Regulation of intracellular levels of NAD: A novel role for CD38
Nicotinamide adenine dinucleotide (NAD) plays key roles in many cellular functions. In addition to its well-known role in energy metabolism, NAD also plays a role in signal transduction, ageing, and cellular injury. NAD is also involved in many signal transduction pathways. Therefore, it is imperati...
Saved in:
Published in | Biochemical and biophysical research communications Vol. 345; no. 4; pp. 1386 - 1392 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
14.07.2006
|
Subjects | |
Online Access | Get full text |
ISSN | 0006-291X 1090-2104 |
DOI | 10.1016/j.bbrc.2006.05.042 |
Cover
Abstract | Nicotinamide adenine dinucleotide (NAD) plays key roles in many cellular functions. In addition to its well-known role in energy metabolism, NAD also plays a role in signal transduction, ageing, and cellular injury. NAD is also involved in many signal transduction pathways. Therefore, it is imperative to understand the mechanisms that control intracellular NAD levels. However, to date, the mechanisms that regulate intracellular levels of NAD have not been completely elucidated. CD38 is a multifunctional enzyme ubiquitously distributed in mammalian tissues. CD38 has been implicated as the enzyme responsible for the synthesis of the second messengers. However, its major enzymatic activity is the hydrolysis of NAD, in fact, CD38 will generate one molecule of cADPR for every 100 molecules of NAD hydrolyzed. To date, the role of CD38 as a modulator of levels of NAD has not been explored. We postulated that CD38 is the major NADase in mammalian cells and that it regulates intracellular NAD levels. In the current studies we examined the NADase activities and NAD levels in a variety of tissues from both wild-type and CD38 deficient mice. In accordance with our hypothesis, we found that tissue levels of NAD in CD38 deficient mice are 10- to 20-fold higher than in wild-type animals. In addition, NADase activity in the plasma membrane, mitochondria, sarcoplasmic reticulum, and nuclei is essentially absent in most tissues from CD38 deficient mice. These data support the novel concept that CD38 is a major regulator of cellular NAD levels. These findings have implications for understanding the mechanisms that regulate intracellular NAD levels and its role in energy homeostasis, signal transduction, and ageing. |
---|---|
AbstractList | Nicotinamide adenine dinucleotide (NAD) plays key roles in many cellular functions. In addition to its well-known role in energy metabolism, NAD also plays a role in signal transduction, ageing, and cellular injury. NAD is also involved in many signal transduction pathways. Therefore, it is imperative to understand the mechanisms that control intracellular NAD levels. However, to date, the mechanisms that regulate intracellular levels of NAD have not been completely elucidated. CD38 is a multifunctional enzyme ubiquitously distributed in mammalian tissues. CD38 has been implicated as the enzyme responsible for the synthesis of the second messengers. However, its major enzymatic activity is the hydrolysis of NAD, in fact, CD38 will generate one molecule of cADPR for every 100 molecules of NAD hydrolyzed. To date, the role of CD38 as a modulator of levels of NAD has not been explored. We postulated that CD38 is the major NADase in mammalian cells and that it regulates intracellular NAD levels. In the current studies we examined the NADase activities and NAD levels in a variety of tissues from both wild-type and CD38 deficient mice. In accordance with our hypothesis, we found that tissue levels of NAD in CD38 deficient mice are 10- to 20-fold higher than in wild-type animals. In addition, NADase activity in the plasma membrane, mitochondria, sarcoplasmic reticulum, and nuclei is essentially absent in most tissues from CD38 deficient mice. These data support the novel concept that CD38 is a major regulator of cellular NAD levels. These findings have implications for understanding the mechanisms that regulate intracellular NAD levels and its role in energy homeostasis, signal transduction, and ageing.Nicotinamide adenine dinucleotide (NAD) plays key roles in many cellular functions. In addition to its well-known role in energy metabolism, NAD also plays a role in signal transduction, ageing, and cellular injury. NAD is also involved in many signal transduction pathways. Therefore, it is imperative to understand the mechanisms that control intracellular NAD levels. However, to date, the mechanisms that regulate intracellular levels of NAD have not been completely elucidated. CD38 is a multifunctional enzyme ubiquitously distributed in mammalian tissues. CD38 has been implicated as the enzyme responsible for the synthesis of the second messengers. However, its major enzymatic activity is the hydrolysis of NAD, in fact, CD38 will generate one molecule of cADPR for every 100 molecules of NAD hydrolyzed. To date, the role of CD38 as a modulator of levels of NAD has not been explored. We postulated that CD38 is the major NADase in mammalian cells and that it regulates intracellular NAD levels. In the current studies we examined the NADase activities and NAD levels in a variety of tissues from both wild-type and CD38 