Regulation of intracellular levels of NAD: A novel role for CD38

Nicotinamide adenine dinucleotide (NAD) plays key roles in many cellular functions. In addition to its well-known role in energy metabolism, NAD also plays a role in signal transduction, ageing, and cellular injury. NAD is also involved in many signal transduction pathways. Therefore, it is imperati...

Full description

Saved in:
Bibliographic Details
Published inBiochemical and biophysical research communications Vol. 345; no. 4; pp. 1386 - 1392
Main Authors Aksoy, Pinar, White, Thomas A., Thompson, Michael, Chini, Eduardo N.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 14.07.2006
Subjects
Online AccessGet full text
ISSN0006-291X
1090-2104
DOI10.1016/j.bbrc.2006.05.042

Cover

Abstract Nicotinamide adenine dinucleotide (NAD) plays key roles in many cellular functions. In addition to its well-known role in energy metabolism, NAD also plays a role in signal transduction, ageing, and cellular injury. NAD is also involved in many signal transduction pathways. Therefore, it is imperative to understand the mechanisms that control intracellular NAD levels. However, to date, the mechanisms that regulate intracellular levels of NAD have not been completely elucidated. CD38 is a multifunctional enzyme ubiquitously distributed in mammalian tissues. CD38 has been implicated as the enzyme responsible for the synthesis of the second messengers. However, its major enzymatic activity is the hydrolysis of NAD, in fact, CD38 will generate one molecule of cADPR for every 100 molecules of NAD hydrolyzed. To date, the role of CD38 as a modulator of levels of NAD has not been explored. We postulated that CD38 is the major NADase in mammalian cells and that it regulates intracellular NAD levels. In the current studies we examined the NADase activities and NAD levels in a variety of tissues from both wild-type and CD38 deficient mice. In accordance with our hypothesis, we found that tissue levels of NAD in CD38 deficient mice are 10- to 20-fold higher than in wild-type animals. In addition, NADase activity in the plasma membrane, mitochondria, sarcoplasmic reticulum, and nuclei is essentially absent in most tissues from CD38 deficient mice. These data support the novel concept that CD38 is a major regulator of cellular NAD levels. These findings have implications for understanding the mechanisms that regulate intracellular NAD levels and its role in energy homeostasis, signal transduction, and ageing.
AbstractList Nicotinamide adenine dinucleotide (NAD) plays key roles in many cellular functions. In addition to its well-known role in energy metabolism, NAD also plays a role in signal transduction, ageing, and cellular injury. NAD is also involved in many signal transduction pathways. Therefore, it is imperative to understand the mechanisms that control intracellular NAD levels. However, to date, the mechanisms that regulate intracellular levels of NAD have not been completely elucidated. CD38 is a multifunctional enzyme ubiquitously distributed in mammalian tissues. CD38 has been implicated as the enzyme responsible for the synthesis of the second messengers. However, its major enzymatic activity is the hydrolysis of NAD, in fact, CD38 will generate one molecule of cADPR for every 100 molecules of NAD hydrolyzed. To date, the role of CD38 as a modulator of levels of NAD has not been explored. We postulated that CD38 is the major NADase in mammalian cells and that it regulates intracellular NAD levels. In the current studies we examined the NADase activities and NAD levels in a variety of tissues from both wild-type and CD38 deficient mice. In accordance with our hypothesis, we found that tissue levels of NAD in CD38 deficient mice are 10- to 20-fold higher than in wild-type animals. In addition, NADase activity in the plasma membrane, mitochondria, sarcoplasmic reticulum, and nuclei is essentially absent in most tissues from CD38 deficient mice. These data support the novel concept that CD38 is a major regulator of cellular NAD levels. These findings have implications for understanding the mechanisms that regulate intracellular NAD levels and its role in energy homeostasis, signal transduction, and ageing.Nicotinamide adenine dinucleotide (NAD) plays key roles in many cellular functions. In addition to its well-known role in energy metabolism, NAD also plays a role in signal transduction, ageing, and cellular injury. NAD is also involved in many signal transduction pathways. Therefore, it is imperative to understand the mechanisms that control intracellular NAD levels. However, to date, the mechanisms that regulate intracellular levels of NAD have not been completely elucidated. CD38 is a multifunctional enzyme ubiquitously distributed in mammalian tissues. CD38 has been implicated as the enzyme responsible for the synthesis of the second messengers. However, its major enzymatic activity is the hydrolysis of NAD, in fact, CD38 will generate one molecule of cADPR for every 100 molecules of NAD hydrolyzed. To date, the role of CD38 as a modulator of levels of NAD has not been explored. We postulated that CD38 is the major NADase in mammalian cells and that it regulates intracellular NAD levels. In the current studies we examined the NADase activities and NAD levels in a variety of tissues from both wild-type and CD38 deficient mice. In accordance with our hypothesis, we found that tissue levels of NAD in CD38 deficient mice are 10- to 20-fold higher than in wild-type animals. In addition, NADase activity in the plasma membrane, mitochondria, sarcoplasmic reticulum, and nuclei is essentially absent in most tissues from CD38 deficient mice. These data support the novel concept that CD38 is a major regulator of cellular NAD levels. These findings have implications for understanding the mechanisms that regulate intracellular NAD levels and its role in energy homeostasis, signal transduction, and ageing.
Nicotinamide adenine dinucleotide (NAD) plays key roles in many cellular functions. In addition to its well-known role in energy metabolism, NAD also plays a role in signal transduction, ageing, and cellular injury. NAD is also involved in many signal transduction pathways. Therefore, it is imperative to understand the mechanisms that control intracellular NAD levels. However, to date, the mechanisms that regulate intracellular levels of NAD have not been completely elucidated. CD38 is a multifunctional enzyme ubiquitously distributed in mammalian tissues. CD38 has been implicated as the enzyme responsible for the synthesis of the second messengers. However, its major enzymatic activity is the hydrolysis of NAD, in fact, CD38 will generate one molecule of cADPR for every 100 molecules of NAD hydrolyzed. To date, the role of CD38 as a modulator of levels of NAD has not been explored. We postulated that CD38 is the major NADase in mammalian cells and that it regulates intracellular NAD levels. In the current studies we examined the NADase activities and NAD levels in a variety of tissues from both wild-type and CD38 deficient mice. In accordance with our hypothesis, we found that tissue levels of NAD in CD38 deficient mice are 10- to 20-fold higher than in wild-type animals. In addition, NADase activity in the plasma membrane, mitochondria, sarcoplasmic reticulum, and nuclei is essentially absent in most tissues from CD38 deficient mice. These data support the novel concept that CD38 is a major regulator of cellular NAD levels. These findings have implications for understanding the mechanisms that regulate intracellular NAD levels and its role in energy homeostasis, signal transduction, and ageing.
