Multivariate statistical algorithms for landslide susceptibility assessment in Kailash Sacred landscape, Western Himalaya
Landslide susceptibility mapping plays an imperative role in mitigating hazards and determining the future direction of developmental activities in mountainous regions. Here, we used 518 landslide occurrences and nine landslide-conditioning parameters to build landslide vulnerability models in the K...
Saved in:
Published in | Geomatics, natural hazards and risk Vol. 14; no. 1 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
31.12.2023
Taylor & Francis Ltd Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
ISSN | 1947-5705 1947-5713 |
DOI | 10.1080/19475705.2023.2227324 |
Cover
Abstract | Landslide susceptibility mapping plays an imperative role in mitigating hazards and determining the future direction of developmental activities in mountainous regions. Here, we used 518 landslide occurrences and nine landslide-conditioning parameters to build landslide vulnerability models in the Kailash Sacred Landscape (KSL), India. Four multivariate statistical models were applied, namely the generalized linear model (GLM), maximum entropy (MaxEnt), Mahalanobis D
2
(MD), and support vector machine (SVM), to calibrate and compare four maps of landslide susceptibility. The results demonstrated the outperformance of Mahalanobis D
2
for predictability compared to other models obtained from the area under the receiver operating characteristic curve (ROC). The ensemble model data shows that 10.5% of the landscape has susceptible conditions for future landslides, whereas 89.50% of the landscape falls under the safe zone. The occurrence of landslides in the KSL is linked to the middle elevations, vicinity to water bodies, and the motorable roads. Furthermore, the observed patterns and the resulting models exhibit the major variables that cause landslides and their respective significance. The current modelling approach could provide baseline data at the regional scale to improve the developmental planning in the KSL. |
---|---|
AbstractList | Landslide susceptibility mapping plays an imperative role in mitigating hazards and determining the future direction of developmental activities in mountainous regions. Here, we used 518 landslide occurrences and nine landslide-conditioning parameters to build landslide vulnerability models in the Kailash Sacred Landscape (KSL), India. Four multivariate statistical models were applied, namely the generalized linear model (GLM), maximum entropy (MaxEnt), Mahalanobis D2 (MD), and support vector machine (SVM), to calibrate and compare four maps of landslide susceptibility. The results demonstrated the outperformance of Mahalanobis D2 for predictability compared to other models obtained from the area under the receiver operating characteristic curve (ROC). The ensemble model data shows that 10.5% of the landscape has susceptible conditions for future landslides, whereas 89.50% of the landscape falls under the safe zone. The occurrence of landslides in the KSL is linked to the middle elevations, vicinity to water bodies, and the motorable roads. Furthermore, the observed patterns and the resulting models exhibit the major variables that cause landslides and their respective significance. The current modelling approach could provide baseline data at the regional