature25461 – volume: Chapter 27 year: 2013 ident: 10.1016/j.molcel.2024.04.013_bib70 article-title: Genome-scale mapping of DNase I hypersensitivity publication-title: Curr Protoc Mol Biol. – volume: 27 start-page: 299 year: 1981 ident: 10.1016/j.molcel.2024.04.013_bib39 article-title: Expression of a beta-globin gene is enhanced by remote SV40 DNA sequences publication-title: Cell doi: 10.1016/0092-8674(81)90413-X – volume: 28 start-page: 2699 year: 2014 ident: 10.1016/j.molcel.2024.04.013_bib32 article-title: A Sox2 distal enhancer cluster regulates embryonic stem cell differentiation potential publication-title: Genes Dev. doi: 10.1101/gad.248526.114 – volume: 25 start-page: 1754 year: 2009 ident: 10.1016/j.molcel.2024.04.013_bib61 article-title: Fast and accurate short read alignment with Burrows-Wheeler transform publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp324 – volume: 9 year: 2014 ident: 10.1016/j.molcel.2024.04.013_bib33 article-title: CRISPR reveals a distal super-enhancer required for Sox2 expression in mouse embryonic stem cells publication-title: PLoS One – volume: 12 start-page: 72 year: 2019 ident: 10.1016/j.molcel.2024.04.013_bib48 article-title: The distributions of protein coding genes within chromatin domains in relation to human disease publication-title: Epigenetics Chromatin doi: 10.1186/s13072-019-0317-2 – volume: 32 start-page: 85 year: 2022 ident: 10.1016/j.molcel.2024.04.013_bib12 article-title: Genomic environments scale the activities of diverse core promoters publication-title: Genome Res. doi: 10.1101/gr.276025.121 – volume: 153 start-page: 307 year: 2013 ident: 10.1016/j.molcel.2024.04.013_bib38 article-title: Master transcription factors and mediator establish super-enhancers at key cell identity genes publication-title: Cell doi: 10.1016/j.cell.2013.03.035 – volume: 31 start-page: 180 year: 2002 ident: 10.1016/j.molcel.2024.04.013_bib47 article-title: Clustering of housekeeping genes provides a unified model of gene order in the human genome publication-title: Nat. Genet. doi: 10.1038/ng887 – volume: 28 start-page: 1919 year: 2012 ident: 10.1016/j.molcel.2024.04.013_bib63 article-title: BEDOPS: high-performance genomic feature operations publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts277 – volume: 26 start-page: 183 year: 2000 ident: 10.1016/j.molcel.2024.04.013_bib45 article-title: A computational analysis of whole-genome expression data reveals chromosomal domains of gene expression publication-title: Nat. Genet. doi: 10.1038/79896 – year: 2018 ident: 10.1016/j.molcel.2024.04.013_bib64 – volume: 100 start-page: 3077 year: 2002 ident: 10.1016/j.molcel.2024.04.013_bib14 article-title: Locus control regions publication-title: Blood doi: 10.1182/blood-2002-04-1104 – volume: 29 start-page: 15 year: 2013 ident: 10.1016/j.molcel.2024.04.013_bib66 article-title: STAR: ultrafast universal RNA-seq aligner publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts635 – volume: 604 start-page: 571 year: 2022 ident: 10.1016/j.molcel.2024.04.013_bib5 article-title: Nonlinear control of transcription through enhancer-promoter interactions publication-title: Nature doi: 10.1038/s41586-022-04570-y – volume: 149 year: 2022 ident: 10.1016/j.molcel.2024.04.013_bib35 article-title: Enhancer-gene specificity in development and disease publication-title: Development doi: 10.1242/dev.186536 – volume: 147 year: 2020 ident: 10.1016/j.molcel.2024.04.013_bib49 article-title: The regulatory landscapes of developmental genes publication-title: Development doi: 10.1242/dev.171736 – volume: 10 year: 2021 ident: 10.1016/j.molcel.2024.04.013_bib62 article-title: HTSlib: C library for reading/writing high-throughput sequencing data publication-title: GigaScience doi: 10.1093/gigascience/giab007 – volume: 477 start-page: 289 year: 2011 ident: 10.1016/j.molcel.2024.04.013_bib22 article-title: Mouse genomic variation and its effect on phenotypes and gene regulation publication-title: Nature doi: 10.1038/nature10413 – volume: 51 start-page: 