Author Aksoy, Pinar
White, Thomas A.
Chini, Eduardo N.
Thompson, Michael
Author_xml – sequence: 1
  givenname: Pinar
  surname: Aksoy
  fullname: Aksoy, Pinar
– sequence: 2
  givenname: Thomas A.
  surname: White
  fullname: White, Thomas A.
– sequence: 3
  givenname: Michael
  surname: Thompson
  fullname: Thompson, Michael
– sequence: 4
  givenname: Eduardo N.
  surname: Chini
  fullname: Chini, Eduardo N.
  email: chini.eduardo@mayo.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16730329$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9L5EAQxRtRdPzzBTxITt4SqzqdTiIeHMZdV5BdkF3w1nQ6Fekhk9bujOC3t-OoBw_uqeDV7xXFe_tse3ADMXaMkCGgPFtmTeNNxgFkBkUGgm-xGUINKUcQ22wGcZPyGu_32H4ISwBEIetdtoeyzCHn9Yxd3tHDutejdUPiusQOo9eG-j5qPunpmfow6b_nV-fJPBlcFBLveko655PFVV4dsp1O94GO3ucB-_fzx9_Fr_T2z_XNYn6bGlHgmDbGUF4hN4Jyoq4pW11qaBB1i43uypLX1BVGy6IqcxS6BiOl6CRyXqGgIj9gp5u7j949rSmMamXD9KkeyK2DkhVIKET9XxBLjlUFZQRP3sF1s6JWPXq70v5FfYQTgWoDGO9C8NQpY8e3qGJItlcIaupBLdXUg5p6UFCo2EO08i_Wz-vfmS42phg6PVvyKhhLg6HWejKjap39zv4K35ue0Q
CitedBy_id crossref_primary_10_1089_ars_2017_7145
crossref_primary_10_3390_biomedicines11092560
crossref_primary_10_1111_jcmm_15912
crossref_primary_10_1189_jlb_4MR0617_226R
crossref_primary_10_1152_physrev_00046_2020
crossref_primary_10_1097_FJC_0000000000001400
crossref_primary_10_1016_j_mad_2020_111249
crossref_primary_10_15252_embj_2019103420
crossref_primary_10_3389_fimmu_2019_01720
crossref_primary_10_1038_s41514_024_00157_1
crossref_primary_10_1080_10428194_2022_2090551
crossref_primary_10_1016_j_gendis_2021_04_001
crossref_primary_10_1080_13510002_2018_1487174
crossref_primary_10_1016_j_bbrc_2024_149590
crossref_primary_10_3389_fendo_2022_896356
crossref_primary_10_1089_rej_2015_1767
crossref_primary_10_1152_ajpcell_00139_2017
crossref_primary_10_1016_j_isci_2023_108188
crossref_primary_10_1093_intimm_dxy068
crossref_primary_10_3389_fphys_2019_01125
crossref_primary_10_1016_j_cld_2023_05_001
crossref_primary_10_1158_1078_0432_CCR_13_0150
crossref_primary_10_1038_s41514_021_00058_7
crossref_primary_10_3109_10428194_2010_483299
crossref_primary_10_1152_ajpcell_00638_2005
crossref_primary_10_1038_onc_2013_163
crossref_primary_10_1016_j_mad_2021_111545
crossref_primary_10_1016_j_mcpro_2023_100510
crossref_primary_10_1038_nrneph_2017_5
crossref_primary_10_1016_j_mad_2024_111917
crossref_primary_10_1101_gad_335109_119
crossref_primary_10_1016_j_chembiol_2017_12_008
crossref_primary_10_1016_j_bbrc_2006_08_066
crossref_primary_10_3389_fphys_2021_702276
crossref_primary_10_21769_BioProtoc_2938
crossref_primary_10_1016_j_tcb_2014_04_002
crossref_primary_10_21769_BioProtoc_2937
crossref_primary_10_1002_ana_24425
crossref_primary_10_1111_acel_12751
crossref_primary_10_1016_j_phrs_2017_08_010
crossref_primary_10_1055_a_2382_6829
crossref_primary_10_1016_j_msard_2023_105126
crossref_primary_10_1080_13543784_2020_1814253
crossref_primary_10_1111_j_1365_2826_2010_01970_x
crossref_primary_10_3389_fimmu_2019_01187
crossref_primary_10_1007_s00232_008_9149_x
crossref_primary_10_1186_s13578_023_01031_5
crossref_primary_10_1093_femsre_fuab037
crossref_primary_10_3390_cells9010228
crossref_primary_10_3390_nu13103435
crossref_primary_10_1097_MD_0000000000038347
crossref_primary_10_4049_jimmunol_181_1_92
crossref_primary_10_1096_fj_201800235R
crossref_primary_10_1089_ars_2023_0241
crossref_primary_10_1016_j_bbapap_2015_02_021
crossref_primary_10_1083_jcb_202106080
crossref_primary_10_1038_aps_2008_7
crossref_primary_10_1016_j_molcel_2018_10_023
crossref_primary_10_3390_jcm8081178
crossref_primary_10_1111_cpr_13796
crossref_primary_10_1002_iub_1997
crossref_primary_10_1371_journal_pgen_1004414
crossref_primary_10_1007_s11010_008_9834_1
crossref_primary_10_1016_j_acvd_2015_10_004
crossref_primary_10_1016_j_molmed_2017_08_001
crossref_primary_10_12688_f1000research_12120_1
crossref_primary_10_1007_s00216_022_04469_7
crossref_primary_10_15252_emmm_202012860
crossref_primary_10_1038_s41581_019_0216_6
crossref_primary_10_1007_s13311_022_01336_2
crossref_primary_10_1089_ars_2023_0350
crossref_primary_10_3390_ijms25094680
crossref_primary_10_3390_cells10010128
crossref_primary_10_3390_cancers14225633
crossref_primary_10_1128_JB_00785_17
crossref_primary_10_1007_s11064_012_0760_y
crossref_primary_10_1007_s12975_021_00892_7
crossref_primary_10_1038_s41598_017_18393_9
crossref_primary_10_3390_antiox10101643
crossref_primary_10_1038_s41467_024_46009_0
crossref_primary_10_15252_embj_201797135
crossref_primary_10_3390_biom10030396
crossref_primary_10_3390_biomedicines9020169
crossref_primary_10_1007_s10557_020_07007_8
crossref_primary_10_1016_j_jbc_2025_108248
crossref_primary_10_1172_JCI120844
crossref_primary_10_1074_jbc_M114_560359
crossref_primary_10_1074_jbc_M112_365874
crossref_primary_10_1016_j_mce_2016_11_003
crossref_primary_10_1189_jlb_0807581
crossref_primary_10_1007_s10059_013_0297_1
crossref_primary_10_1016_j_neuron_2015_12_023
crossref_primary_10_1007_s00011_024_01863_y
crossref_primary_10_1016_j_isci_2020_101902
crossref_primary_10_1016_j_cca_2021_01_012
crossref_primary_10_1155_2016_7410257
crossref_primary_10_1152_ajpheart_00409_2017
crossref_primary_10_1042_BST20190033
crossref_primary_10_1016_j_lfs_2011_07_020
crossref_primary_10_1016_j_tem_2011_10_005
crossref_primary_10_1523_JNEUROSCI_2264_20_2021
crossref_primary_10_1016_j_expneurol_2020_113219
crossref_primary_10_1371_journal_pone_0220794
crossref_primary_10_1007_s12035_024_04675_7
crossref_primary_10_1016_j_biochi_2008_09_003
crossref_primary_10_1016_j_neures_2006_11_008
crossref_primary_10_1016_j_xcrm_2024_101400
crossref_primary_10_1111_acel_13920
crossref_primary_10_3390_ijms241310749
crossref_primary_10_3390_nu12061616
crossref_primary_10_3390_cells9020471
crossref_primary_10_1021_pr4010597
crossref_primary_10_1089_ars_2017_7445
crossref_primary_10_1016_j_coi_2015_10_005
crossref_primary_10_3390_ijms24010137
crossref_primary_10_1124_jpet_118_254557
crossref_primary_10_1016_j_gene_2012_02_001
crossref_primary_10_1016_j_bbrc_2019_03_199
crossref_primary_10_1016_j_celrep_2017_01_007
crossref_primary_10_1155_2012_302875
crossref_primary_10_1111_jcmm_13076
crossref_primary_10_1074_mcp_RA118_000882
crossref_primary_10_1016_j_jbc_2022_102037
crossref_primary_10_1159_000543274
crossref_primary_10_1007_s10522_019_09805_6
crossref_primary_10_3177_jnsv_70_295
crossref_primary_10_1016_j_neuint_2017_03_009
crossref_primary_10_1021_acs_jmedchem_3c00391
crossref_primary_10_1196_annals_1427_026
crossref_primary_10_1002_jnr_21498
crossref_primary_10_1111_jne_12508
crossref_primary_10_1016_j_jneuroim_2024_578409
crossref_primary_10_31857_S1027813323030159
crossref_primary_10_1016_j_phrs_2016_10_027
crossref_primary_10_1007_s10522_013_9489_5
crossref_primary_10_18632_oncotarget_18841
crossref_primary_10_1016_j_freeradbiomed_2012_10_525
crossref_primary_10_1172_JCI39319
crossref_primary_10_2119_2006_00099_Lund
crossref_primary_10_1016_j_isci_2024_108978
crossref_primary_10_1038_s41598_023_49450_1
crossref_primary_10_3390_ijms22168560
crossref_primary_10_1097_WNR_0000000000000139
crossref_primary_10_1016_j_bcp_2019_02_021
crossref_primary_10_3390_ph17020226
crossref_primary_10_18699_SSMJ20210505
crossref_primary_10_1038_s42255_019_0161_5
crossref_primary_10_3390_ijms25084356
crossref_primary_10_1186_s40170_018_0186_3
crossref_primary_10_3390_cells9112444
crossref_primary_10_1016_j_bbrc_2012_01_084
crossref_primary_10_1134_S1819712423030157
crossref_primary_10_3390_ijms24032959
crossref_primary_10_1021_jm502009h
crossref_primary_10_1126_science_aac4854
crossref_primary_10_1016_j_biochi_2011_05_027
crossref_primary_10_1016_j_cmet_2015_05_023
crossref_primary_10_3389_fmed_2021_703076
crossref_primary_10_1167_iovs_65_5_36
crossref_primary_10_1016_j_celrep_2019_12_014
crossref_primary_10_1089_ars_2018_7722
crossref_primary_10_1016_j_cmet_2018_03_016
crossref_primary_10_1007_s11064_019_02729_0
crossref_primary_10_1016_j_omton_2024_200819
crossref_primary_10_1038_s41598_017_16388_0
crossref_primary_10_2139_ssrn_4054845
crossref_primary_10_1038_nrendo_2015_181
crossref_primary_10_1016_j_athplu_2024_06_001
crossref_primary_10_1038_sj_onc_1210616
crossref_primary_10_1080_14737140_2016_1190649
crossref_primary_10_3389_fimmu_2020_597959
crossref_primary_10_1002_glia_23139
crossref_primary_10_1021_jm501037u
crossref_primary_10_1073_pnas_2211310119
crossref_primary_10_4049_jimmunol_1500736
crossref_primary_10_1016_j_tma_2018_08_003
crossref_primary_10_1080_1062936X_2018_1545695
crossref_primary_10_1016_j_isci_2022_103812
crossref_primary_10_1016_j_bcp_2020_114093
crossref_primary_10_3389_fonc_2022_834002
crossref_primary_10_1038_leu_2017_281
crossref_primary_10_1134_S1819712408030136
crossref_primary_10_1016_j_isci_2022_105431
crossref_primary_10_3390_life13010041
crossref_primary_10_1074_jbc_M115_698779
crossref_primary_10_1101_gad_291518_116
crossref_primary_10_1210_er_2009_0026
crossref_primary_10_1016_j_yjmcc_2022_01_008
crossref_primary_10_1007_s11010_007_9582_7
crossref_primary_10_1007_s10522_023_10031_4
crossref_primary_10_1210_endocr_bqae043
crossref_primary_10_1096_fj_07_8290com
crossref_primary_10_18632_aging_103410
crossref_primary_10_1126_science_1258366
crossref_primary_10_12997_jla_2022_11_2_111
crossref_primary_10_1126_sciimmunol_abq3015
crossref_primary_10_1155_2013_691251
crossref_primary_10_2119_2006_00075_Billington
crossref_primary_10_3389_fphar_2021_735044
crossref_primary_10_1002_mco2_62
crossref_primary_10_1021_acs_chemrev_0c00416
crossref_primary_10_1016_j_yjmcc_2018_02_015
crossref_primary_10_1155_2016_9831825
crossref_primary_10_1158_1541_7786_MCR_17_0526
crossref_primary_10_1152_physrev_00035_2007
crossref_primary_10_1089_rej_2017_1975
crossref_primary_10_1172_jci_insight_120182
crossref_primary_10_3390_genes12111776
crossref_primary_10_1177_0271678X20969588
crossref_primary_10_15252_emmm_202113943
crossref_primary_10_1002_jnr_22626
crossref_primary_10_1152_ajpcell_00451_2021
crossref_primary_10_1016_j_jhep_2023_02_035
crossref_primary_10_31083_j_fbl2701021
crossref_primary_10_1038_nature18928
crossref_primary_10_1016_j_cellsig_2019_109496
crossref_primary_10_3390_cells12040595
crossref_primary_10_1002_art_42351
crossref_primary_10_1089_ars_2007_1672
crossref_primary_10_3390_medicina58010061
crossref_primary_10_1016_j_jnutbio_2021_108852
crossref_primary_10_1093_cvr_cvae025
crossref_primary_10_3390_cells9071716
crossref_primary_10_3390_ijms22094661
crossref_primary_10_1007_s11064_016_2031_9
crossref_primary_10_1016_j_semcancer_2024_10_005
crossref_primary_10_1111_apha_13551
crossref_primary_10_1016_j_bbrc_2010_07_040
crossref_primary_10_1016_j_cmet_2016_05_006
crossref_primary_10_1016_j_pharmthera_2024_108700
crossref_primary_10_1016_j_cmet_2017_12_014
crossref_primary_10_1111_eci_13334
crossref_primary_10_1016_j_exger_2020_110972
crossref_primary_10_1016_j_biopha_2022_113395
crossref_primary_10_1016_j_freeradbiomed_2023_09_035
crossref_primary_10_1111_cns_14344
crossref_primary_10_1111_j_1582_4934_2011_01462_x
crossref_primary_10_1038_s41467_024_52617_7
crossref_primary_10_1088_1742_6596_1294_5_052073
crossref_primary_10_1124_dmd_120_000139
crossref_primary_10_1016_j_isci_2023_107949
crossref_primary_10_3390_v15061363
crossref_primary_10_1016_j_ab_2020_113797
crossref_primary_10_2337_db12_1139
crossref_primary_10_3390_cells13171509
crossref_primary_10_1016_j_celrep_2018_07_086
crossref_primary_10_1186_s12879_022_07895_1
crossref_primary_10_1038_s42255_020_00298_z
crossref_primary_10_1134_S181971240903009X
crossref_primary_10_3390_cells10061402
crossref_primary_10_1530_JME_18_0085
crossref_primary_10_1016_j_bbadis_2024_167488
crossref_primary_10_1016_j_bbrc_2019_10_019
crossref_primary_10_1016_j_tips_2018_02_001
crossref_primary_10_1016_j_bcp_2014_08_026
crossref_primary_10_1212_WNL_0b013e318260cbd0
crossref_primary_10_3390_ijms22094558
crossref_primary_10_3390_cells11040710
crossref_primary_10_1179_1351000212Y_0000000001
Cites_doi 10.1126/science.1102497
10.1126/science.1098014
10.1126/science.8235624
10.1074/jbc.M908231199
10.1074/jbc.274.4.1869
10.1042/bj3620125
10.1016/S0021-9258(19)85279-1
10.1074/jbc.M004469200
10.1002/0470862637.ch14
10.1161/01.RES.86.11.1153
10.1074/jbc.M301196200
10.1016/S0021-9258(18)43806-9
10.1042/bj3610379
10.1111/j.1742-4658.2005.04862.x
10.1038/nature03354
10.1074/jbc.270.7.3216
10.1016/S0006-8993(97)00117-0
10.1096/fj.04-1841rev
10.4049/jimmunol.174.6.3298
10.1042/BJ20041217
10.1038/365388a0
10.1002/bies.10297
10.1016/S0248-4900(00)01070-4
10.1016/j.cell.2005.01.029
10.1152/ajpcell.1996.271.4.C1007
10.1182/blood.V92.4.1324
10.1074/jbc.M506162200
10.1074/jbc.270.51.30327
10.1006/abbi.1999.1463
ContentType Journal Article
Copyright 2006 Elsevier Inc.
Copyright_xml – notice: 2006 Elsevier Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
P64
RC3
7X8
DOI 10.1016/j.bbrc.2006.05.042
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Genetics Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1090-2104
EndPage 1392
ExternalDocumentID 16730329
10_1016_j_bbrc_2006_05_042
S0006291X06010643
Genre Journal Article
Comparative Study
GroupedDBID ---
--K
--M
-~X
.55
.GJ
.HR
.~1
0R~
1B1
1CY
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
9M8
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYJJ
ABEFU
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACKIV
ACNCT
ACRLP
ADBBV
ADEZE
ADFGL
ADIYS
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AHPSJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
D0L
DM4
DOVZS
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
K-O
KOM
L7B
LG5
LX2
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
TWZ
UQL
WH7
WUQ
X7M
XPP
XSW
Y6R
ZA5
ZGI
ZKB
ZMT
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
CGR
CUY
CVF
ECM
EIF
NPM
PKN
8FD
ACLOT
FR3
P64
RC3
7X8
ID FETCH-LOGICAL-c451t-bcce3812c4e3eefb7da7a0b11ad1baf7729ef5ca6587314a90c664f6122814e53
IEDL.DBID AIKHN
ISSN 0006-291X
IngestDate Thu Sep 04 19:51:39 EDT 2025
Sat Sep 27 23:51:52 EDT 2025
Wed Feb 19 01:53:06 EST 2025
Thu Sep 18 00:13:43 EDT 2025
Thu Apr 24 22:54:43 EDT 2025
Fri Feb 23 02:25:03 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords NAD
Brain
CD38
cADPR
Calcium
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-bcce3812c4e3eefb7da7a0b11ad1baf7729ef5ca6587314a90c664f6122814e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 16730329
PQID 17218807
PQPubID 23462
PageCount 7
ParticipantIDs proquest_miscellaneous_68060549
proquest_miscellaneous_17218807
pubmed_primary_16730329
crossref_citationtrail_10_1016_j_bbrc_2006_05_042
crossref_primary_10_1016_j_bbrc_2006_05_042
elsevier_sciencedirect_doi_10_1016_j_bbrc_2006_05_042
PublicationCentury 2000
PublicationDate 2006-07-14
PublicationDateYYYYMMDD 2006-07-14
PublicationDate_xml – month: 07
  year: 2006
  text: 2006-07-14
  day: 14
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biochemical and biophysical research communications
PublicationTitleAlternate Biochem Biophys Res Commun
PublicationYear 2006
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Ceni, Muller-Steffner, Lund, Pochon, Schweitzer, De Waard, Schuber, Villaz, Moutin (bib29) 2003; 278
Scovassi (bib31) 2004; 18
Howard, Grimaldi, Bazan, Lund, Santos-Argumedo, Parkhouse, Walseth, Lee (bib19) 1993; 262
Khoo, Han, Park, Chae, Kim, Lee, Bay, Chang (bib24) 2000; 275
Ziegler, Niere (bib4) 2004; 382
Pillai, Isbatan, Imai, Gupta (bib3) 2005; 280
Bedalov, Simon (bib8) 2004; 305
Berridge (bib10) 1993; 365
Aarhus, Graeff, Dickey, Walseth, Lee (bib14) 1995; 270
de Toledo, Cheng, Liang, Chini, Dousa (bib20) 2000; 86
Kontani, Nishina, Ohoka, Takahashi, Katada (bib25) 1993; 268
Gu, Luo, Books, Nikolaev, Li (bib5) 2004; 259
Araki, Sasaki, Milbrandt (bib9) 2004; 305
Galione, Patel, Churchill (bib12) 2000; 92
Guarente, Picard (bib2) 2005; 120
Liang, Chini, Cheng, Dousa (bib22) 1999; 371
Rodgers, Lerin, Haas, Gygi, Spiegelman, Puigserver (bib7) 2005; 434
Krebs, Adriouch, Braasch, Koestner, Leiter, Seman, Lund, Oppenheimer, Haag, Koch-Nolte (bib30) 2005; 174
Cockayne, Muchamuel, Grimaldi, Muller-Streffner, Randall, Lund, Murray, Shuber, Howard (bib18) 1998; 92
Fukushi, Kato, Takasawa, Sasaki, Ong, Sato, Ohsaga, Sato, Shirato, Okamoto, Maruyama (bib21) 2001; 276
Grubisha, Smith, Denu (bib1) 2005; 272
Chini, Chini, Kato, Takasawa, Okamoto (bib23) 2002; 362
Yamada, Mizuguchi, Otsuka, Ikeda, Takahashi (bib26) 1997; 756
Graeff, Walseth, Fryxell, Branton, Lee (bib27) 1994; 269
Rongvaux, Andris, Van Gool, Leo (bib6) 2003; 7
Chini, Beers, Dousa (bib13) 1995; 270
Lee (bib16) 1999; 380
Chini, Thompson, Dousa (bib15) 1996; 10
Dousa, Chini, Beers (bib11) 1996; 271
Kato, Yamamoto, Fujimura, Noguchi, Takasawa, Okamoto (bib17) 1999; 274
Graeff, Lee (bib28) 2001; 361
Scovassi (10.1016/j.bbrc.2006.05.042_bib31) 2004; 18
Grubisha (10.1016/j.bbrc.2006.05.042_bib1) 2005; 272
Aarhus (10.1016/j.bbrc.2006.05.042_bib14) 1995; 270
Liang (10.1016/j.bbrc.2006.05.042_bib22) 1999; 371
Gu (10.1016/j.bbrc.2006.05.042_bib5) 2004; 259
Khoo (10.1016/j.bbrc.2006.05.042_bib24) 2000; 275
Rodgers (10.1016/j.bbrc.2006.05.042_bib7) 2005; 434
Graeff (10.1016/j.bbrc.2006.05.042_bib27) 1994; 269
Yamada (10.1016/j.bbrc.2006.05.042_bib26) 1997; 756
Kontani (10.1016/j.bbrc.2006.05.042_bib25) 1993; 268
Howard (10.1016/j.bbrc.2006.05.042_bib19) 1993; 262
Pillai (10.1016/j.bbrc.2006.05.042_bib3) 2005; 280
Chini (10.1016/j.bbrc.2006.05.042_bib15) 1996; 10
Chini (10.1016/j.bbrc.2006.05.042_bib23) 2002; 362
Fukushi (10.1016/j.bbrc.2006.05.042_bib21) 2001; 276
Guarente (10.1016/j.bbrc.2006.05.042_bib2) 2005; 120
Rongvaux (10.1016/j.bbrc.2006.05.042_bib6) 2003; 7
Bedalov (10.1016/j.bbrc.2006.05.042_bib8) 2004; 305
de Toledo (10.1016/j.bbrc.2006.05.042_bib20) 2000; 86
Galione (10.1016/j.bbrc.2006.05.042_bib12) 2000; 92
Chini (10.1016/j.bbrc.2006.05.042_bib13) 1995; 270
Krebs (10.1016/j.bbrc.2006.05.042_bib30) 2005; 174
Ziegler (10.1016/j.bbrc.2006.05.042_bib4) 2004; 382
Araki (10.1016/j.bbrc.2006.05.042_bib9) 2004; 305
Berridge (10.1016/j.bbrc.2006.05.042_bib10) 1993; 365
Kato (10.1016/j.bbrc.2006.05.042_bib17) 1999; 274
Ceni (10.1016/j.bbrc.2006.05.042_bib29) 2003; 278
Graeff (10.1016/j.bbrc.2006.05.042_bib28) 2001; 361
Cockayne (10.1016/j.bbrc.2006.05.042_bib18) 1998; 92
Lee (10.1016/j.bbrc.2006.05.042_bib16) 1999; 380
Dousa (10.1016/j.bbrc.2006.05.042_bib11) 1996; 271
References_xml – volume: 270
  start-page: 30327
  year: 1995
  end-page: 30333
  ident: bib14
  article-title: ADP-ribosyl cyclase and CD38 catalyze the synthesis of a Ca2+-mobilizing metabolite from NADP
  publication-title: J. Biol. Chem.