scale to improve the developmental planning in the KSL. AbstractLandslide susceptibility mapping plays an imperative role in mitigating hazards and determining the future direction of developmental activities in mountainous regions. Here, we used 518 landslide occurrences and nine landslide-conditioning parameters to build landslide vulnerability models in the Kailash Sacred Landscape (KSL), India. Four multivariate statistical models were applied, namely the generalized linear model (GLM), maximum entropy (MaxEnt), Mahalanobis D2 (MD), and support vector machine (SVM), to calibrate and compare four maps of landslide susceptibility. The results demonstrated the outperformance of Mahalanobis D2 for predictability compared to other models obtained from the area under the receiver operating characteristic curve (ROC). The ensemble model data shows that 10.5% of the landscape has susceptible conditions for future landslides, whereas 89.50% of the landscape falls under the safe zone. The occurrence of landslides in the KSL is linked to the middle elevations, vicinity to water bodies, and the motorable roads. Furthermore, the observed patterns and the resulting models exhibit the major variables that cause landslides and their respective significance. The current modelling approach could provide baseline data at the regional scale to improve the developmental planning in the KSL. Landslide susceptibility mapping plays an imperative role in mitigating hazards and determining the future direction of developmental activities in mountainous regions. Here, we used 518 landslide occurrences and nine landslide-conditioning parameters to build landslide vulnerability models in the Kailash Sacred Landscape (KSL), India. Four multivariate statistical models were applied, namely the generalized linear model (GLM), maximum entropy (MaxEnt), Mahalanobis D 2 (MD), and support vector machine (SVM), to calibrate and compare four maps of landslide susceptibility. The results demonstrated the outperformance of Mahalanobis D 2 for predictability compared to other models obtained from the area under the receiver operating characteristic curve (ROC). The ensemble model data shows that 10.5% of the landscape has susceptible conditions for future landslides, whereas 89.50% of the landscape falls under the safe zone. The occurrence of landslides in the KSL is linked to the middle elevations, vicinity to water bodies, and the motorable roads. Furthermore, the observed patterns and the resulting models exhibit the major variables that cause landslides and their respective significance. The current modelling approach could provide baseline data at the regional scale to improve the developmental planning in the KSL. |
Author | Costache, Romulus Pratap Mishra, Arun Pratap Singh, Ajit Singh, Gajendra Kaushik, Saurabh Parashar, Deepanshu Almohamad, Hussein Al-Mutiry, Motrih Palni, Sarita Abdo, Hazem Ghassan Pandey, Arvind Chandra, Naveen Shekhar Sarkar, Mriganka |
Author_xml | – sequence: 1 givenname: Arvind surname: Pandey fullname: Pandey, Arvind organization: Department of Remote Sensing and GIS, Soban Singh Jeena University – sequence: 2 givenname: Mriganka surname: Shekhar Sarkar fullname: Shekhar Sarkar, Mriganka organization: G.B. Pant National Institute of Himalayan Environment (GBPNIHE), North-East Regional Centre – sequence: 3 givenname: Sarita surname: Palni fullname: Palni, Sarita organization: Department of Remote Sensing and GIS, Soban Singh Jeena University – sequence: 4 givenname: Deepanshu surname: Parashar fullname: Parashar, Deepanshu organization: Department of Remote Sensing and GIS, Soban Singh Jeena University – sequence: 5 givenname: Gajendra surname: Singh fullname: Singh, Gajendra organization: Forest and Climate Change Division, Uttarakhand Space Application Centre – sequence: 6 givenname: Saurabh surname: Kaushik fullname: Kaushik, Saurabh organization: Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA – sequence: 7 givenname: Naveen surname: Chandra fullname: Chandra, Naveen organization: Forest and Climate Change Division, Uttarakhand Space Application Centre – sequence: 8 givenname: Romulus surname: Costache fullname: Costache, Romulus organization: Danube Delta National Institute for Research and Development – sequence: 9 givenname: Ajit surname: Pratap Singh fullname: Pratap Singh, Ajit organization: Civil Engineering Department, Birla Institute of Technology and Science – sequence: 10 givenname: Arun surname: Pratap Mishra fullname: Pratap Mishra, Arun organization: Department of Habitat Ecology, Wildlife Institute of India – sequence: 11 givenname: Hussein surname: Almohamad fullname: Almohamad, Hussein organization: Department of Geography, College of Arabic Language and Social Studies, Qassim University – sequence: 12 givenname: Motrih surname: Al-Mutiry fullname: Al-Mutiry, Motrih organization: Department of Geography, College of Arts, Princess Nourah Bint Abdulrahman University – sequence: 13 givenname: Hazem Ghassan surname: Abdo fullname: Abdo, Hazem Ghassan organization: Geography Department, Faculty of Arts and Humanities, Tartous University |
BookMark | eNqFUctuFDEQHKEgEZJ8ApIlruxie-wdW1xAUSARiTgkiKPVfkzilddebC9o_h4Pk3DgAH1wW62q6ke97I5iiq7rXhG8Jljgt0SygQ-Yrymm_ZpSOvSUPeuO5_qKD6Q_-vPH_EV3VsoWt-ipGDA77qabQ6j-B2QP1aFSofpSvYGAINyn7OvDrqAxZRQg2hK8baBDMW5fvfbB1wlBKa6UnYsV-Yg-gw9QHtAtmOzswjKwd2_QN1eqyxFd-h0EmOC0ez5CKO7sMZ90Xz9e3J1frq6_fLo6_3C9MoyTurJCCwJ6oBvtRgkgQBApLNOsHznZcANGGIwZdRawJZoKrRkYO3ArQVroT7qrRdcm2Kp9bu3zpBJ49buQ8r2C3FYOTsG40UJuBkulZBbaqx01klPJB9e6N63Xi9Y-p--HtpDapkOObXxFJaYCMyFm1LsFZXIqJbtRGT8fNsWa23kUwWq2Tj1Zp2br1KN1jc3_Yj_N_D_e-4XnY_NrBz9TDlZVmELKY4ZofFH9vyV-ATdstQA |
CitedBy_id | crossref_primary_10_3390_rs16122206 crossref_primary_10_1080_19475705_2024_2341176 crossref_primary_10_1093_inteam_vjae002 crossref_primary_10_3390_rs15205007 crossref_primary_10_1007_s10661_023_12131_7 crossref_primary_10_1016_j_catena_2024_107835 crossref_primary_10_1007_s11356_023_31352_4 crossref_primary_10_1038_s41598_024_53120_1 |
Cites_doi | 10.1007/s10346-012-0320-1 10.1038/s41598-023-28991-5 10.1111/j.0906-7590.2008.5203.x 10.1002/2013EO050007 10.1038/s41598-021-85862-7 10.1007/s10661-019-7487-z 10.1016/j.ecolmodel.2006.05.017 10.3389/feart.2022.953627 10.1111/j.1472-4642.2010.00725.x 10.1126/science.3287615 10.7717/peerj.7005 10.1007/s11629-022-7593-1 10.1016/S0013-7952(01)00096-5 10.1023/A:1024048429145 10.1007/s11069-014-1245-x 10.3390/app9010171 10.3390/rs11232866 10.3390/ijerph17124206 10.5194/nhess-5-853-2005 10.1088/0953-8984/22/6/063101 10.1007/s00477-022-02212-3 10.1016/j.geomorph.2009.09.035 10.1016/j.catena.2020.104630 10.1007/978-3-642-00296-0_5 10.1007/s10462-009-9124-7 10.1007/s12665-009-0394-9 10.1111/2041-210X.12200 10.1007/s11442-014-1134-y 10.1016/j.geomorph.2005.06.002 10.2307/3809276 10.3390/rs10081252 10.3390/rs13183623 10.1016/j.jseaes.2012.12.014 10.1002/(SICI)1526-4025(199904/06)15:2<89::AID-ASMB366>3.0.CO;2-K 10.1016/0378-1127(95)03584-5 10.1016/j.catena.2018.01.005 10.1016/S0098-3004(97)00117-9 10.1016/j.catena.2019.104364 10.2307/3673806 10.1111/ecog.01881 10.1111/j.1600-0587.2008.05742.x 10.1007/s10064-019-01506-1 10.1002/qj.210 10.1016/S0304-3800(02)00327-7 10.1016/j.geomorph.2008.04.013 10.1016/j.catena.2018.03.003 10.1126/science.1116681 10.1144/1470-9236/09-029 10.1016/j.geomorph.2008.01.014 10.1016/j.geoderma.2017.06.020 10.1007/s13762-021-03322-1 10.1016/s0895-4356(99)00075-x 10.1016/S0169-555X(01)00035-6 10.1186/s40677-020-00152-0 10.1016/j.scitotenv.2019.136455 10.1111/j.1600-0587.2010.06953.x 10.1080/19475705.2023.2210255 10.1016/j.geomorph.2008.05.041 10.1007/s12665-014-3442-z 10.1080/14498596.2018.1505564 10.1016/S0169-555X(98)00051-8 10.1186/s40562-022-00249-4 10.1186/s40562-022-00256-5 10.1007/s12665-022-10525-3 10.1016/S0013-7952(96)00033-6 10.1023/A:1010933404324 10.18637/jss.v015.i09 10.1007/BF00994018 10.1007/s00254-008-1420-z 10.1016/j.cageo.2012.08.023 10.1007/s00704-015-1702-9 10.1016/j.geomorph.2007.04.007 10.1007/s11069-022-05554-x |
ContentType | Journal Article |
Copyright | 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2023 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2023 – notice: 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 0YH AAYXX CITATION 7ST 7TG 7TN 7UA 8FD 8FE 8FG 8FH ABJCF AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H8D H96 H97 HCIFZ KL. KR7 L.G L6V L7M LK8 M7P M7S P5Z P62 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY SOI DOA |
DOI | 10.1080/19475705.2023.2227324 |
DatabaseName | Taylor & Francis Open Access CrossRef Environment Abstracts Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection (subscription) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection (subscription) ProQuest Central Technology Collection Natural Science Collection ProQuest Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ProQuest SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences Biological Science Database Engineering Database (subscription) AAdvanced Technologies & Aerospace Database (subscription) ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database (subscripiton) Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering collection Environmental Science Collection Environment Abstracts DOAJ |
DatabaseTitle | CrossRef ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection Biological Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Biological Science Database Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest One Community College ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database ProQuest Engineering Collection Oceanic Abstracts ProQuest Central Korea Agricultural & Environmental Science Collection Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environment Abstracts |
DatabaseTitleList | ProQuest Central Student |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1947-5713 |
ExternalDocumentID | oai_doaj_org_article_af6b8967d2994da299be2c952957eef9 10_1080_19475705_2023_2227324 2227324 |
Genre | Research Article |