deficient mice. In accordance with our hypothesis, we found that tissue levels of NAD in CD38 deficient mice are 10- to 20-fold higher than in wild-type animals. In addition, NADase activity in the plasma membrane, mitochondria, sarcoplasmic reticulum, and nuclei is essentially absent in most tissues from CD38 deficient mice. These data support the novel concept that CD38 is a major regulator of cellular NAD levels. These findings have implications for understanding the mechanisms that regulate intracellular NAD levels and its role in energy homeostasis, signal transduction, and ageing. Nicotinamide adenine dinucleotide (NAD) plays key roles in many cellular functions. In addition to its well-known role in energy metabolism, NAD also plays a role in signal transduction, ageing, and cellular injury. NAD is also involved in many signal transduction pathways. Therefore, it is imperative to understand the mechanisms that control intracellular NAD levels. However, to date, the mechanisms that regulate intracellular levels of NAD have not been completely elucidated. CD38 is a multifunctional enzyme ubiquitously distributed in mammalian tissues. CD38 has been implicated as the enzyme responsible for the synthesis of the second messengers. However, its major enzymatic activity is the hydrolysis of NAD, in fact, CD38 will generate one molecule of cADPR for every 100 molecules of NAD hydrolyzed. To date, the role of CD38 as a modulator of levels of NAD has not been explored. We postulated that CD38 is the major NADase in mammalian cells and that it regulates intracellular NAD levels. In the current studies we examined the NADase activities and NAD levels in a variety of tissues from both wild-type and CD38 deficient mice. In accordance with our hypothesis, we found that tissue levels of NAD in CD38 deficient mice are 10- to 20-fold higher than in wild-type animals. In addition, NADase activity in the plasma membrane, mitochondria, sarcoplasmic reticulum, and nuclei is essentially absent in most tissues from CD38 deficient mice. These data support the novel concept that CD38 is a major regulator of cellular NAD levels. These findings have implications for understanding the mechanisms that regulate intracellular NAD levels and its role in energy homeostasis, signal transduction, and ageing. |
Author | Aksoy, Pinar White, Thomas A. Chini, Eduardo N. Thompson, Michael |
Author_xml | – sequence: 1 givenname: Pinar surname: Aksoy fullname: Aksoy, Pinar – sequence: 2 givenname: Thomas A. surname: White fullname: White, Thomas A. – sequence: 3 givenname: Michael surname: Thompson fullname: Thompson, Michael – sequence: 4 givenname: Eduardo N. surname: Chini fullname: Chini, Eduardo N. email: chini.eduardo@mayo.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16730329$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9L5EAQxRtRdPzzBTxITt4SqzqdTiIeHMZdV5BdkF3w1nQ6Fekhk9bujOC3t-OoBw_uqeDV7xXFe_tse3ADMXaMkCGgPFtmTeNNxgFkBkUGgm-xGUINKUcQ22wGcZPyGu_32H4ISwBEIetdtoeyzCHn9Yxd3tHDutejdUPiusQOo9eG-j5qPunpmfow6b_nV-fJPBlcFBLveko655PFVV4dsp1O94GO3ucB-_fzx9_Fr_T2z_XNYn6bGlHgmDbGUF4hN4Jyoq4pW11qaBB1i43uypLX1BVGy6IqcxS6BiOl6CRyXqGgIj9gp5u7j949rSmMamXD9KkeyK2DkhVIKET9XxBLjlUFZQRP3sF1s6JWPXq70v5FfYQTgWoDGO9C8NQpY8e3qGJItlcIaupBLdXUg5p6UFCo2EO08i_Wz-vfmS42phg6PVvyKhhLg6HWejKjap39zv4K35ue0Q |
CitedBy_id | crossref_primary_10_1089_ars_2017_7145 crossref_primary_10_3390_biomedicines11092560 crossref_primary_10_1111_jcmm_15912 crossref_primary_10_1189_jlb_4MR0617_226R crossref_primary_10_1152_physrev_00046_2020 crossref_primary_10_1097_FJC_0000000000001400 crossref_primary_10_1016_j_mad_2020_111249 crossref_primary_10_15252_embj_2019103420 crossref_primary_10_3389_fimmu_2019_01720 crossref_primary_10_1038_s41514_024_00157_1 crossref_primary_10_1080_10428194_2022_2090551 crossref_primary_10_1016_j_gendis_2021_04_001 crossref_primary_10_1080_13510002_2018_1487174 crossref_primary_10_1016_j_bbrc_2024_149590 crossref_primary_10_3389_fendo_2022_896356 crossref_primary_10_1089_rej_2015_1767 crossref_primary_10_1152_ajpcell_00139_2017 crossref_primary_10_1016_j_isci_2023_108188 crossref_primary_10_1093_intimm_dxy068 crossref_primary_10_3389_fphys_2019_01125 crossref_primary_10_1016_j_cld_2023_05_001 crossref_primary_10_1158_1078_0432_CCR_13_0150 crossref_primary_10_1038_s41514_021_00058_7 crossref_primary_10_3109_10428194_2010_483299 crossref_primary_10_1152_ajpcell_00638_2005 crossref_primary_10_1038_onc_2013_163 crossref_primary_10_1016_j_mad_2021_111545 crossref_primary_10_1016_j_mcpro_2023_100510 crossref_primary_10_1038_nrneph_2017_5 crossref_primary_10_1016_j_mad_2024_111917 crossref_primary_10_1101_gad_335109_119 crossref_primary_10_1016_j_chembiol_2017_12_008 crossref_primary_10_1016_j_bbrc_2006_08_066 crossref_primary_10_3389_fphys_2021_702276 crossref_primary_10_21769_BioProtoc_2938 crossref_primary_10_1016_j_tcb_2014_04_002 crossref_primary_10_21769_BioProtoc_2937 crossref_primary_10_1002_ana_24425 crossref_primary_10_1111_acel_12751 crossref_primary_10_1016_j_phrs_2017_08_010 crossref_primary_10_1055_a_2382_6829 crossref_primary_10_1016_j_msard_2023_105126 crossref_primary_10_1080_13543784_2020_1814253 crossref_primary_10_1111_j_1365_2826_2010_01970_x crossref_primary_10_3389_fimmu_2019_01187 crossref_primary_10_1007_s00232_008_9149_x