1263 year: 2019 ident: 10.1016/j.molcel.2024.04.013_bib41 article-title: Functional dissection of the Sox9-Kcnj2 locus identifies nonessential and instructive roles of TAD architecture publication-title: Nat. Genet. doi: 10.1038/s41588-019-0466-z – volume: 14 start-page: 115 year: 1998 ident: 10.1016/j.molcel.2024.04.013_bib58 article-title: Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications publication-title: Yeast doi: 10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2 – volume: 405 start-page: 486 year: 2000 ident: 10.1016/j.molcel.2024.04.013_bib19 article-title: CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus publication-title: Nature doi: 10.1038/35013106 – reference: 37781588 - bioRxiv. 2024 Mar 12:2023.07.02.547201. doi: 10.1101/2023.07.02.547201. |
SSID | ssj0014589 |
Score | 2.4765797 |
Snippet | Genomic context critically modulates regulatory function but is difficult to manipulate systematically. The murine insulin-like growth factor 2 (Igf2)/H19... Genomic context critically modulates regulatory function but is difficult to manipulate systematically. The murine Igf2 / H19 locus is a paradigmatic model of... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1842 |
SubjectTerms | Animals CCCTC-Binding Factor - genetics CCCTC-Binding Factor - metabolism DNA Enhancer Elements, Genetic enhancer selectivity gene regulation genetic engineering genome genome writing Genomic Imprinting genomic regulatory architecture genomics Genomics - methods insulin-like growth factor II Insulin-Like Growth Factor II - genetics Insulin-Like Growth Factor II - metabolism loci Locus Control Region - genetics Mice RNA, Long Noncoding - genetics RNA, Long Noncoding - metabolism SOXB1 Transcription Factors - genetics SOXB1 Transcription Factors - metabolism synthetic regulatory genomics |
Title | Genomic context sensitizes regulatory elements to genetic disruption |
URI | https://dx.doi.org/10.1016/j.molcel.2024.04.013 https://www.ncbi.nlm.nih.gov/pubmed/38759624 https://www.proquest.com/docview/3056670698 https://www.proquest.com/docview/3153805658 https://pubmed.ncbi.nlm.nih.gov/PMC11104518 |
Volume | 84 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqSkhcEOW5QJGRuFqb-Jk9lj6oOHCBSnuz_IoIKkm1yR7Kr2fGSVYsqFRCyiXJOHLG9sxY_uYbQt4r7UMdVyXTNU9M-sIwz6ViiUcZau9THTPb52d9eSU_rdX6gJzOuTAIq5xs_2jTs7WeniwnbS5vmmb5Bc9OudEKUZAC9g1ghzGrFJP41h92JwlS5TJ4KMxQek6fyxivH911SHgAwWUmPC3FXe7p7_DzTxTlb27p4jF5NMWT9GTs8hE5SO0T8mCsMHn7lJx9TDnvmCIkHeww7RGwPjQ_U083Yxn6bnNL0wgi7-nQUZhRmNhIY9NvttmgPCNXF-dfTy_ZVDiBBanKgSUjvK-rpLkXIq2kjMYVJpTCVQHWswuSO6ORqT6KaKKpdB28czoUta8dBC3PyWHbteklocpHcOIewiLlpQBlIkMhfMBxGElTlgsiZn3ZMLGKY3GLazvDx77bUcsWtWwLuEqxIGzX6mZk1bhH3sxDYfdmhwXDf0_Ld_PIWVg4eBri2tRte4t7J20Kvar-IYP-AOQUyLwYR3vXXwE7vZXmckGqvXmwE0Di7v03bfMtE3iDf0Fan-rVf__Wa_IQ7xDGUOo35HDYbNMxREeDf5un_y_nLBCZ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEYIL4s3yDBJXaxM_s0colC2UXmilvVl-RQSVpNpkD-XXM-MkKxYElZByiseRM7ZnxprP3xDyWirnq7AoqKpYpMLlmjomJI0sCF85F6uQ2D5P1PJMfFzJ1R45mO7CIKxytP2DTU_WenwzH7U5v6jr-RfMnTKtJKIgOZwbrpHrEA3kuLSPVm-3qQQhUx08lKYoPt2fSyCv7-25j5iBYCIxnhb8b_7pz_jzdxjlL37p8A65PQaU2ZthzHfJXmzukRtDicnL--Tdh5guHmeISQdDnHWIWO_rH7HL1kMd-nZ9mcUBRd5lfZvBksKbjVmou_UmWZQH5Ozw_enBko6VE6gXsuhp1Ny5qoyKOc7jQoigba59wW3pYUNbL5jVCqnqAw866FJV3lmrfF65ykLU8pDsN20TH5NMugBe3EFcJJ3goEykKIQPWAZTqYtiRvikL-NHWnGsbnFuJvzYNzNo2aCWTQ5PwWeEbntdDLQaV8jraSrMzvIwYPmv6PlqmjkDOwfTIbaJ7aYzeHhSOleL8h8y6BBAToLMo2G2t-PlcNRbKCZmpNxZB1sBZO7ebWnqr4nBGxwM8vqUT_77t16Sm8vTz8fm-Ojk01NyC1sQ01CoZ2S_X2_icwiVevcibYWfosATvA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genomic+context+sensitizes+regulatory+elements+to+genetic+disruption&rft.jtitle=Molecular+cell&rft.au=Ordo%C3%B1ez%2C+Raquel&rft.au=Zhang%2C+Weimin&rft.au=Ellis%2C+Gwen&rft.au=Zhu%2C+Yinan&rft.date=2024-05-16&rft.pub=Elsevier+Inc&rft.issn=1097-2765&rft.volume=84&rft.issue=10&rft.spage=1842&rft.epage=1854.e7&rft_id=info:doi/10.1016%2Fj.molcel.2024.04.013&rft.externalDocID=S1097276524003289 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon |