Multivariate statistical algorithms for landslide susceptibility assessment in Kailash Sacred landscape, Western Himalaya

Landslide susceptibility mapping plays an imperative role in mitigating hazards and determining the future direction of developmental activities in mountainous regions. Here, we used 518 landslide occurrences and nine landslide-conditioning parameters to build landslide vulnerability models in the K...

Full description

Saved in:
Bibliographic Details
Published inGeomatics, natural hazards and risk Vol. 14; no. 1
Main Authors Pandey, Arvind, Shekhar Sarkar, Mriganka, Palni, Sarita, Parashar, Deepanshu, Singh, Gajendra, Kaushik, Saurabh, Chandra, Naveen, Costache, Romulus, Pratap Singh, Ajit, Pratap Mishra, Arun, Almohamad, Hussein, Al-Mutiry, Motrih, Abdo, Hazem Ghassan
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 31.12.2023
Taylor & Francis Ltd
Taylor & Francis Group
Subjects
Online AccessGet full text
ISSN1947-5705
1947-5713
DOI10.1080/19475705.2023.2227324

Cover

Abstract Landslide susceptibility mapping plays an imperative role in mitigating hazards and determining the future direction of developmental activities in mountainous regions. Here, we used 518 landslide occurrences and nine landslide-conditioning parameters to build landslide vulnerability models in the Kailash Sacred Landscape (KSL), India. Four multivariate statistical models were applied, namely the generalized linear model (GLM), maximum entropy (MaxEnt), Mahalanobis D 2 (MD), and support vector machine (SVM), to calibrate and compare four maps of landslide susceptibility. The results demonstrated the outperformance of Mahalanobis D 2 for predictability compared to other models obtained from the area under the receiver operating characteristic curve (ROC). The ensemble model data shows that 10.5% of the landscape has susceptible conditions for future landslides, whereas 89.50% of the landscape falls under the safe zone. The occurrence of landslides in the KSL is linked to the middle elevations, vicinity to water bodies, and the motorable roads. Furthermore, the observed patterns and the resulting models exhibit the major variables that cause landslides and their respective significance. The current modelling approach could provide baseline data at the regional scale to improve the developmental planning in the KSL.
AbstractList Landslide susceptibility mapping plays an imperative role in mitigating hazards and determining the future direction of developmental activities in mountainous regions. Here, we used 518 landslide occurrences and nine landslide-conditioning parameters to build landslide vulnerability models in the Kailash Sacred Landscape (KSL), India. Four multivariate statistical models were applied, namely the generalized linear model (GLM), maximum entropy (MaxEnt), Mahalanobis D2 (MD), and support vector machine (SVM), to calibrate and compare four maps of landslide susceptibility. The results demonstrated the outperformance of Mahalanobis D2 for predictability compared to other models obtained from the area under the receiver operating characteristic curve (ROC). The ensemble model data shows that 10.5% of the landscape has susceptible conditions for future landslides, whereas 89.50% of the landscape falls under the safe zone. The occurrence of landslides in the KSL is linked to the middle elevations, vicinity to water bodies, and the motorable roads. Furthermore, the observed patterns and the resulting models exhibit the major variables that cause landslides and their respective significance. The current modelling approach could provide baseline data at the regional scale to improve the developmental planning in the KSL.
AbstractLandslide susceptibility mapping plays an imperative role in mitigating hazards and determining the future direction of developmental activities in mountainous regions. Here, we used 518 landslide occurrences and nine landslide-conditioning parameters to build landslide vulnerability models in the Kailash Sacred Landscape (KSL), India. Four multivariate statistical models were applied, namely the generalized linear model (GLM), maximum entropy (MaxEnt), Mahalanobis D2 (MD), and support vector machine (SVM), to calibrate and compare four maps of landslide susceptibility. The results demonstrated the outperformance of Mahalanobis D2 for predictability compared to other models obtained from the area under the receiver operating characteristic curve (ROC). The ensemble model data shows that 10.5% of the landscape has susceptible conditions for future landslides, whereas 89.50% of the landscape falls under the safe zone. The occurrence of landslides in the KSL is linked to the middle elevations, vicinity to water bodies, and the motorable roads. Furthermore, the observed patterns and the resulting models exhibit the major variables that cause landslides and their respective significance. The current modelling approach could provide baseline data at the regional scale to improve the developmental planning in the KSL.