– volume: 274
  start-page: 1869
  year: 1999
  end-page: 1872
  ident: bib17
  article-title: CD38 disruption impairs glucose-induced increases in cyclic ADP-ribose, [Ca2+]i, and insulin secretion
  publication-title: J. Biol. Chem.
– volume: 362
  start-page: 125
  year: 2002
  end-page: 130
  ident: bib23
  article-title: CD38 is the major enzyme responsible for synthesis of nicotinic acid–adenine dinucleotide phosphate in mammalian tissues
  publication-title: Biochem. J.
– volume: 382
  start-page: 5
  year: 2004
  end-page: 6
  ident: bib4
  article-title: NAD
  publication-title: Biochem. J.
– volume: 10
  start-page: A143
  year: 1996
  ident: bib15
  article-title: Enzymatic synthesis of NAADP and ADP-ribosyl cyclases
  publication-title: FASEB J.
– volume: 92
  start-page: 197
  year: 2000
  end-page: 204
  ident: bib12
  article-title: NAADP-induced calcium release in sea urchin eggs
  publication-title: Biol. Cell
– volume: 361
  start-page: 379
  year: 2001
  end-page: 384
  ident: bib28
  article-title: A novel cycling assay for cellular cADP-ribose with nanomolar sensitivity
  publication-title: Biochem. J.
– volume: 365
  start-page: 388
  year: 1993
  end-page: 389
  ident: bib10
  article-title: Cell signalling. A tale of two messengers
  publication-title: Nature
– volume: 272
  start-page: 4607
  year: 2005
  end-page: 4616
  ident: bib1
  article-title: Small molecule regulation of Sir2 protein deacetylases
  publication-title: FEBS J.
– volume: 18
  start-page: 1487
  year: 2004
  end-page: 1488
  ident: bib31
  article-title: Mitochondrial poly(ADP-ribosylation): from old data to new perspectives
  publication-title: FASEB J.
– volume: 276
  start-page: 649
  year: 2001
  end-page: 655
  ident: bib21
  article-title: Identification of cyclic ADP-ribose-dependent mechanisms in pancreatic muscarinic Ca2+ signaling using CD38 knockout mice
  publication-title: J. Biol. Chem.
– volume: 305
  start-page: 1010
  year: 2004
  end-page: 1013
  ident: bib9
  article-title: Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration
  publication-title: Science
– volume: 275
  start-page: 24807
  year: 2000
  end-page: 24817
  ident: bib24
  article-title: Localization of the cyclic ADP-ribose-dependent calcium signaling pathway in hepatocyte nucleus
  publication-title: J. Biol. Chem.
– volume: 262
  start-page: 1056
  year: 1993
  end-page: 1059
  ident: bib19
  article-title: Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38
  publication-title: Science
– volume: 278
  start-page: 40670
  year: 2003
  end-page: 40678
  ident: bib29
  article-title: Evidence for an intracellular ADP-ribosyl cyclase/NAD+-glycohydrolase in brain from CD38-deficient mice
  publication-title: J. Biol. Chem.
– volume: 268
  start-page: 16895
  year: 1993
  end-page: 16898
  ident: bib25
  article-title: NAD glycohydrolase specifically induced by retinoic acid in human leukemic HL-60 cells. Identification of the NAD glycohydrolase as leukocyte cell surface antigen CD38
  publication-title: J. Biol. Chem.
– volume: 380
  start-page: 785
  year: 1999
  end-page: 793
  ident: bib16
  article-title: A unified mechanism of enzymatic synthesis of two calcium messengers: cyclic ADP-ribose and NAADP
  publication-title: J. Biol. Chem.
– volume: 120
  start-page: 473
  year: 2005
  end-page: 482
  ident: bib2
  article-title: Calorie restriction—the SIR2 connection
  publication-title: Cell
– volume: 280
  start-page: 43121
  year: 2005
  end-page: 43130
  ident: bib3
  article-title: Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2alpha deacetylase activity
  publication-title: J. Biol. Chem.
– volume: 434
  start-page: 113
  year: 2005
  end-page: 118
  ident: bib7
  article-title: Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1
  publication-title: Nature
– volume: 7
  start-page: 683
  year: 2003
  end-page: 690
  ident: bib6
  publication-title: Bioassay
– volume: 371
  start-page: 317
  year: 1999
  end-page: 325
  ident: bib22
  article-title: Synthesis of NAADP and cADPR in mitochondria
  publication-title: Arch. Biochem. Biophys.
– volume: 271
  start-page: C1007
  year: 1996
  end-page: C1024
  ident: bib11
  article-title: Adenine nucleotide diphosphates: emerging second messengers acting via intracellular Ca2+ release
  publication-title: Am. J. Physiol.
– volume: 92
  start-page: 1324
  year: 1998
  end-page: 1333
  ident: bib18
  article-title: Mice deficient for the ecto-nicotinamide adenine dinucleotide glycohydrolase CD38 exhibit altered humoral immune responses
  publication-title: Blood
– volume: 305
  start-page: 954
  year: 2004
  end-page: 955
  ident: bib8
  article-title: Neuroscience. NAD to the rescue
  publication-title: Science
– volume: 174
  start-page: 3298
  year: 2005
  end-page: 3305
  ident: bib30
  article-title: CD38 controls ADP-ribosyltransferase-2-catalyzed ADP-ribosylation of T cell surface proteins
  publication-title: J. Immunol.
– volume: 259
  start-page: 197
  year: 2004
  end-page: 205
  ident: bib5
  article-title: Dynamics of the p53 acetylation pathway
  publication-title: Norvatis Found. Symp.