crossref_primary_10_1186_s13578_023_01031_5 crossref_primary_10_1093_femsre_fuab037 crossref_primary_10_3390_cells9010228 crossref_primary_10_3390_nu13103435 crossref_primary_10_1097_MD_0000000000038347 crossref_primary_10_4049_jimmunol_181_1_92 crossref_primary_10_1096_fj_201800235R crossref_primary_10_1089_ars_2023_0241 crossref_primary_10_1016_j_bbapap_2015_02_021 crossref_primary_10_1083_jcb_202106080 crossref_primary_10_1038_aps_2008_7 crossref_primary_10_1016_j_molcel_2018_10_023 crossref_primary_10_3390_jcm8081178 crossref_primary_10_1111_cpr_13796 crossref_primary_10_1002_iub_1997 crossref_primary_10_1371_journal_pgen_1004414 crossref_primary_10_1007_s11010_008_9834_1 crossref_primary_10_1016_j_acvd_2015_10_004 crossref_primary_10_1016_j_molmed_2017_08_001 crossref_primary_10_12688_f1000research_12120_1 crossref_primary_10_1007_s00216_022_04469_7 crossref_primary_10_15252_emmm_202012860 crossref_primary_10_1038_s41581_019_0216_6 crossref_primary_10_1007_s13311_022_01336_2 crossref_primary_10_1089_ars_2023_0350 crossref_primary_10_3390_ijms25094680 crossref_primary_10_3390_cells10010128 crossref_primary_10_3390_cancers14225633 crossref_primary_10_1128_JB_00785_17 crossref_primary_10_1007_s11064_012_0760_y crossref_primary_10_1007_s12975_021_00892_7 crossref_primary_10_1038_s41598_017_18393_9 crossref_primary_10_3390_antiox10101643 crossref_primary_10_1038_s41467_024_46009_0 crossref_primary_10_15252_embj_201797135 crossref_primary_10_3390_biom10030396 crossref_primary_10_3390_biomedicines9020169 crossref_primary_10_1007_s10557_020_07007_8 crossref_primary_10_1016_j_jbc_2025_108248 crossref_primary_10_1172_JCI120844 crossref_primary_10_1074_jbc_M114_560359 crossref_primary_10_1074_jbc_M112_365874 crossref_primary_10_1016_j_mce_2016_11_003 crossref_primary_10_1189_jlb_0807581 crossref_primary_10_1007_s10059_013_0297_1 crossref_primary_10_1016_j_neuron_2015_12_023 crossref_primary_10_1007_s00011_024_01863_y crossref_primary_10_1016_j_isci_2020_101902 crossref_primary_10_1016_j_cca_2021_01_012 crossref_primary_10_1155_2016_7410257 crossref_primary_10_1152_ajpheart_00409_2017 crossref_primary_10_1042_BST20190033 crossref_primary_10_1016_j_lfs_2011_07_020 crossref_primary_10_1016_j_tem_2011_10_005 crossref_primary_10_1523_JNEUROSCI_2264_20_2021 crossref_primary_10_1016_j_expneurol_2020_113219 crossref_primary_10_1371_journal_pone_0220794 crossref_primary_10_1007_s12035_024_04675_7 crossref_primary_10_1016_j_biochi_2008_09_003 crossref_primary_10_1016_j_neures_2006_11_008 crossref_primary_10_1016_j_xcrm_2024_101400 crossref_primary_10_1111_acel_13920 crossref_primary_10_3390_ijms241310749 crossref_primary_10_3390_nu12061616 crossref_primary_10_3390_cells9020471 crossref_primary_10_1021_pr4010597 crossref_primary_10_1089_ars_2017_7445 crossref_primary_10_1016_j_coi_2015_10_005 crossref_primary_10_3390_ijms24010137 crossref_primary_10_1124_jpet_118_254557 crossref_primary_10_1016_j_gene_2012_02_001 crossref_primary_10_1016_j_bbrc_2019_03_199 crossref_primary_10_1016_j_celrep_2017_01_007 crossref_primary_10_1155_2012_302875 crossref_primary_10_1111_jcmm_13076 crossref_primary_10_1074_mcp_RA118_000882 crossref_primary_10_1016_j_jbc_2022_102037 crossref_primary_10_1159_000543274 crossref_primary_10_1007_s10522_019_09805_6 crossref_primary_10_3177_jnsv_70_295 crossref_primary_10_1016_j_neuint_2017_03_009 crossref_primary_10_1021_acs_jmedchem_3c00391 crossref_primary_10_1196_annals_1427_026 crossref_primary_10_1002_jnr_21498 crossref_primary_10_1111_jne_12508 crossref_primary_10_1016_j_jneuroim_2024_578409 crossref_primary_10_31857_S1027813323030159 crossref_primary_10_1016_j_phrs_2016_10_027 crossref_primary_10_1007_s10522_013_9489_5 crossref_primary_10_18632_oncotarget_18841 crossref_primary_10_1016_j_freeradbiomed_2012_10_525 crossref_primary_10_1172_JCI39319 crossref_primary_10_2119_2006_00099_Lund crossref_primary_10_1016_j_isci_2024_108978 crossref_primary_10_1038_s41598_023_49450_1 crossref_primary_10_3390_ijms22168560 crossref_primary_10_1097_WNR_0000000000000139 crossref_primary_10_1016_j_bcp_2019_02_021 crossref_primary_10_3390_ph17020226 crossref_primary_10_18699_SSMJ20210505 crossref_primary_10_1038_s42255_019_0161_5 crossref_primary_10_3390_ijms25084356 crossref_primary_10_1186_s40170_018_0186_3 crossref_primary_10_3390_cells9112444 crossref_primary_10_1016_j_bbrc_2012_01_084 crossref_primary_10_1134_S1819712423030157 crossref_primary_10_3390_ijms24032959 crossref_primary_10_1021_jm502009h crossref_primary_10_1126_science_aac4854 crossref_primary_10_1016_j_biochi_2011_05_027 crossref_primary_10_1016_j_cmet_2015_05_023 crossref_primary_10_3389_fmed_2021_703076 crossref_primary_10_1167_iovs_65_5_36 crossref_primary_10_1016_j_celrep_2019_12_014 crossref_primary_10_1089_ars_2018_7722 crossref_primary_10_1016_j_cmet_2018_03_016 crossref_primary_10_1007_s11064_019_02729_0 crossref_primary_10_1016_j_omton_2024_200819 crossref_primary_10_1038_s41598_017_16388_0 crossref_primary_10_2139_ssrn_4054845 crossref_primary_10_1038_nrendo_2015_181 crossref_primary_10_1016_j_athplu_2024_06_001 crossref_primary_10_1038_sj_onc_1210616 crossref_primary_10_1080_14737140_2016_1190649 crossref_primary_10_3389_fimmu_2020_597959 crossref_primary_10_1002_glia_23139 crossref_primary_10_1021_jm501037u crossref_primary_10_1073_pnas_2211310119 crossref_primary_10_4049_jimmunol_1500736 crossref_primary_10_1016_j_tma_2018_08_003 crossref_primary_10_1080_1062936X_2018_1545695 crossref_primary_10_1016_j_isci_2022_103812 crossref_primary_10_1016_j_bcp_2020_114093 crossref_primary_10_3389_fonc_2022_834002 crossref_primary_10_1038_leu_2017_281 crossref_primary_10_1134_S1819712408030136 crossref_primary_10_1016_j_isci_2022_105431 crossref_primary_10_3390_life13010041 crossref_primary_10_1074_jbc_M115_698779 crossref_primary_10_1101_gad_291518_116 crossref_primary_10_1210_er_2009_0026 crossref_primary_10_1016_j_yjmcc_2022_01_008 crossref_primary_10_1007_s11010_007_9582_7 crossref_primary_10_1007_s10522_023_10031_4 crossref_primary_10_1210_endocr_bqae043 crossref_primary_10_1096_fj_07_8290com crossref_primary_10_18632_aging_103410 crossref_primary_10_1126_science_1258366 crossref_primary_10_12997_jla_2022_11_2_111 crossref_primary_10_1126_sciimmunol_abq3015 crossref_primary_10_1155_2013_691251 crossref_primary_10_2119_2006_00075_Billington crossref_primary_10_3389_fphar_2021_735044 crossref_primary_10_1002_mco2_62 crossref_primary_10_1021_acs_chemrev_0c00416 crossref_primary_10_1016_j_yjmcc_2018_02_015 crossref_primary_10_1155_2016_9831825 crossref_primary_10_1158_1541_7786_MCR_17_0526 crossref_primary_10_1152_physrev_00035_2007 crossref_primary_10_1089_rej_2017_1975 crossref_primary_10_1172_jci_insight_120182 crossref_primary_10_3390_genes12111776 crossref_primary_10_1177_0271678X20969588 crossref_primary_10_15252_emmm_202113943 crossref_primary_10_1002_jnr_22626 crossref_primary_10_1152_ajpcell_00451_2021 crossref_primary_10_1016_j_jhep_2023_02_035 crossref_primary_10_31083_j_fbl2701021 crossref_primary_10_1038_nature18928 crossref_primary_10_1016_j_cellsig_2019_109496 crossref_primary_10_3390_cells12040595 crossref_primary_10_1002_art_42351 crossref_primary_10_1089_ars_2007_1672 crossref_primary_10_3390_medicina58010061 crossref_primary_10_1016_j_jnutbio_2021_108852 crossref_primary_10_1093_cvr_cvae025 crossref_primary_10_3390_cells9071716 crossref_primary_10_3390_ijms22094661 crossref_primary_10_1007_s11064_016_2031_9 crossref_primary_10_1016_j_semcancer_2024_10_005 crossref_primary_10_1111_apha_13551 crossref_primary_10_1016_j_bbrc_2010_07_040 crossref_primary_10_1016_j_cmet_2016_05_006 crossref_primary_10_1016_j_pharmthera_2024_108700 crossref_primary_10_1016_j_cmet_2017_12_014 crossref_primary_10_1111_eci_13334 crossref_primary_10_1016_j_exger_2020_110972 crossref_primary_10_1016_j_biopha_2022_113395 crossref_primary_10_1016_j_freeradbiomed_2023_09_035 crossref_primary_10_1111_cns_14344 crossref_primary_10_1111_j_1582_4934_2011_01462_x crossref_primary_10_1038_s41467_024_52617_7 crossref_primary_10_1088_1742_6596_1294_5_052073 crossref_primary_10_1124_dmd_120_000139 crossref_primary_10_1016_j_isci_2023_107949 crossref_primary_10_3390_v15061363 crossref_primary_10_1016_j_ab_2020_113797 crossref_primary_10_2337_db12_1139 crossref_primary_10_3390_cells13171509 crossref_primary_10_1016_j_celrep_2018_07_086 crossref_primary_10_1186_s12879_022_07895_1 crossref_primary_10_1038_s42255_020_00298_z crossref_primary_10_1134_S181971240903009X crossref_primary_10_3390_cells10061402 crossref_primary_10_1530_JME_18_0085 crossref_primary_10_1016_j_bbadis_2024_167488 crossref_primary_10_1016_j_bbrc_2019_10_019 crossref_primary_10_1016_j_tips_2018_02_001 crossref_primary_10_1016_j_bcp_2014_08_026 crossref_primary_10_1212_WNL_0b013e318260cbd0 crossref_primary_10_3390_ijms22094558 crossref_primary_10_3390_cells11040710 crossref_primary_10_1179_1351000212Y_0000000001 |
Cites_doi | 10.1126/science.1102497 10.1126/science.1098014 10.1126/science.8235624 10.1074/jbc.M908231199 10.1074/jbc.274.4.1869 10.1042/bj3620125 10.1016/S0021-9258(19)85279-1 10.1074/jbc.M004469200 10.1002/0470862637.ch14 10.1161/01.RES.86.11.1153 10.1074/jbc.M301196200 10.1016/S0021-9258(18)43806-9 10.1042/bj3610379 10.1111/j.1742-4658.2005.04862.x 10.1038/nature03354 10.1074/jbc.270.7.3216 10.1016/S0006-8993(97)00117-0 10.1096/fj.04-1841rev 10.4049/jimmunol.174.6.3298 10.1042/BJ20041217 10.1038/365388a0 10.1002/bies.10297 10.1016/S0248-4900(00)01070-4 10.1016/j.cell.2005.01.029 10.1152/ajpcell.1996.271.4.C1007 10.1182/blood.V92.4.1324 10.1074/jbc.M506162200 10.1074/jbc.270.51.30327 10.1006/abbi.1999.1463 |
ContentType | Journal Article |
Copyright | 2006 Elsevier Inc. |
Copyright_xml | – notice: 2006 Elsevier Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 P64 RC3 7X8 |
DOI | 10.1016/j.bbrc.2006.05.042 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
EISSN | 1090-2104 |
EndPage | 1392 |
ExternalDocumentID | 16730329 10_1016_j_bbrc_2006_05_042 S0006291X06010643 |
Genre | Journal Article Comparative Study |
GroupedDBID | --- --K --M -~X .55 .GJ .HR .~1 0R~ 1B1 1CY 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9M8 AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYJJ ABEFU ABFNM ABFRF ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACKIV ACNCT ACRLP ADBBV ADEZE ADFGL ADIYS ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AHPSJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 D0L DM4 DOVZS EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HLW HVGLF HZ~ IHE J1W K-O KOM L7B LG5 LX2 M41 MO0 MVM N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K TWZ UQL WH7 WUQ X7M XPP XSW Y6R ZA5 ZGI ZKB ZMT ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD CGR CUY CVF ECM EIF NPM PKN 8FD ACLOT FR3 P64 RC3 7X8 |