Landslide susceptibility mapping plays an imperative role in mitigating hazards and determining the future direction of developmental activities in mountainous regions. Here, we used 518 landslide occurrences and nine landslide-conditioning parameters to build landslide vulnerability models in the Kailash Sacred Landscape (KSL), India. Four multivariate statistical models were applied, namely the generalized linear model (GLM), maximum entropy (MaxEnt), Mahalanobis D 2 (MD), and support vector machine (SVM), to calibrate and compare four maps of landslide susceptibility. The results demonstrated the outperformance of Mahalanobis D 2 for predictability compared to other models obtained from the area under the receiver operating characteristic curve (ROC). The ensemble model data shows that 10.5% of the landscape has susceptible conditions for future landslides, whereas 89.50% of the landscape falls under the safe zone. The occurrence of landslides in the KSL is linked to the middle elevations, vicinity to water bodies, and the motorable roads. Furthermore, the observed patterns and the resulting models exhibit the major variables that cause landslides and their respective significance. The current modelling approach could provide baseline data at the regional scale to improve the developmental planning in the KSL.
Author Costache, Romulus
Pratap Mishra, Arun
Pratap Singh, Ajit
Singh, Gajendra
Kaushik, Saurabh
Parashar, Deepanshu
Almohamad, Hussein
Al-Mutiry, Motrih
Palni, Sarita
Abdo, Hazem Ghassan
Pandey, Arvind
Chandra, Naveen
Shekhar Sarkar, Mriganka
Author_xml – sequence: 1
  givenname: Arvind
  surname: Pandey
  fullname: Pandey, Arvind
  organization: Department of Remote Sensing and GIS, Soban Singh Jeena University
– sequence: 2
  givenname: Mriganka
  surname: Shekhar Sarkar
  fullname: Shekhar Sarkar, Mriganka
  organization: G.B. Pant National Institute of Himalayan Environment (GBPNIHE), North-East Regional Centre
– sequence: 3
  givenname: Sarita
  surname: Palni
  fullname: Palni, Sarita
  organization: Department of Remote Sensing and GIS, Soban Singh Jeena University
– sequence: 4
  givenname: Deepanshu
  surname: Parashar
  fullname: Parashar, Deepanshu
  organization: Department of Remote Sensing and GIS, Soban Singh Jeena University
– sequence: 5
  givenname: Gajendra
  surname: Singh
  fullname: Singh, Gajendra
  organization: Forest and Climate Change Division, Uttarakhand Space Application Centre
– sequence: 6
  givenname: Saurabh
  surname: Kaushik
  fullname: Kaushik, Saurabh
  organization: Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA
– sequence: 7
  givenname: Naveen
  surname: Chandra
  fullname: Chandra, Naveen
  organization: Forest and Climate Change Division, Uttarakhand Space Application Centre
– sequence: 8
  givenname: Romulus
  surname: Costache
  fullname: Costache, Romulus
  organization: Danube Delta National Institute for Research and Development
– sequence: 9
  givenname: Ajit
  surname: Pratap Singh
  fullname: Pratap Singh, Ajit
  organization: Civil Engineering Department, Birla Institute of Technology and Science
– sequence: 10
  givenname: Arun
  surname: Pratap Mishra
  fullname: Pratap Mishra, Arun
  organization: Department of Habitat Ecology, Wildlife Institute of India
– sequence: 11
  givenname: Hussein
  surname: Almohamad
  fullname: Almohamad, Hussein
  organization: Department of Geography, College of Arabic Language and Social Studies, Qassim University
– sequence: 12
  givenname: Motrih
  surname: Al-Mutiry