GroupedDBID | .7F 0YH 4.4 5VS 7XC 8FE 8FG 8FH ABJCF ACGFS ACIWK ACPRK ADBBV ADCVX ADMSI AEUYN AFKRA AFPKN AFRAH AHDSZ ALMA_UNASSIGNED_HOLDINGS ARAPS ATCPS BBNVY BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CE4 EBS ECGQY GROUPED_DOAJ GTTXZ H13 HCIFZ HZ~ IPNFZ J~4 L6V LK5 LK8 M4Z M7P M7R M7S OK1 P2P P62 PATMY PCBAR PTHSS PYCSY RDKPK RIG TDBHL TFL TFW UU3 AAFWJ AAYXX CITATION PHGZM PHGZT 7ST 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W FR3 GNUQQ H8D H96 H97 KL. KR7 L.G L7M PKEHL PQEST PQGLB PQQKQ PQUKI SOI PUEGO |
ID | FETCH-LOGICAL-c451t-d8b81ab726bef9aa8a8198d4b43f5165cac8c0042eda0d1b28bb4acd75d9a9da3 |
IEDL.DBID | DOA |
ISSN | 1947-5705 |
IngestDate | Wed Aug 27 01:32:27 EDT 2025 Fri Jul 25 12:02:41 EDT 2025 Thu Apr 24 23:03:44 EDT 2025 Tue Jul 01 01:26:04 EDT 2025 Wed Dec 25 09:03:08 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-d8b81ab726bef9aa8a8198d4b43f5165cac8c0042eda0d1b28bb4acd75d9a9da3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/af6b8967d2994da299be2c952957eef9 |
PQID | 2902804889 |
PQPubID | 436431 |
ParticipantIDs | proquest_journals_2902804889 informaworld_taylorfrancis_310_1080_19475705_2023_2227324 crossref_citationtrail_10_1080_19475705_2023_2227324 doaj_primary_oai_doaj_org_article_af6b8967d2994da299be2c952957eef9 crossref_primary_10_1080_19475705_2023_2227324 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-31 |
PublicationDateYYYYMMDD | 2023-12-31 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | Geomatics, natural hazards and risk |
PublicationYear | 2023 |
Publisher | Taylor & Francis Taylor & Francis Ltd Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd – name: Taylor & Francis Group |
References | e_1_3_5_29_1 e_1_3_5_25_1 e_1_3_5_23_1 e_1_3_5_44_1 e_1_3_5_67_1 e_1_3_5_46_1 e_1_3_5_69_1 Kuncheva LI. 2004. (e_1_3_5_48_1) Lee S. (e_1_3_5_50_1) 2019; 35 e_1_3_5_82_1 e_1_3_5_3_1 e_1_3_5_61_1 e_1_3_5_80_1 e_1_3_5_40_1 e_1_3_5_63_1 e_1_3_5_42_1 e_1_3_5_65_1 e_1_3_5_84_1 e_1_3_5_9_1 e_1_3_5_21_1 e_1_3_5_5_1 e_1_3_5_7_1 Brownlee J. (e_1_3_5_15_1) e_1_3_5_18_1 e_1_3_5_39_1 e_1_3_5_16_1 e_1_3_5_37_1 e_1_3_5_14_1 ERDAS Inc (e_1_3_5_26_1) 1999 e_1_3_5_35_1 e_1_3_5_12_1 e_1_3_5_33_1 e_1_3_5_56_1 e_1_3_5_77_1 e_1_3_5_58_1 e_1_3_5_79_1 e_1_3_5_71_1 e_1_3_5_52_1 e_1_3_5_73_1 e_1_3_5_54_1 e_1_3_5_75_1 e_1_3_5_10_1 e_1_3_5_31_1 e_1_3_5_28_1 e_1_3_5_24_1 e_1_3_5_22_1 e_1_3_5_45_1 e_1_3_5_66_1 e_1_3_5_47_1 e_1_3_5_68_1 e_1_3_5_49_1 ESRI (e_1_3_5_27_1) 2008 e_1_3_5_83_1 Mehrotra GS (e_1_3_5_51_1) 1996; 47 e_1_3_5_2_1 e_1_3_5_60_1 e_1_3_5_81_1 e_1_3_5_41_1 e_1_3_5_62_1 e_1_3_5_43_1 e_1_3_5_64_1 e_1_3_5_8_1 e_1_3_5_20_1 e_1_3_5_4_1 e_1_3_5_6_1 e_1_3_5_17_1 e_1_3_5_38_1 e_1_3_5_13_1 e_1_3_5_36_1 e_1_3_5_11_1 e_1_3_5_34_1 e_1_3_5_55_1 e_1_3_5_78_1 e_1_3_5_57_1 e_1_3_5_59_1 e_1_3_5_19_1 e_1_3_5_70_1 e_1_3_5_72_1 e_1_3_5_74_1 e_1_3_5_53_1 e_1_3_5_76_1 e_1_3_5_32_1 e_1_3_5_30_1 |
References_xml | – ident: e_1_3_5_29_1 doi: 10.1007/s10346-012-0320-1 – ident: e_1_3_5_61_1 doi: 10.1038/s41598-023-28991-5 – ident: e_1_3_5_58_1 doi: 10.1111/j.0906-7590.2008.5203.x – ident: e_1_3_5_65_1 doi: 10.1002/2013EO050007 – ident: e_1_3_5_43_1 doi: 10.1038/s41598-021-85862-7 – volume: 47 start-page: 491 year: 1996 ident: e_1_3_5_51_1 article-title: Terrain analysis and spatial assessment of landslide hazards in parts of Sikkim Himalaya publication-title: J Geol Soc India – ident: e_1_3_5_72_1 doi: 10.1007/s10661-019-7487-z – ident: e_1_3_5_40_1 doi: 10.1016/j.ecolmodel.2006.05.017 – volume: 35 start-page: 179 issue: 1 year: 2019 ident: e_1_3_5_50_1 article-title: Current and future status of GIS-based landslide susceptibility mapping: a literature review publication-title: Korean J Remote Sens – ident: e_1_3_5_62_1 doi: 10.3389/feart.2022.953627 – ident: e_1_3_5_25_1 doi: 10.1111/j.1472-4642.2010.00725.x – ident: e_1_3_5_74_1 doi: 10.1126/science.3287615 – ident: e_1_3_5_73_1 doi: 10.7717/peerj.7005 – ident: e_1_3_5_67_1 doi: 10.1007/s11629-022-7593-1 – ident: e_1_3_5_10_1 doi: 10.1016/S0013-7952(01)00096-5 – ident: e_1_3_5_76_1 doi: 10.1023/A:1024048429145 – ident: e_1_3_5_77_1 doi: 10.1007/s11069-014-1245-x – ident: e_1_3_5_81_1 – ident: e_1_3_5_18_1 doi: 10.3390/app9010171 – ident: e_1_3_5_64_1 doi: 10.3390/rs11232866 – ident: e_1_3_5_78_1 doi: 10.3390/ijerph17124206 – ident: e_1_3_5_13_1 doi: 10.5194/nhess-5-853-2005 – ident: e_1_3_5_6_1 doi: 10.1088/0953-8984/22/6/063101 – ident: e_1_3_5_66_1 doi: 10.1007/s00477-022-02212-3 – ident: e_1_3_5_47_1 doi: 10.1016/j.geomorph.2009.09.035 – ident: e_1_3_5_11_1 doi: 10.1016/j.catena.2020.104630 – ident: e_1_3_5_9_1 doi: 10.1007/978-3-642-00296-0_5 – ident: e_1_3_5_63_1 doi: 10.1007/s10462-009-9124-7 – ident: e_1_3_5_82_1 doi: 10.1007/s12665-009-0394-9 – ident: e_1_3_5_14_1 doi: 10.1111/2041-210X.12200 – ident: e_1_3_5_32_1 doi: 10.1007/s11442-014-1134-y – ident: e_1_3_5_33_1 doi: 10.1016/j.geomorph.2005.06.002 – ident: e_1_3_5_39_1 – ident: e_1_3_5_19_1 doi: 10.2307/3809276 – ident: e_1_3_5_44_1 doi: 10.3390/rs10081252 – ident: e_1_3_5_71_1 doi: 10.3390/rs13183623 – ident: e_1_3_5_55_1 doi: 10.1016/j.jseaes.2012.12.014 – ident: e_1_3_5_80_1 doi: 10.1002/(SICI)1526-4025(199904/06)15:2<89::AID-ASMB366>3.0.CO;2-K – ident: e_1_3_5_34_1 doi: 10.1016/0378-1127(95)03584-5 – ident: e_1_3_5_41_1 doi: 10.1016/j.catena.2018.01.005 – ident: e_1_3_5_5_1 doi: 10.1016/S0098-3004(97)00117-9 – ident: e_1_3_5_59_1 doi: 10.1016/j.catena.2019.104364 – ident: e_1_3_5_69_1 doi: 10.2307/3673806 – ident: e_1_3_5_53_1 doi: 10.1111/ecog.01881 – ident: e_1_3_5_75_1 doi: 10.1111/j.1600-0587.2008.05742.x – ident: e_1_3_5_36_1 doi: 10.1007/s10064-019-01506-1 – volume-title: ArcGIS 9.3 year: 2008 ident: e_1_3_5_27_1 – ident: e_1_3_5_79_1 doi: 10.1002/qj.210 – ident: e_1_3_5_28_1 doi: 10.1016/S0304-3800(02)00327-7 – ident: e_1_3_5_24_1 doi: 10.1016/j.geomorph.2008.04.013 – ident: e_1_3_5_42_1 doi: 10.1016/j.catena.2018.03.003 – ident: e_1_3_5_31_1 doi: 10.1126/science.1116681 – ident: e_1_3_5_68_1 doi: 10.1144/1470-9236/09-029 – ident: e_1_3_5_21_1 doi: 10.1016/j.geomorph.2008.01.014 – ident: e_1_3_5_17_1 doi: 10.1016/j.geoderma.2017.06.020 – ident: e_1_3_5_2_1 doi: 10.1007/s13762-021-03322-1 – volume-title: Combining pattern classifiers: methods and algorithms ident: e_1_3_5_48_1 – volume-title: Ensemble learning algorithms with Python: Make better predictions with bagging, boosting, and stacking. ident: e_1_3_5_15_1 – ident: e_1_3_5_16_1 doi: 10.1016/s0895-4356(99)00075-x – volume-title: Erdas field guide year: 1999 ident: e_1_3_5_26_1 – ident: e_1_3_5_7_1 doi: 10.1016/S0169-555X(01)00035-6 – ident: e_1_3_5_49_1 – ident: e_1_3_5_70_1 doi: 10.1186/s40677-020-00152-0 – ident: e_1_3_5_46_1 doi: 10.1016/j.scitotenv.2019.136455 – ident: e_1_3_5_84_1 doi: 10.1111/j.1600-0587.2010.06953.x – ident: e_1_3_5_8_1 doi: 10.1080/19475705.2023.2210255 – ident: e_1_3_5_22_1 doi: 10.1016/j.geomorph.2008.05.041 – ident: e_1_3_5_56_1 doi: 10.1007/s12665-014-3442-z – ident: e_1_3_5_30_1 doi: 10.1080/14498596.2018.1505564 – ident: e_1_3_5_38_1 doi: 10.1016/S0169-555X(98)00051-8 – ident: e_1_3_5_52_1 doi: 10.1186/s40562-022-00249-4 – ident: e_1_3_5_3_1 doi: 10.1186/s40562-022-00256-5 – ident: e_1_3_5_83_1 doi: 10.1007/s12665-022-10525-3 – ident: e_1_3_5_4_1 doi: 10.1016/S0013-7952(96)00033-6 – ident: e_1_3_5_12_1 doi: 10.1023/A:1010933404324 – ident: e_1_3_5_45_1 doi: 10.18637/jss.v015.i09 – ident: e_1_3_5_37_1 – ident: e_1_3_5_20_1 doi: 10.1007/BF00994018 – ident: e_1_3_5_35_1 doi: 10.1007/s00254-008-1420-z – ident: e_1_3_5_60_1 doi: 10.1016/j.cageo.2012.08.023 – ident: e_1_3_5_57_1 doi: 10.1007/s00704-015-1702-9 – ident: e_1_3_5_54_1 doi: 10.1016/j.geomorph.2007.04.007 – ident: e_1_3_5_23_1 doi: 10.1007/s11069-022-05554-x |
SSID | ssj0000328704 |
Score | 2.3420906 |
Snippet | Landslide susceptibility mapping plays an imperative role in mitigating hazards and determining the future direction of developmental activities in mountainous... AbstractLandslide susceptibility mapping plays an imperative role in mitigating hazards and determining the future direction of developmental activities in... |
SourceID | doaj proquest crossref informaworld |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Algorithms Baseline studies Boyce Index Generalized linear models Hazard mitigation Himalaya landscape vulnerability landslide conditioning Landslide susceptibility modelling Landslides Landslides & mudslides Mathematical models Maximum entropy Modelling Mountain regions Mountainous areas Multivariate analysis Regional development Regional planning risk assessment Statistical analysis Statistical models Support vector machines Vulnerability |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LbxMxELZKeoAL4ikCBfnAkU33Ya_tA0IUtYpARAio6M0av5pIaVKaLVL-PR6vN7wketmD17MPz-zM7HjmG0JeMu5YGQQUtsHQjQJWyBB8VIYAwXlvlMdC4Y-zdnrK3p_xsz0yG2phMK1y0IlJUbu1xRj5YZ1gRqK4qTeX3wvsGoW7q0MLDcitFdzrBDF2i-xHlczLEdk_Op59-ryLuiB6nCj7rWYmCi5KPpT1yPIQx3Bogj3FJ1gl2tTsD4OVcP3_QjX9R4sn03Ryj9zNPiV92wvBfbLnVw_I7dzefL59SLapzPZH_C2OniXFGqIEzxxpYHkeX7KbX2xovBVNhb_LhYuTrjcp4SXlzm4p7AA86WJFP8AiOt1z-gUQb7SnwkSqV_RbD7xAp4sLWMIWHpHTk-Ov76ZF7rlQWMarrnDSyAqMqFvjgwKQEF0G6ZhhTeBVyy1YafFL9w5KV5laGsPAOsGdAuWgeUxGq_XKPyFUlKWN3mBVeeVZZUz0hIKRIVpMAa3zfEzYsLDaZkBy7Iux1FXGLR34oZEfOvNjTCY7sssekeMmgiPk2m4yAmqngfXVuc7fp4bQGqla4aJ5Zg7i0fjaKtwGFT6uxJio33muuxRPCX3zE93c8AAHg4DorCE2-pc8P_3_6WfkDl6sB5c8IKPu6to_j45QZ15k6f4JCWoE7g priority: 102 providerName: ProQuest – databaseName: Taylor & Francis Open Access dbid: 0YH link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZgOcAF8RRlF-QDR1KS1I7tIyBWFQgusAJO1ji2t5G6LWqySP33O-M4FQ-hPXCJlMiTRB575rM98w1jL4T0oowKinZBWzcGRKFjDGgMAaIPwZlAicIfPzXLM_H-m5yiCfscVklr6DgSRSRbTZMbXD9FxL3CdbeSqpRzKv09p2RORAU32a1aob_BIV1-Xx62WYguTpXj2bJQBYlNeTz_etNvHioR-f9BY_qX2U6-6PQeu5tBJH89av0-uxE2D9jtXM98tX_I9imv9ieugxFKckoaSnzMKAPr8-2uG1YXPcdP8ZTpu-48NrrsU4RLCpbdczgwdvJuwz9Ahyh7xT8DEYyOUhQ59ZJ_HZkW-LK7gDXs4RE7O3335e2yyEUWilbIaii8droCp-rGhWgANCBG0F44sYiyamQLrW5pagcPpa9crZ0T0HolvQHjYfGYHW22m_CEcVWWLcK_qgomiMo5hD7R6YguUkHjg5wxMXWsbTMDORXCWNsqE5VO-rCkD5v1MWPzg9iPkYLjOoE3pLVDY2LQTg-2u3ObJ6SF2DhtGuXRHwsPeHWhbg2de6qAPTFj5led2yFtoMSx2oldXPMDJ9MAsdkk9LZOPDloL83T_3j1MbtDtyPV5Ak7GnaX4RnCosE9TwP_CsGBA6Y priority: 102 providerName: Taylor & Francis |