ID | FETCH-LOGICAL-c451t-bcce3812c4e3eefb7da7a0b11ad1baf7729ef5ca6587314a90c664f6122814e53 |
IEDL.DBID | AIKHN |
ISSN | 0006-291X |
IngestDate | Thu Sep 04 19:51:39 EDT 2025 Sat Sep 27 23:51:52 EDT 2025 Wed Feb 19 01:53:06 EST 2025 Thu Sep 18 00:13:43 EDT 2025 Thu Apr 24 22:54:43 EDT 2025 Fri Feb 23 02:25:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | NAD Brain CD38 cADPR Calcium |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-bcce3812c4e3eefb7da7a0b11ad1baf7729ef5ca6587314a90c664f6122814e53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 16730329 |
PQID | 17218807 |
PQPubID | 23462 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_68060549 proquest_miscellaneous_17218807 pubmed_primary_16730329 crossref_citationtrail_10_1016_j_bbrc_2006_05_042 crossref_primary_10_1016_j_bbrc_2006_05_042 elsevier_sciencedirect_doi_10_1016_j_bbrc_2006_05_042 |
PublicationCentury | 2000 |
PublicationDate | 2006-07-14 |
PublicationDateYYYYMMDD | 2006-07-14 |
PublicationDate_xml | – month: 07 year: 2006 text: 2006-07-14 day: 14 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biochemical and biophysical research communications |
PublicationTitleAlternate | Biochem Biophys Res Commun |
PublicationYear | 2006 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Ceni, Muller-Steffner, Lund, Pochon, Schweitzer, De Waard, Schuber, Villaz, Moutin (bib29) 2003; 278 Scovassi (bib31) 2004; 18 Howard, Grimaldi, Bazan, Lund, Santos-Argumedo, Parkhouse, Walseth, Lee (bib19) 1993; 262 Khoo, Han, Park, Chae, Kim, Lee, Bay, Chang (bib24) 2000; 275 Ziegler, Niere (bib4) 2004; 382 Pillai, Isbatan, Imai, Gupta (bib3) 2005; 280 Bedalov, Simon (bib8) 2004; 305 Berridge (bib10) 1993; 365 Aarhus, Graeff, Dickey, Walseth, Lee (bib14) 1995; 270 de Toledo, Cheng, Liang, Chini, Dousa (bib20) 2000; 86 Kontani, Nishina, Ohoka, Takahashi, Katada (bib25) 1993; 268 Gu, Luo, Books, Nikolaev, Li (bib5) 2004; 259 Araki, Sasaki, Milbrandt (bib9) 2004; 305 Galione, Patel, Churchill (bib12) 2000; 92 Guarente, Picard (bib2) 2005; 120 Liang, Chini, Cheng, Dousa (bib22) 1999; 371 Rodgers, Lerin, Haas, Gygi, Spiegelman, Puigserver (bib7) 2005; 434 Krebs, Adriouch, Braasch, Koestner, Leiter, Seman, Lund, Oppenheimer, Haag, Koch-Nolte (bib30) 2005; 174 Cockayne, Muchamuel, Grimaldi, Muller-Streffner, Randall, Lund, Murray, Shuber, Howard (bib18) 1998; 92 Fukushi, Kato, Takasawa, Sasaki, Ong, Sato, Ohsaga, Sato, Shirato, Okamoto, Maruyama (bib21) 2001; 276 Grubisha, Smith, Denu (bib1) 2005; 272 Chini, Chini, Kato, Takasawa, Okamoto (bib23) 2002; 362 Yamada, Mizuguchi, Otsuka, Ikeda, Takahashi (bib26) 1997; 756 Graeff, Walseth, Fryxell, Branton, Lee (bib27) 1994; 269 Rongvaux, Andris, Van Gool, Leo (bib6) 2003; 7 Chini, Beers, Dousa (bib13) 1995; 270 Lee (bib16) 1999; 380 Chini, Thompson, Dousa (bib15) 1996; 10 Dousa, Chini, Beers (bib11) 1996; 271 Kato, Yamamoto, Fujimura, Noguchi, Takasawa, Okamoto (bib17) 1999; 274 Graeff, Lee (bib28) 2001; 361 Scovassi (10.1016/j.bbrc.2006.05.042_bib31) 2004; 18 Grubisha (10.1016/j.bbrc.2006.05.042_bib1) 2005; 272 Aarhus (10.1016/j.bbrc.2006.05.042_bib14) 1995; 270 Liang (10.1016/j.bbrc.2006.05.042_bib22) 1999; 371 Gu (10.1016/j.bbrc.2006.05.042_bib5) 2004; 259 Khoo (10.1016/j.bbrc.2006.05.042_bib24) 2000; 275 Rodgers (10.1016/j.bbrc.2006.05.042_bib7) 2005; 434 Graeff (10.1016/j.bbrc.2006.05.042_bib27) 1994; 269 Yamada (10.1016/j.bbrc.2006.05.042_bib26) 1997; 756 Kontani (10.1016/j.bbrc.2006.05.042_bib25) 1993; 268 Howard (10.1016/j.bbrc.2006.05.042_bib19) 1993; 262 Pillai (10.1016/j.bbrc.2006.05.042_bib3) 2005; 280 Chini (10.1016/j.bbrc.2006.05.042_bib15) 1996; 10 Chini (10.1016/j.bbrc.2006.05.042_bib23) 2002; 362 Fukushi (10.1016/j.bbrc.2006.05.042_bib21) 2001; 276 Guarente (10.1016/j.bbrc.2006.05.042_bib2) 2005; 120 Rongvaux (10.1016/j.bbrc.2006.05.042_bib6) 2003; 7 Bedalov (10.1016/j.bbrc.2006.05.042_bib8) 2004; 305 de Toledo (10.1016/j.bbrc.2006.05.042_bib20) 2000; 86 Galione (10.1016/j.bbrc.2006.05.042_bib12) 2000; 92 Chini (10.1016/j.bbrc.2006.05.042_bib13) 1995; 270 Krebs (10.1016/j.bbrc.2006.05.042_bib30) 2005; 174 Ziegler (10.1016/j.bbrc.2006.05.042_bib4) 2004; 382 Araki (10.1016/j.bbrc.2006.05.042_bib9) 2004; 305 Berridge (10.1016/j.bbrc.2006.05.042_bib10) 1993; 365 Kato (10.1016/j.bbrc.2006.05.042_bib17) 1999; 274 Ceni (10.1016/j.bbrc.2006.05.042_bib29) 2003; 278 Graeff (10.1016/j.bbrc.2006.05.042_bib28) 2001; 361 Cockayne (10.1016/j.bbrc.2006.05.042_bib18) 1998; 92 Lee (10.1016/j.bbrc.2006.05.042_bib16) 1999; 380 Dousa (10.1016/j.bbrc.2006.05.042_bib11) 1996; 271 |
References_xml | – volume: 270 start-page: 30327 year: 1995 end-page: 30333 ident: bib14 article-title: ADP-ribosyl cyclase and CD38 catalyze the synthesis of a Ca2+-mobilizing metabolite from NADP publication-title: J. Biol. Chem. – volume: 274 start-page: 1869 year: 1999 end-page: 1872 ident: bib17 article-title: CD38 disruption impairs glucose-induced increases in cyclic ADP-ribose, [Ca2+]i, and insulin secretion publication-title: J. Biol. Chem. – volume: 362 start-page: 125 year: 2002 end-page: 130 ident: bib23 article-title: CD38 is the major enzyme responsible for synthesis of nicotinic acid–adenine dinucleotide phosphate in mammalian tissues publication-title: Biochem. J. – volume: 382 start-page: 5 year: 2004 end-page: 6 ident: bib4 article-title: NAD publication-title: Biochem. J. – volume: 10 start-page: A143 year: 1996 ident: bib15 article-title: Enzymatic synthesis of NAADP and ADP-ribosyl cyclases publication-title: FASEB J. – volume: 92 start-page: 197 year: 2000 end-page: 204 ident: bib12 article-title: NAADP-induced calcium release in sea urchin eggs publication-title: Biol. Cell – volume: 361 start-page: 379 year: 2001 end-page: 384 ident: bib28 article-title: A novel cycling assay for cellular cADP-ribose with nanomolar sensitivity publication-title: Biochem. J. – volume: 365 start-page: 388 year: 1993 end-page: 389 ident: bib10 article-title: Cell signalling. A tale of two messengers publication-title: Nature – volume: 272 start-page: 4607 year: 2005 end-page: 4616 ident: bib1 article-title: Small molecule regulation of Sir2 protein deacetylases publication-title: FEBS J. – volume: 18 start-page: 1487 year: 2004 end-page: 1488 ident: bib31 article-title: Mitochondrial poly(ADP-ribosylation): from old data to new perspectives publication-title: FASEB J. – volume: 276 start-page: 649 year: 2001 end-page: 655 ident: bib21 article-title: Identification of cyclic ADP-ribose-dependent mechanisms in pancreatic muscarinic Ca2+ signaling using CD38 knockout mice publication-title: J. Biol. Chem. – volume: 305 start-page: 1010 year: 2004 end-page: 1013 ident: bib9 article-title: Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration publication-title: Science – volume: 275 start-page: 24807 year: 2000 end-page: 24817 ident: bib24 article-title: Localization of the cyclic ADP-ribose-dependent calcium signaling pathway in hepatocyte nucleus publication-title: J. Biol. Chem. – volume: 262 start-page: 1056 year: 1993 end-page: 1059 ident: bib19 article-title: Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38 publication-title: Science – volume: 278 start-page: 40670 year: 2003 end-page: 40678 ident: bib29 article-title: Evidence for an intracellular ADP-ribosyl cyclase/NAD+-glycohydrolase in brain from CD38-deficient mice publication-title: J. Biol. Chem. – volume: 268 start-page: 16895 year: 1993 end-page: 16898 ident: bib25 article-title: NAD glycohydrolase specifically induced by retinoic acid in human leukemic HL-60 cells. Identification of the NAD glycohydrolase as leukocyte cell surface antigen CD38 publication-title: J. Biol. Chem. – volume: 380 start-page: 785 year: 1999 end-page: 793 ident: bib16 article-title: A unified mechanism of enzymatic synthesis of two calcium messengers: cyclic ADP-ribose and NAADP publication-title: J. Biol. Chem. – volume: 120 start-page: 473 year: 2005 end-page: 482 ident: bib2 article-title: Calorie restriction—the SIR2 connection publication-title: Cell – volume: 280 start-page: 43121 year: 2005 end-page: 43130 ident: bib3 article-title: Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2alpha deacetylase activity publication-title: J. Biol. Chem. – volume: 434 start-page: 113 year: 2005 end-page: 118 ident: bib7 article-title: Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1 publication-title: Nature – volume: 7 start-page: 683 year: 2003 end-page: 690 ident: bib6 publication-title: Bioassay – volume: 371 start-page: 317 year: 1999 end-page: 325 ident: bib22 article-title: Synthesis of NAADP and cADPR in mitochondria publication-title: Arch. Biochem. Biophys. – volume: 271 start-page: C1007 year: 1996 end-page: C1024 ident: bib11 article-title: Adenine nucleotide diphosphates: emerging second messengers acting via intracellular Ca2+ release publication-title: Am. J. Physiol. – volume: 92 start-page: 1324 year: 1998 end-page: 1333 ident: bib18 article-title: Mice deficient for the ecto-nicotinamide adenine dinucleotide glycohydrolase CD38 exhibit altered humoral immune responses publication-title: Blood – volume: 305 start-page: 954 year: 2004 end-page: 955 ident: bib8 article-title: Neuroscience. NAD to the rescue publication-title: Science – volume: 174 start-page: 3298 year: 2005 end-page: 3305 ident: bib30 article-title: CD38 controls ADP-ribosyltransferase-2-catalyzed ADP-ribosylation of T cell surface proteins publication-title: J. Immunol. – volume: 259 start-page: 197 year: 2004 end-page: 205 ident: bib5 article-title: Dynamics of the p53 acetylation pathway publication-title: Norvatis Found. Symp. – volume: 86 start-page: 1153 year: 2000 end-page: 1159 ident: bib20 article-title: ADP-ribosyl cyclase in rat vascular smooth muscle cells: properties and regulation publication-title: Circ. Res. – volume: 270 start-page: 3216 year: 1995 end-page: 3223 ident: bib13 article-title: Nicotinate adenine dinucleotide phosphate (NAADP) triggers a specific calcium release system in sea urchin eggs publication-title: J. Biol. Chem. – volume: 269 start-page: 30260 year: 1994 end-page: 30267 ident: bib27 article-title: Enzymatic synthesis and characterizations of cyclic GDP-ribose: a procedure for distinguishing enzymes with ADP-ribosyl cyclase activity publication-title: J. Biol. Chem. – volume: 756 start-page: 52 year: 1997 end-page: 