  fullname: Al-Mutiry, Motrih
  organization: Department of Geography, College of Arts, Princess Nourah Bint Abdulrahman University
– sequence: 13
  givenname: Hazem Ghassan
  surname: Abdo
  fullname: Abdo, Hazem Ghassan
  organization: Geography Department, Faculty of Arts and Humanities, Tartous University
BookMark eNqFUctuFDEQHKEgEZJ8ApIlruxie-wdW1xAUSARiTgkiKPVfkzilddebC9o_h4Pk3DgAH1wW62q6ke97I5iiq7rXhG8Jljgt0SygQ-Yrymm_ZpSOvSUPeuO5_qKD6Q_-vPH_EV3VsoWt-ipGDA77qabQ6j-B2QP1aFSofpSvYGAINyn7OvDrqAxZRQg2hK8baBDMW5fvfbB1wlBKa6UnYsV-Yg-gw9QHtAtmOzswjKwd2_QN1eqyxFd-h0EmOC0ez5CKO7sMZ90Xz9e3J1frq6_fLo6_3C9MoyTurJCCwJ6oBvtRgkgQBApLNOsHznZcANGGIwZdRawJZoKrRkYO3ArQVroT7qrRdcm2Kp9bu3zpBJ49buQ8r2C3FYOTsG40UJuBkulZBbaqx01klPJB9e6N63Xi9Y-p--HtpDapkOObXxFJaYCMyFm1LsFZXIqJbtRGT8fNsWa23kUwWq2Tj1Zp2br1KN1jc3_Yj_N_D_e-4XnY_NrBz9TDlZVmELKY4ZofFH9vyV-ATdstQA
CitedBy_id crossref_primary_10_3390_rs16122206
crossref_primary_10_1080_19475705_2024_2341176
crossref_primary_10_1093_inteam_vjae002
crossref_primary_10_3390_rs15205007
crossref_primary_10_1007_s10661_023_12131_7
crossref_primary_10_1016_j_catena_2024_107835
crossref_primary_10_1007_s11356_023_31352_4
crossref_primary_10_1038_s41598_024_53120_1
Cites_doi 10.1007/s10346-012-0320-1
10.1038/s41598-023-28991-5
10.1111/j.0906-7590.2008.5203.x
10.1002/2013EO050007
10.1038/s41598-021-85862-7
10.1007/s10661-019-7487-z
10.1016/j.ecolmodel.2006.05.017
10.3389/feart.2022.953627
10.1111/j.1472-4642.2010.00725.x
10.1126/science.3287615
10.7717/peerj.7005
10.1007/s11629-022-7593-1
10.1016/S0013-7952(01)00096-5
10.1023/A:1024048429145
10.1007/s11069-014-1245-x
10.3390/app9010171
10.3390/rs11232866
10.3390/ijerph17124206
10.5194/nhess-5-853-2005
10.1088/0953-8984/22/6/063101
10.1007/s00477-022-02212-3
10.1016/j.geomorph.2009.09.035
10.1016/j.catena.2020.104630
10.1007/978-3-642-00296-0_5
10.1007/s10462-009-9124-7
10.1007/s12665-009-0394-9
10.1111/2041-210X.12200
10.1007/s11442-014-1134-y
10.1016/j.geomorph.2005.06.002
10.2307/3809276
10.3390/rs10081252
10.3390/rs13183623
10.1016/j.jseaes.2012.12.014
10.1002/(SICI)1526-4025(199904/06)15:2<89::AID-ASMB366>3.0.CO;2-K
10.1016/0378-1127(95)03584-5
10.1016/j.catena.2018.01.005
10.1016/S0098-3004(97)00117-9
10.1016/j.catena.2019.104364
10.2307/3673806
10.1111/ecog.01881
10.1111/j.1600-0587.2008.05742.x
10.1007/s10064-019-01506-1
10.1002/qj.210
10.1016/S0304-3800(02)00327-7
10.1016/j.geomorph.2008.04.013
10.1016/j.catena.2018.03.003
10.1126/science.1116681
10.1144/1470-9236/09-029
10.1016/j.geomorph.2008.01.014
10.1016/j.geoderma.2017.06.020
10.1007/s13762-021-03322-1
10.1016/s0895-4356(99)00075-x
10.1016/S0169-555X(01)00035-6
10.1186/s40677-020-00152-0
10.1016/j.scitotenv.2019.136455
10.1111/j.1600-0587.2010.06953.x
10.1080/19475705.2023.2210255
10.1016/j.geomorph.2008.05.041
10.1007/s12665-014-3442-z
10.1080/14498596.2018.1505564
10.1016/S0169-555X(98)00051-8
10.1186/s40562-022-00249-4
10.1186/s40562-022-00256-5
10.1007/s12665-022-10525-3
10.1016/S0013-7952(96)00033-6
10.1023/A:1010933404324
10.18637/jss.v015.i09
10.1007/BF00994018
10.1007/s00254-008-1420-z
10.1016/j.cageo.2012.08.023
10.1007/s00704-015-1702-9
10.1016/j.geomorph.2007.04.007
10.1007/s11069-022-05554-x
ContentType Journal Article
Copyright 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2023
2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2023
– notice: 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 0YH
AAYXX
CITATION
7ST
7TG
7TN
7UA
8FD
8FE
8FG
8FH
ABJCF
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
H8D
H96
H97
HCIFZ
KL.