– volume: 86
  start-page: 1153
  year: 2000
  end-page: 1159
  ident: bib20
  article-title: ADP-ribosyl cyclase in rat vascular smooth muscle cells: properties and regulation
  publication-title: Circ. Res.
– volume: 270
  start-page: 3216
  year: 1995
  end-page: 3223
  ident: bib13
  article-title: Nicotinate adenine dinucleotide phosphate (NAADP) triggers a specific calcium release system in sea urchin eggs
  publication-title: J. Biol. Chem.
– volume: 269
  start-page: 30260
  year: 1994
  end-page: 30267
  ident: bib27
  article-title: Enzymatic synthesis and characterizations of cyclic GDP-ribose: a procedure for distinguishing enzymes with ADP-ribosyl cyclase activity
  publication-title: J. Biol. Chem.
– volume: 756
  start-page: 52
  year: 1997
  end-page: 60
  ident: bib26
  article-title: Ultrastructural localization of CD38 immunoreactivity in rat brain
  publication-title: Brain Res.
– volume: 305
  start-page: 954
  year: 2004
  ident: 10.1016/j.bbrc.2006.05.042_bib8
  article-title: Neuroscience. NAD to the rescue
  publication-title: Science
  doi: 10.1126/science.1102497
– volume: 305
  start-page: 1010
  year: 2004
  ident: 10.1016/j.bbrc.2006.05.042_bib9
  article-title: Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration
  publication-title: Science
  doi: 10.1126/science.1098014
– volume: 262
  start-page: 1056
  year: 1993
  ident: 10.1016/j.bbrc.2006.05.042_bib19
  article-title: Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38
  publication-title: Science
  doi: 10.1126/science.8235624
– volume: 275
  start-page: 24807
  year: 2000
  ident: 10.1016/j.bbrc.2006.05.042_bib24
  article-title: Localization of the cyclic ADP-ribose-dependent calcium signaling pathway in hepatocyte nucleus
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M908231199
– volume: 274
  start-page: 1869
  year: 1999
  ident: 10.1016/j.bbrc.2006.05.042_bib17
  article-title: CD38 disruption impairs glucose-induced increases in cyclic ADP-ribose, [Ca2+]i, and insulin secretion
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.4.1869
– volume: 380
  start-page: 785
  year: 1999
  ident: 10.1016/j.bbrc.2006.05.042_bib16
  article-title: A unified mechanism of enzymatic synthesis of two calcium messengers: cyclic ADP-ribose and NAADP
  publication-title: J. Biol. Chem.
– volume: 362
  start-page: 125
  year: 2002
  ident: 10.1016/j.bbrc.2006.05.042_bib23
  article-title: CD38 is the major enzyme responsible for synthesis of nicotinic acid–adenine dinucleotide phosphate in mammalian tissues
  publication-title: Biochem. J.
  doi: 10.1042/bj3620125
– volume: 268
  start-page: 16895
  year: 1993
  ident: 10.1016/j.bbrc.2006.05.042_bib25
  article-title: NAD glycohydrolase specifically induced by retinoic acid in human leukemic HL-60 cells. Identification of the NAD glycohydrolase as leukocyte cell surface antigen CD38
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)85279-1
– volume: 276
  start-page: 649
  year: 2001
  ident: 10.1016/j.bbrc.2006.05.042_bib21
  article-title: Identification of cyclic ADP-ribose-dependent mechanisms in pancreatic muscarinic Ca2+ signaling using CD38 knockout mice
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M004469200
– volume: 259
  start-page: 197
  year: 2004
  ident: 10.1016/j.bbrc.2006.05.042_bib5
  article-title: Dynamics of the p53 acetylation pathway
  publication-title: Norvatis Found. Symp.
  doi: 10.1002/0470862637.ch14
– volume: 86
  start-page: 1153
  year: 2000
  ident: 10.1016/j.bbrc.2006.05.042_bib20
  article-title: ADP-ribosyl cyclase in rat vascular smooth muscle cells: properties and regulation
  publication-title: Circ. Res.
  doi: 10.1161/01.RES.86.11.1153
– volume: 278
  start-page: 40670
  issue: 42
  year: 2003
  ident: 10.1016/j.bbrc.2006.05.042_bib29
  article-title: Evidence for an intracellular ADP-ribosyl cyclase/NAD+-glycohydrolase in brain from CD38-deficient mice
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M301196200
– volume: 269
  start-page: 30260
  year: 1994
  ident: 10.1016/j.bbrc.2006.05.042_bib27
  article-title: Enzymatic synthesis and characterizations of cyclic GDP-ribose: a procedure for distinguishing enzymes with ADP-ribosyl cyclase activity
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)43806-9
– volume: 361
  start-page: 379
  year: 2001
  ident: 10.1016/j.bbrc.2006.05.042_bib28
  article-title: A novel cycling assay for cellular cADP-ribose with nanomolar sensitivity
  publication-title: Biochem. J.
  doi: 10.1042/bj3610379
– volume: 272
  start-page: 4607
  year: 2005
  ident: 10.1016/j.bbrc.2006.05.042_bib1
  article-title: Small molecule regulation of Sir2 protein deacetylases
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2005.04862.x
– volume: 434
  start-page: 113
  year: 2005
  ident: 10.1016/j.bbrc.2006.05.042_bib7
  article-title: Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1
  publication-title: Nature
  doi: 10.1038/nature03354
– volume: 270
  start-page: 3216
  year: 1995
  ident: 10.1016/j.bbrc.2006.05.042_bib13
  article-title: Nicotinate adenine dinucleotide phosphate (NAADP) triggers a specific calcium release system in sea urchin eggs
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.270.7.3216
– volume: 756
  start-page: 52
  year: 1997
  ident: 10.1016/j.bbrc.2006.05.042_bib26
  article-title: Ultrastructural localization of CD38 immunoreactivity in rat brain
  publication-title: Brain Res.
  doi: 10.1016/S0006-8993(97)00117-0
– volume: 18
  start-page: 1487
  year: 2004
  ident: 10.1016/j.bbrc.2006.05.042_bib31
  article-title: Mitochondrial poly(ADP-ribosylation): from old data to new perspectives
  publication-title: FASEB J.