60 ident: bib26 article-title: Ultrastructural localization of CD38 immunoreactivity in rat brain publication-title: Brain Res. – volume: 305 start-page: 954 year: 2004 ident: 10.1016/j.bbrc.2006.05.042_bib8 article-title: Neuroscience. NAD to the rescue publication-title: Science doi: 10.1126/science.1102497 – volume: 305 start-page: 1010 year: 2004 ident: 10.1016/j.bbrc.2006.05.042_bib9 article-title: Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration publication-title: Science doi: 10.1126/science.1098014 – volume: 262 start-page: 1056 year: 1993 ident: 10.1016/j.bbrc.2006.05.042_bib19 article-title: Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38 publication-title: Science doi: 10.1126/science.8235624 – volume: 275 start-page: 24807 year: 2000 ident: 10.1016/j.bbrc.2006.05.042_bib24 article-title: Localization of the cyclic ADP-ribose-dependent calcium signaling pathway in hepatocyte nucleus publication-title: J. Biol. Chem. doi: 10.1074/jbc.M908231199 – volume: 274 start-page: 1869 year: 1999 ident: 10.1016/j.bbrc.2006.05.042_bib17 article-title: CD38 disruption impairs glucose-induced increases in cyclic ADP-ribose, [Ca2+]i, and insulin secretion publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.4.1869 – volume: 380 start-page: 785 year: 1999 ident: 10.1016/j.bbrc.2006.05.042_bib16 article-title: A unified mechanism of enzymatic synthesis of two calcium messengers: cyclic ADP-ribose and NAADP publication-title: J. Biol. Chem. – volume: 362 start-page: 125 year: 2002 ident: 10.1016/j.bbrc.2006.05.042_bib23 article-title: CD38 is the major enzyme responsible for synthesis of nicotinic acid–adenine dinucleotide phosphate in mammalian tissues publication-title: Biochem. J. doi: 10.1042/bj3620125 – volume: 268 start-page: 16895 year: 1993 ident: 10.1016/j.bbrc.2006.05.042_bib25 article-title: NAD glycohydrolase specifically induced by retinoic acid in human leukemic HL-60 cells. Identification of the NAD glycohydrolase as leukocyte cell surface antigen CD38 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)85279-1 – volume: 276 start-page: 649 year: 2001 ident: 10.1016/j.bbrc.2006.05.042_bib21 article-title: Identification of cyclic ADP-ribose-dependent mechanisms in pancreatic muscarinic Ca2+ signaling using CD38 knockout mice publication-title: J. Biol. Chem. doi: 10.1074/jbc.M004469200 – volume: 259 start-page: 197 year: 2004 ident: 10.1016/j.bbrc.2006.05.042_bib5 article-title: Dynamics of the p53 acetylation pathway publication-title: Norvatis Found. Symp. doi: 10.1002/0470862637.ch14 – volume: 86 start-page: 1153 year: 2000 ident: 10.1016/j.bbrc.2006.05.042_bib20 article-title: ADP-ribosyl cyclase in rat vascular smooth muscle cells: properties and regulation publication-title: Circ. Res. doi: 10.1161/01.RES.86.11.1153 – volume: 278 start-page: 40670 issue: 42 year: 2003 ident: 10.1016/j.bbrc.2006.05.042_bib29 article-title: Evidence for an intracellular ADP-ribosyl cyclase/NAD+-glycohydrolase in brain from CD38-deficient mice publication-title: J. Biol. Chem. doi: 10.1074/jbc.M301196200 – volume: 269 start-page: 30260 year: 1994 ident: 10.1016/j.bbrc.2006.05.042_bib27 article-title: Enzymatic synthesis and characterizations of cyclic GDP-ribose: a procedure for distinguishing enzymes with ADP-ribosyl cyclase activity publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)43806-9 – volume: 361 start-page: 379 year: 2001 ident: 10.1016/j.bbrc.2006.05.042_bib28 article-title: A novel cycling assay for cellular cADP-ribose with nanomolar sensitivity publication-title: Biochem. J. doi: 10.1042/bj3610379 – volume: 272 start-page: 4607 year: 2005 ident: 10.1016/j.bbrc.2006.05.042_bib1 article-title: Small molecule regulation of Sir2 protein deacetylases publication-title: FEBS J. doi: 10.1111/j.1742-4658.2005.04862.x – volume: 434 start-page: 113 year: 2005 ident: 10.1016/j.bbrc.2006.05.042_bib7 article-title: Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1 publication-title: Nature doi: 10.1038/nature03354 – volume: 270 start-page: 3216 year: 1995 ident: 10.1016/j.bbrc.2006.05.042_bib13 article-title: Nicotinate adenine dinucleotide phosphate (NAADP) triggers a specific calcium release system in sea urchin eggs publication-title: J. Biol. Chem. doi: 10.1074/jbc.270.7.3216 – volume: 756 start-page: 52 year: 1997 ident: 10.1016/j.bbrc.2006.05.042_bib26 article-title: Ultrastructural localization of CD38 immunoreactivity in rat brain publication-title: Brain Res. doi: 10.1016/S0006-8993(97)00117-0 – volume: 18 start-page: 1487 year: 2004 ident: 10.1016/j.bbrc.2006.05.042_bib31 article-title: Mitochondrial poly(ADP-ribosylation): from old data to new perspectives publication-title: FASEB J. doi: 10.1096/fj.04-1841rev – volume: 174 start-page: 3298 year: 2005 ident: 10.1016/j.bbrc.2006.05.042_bib30 article-title: CD38 controls ADP-ribosyltransferase-2-catalyzed ADP-ribosylation of T cell surface proteins publication-title: J. Immunol. doi: 10.4049/jimmunol.174.6.3298 – volume: 382 start-page: 5 year: 2004 ident: 10.1016/j.bbrc.2006.05.042_bib4 article-title: NAD+ surfaces again publication-title: Biochem. J. doi: 10.1042/BJ20041217 – volume: 365 start-page: 388 year: 1993 ident: 10.1016/j.bbrc.2006.05.042_bib10 article-title: Cell signalling. A tale of