KR7
L.G
L6V
L7M
LK8
M7P
M7S
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
SOI
DOA
DOI 10.1080/19475705.2023.2227324
DatabaseName Taylor & Francis Open Access
CrossRef
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection (subscription)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection (subscription)
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ProQuest SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
Biological Science Database
Engineering Database (subscription)
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database (subscripiton)
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering collection
Environmental Science Collection
Environment Abstracts
DOAJ
DatabaseTitle CrossRef
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Biological Science Database
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest One Community College
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
ProQuest Engineering Collection
Oceanic Abstracts
ProQuest Central Korea
Agricultural & Environmental Science Collection
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environment Abstracts
DatabaseTitleList ProQuest Central Student


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1947-5713
ExternalDocumentID oai_doaj_org_article_af6b8967d2994da299be2c952957eef9
10_1080_19475705_2023_2227324
2227324
Genre Research Article
GroupedDBID .7F
0YH
4.4
5VS
7XC
8FE
8FG
8FH
ABJCF
ACGFS
ACIWK
ACPRK
ADBBV
ADCVX
ADMSI
AEUYN
AFKRA
AFPKN
AFRAH
AHDSZ
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ATCPS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CE4
EBS
ECGQY
GROUPED_DOAJ
GTTXZ
H13
HCIFZ
HZ~
IPNFZ
J~4
L6V
LK5
LK8
M4Z
M7P
M7R
M7S
OK1
P2P
P62
PATMY
PCBAR
PTHSS
PYCSY
RDKPK
RIG
TDBHL
TFL
TFW
UU3
AAFWJ
AAYXX
CITATION
PHGZM
PHGZT
7ST
7TG
7TN
7UA
8FD
AZQEC
C1K
DWQXO
F1W
FR3
GNUQQ
H8D
H96
H97
KL.
KR7
L.G
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
SOI
PUEGO
ID FETCH-LOGICAL-c451t-d8b81ab726bef9aa8a8198d4b43f5165cac8c0042eda0d1b28bb4acd75d9a9da3
IEDL.DBID DOA
ISSN 1947-5705
IngestDate Wed Aug 27 01:32:27 EDT 2025
Fri Jul 25 12:02:41 EDT 2025
Thu Apr 24 23:03:44 EDT 2025
Tue Jul 01 01:26:04 EDT 2025
Wed Dec 25 09:03:08 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-d8b81ab726bef9aa8a8198d4b43f5165cac8c0042eda0d1b28bb4acd75d9a9da3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/af6b8967d2994da299be2c952957eef9
PQID 2902804889
PQPubID 436431
ParticipantIDs proquest_journals_2902804889
informaworld_taylorfrancis_310_1080_19475705_2023_2227324
crossref_citationtrail_10_1080_19475705_2023_2227324
doaj_primary_oai_doaj_org_article_af6b8967d2994da299be2c952957eef9
crossref_primary_10_1080_19475705_2023_2227324
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-31
PublicationDateYYYYMMDD 2023-12-31
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-31
  day: 31
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Geomatics, natural hazards and risk
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Ltd
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
– name: Taylor & Francis Group
References e_1_3_5_29_1
e_1_3_5_25_1
e_1_3_5_23_1
e_1_3_5_44_1
e_1_3_5_67_1
e_1_3_5_46_1
e_1_3_5_69_1
Kuncheva LI. 2004. (e_1_3_5_48_1)