Title | Multivariate statistical algorithms for landslide susceptibility assessment in Kailash Sacred landscape, Western Himalaya |
URI | https://www.tandfonline.com/doi/abs/10.1080/19475705.2023.2227324 https://www.proquest.com/docview/2902804889 https://doaj.org/article/af6b8967d2994da299be2c952957eef9 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELagHOCCeIrQEvnAkU29u_baPlLUEIGoEFBRTtZ4bZOV0hQ120r594ztTRTgkAsXHyyPbHnG47Fn5htCXnPhOAsSiraOXzcaeKFC8KgMAYLz3mofE4U_nTWzc_7hQlzslPqKMWEZHjhv3DGExirdSId6kzvA1vqq1dE_Jb0PKXWPabbzmEo6uI4OvOxS5rIQkolN-o5ix7Evdk1i7fBJzAatK_7HxZTw-_9CL_1HW6craPqIPBxsR_o2r_kxueOXT8j9oYz5fP2UrFM67S0-f9GCpDFXKMEwIw0sfl5dd_38ckVxKpoSfBedw0E3qxTYkmJk1xS2QJ20W9KP0KFxPadfIeKKZqoYMPWGfs8AC3TWXcIC1vCMnE9Pv72bFUNthaLlouwLp6wqwcqqsbiJAArQNFCOW14HUTaihVa18UR7B8yVtlLWcmidFE6DdlA_JwfLq6V_QahkrEWrryy99ry0Fi2eYFXAm1FC47wYEb7ZWNMOwOOx_sXClAM-6YYfJvLDDPwYkcmW7FdG3thHcBK5th0cgbNTB4qTGcTJ7BOnEdG7PDd9-jcJuciJqfcs4GgjIGbQBCtTJXgcVJP65f9Y3yF5EKfMUJNH5KC_vvGv0Czq7ZjcZT9m2Krp-zG5d3J69vnLOJ2K3zBrCq8 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9lAuiKfYUsAHuJFtHk7sHCpEodWWbVcIWtGbGcd2d6XtbummoPw5fhsex1leEj31koMTO5FnPDMZe76PkBcs1yy2HKIqw9RNCSwS1hpnDAGsNkaVBguFj8bF8IS9P81P18iPrhYGj1V2NtEbar2oMEe-nXqYEadu5euLrxGyRuHuakehAYFaQe94iLFQ2DEyzXf3C7fcOXjn5P0yTff3jt8Oo8AyEFUsT-pICyUSUDwtlLElgADnJIVmimU2T4q8gkpUqNtGQ6wTlQqlGFSa57qEUkPmxr1F1hkmUHpkfXdv_OHjKsuDaHU8bre2GY9yHuddGZGIt7ENmwbIYT7AqtQsZX84SM8j8BeK6j9ew7vC_bvkTohh6ZtW6e6RNTO_TzYCnfqkeUAaX9b7zf2Gu0iWYs2Sh4N2fWB25ia1npwvqXsV9YXGs6l2D10t_QEbf1a3obACDKXTOR3B1AX5E_oJEN-07YUHt17Rzy3QAx1Oz2EGDTwkJzcy-49Ib76Ym8eE8jiuXPSZJKY0LFHKRV5WCes8NIdCm7xPWDexsgoA6MjDMZNJwEnt5CFRHjLIo08Gq24XLQLIdR12UWqrhxHA2zcsLs9ksAcSbKFEWXDtwgGmwV2VSasSt125cTPRJ-XvMpe1z9_YlmxFZtd8wFanIDJYpKX8tX42_3_7OdkYHh8dysOD8egJuY0Dt8CWW6RXX16Zpy4Iq9WzoOmUfLnpxfUTAtpEHQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSMAFlZe6tAUfOJIl2bVj-wi0q4VChQQVcLLGr26k7W61m1baf8_YcVY8hHrgkkPiSSKPZ_zZnvmGkJeMO1YGAYUdx60bBayQIXh0hgDBeW-Uj4nCn07r6Rn78J330YTrHFYZ19ChI4pIvjoa96ULfUTca1x3Cy5KPoylv4cxmRNRwW1yh0uE5zikyx_T7TZLpIsTZXe2zEQRxfo8nn-96bcZKhH5_0Fj-pfbTnPRZJc8yCCSvum0_pDc8otH5F6uZz7bPCablFd7jetghJI0Jg0lPmaUgfn5ctW0s4s1xU_RlOk7bxw2ulqnCJcULLuhsGXspM2CnkCDKHtGv0AkGO2kYuTUK_qtY1qg0-YC5rCBJ-Rscvz13bTIRRYKy3jVFk4aWYERo9r4oAAkIEaQjhk2DryquQUrbTRt76B0lRlJYxhYJ7hToByMn5KdxXLh9wgVZWkR_lWVV55VxiD0CUYGnCIF1M7zAWF9x2qbGchjIYy5rjJRaa8PHfWhsz4GZLgVu-woOG4SeBu1tm0cGbTTjeXqXGeD1BBqI1UtHM7HzAFejR9ZFc89hceeGBD1q851mzZQQlftRI9v-IGDfoDo7BLWepR4ctBfqmf_8eoX5O7no4n--P70ZJ_cj0861skDstOurvwhIqTWPE828BM0MwZE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariate+statistical+algorithms+for+landslide+susceptibility+assessment+in+Kailash+Sacred+landscape%2C+Western+Himalaya&rft.jtitle=Geomatics%2C+natural+hazards+and+risk&rft.au=Pandey%2C+Arvind&rft.au=Shekhar+Sarkar%2C+Mriganka&rft.au=Palni%2C+Sarita&rft.au=Parashar%2C+Deepanshu&rft.date=2023-12-31&rft.issn=1947-5705&rft.eissn=1947-5713&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1080%2F19475705.2023.2227324&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_19475705_2023_2227324 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1947-5705&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1947-5705&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1947-5705&client=summon |