two messengers publication-title: Nature doi: 10.1038/365388a0 – volume: 7 start-page: 683 year: 2003 ident: 10.1016/j.bbrc.2006.05.042_bib6 publication-title: Bioassay doi: 10.1002/bies.10297 – volume: 92 start-page: 197 year: 2000 ident: 10.1016/j.bbrc.2006.05.042_bib12 article-title: NAADP-induced calcium release in sea urchin eggs publication-title: Biol. Cell doi: 10.1016/S0248-4900(00)01070-4 – volume: 10 start-page: A143 year: 1996 ident: 10.1016/j.bbrc.2006.05.042_bib15 article-title: Enzymatic synthesis of NAADP and ADP-ribosyl cyclases publication-title: FASEB J. – volume: 120 start-page: 473 year: 2005 ident: 10.1016/j.bbrc.2006.05.042_bib2 article-title: Calorie restriction—the SIR2 connection publication-title: Cell doi: 10.1016/j.cell.2005.01.029 – volume: 271 start-page: C1007 year: 1996 ident: 10.1016/j.bbrc.2006.05.042_bib11 article-title: Adenine nucleotide diphosphates: emerging second messengers acting via intracellular Ca2+ release publication-title: Am. J. Physiol. doi: 10.1152/ajpcell.1996.271.4.C1007 – volume: 92 start-page: 1324 year: 1998 ident: 10.1016/j.bbrc.2006.05.042_bib18 article-title: Mice deficient for the ecto-nicotinamide adenine dinucleotide glycohydrolase CD38 exhibit altered humoral immune responses publication-title: Blood doi: 10.1182/blood.V92.4.1324 – volume: 280 start-page: 43121 year: 2005 ident: 10.1016/j.bbrc.2006.05.042_bib3 article-title: Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2alpha deacetylase activity publication-title: J. Biol. Chem. doi: 10.1074/jbc.M506162200 – volume: 270 start-page: 30327 year: 1995 ident: 10.1016/j.bbrc.2006.05.042_bib14 article-title: ADP-ribosyl cyclase and CD38 catalyze the synthesis of a Ca2+-mobilizing metabolite from NADP publication-title: J. Biol. Chem. doi: 10.1074/jbc.270.51.30327 – volume: 371 start-page: 317 year: 1999 ident: 10.1016/j.bbrc.2006.05.042_bib22 article-title: Synthesis of NAADP and cADPR in mitochondria publication-title: Arch. Biochem. Biophys. doi: 10.1006/abbi.1999.1463 |
SSID | ssj0011469 |
Score | 2.3722742 |
Snippet | Nicotinamide adenine dinucleotide (NAD) plays key roles in many cellular functions. In addition to its well-known role in energy metabolism, NAD also plays a... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1386 |
SubjectTerms | ADP-ribosyl Cyclase 1 - genetics ADP-ribosyl Cyclase 1 - metabolism ADP-ribosyl Cyclase 1 - physiology Animals Blotting, Western Brain Brain - enzymology Brain - metabolism cADPR Calcium Catalysis CD38 Cell Membrane - enzymology Cell Membrane - metabolism Cell Nucleus - enzymology Cell Nucleus - metabolism Cells, Cultured Female Genotype Humans Intracellular Fluid - metabolism Male Mice Mice, Inbred C57BL Mice, Knockout Mitochondria - enzymology Mitochondria - metabolism Myocardium - enzymology Myocardium - metabolism NAD NAD - metabolism NAD+ Nucleosidase - metabolism Spleen - enzymology Spleen - metabolism Testis - enzymology Testis - metabolism |
Title | Regulation of intracellular levels of NAD: A novel role for CD38 |
URI | https://dx.doi.org/10.1016/j.bbrc.2006.05.042 https://www.ncbi.nlm.nih.gov/pubmed/16730329 https://www.proquest.com/docview/17218807 https://www.proquest.com/docview/68060549 |
Volume | 345 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61WyF6QdDyKI_iA-KC0saJ7TicCFuqBcQeEJX2ZtmOLS0q2ardHnrhtzOTOEUctgdukWVLzow1880b4E1oFSoOzbM2ujKjlm5ZHTxarZF7rcpYc0-1w9_manYmvizkYgumYy0MpVUm2T_I9F5ap5XjRM3ji-WSanxzVdR8kfehQlFuw06B2l5PYKf5_HU2vw0moDBIKFhldCDVzgxpXs5d-hSTkEe5KDbpp034s9dDpw_hQQKQrBnu-Ai2QrcH-02HxvOvG_aW9Smdva98D-59HL_uT8fBbvvw4fswfx45wlaRLcm9S_57Skhl55REdEXr8-bkPWtYt8IFRkmIDPEtm56U-jGcnX76MZ1laZBC5oXk68x5H1AzF16EMoToqtZWNnec25Y7Gwlghyi9RTRSlVzYOvdKiYjgp9BcBFk-gUm36sIzYIrisCJY1Wotispp6XT0aOhSH0Er6gPgI_mMT13GadjFuRnTyX4aIjmNv1QmlwZJfgDvbs9cDD027twtR66Yf16KQSVw57nXIwsNEpzoaruwur4yZAWjGKs271AaH5mkv3s68P7vPRWKyLKon__nrV7A7uDUqTIuXsJkfXkdXiHMWbtD2D76zQ_TY_4Dewr4RQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7RRRVcKgptoaXFh6qXKiVObMfpqelStBTYQwXS3qzYsaWtIItgOfDvO5M4VD0sh94iy5acGWvmmzfAR98oVByaJ02weUIt3ZLSO7RaA3da5aHkjmqHz6dqcil-zuRsDcZDLQylVUbZ38v0TlrHlcNIzcOb-ZxqfFOVlXyWdqFCkT-DdUFDrUewXp2cTqaPwQQUBhEFq4QOxNqZPs3L2lsXYxLySyqyVfppFf7s9NDxFryIAJJV_R1fwppvt2GnatF4vn5gn1iX0tn5yrfh-ffha2M8DHbbgW-_-vnzyBG2CGxO7l3y31NCKruiJKI7Wp9WR19ZxdoFLjBKQmSIb9n4KNev4PL4x8V4ksRBCokTki8T65xHzZw54XPvgy2auqhTy3ndcFsHAtg-SFcjGilyLuoydUqJgOAn01x4mb-GUbto_S4wRXFY4WvVaC2ywmppdXBo6FIfwVqUe8AH8hkXu4zTsIsrM6ST_TZEchp_qUwqDZJ8Dz4_nrnpe2w8uVsOXDH_vBSDSuDJcwcDCw0SnOhat35xf2fICkYxVqzeoTQ-Mkl_96bn_d97KhSReVa-_c9bHcDG5OL8zJydTE_fwWbv4CkSLvZhtLy99-8R8izth_ik_wBUgPor |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+intracellular+levels+of+NAD%3A+A+novel+role+for+CD38&rft.jtitle=Biochemical+and+biophysical+research+communications&rft.au=Aksoy%2C+Pinar&rft.au=White%2C+Thomas+A.&rft.au=Thompson%2C+Michael&rft.au=Chini%2C+Eduardo+N.&rft.date=2006-07-14&rft.pub=Elsevier+Inc&rft.issn=0006-291X&rft.eissn=1090-2104&rft.volume=345&rft.issue=4&rft.spage=1386&rft.epage=1392&rft_id=info:doi/10.1016%2Fj.bbrc.2006.05.042&rft.externalDocID=S0006291X06010643 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-291X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-291X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-291X&client=summon |