Lee S. (e_1_3_5_50_1) 2019; 35
e_1_3_5_82_1
e_1_3_5_3_1
e_1_3_5_61_1
e_1_3_5_80_1
e_1_3_5_40_1
e_1_3_5_63_1
e_1_3_5_42_1
e_1_3_5_65_1
e_1_3_5_84_1
e_1_3_5_9_1
e_1_3_5_21_1
e_1_3_5_5_1
e_1_3_5_7_1
Brownlee J. (e_1_3_5_15_1)
e_1_3_5_18_1
e_1_3_5_39_1
e_1_3_5_16_1
e_1_3_5_37_1
e_1_3_5_14_1
ERDAS Inc (e_1_3_5_26_1) 1999
e_1_3_5_35_1
e_1_3_5_12_1
e_1_3_5_33_1
e_1_3_5_56_1
e_1_3_5_77_1
e_1_3_5_58_1
e_1_3_5_79_1
e_1_3_5_71_1
e_1_3_5_52_1
e_1_3_5_73_1
e_1_3_5_54_1
e_1_3_5_75_1
e_1_3_5_10_1
e_1_3_5_31_1
e_1_3_5_28_1
e_1_3_5_24_1
e_1_3_5_22_1
e_1_3_5_45_1
e_1_3_5_66_1
e_1_3_5_47_1
e_1_3_5_68_1
e_1_3_5_49_1
ESRI (e_1_3_5_27_1) 2008
e_1_3_5_83_1
Mehrotra GS (e_1_3_5_51_1) 1996; 47
e_1_3_5_2_1
e_1_3_5_60_1
e_1_3_5_81_1
e_1_3_5_41_1
e_1_3_5_62_1
e_1_3_5_43_1
e_1_3_5_64_1
e_1_3_5_8_1
e_1_3_5_20_1
e_1_3_5_4_1
e_1_3_5_6_1
e_1_3_5_17_1
e_1_3_5_38_1
e_1_3_5_13_1
e_1_3_5_36_1
e_1_3_5_11_1
e_1_3_5_34_1
e_1_3_5_55_1
e_1_3_5_78_1
e_1_3_5_57_1
e_1_3_5_59_1
e_1_3_5_19_1
e_1_3_5_70_1
e_1_3_5_72_1
e_1_3_5_74_1
e_1_3_5_53_1
e_1_3_5_76_1
e_1_3_5_32_1
e_1_3_5_30_1
References_xml – ident: e_1_3_5_29_1
  doi: 10.1007/s10346-012-0320-1
– ident: e_1_3_5_61_1
  doi: 10.1038/s41598-023-28991-5
– ident: e_1_3_5_58_1
  doi: 10.1111/j.0906-7590.2008.5203.x
– ident: e_1_3_5_65_1
  doi: 10.1002/2013EO050007
– ident: e_1_3_5_43_1
  doi: 10.1038/s41598-021-85862-7
– volume: 47
  start-page: 491
  year: 1996
  ident: e_1_3_5_51_1
  article-title: Terrain analysis and spatial assessment of landslide hazards in parts of Sikkim Himalaya
  publication-title: J Geol Soc India
– ident: e_1_3_5_72_1
  doi: 10.1007/s10661-019-7487-z
– ident: e_1_3_5_40_1
  doi: 10.1016/j.ecolmodel.2006.05.017
– volume: 35
  start-page: 179
  issue: 1
  year: 2019
  ident: e_1_3_5_50_1
  article-title: Current and future status of GIS-based landslide susceptibility mapping: a literature review
  publication-title: Korean J Remote Sens
– ident: e_1_3_5_62_1
  doi: 10.3389/feart.2022.953627
– ident: e_1_3_5_25_1
  doi: 10.1111/j.1472-4642.2010.00725.x
– ident: e_1_3_5_74_1
  doi: 10.1126/science.3287615
– ident: e_1_3_5_73_1
  doi: 10.7717/peerj.7005
– ident: e_1_3_5_67_1
  doi: 10.1007/s11629-022-7593-1
– ident: e_1_3_5_10_1
  doi: 10.1016/S0013-7952(01)00096-5
– ident: e_1_3_5_76_1
  doi: 10.1023/A:1024048429145
– ident: e_1_3_5_77_1
  doi: 10.1007/s11069-014-1245-x
– ident: e_1_3_5_81_1
– ident: e_1_3_5_18_1
  doi: 10.3390/app9010171
– ident: e_1_3_5_64_1
  doi: 10.3390/rs11232866
– ident: e_1_3_5_78_1
  doi: 10.3390/ijerph17124206
– ident: e_1_3_5_13_1
  doi: 10.5194/nhess-5-853-2005
– ident: e_1_3_5_6_1
  doi: 10.1088/0953-8984/22/6/063101
– ident: e_1_3_5_66_1
  doi: 10.1007/s00477-022-02212-3
– ident: e_1_3_5_47_1
  doi: 10.1016/j.geomorph.2009.09.035
– ident: e_1_3_5_11_1
  doi: 10.1016/j.catena.2020.104630
– ident: e_1_3_5_9_1
  doi: 10.1007/978-3-642-00296-0_5
– ident: e_1_3_5_63_1
  doi: 10.1007/s10462-009-9124-7
– ident: e_1_3_5_82_1
  doi: 10.1007/s12665-009-0394-9
– ident: e_1_3_5_14_1
  doi: 10.1111/2041-210X.12200
– ident: e_1_3_5_32_1
  doi: 10.1007/s11442-014-1134-y
– ident: e_1_3_5_33_1
  doi: 10.1016/j.geomorph.2005.06.002
– ident: e_1_3_5_39_1
– ident: e_1_3_5_19_1
  doi: 10.2307/3809276
– ident: e_1_3_5_44_1
  doi: 10.3390/rs10081252
– ident: e_1_3_5_71_1
  doi: 10.3390/rs13183623
– ident: e_1_3_5_55_1
  doi: 10.1016/j.jseaes.2012.12.014
– ident: e_1_3_5_80_1
  doi: 10.1002/(SICI)1526-4025(199904/06)15:2<89::AID-ASMB366>3.0.CO;2-K
– ident: e_1_3_5_34_1
  doi: 10.1016/0378-1127(95)03584-5
– ident: e_1_3_5_41_1
  doi: 10.1016/j.catena.2018.01.005
– ident: e_1_3_5_5_1
  doi: 10.1016/S0098-3004(97)00117-9
– ident: e_1_3_5_59_1
  doi: 10.1016/j.catena.2019.104364
– ident: e_1_3_5_69_1
  doi: 10.2307/3673806
– ident: e_1_3_5_53_1
  doi: 10.1111/ecog.01881
– ident: e_1_3_5_75_1
  doi: 10.1111/j.1600-0587.2008.05742.x
– ident: e_1_3_5_36_1
  doi: 10.1007/s10064-019-01506-1
– volume-title: ArcGIS 9.3
  year: 2008
  ident: e_1_3_5_27_1
– ident: e_1_3_5_79_1
  doi: 10.1002/qj.210
– ident: e_1_3_5_28_1
  doi: 10.1016/S0304-3800(02)00327-7
– ident: e_1_3_5_24_1
  doi: 10.1016/j.geomorph.2008.04.013
– ident: e_1_3_5_42_1
  doi: 10.1016/j.catena.2018.03.003
– ident: e_1_3_5_31_1
  doi: 10.1126/science.1116681
– ident: e_1_3_5_68_1
  doi: 10.1144/1470-9236/09-029
– ident: e_1_3_5_21_1
  doi: 10.1016/j.geomorph.2008.01.014
– ident: e_1_3_5_17_1
  doi: 10.1016/j.geoderma.2017.06.020
– ident: e_1_3_5_2_1
  doi: 10.1007/s13762-021-03322-1
– volume-title: Combining pattern classifiers: methods and algorithms
  ident: e_1_3_5_48_1
– volume-title: Ensemble learning algorithms with Python: Make better predictions with bagging, boosting, and stacking.
  ident: e_1_3_5_15_1
– ident: e_1_3_5_16_1
  doi: 10.1016/s0895-4356(99)00075-x
– volume-title: Erdas field guide
  year: 1999
  ident: e_1_3_5_26_1
– ident: e_1_3_5_7_1
  doi: 10.1016/S0169-555X(01)00035-6
– ident: e_1_3_5_49_1
– ident: e_1_3_5_70_1
  doi: 10.1186/s40677-020-00152-0
– ident: e_1_3_5_46_1
  doi: 10.1016/j.scitotenv.2019.136455
– ident: e_1_3_5_84_1
  doi: 10.1111/j.1600-0587.2010.06953.x
– ident: e_1_3_5_8_1
  doi: 10.1080/19475705.2023.2210255
– ident: e_1_3_5_22_1
  doi: 10.1016/j.geomorph.2008.05.041
– ident: e_1_3_5_56_1
  doi: 10.1007/s12665-014-3442-z
– ident: e_1_3_5_30_1
  doi: 10.1080/14498596.2018.1505564
– ident: e_1_3_5_38_1
  doi: 10.1016/S0169-555X(98)00051-8
– ident: e_1_3_5_52_1
  doi: 10.1186/s40562-022-00249-4
– ident: e_1_3_5_3_1
  doi: 10.1186/s40562-022-00256-5
– ident: e_1_3_5_83_1
  doi: 10.1007/s12665-022-10525-3
– ident: e_1_3_5_4_1
  doi: 10.1016/S0013-7952(96)00033-6
– ident: e_1_3_5_12_1
  doi: 10.1023/A:1010933404324
– ident: e_1_3_5_45_1
  doi: 10.18637/jss.v015.i09
– ident: e_1_3_5_37_1
– ident: e_1_3_5_20_1
  doi: 10.1007/BF00994018
– ident: e_1_3_5_35_1
  doi: 10.1007/s00254-008-1420-z
– ident: e_1_3_5_60_1
  doi: 10.1016/j.cageo.2012.08.023
– ident: e_1_3_5_57_1
  doi: 10.1007/s00704-015-1702-9
– ident: e_1_3_5_54_1
  doi: 10.1016/j.geomorph.2007.04.007
– ident: e_1_3_5_23_1
  doi: 10.1007/s11069-022-05554-x
SSID ssj0000328704
Score 2.3420906
Snippet Landslide susceptibility mapping plays an imperative role in mitigating hazards and determining the future direction of developmental activities in mountainous...
AbstractLandslide susceptibility mapping plays an imperative role in mitigating hazards and determining the future direction of developmental activities in...
SourceID doaj
proquest
crossref
informaworld
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Baseline studies
Boyce Index
Generalized linear models
Hazard mitigation
Himalaya
landscape vulnerability
landslide conditioning
Landslide susceptibility modelling
Landslides
Landslides & mudslides
Mathematical models
Maximum entropy
Modelling
Mountain regions
Mountainous areas
Multivariate analysis
Regional development
Regional planning
risk assessment
Statistical analysis
Statistical models
Support vector machines
Vulnerability
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LbxMxELZKeoAL4ikCBfnAkU33Ya_tA0IUtYpARAio6M0av5pIaVKaLVL-PR6vN7wketmD17MPz-zM7HjmG0JeMu5YGQQUtsHQjQJWyBB8VIYAwXlvlMdC4Y-zdnrK3p_xsz0yG2phMK1y0IlJUbu1xRj5YZ1gRqK4qTeX3wvsGoW7q0MLDcitFdzrBDF2i-xHlczLEdk_Op59-ryLuiB6nCj7rWYmCi5KPpT1yPIQx3Bogj3FJ1gl2tTsD4OVcP3_QjX9R4sn03Ryj9zNPiV92wvBfbLnVw_I7dzefL59SLapzPZH_C2OniXFGqIEzxxpYHkeX7KbX2xovBVNhb_LhYuTrjcp4SXlzm4p7AA86WJFP8AiOt1z-gUQb7SnwkSqV_RbD7xAp4sLWMIWHpHTk-Ov76ZF7rlQWMarrnDSyAqMqFvjgwKQEF0G6ZhhTeBVyy1YafFL9w5KV5laGsPAOsGdAuWgeUxGq_XKPyFUlKWN3mBVeeVZZUz0hIKRIVpMAa3zfEzYsLDaZkBy7Iux1FXGLR34oZEfOvNjTCY7sssekeMmgiPk2m4yAmqngfXVuc7fp4bQGqla4aJ5Zg7i0fjaKtwGFT6uxJio33muuxRPCX3zE93c8AAHg4DorCE2-pc8P_3_6WfkDl6sB5c8IKPu6to_j45QZ15k6f4JCWoE7g
  priority: 102
  providerName: ProQuest
– databaseName: Taylor & Francis Open Access
  dbid: 0YH
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZgOcAF8RRlF-QDR1KS1I7tIyBWFQgusAJO1ji2t5G6LWqySP33O-M4FQ-hPXCJlMiTRB575rM98w1jL4T0oowKinZBWzcGRKFjDGgMAaIPwZlAicIfPzXLM_H-m5yiCfscVklr6DgSRSRbTZMbXD9FxL3CdbeSqpRzKv09p2RORAU32a1aob_BIV1-Xx62WYguTpXj2bJQBYlNeTz_etNvHioR-f9BY_qX2U6-6PQeu5tBJH89av0-uxE2D9jtXM98tX_I9imv9ieugxFKckoaSnzMKAPr8-2uG1YXPcdP8ZTpu-48NrrsU4RLCpbdczgwdvJuwz9Ahyh7xT8DEYyOUhQ59ZJ_HZkW-LK7gDXs4RE7O3335e2yyEUWilbIaii8droCp-rGhWgANCBG0F44sYiyamQLrW5pagcPpa9crZ0T0HolvQHjYfGYHW22m_CEcVWWLcK_qgomiMo5hD7R6YguUkHjg5wxMXWsbTMDORXCWNsqE5VO-rCkD5v1MWPzg9iPkYLjOoE3pLVDY2LQTg-2u3ObJ6SF2DhtGuXRHwsPeHWhbg2de6qAPTFj5led2yFtoMSx2oldXPMDJ9MAsdkk9LZOPDloL83T_3j1MbtDtyPV5Ak7GnaX4RnCosE9TwP_CsGBA6Y
  priority: 102
  providerName: Taylor & Francis
Title Multivariate statistical algorithms for landslide susceptibility assessment in Kailash Sacred landscape, Western Himalaya
URI https://www.tandfonline.com/doi/abs/10.1080/19475705.2023.2227324
https://www.proquest.com/docview/2902804889
https://doaj.org/article/af6b8967d2994da299be2c952957eef9
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELagHOCCeIrQEvnAkU29u_baPlLUEIGoEFBRTtZ4bZOV0hQ120r594ztTRTgkAsXHyyPbHnG47Fn5htCXnPhOAsSiraOXzcaeKFC8KgMAYLz3mofE4U_nTWzc_7hQlzslPqKMWEZHjhv3DGExirdSId6kzvA1vqq1dE_Jb0PKXWPabbzmEo6uI4OvOxS5rIQkolN-o5ix7Evdk1i7fBJzAatK_7HxZTw-_9CL_1HW6craPqIPBxsR_o2r_kxueOXT8j9oYz5fP2UrFM67S0-f9GCpDFXKMEwIw0sfl5dd_38ckVxKpoSfBedw0E3qxTYkmJk1xS2QJ20W9KP0KFxPadfIeKKZqoYMPWGfs8AC3TWXcIC1vCMnE9Pv72bFUNthaLlouwLp6wqwcqqsbiJAArQNFCOW14HUTaihVa18UR7B8yVtlLWcmidFE6DdlA_JwfLq6V_QahkrEWrryy99ry0Fi2eYFXAm1FC47wYEb7ZWNMOwOOx_sXClAM-6YYfJvLDDPwYkcmW7FdG3thHcBK5th0cgbNTB4qTGcTJ7BOnEdG7PDd9-jcJuciJqfcs4GgjIGbQBCtTJXgcVJP65f9Y3yF5EKfMUJNH5KC_vvGv0Czq7ZjcZT9m2Krp-zG5d3J69vnLOJ2K3zBrCq8
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9lAuiKfYUsAHuJFtHk7sHCpEodWWbVcIWtGbGcd2d6XtbummoPw5fhsex1leEj31koMTO5FnPDMZe76PkBcs1yy2HKIqw9RNCSwS1hpnDAGsNkaVBguFj8bF8IS9P81P18iPrhYGj1V2NtEbar2oMEe-nXqYEadu5euLrxGyRuHuakehAYFaQe94iLFQ2DEyzXf3C7fcOXjn5P0yTff3jt8Oo8AyEFUsT-pICyUSUDwtlLElgADnJIVmimU2T4q8gkpUqNtGQ6wTlQqlGFSa57qEUkPmxr1F1hkmUHpkfXdv_OHjKsuDaHU8bre2GY9yHuddGZGIt7ENmwbIYT7AqtQsZX84SM8j8BeK6j9ew7vC_bvkTohh6ZtW6e6RNTO_TzYCnfqkeUAaX9b7zf2Gu0iWYs2Sh4N2fWB25ia1npwvqXsV9YXGs6l2D10t_QEbf1a3obACDKXTOR3B1AX5E_oJEN-07YUHt17Rzy3QAx1Oz2EGDTwkJzcy-49Ib76Ym8eE8jiuXPSZJKY0LFHKRV5WCes8NIdCm7xPWDexsgoA6MjDMZNJwEnt5CFRHjLIo08Gq24XLQLIdR12UWqrhxHA2zcsLs9ksAcSbKFEWXDtwgGmwV2VSasSt125cTPRJ-XvMpe1z9_YlmxFZtd8wFanIDJYpKX8tX42_3_7OdkYHh8dysOD8egJuY0Dt8CWW6RXX16Zpy4Iq9WzoOmUfLnpxfUTAtpEHQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSMAFlZe6tAUfOJIl2bVj-wi0q4VChQQVcLLGr26k7W61m1baf8_YcVY8hHrgkkPiSSKPZ_zZnvmGkJeMO1YGAYUdx60bBayQIXh0hgDBeW-Uj4nCn07r6Rn78J330YTrHFYZ19ChI4pIvjoa96ULfUTca1x3Cy5KPoylv4cxmRNRwW1yh0uE5zikyx_T7TZLpIsTZXe2zEQRxfo8nn-96bcZKhH5_0Fj-pfbTnPRZJc8yCCSvum0_pDc8otH5F6uZz7bPCablFd7jetghJI0Jg0lPmaUgfn5ctW0s4s1xU_RlOk7bxw2ulqnCJcULLuhsGXspM2CnkCDKHtGv0AkGO2kYuTUK_qtY1qg0-YC5rCBJ-Rscvz13bTIRRYKy3jVFk4aWYERo9r4oAAkIEaQjhk2DryquQUrbTRt76B0lRlJYxhYJ7hToByMn5KdxXLh9wgVZWkR_lWVV55VxiD0CUYGnCIF1M7zAWF9x2qbGchjIYy5rjJRaa8PHfWhsz4GZLgVu-woOG4SeBu1tm0cGbTTjeXqXGeD1BBqI1UtHM7HzAFejR9ZFc89hceeGBD1q851mzZQQlftRI9v-IGDfoDo7BLWepR4ctBfqmf_8eoX5O7no4n--P70ZJ_cj0861skDstOurvwhIqTWPE828BM0MwZE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariate+statistical+algorithms+for+landslide+susceptibility+assessment+in+Kailash+Sacred+landscape%2C+Western+Himalaya&rft.jtitle=Geomatics%2C+natural+hazards+and+risk&rft.au=Pandey%2C+Arvind&rft.au=Shekhar+Sarkar%2C+Mriganka&rft.au=Palni%2C+Sarita&rft.au=Parashar%2C+Deepanshu&rft.date=2023-12-31&rft.issn=1947-5705&rft.eissn=1947-5713&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1080%2F19475705.2023.2227324&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_19475705_2023_2227324
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1947-5705&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1947-5705&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1947-5705&client=summon