  doi: 10.1096/fj.04-1841rev
– volume: 174
  start-page: 3298
  year: 2005
  ident: 10.1016/j.bbrc.2006.05.042_bib30
  article-title: CD38 controls ADP-ribosyltransferase-2-catalyzed ADP-ribosylation of T cell surface proteins
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.174.6.3298
– volume: 382
  start-page: 5
  year: 2004
  ident: 10.1016/j.bbrc.2006.05.042_bib4
  article-title: NAD+ surfaces again
  publication-title: Biochem. J.
  doi: 10.1042/BJ20041217
– volume: 365
  start-page: 388
  year: 1993
  ident: 10.1016/j.bbrc.2006.05.042_bib10
  article-title: Cell signalling. A tale of two messengers
  publication-title: Nature
  doi: 10.1038/365388a0
– volume: 7
  start-page: 683
  year: 2003
  ident: 10.1016/j.bbrc.2006.05.042_bib6
  publication-title: Bioassay
  doi: 10.1002/bies.10297
– volume: 92
  start-page: 197
  year: 2000
  ident: 10.1016/j.bbrc.2006.05.042_bib12
  article-title: NAADP-induced calcium release in sea urchin eggs
  publication-title: Biol. Cell
  doi: 10.1016/S0248-4900(00)01070-4
– volume: 10
  start-page: A143
  year: 1996
  ident: 10.1016/j.bbrc.2006.05.042_bib15
  article-title: Enzymatic synthesis of NAADP and ADP-ribosyl cyclases
  publication-title: FASEB J.
– volume: 120
  start-page: 473
  year: 2005
  ident: 10.1016/j.bbrc.2006.05.042_bib2
  article-title: Calorie restriction—the SIR2 connection
  publication-title: Cell
  doi: 10.1016/j.cell.2005.01.029
– volume: 271
  start-page: C1007
  year: 1996
  ident: 10.1016/j.bbrc.2006.05.042_bib11
  article-title: Adenine nucleotide diphosphates: emerging second messengers acting via intracellular Ca2+ release
  publication-title: Am. J. Physiol.
  doi: 10.1152/ajpcell.1996.271.4.C1007
– volume: 92
  start-page: 1324
  year: 1998
  ident: 10.1016/j.bbrc.2006.05.042_bib18
  article-title: Mice deficient for the ecto-nicotinamide adenine dinucleotide glycohydrolase CD38 exhibit altered humoral immune responses
  publication-title: Blood
  doi: 10.1182/blood.V92.4.1324
– volume: 280
  start-page: 43121
  year: 2005
  ident: 10.1016/j.bbrc.2006.05.042_bib3
  article-title: Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2alpha deacetylase activity
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M506162200
– volume: 270
  start-page: 30327
  year: 1995
  ident: 10.1016/j.bbrc.2006.05.042_bib14
  article-title: ADP-ribosyl cyclase and CD38 catalyze the synthesis of a Ca2+-mobilizing metabolite from NADP
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.270.51.30327
– volume: 371
  start-page: 317
  year: 1999
  ident: 10.1016/j.bbrc.2006.05.042_bib22
  article-title: Synthesis of NAADP and cADPR in mitochondria
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1006/abbi.1999.1463
SSID ssj0011469
Score 2.3722742
Snippet Nicotinamide adenine dinucleotide (NAD) plays key roles in many cellular functions. In addition to its well-known role in energy metabolism, NAD also plays a...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1386
SubjectTerms ADP-ribosyl Cyclase 1 - genetics
ADP-ribosyl Cyclase 1 - metabolism
ADP-ribosyl Cyclase 1 - physiology
Animals
Blotting, Western
Brain
Brain - enzymology
Brain - metabolism
cADPR
Calcium
Catalysis
CD38
Cell Membrane - enzymology
Cell Membrane - metabolism
Cell Nucleus - enzymology
Cell Nucleus - metabolism
Cells, Cultured
Female
Genotype
Humans
Intracellular Fluid - metabolism
Male
Mice
Mice, Inbred C57BL
Mice, Knockout
Mitochondria - enzymology
Mitochondria - metabolism
Myocardium - enzymology
Myocardium - metabolism
NAD
NAD - metabolism
NAD+ Nucleosidase - metabolism
Spleen - enzymology
Spleen - metabolism
Testis - enzymology
Testis - metabolism
Title Regulation of intracellular levels of NAD: A novel role for CD38
URI https://dx.doi.org/10.1016/j.bbrc.2006.05.042
https://www.ncbi.nlm.nih.gov/pubmed/16730329
https://www.proquest.com/docview/17218807
https://www.proquest.com/docview/68060549
Volume 345
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61WyF6QdDyKI_iA-KC0saJ7TicCFuqBcQeEJX2ZtmOLS0q2ardHnrhtzOTOEUctgdukWVLzow1880b4E1oFSoOzbM2ujKjlm5ZHTxarZF7rcpYc0-1w9_manYmvizkYgumYy0MpVUm2T_I9F5ap5XjRM3ji-WSanxzVdR8kfehQlFuw06B2l5PYKf5_HU2vw0moDBIKFhldCDVzgxpXs5d-hSTkEe5KDbpp034s9dDpw_hQQKQrBnu-Ai2QrcH-02HxvOvG_aW9Smdva98D-59HL_uT8fBbvvw4fswfx45wlaRLcm9S_57Skhl55REdEXr8-bkPWtYt8IFRkmIDPEtm56U-jGcnX76MZ1laZBC5oXk68x5H1AzF16EMoToqtZWNnec25Y7Gwlghyi9RTRSlVzYOvdKiYjgp9BcBFk-gUm36sIzYIrisCJY1Wotispp6XT0aOhSH0Er6gPgI_mMT13GadjFuRnTyX4aIjmNv1QmlwZJfgDvbs9cDD027twtR66Yf16KQSVw57nXIwsNEpzoaruwur4yZAWjGKs271AaH5mkv3s68P7vPRWKyLKon__nrV7A7uDUqTIuXsJkfXkdXiHMWbtD2D76zQ_TY_4Dewr4RQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7RRRVcKgptoaXFh6qXKiVObMfpqelStBTYQwXS3qzYsaWtIItgOfDvO5M4VD0sh94iy5acGWvmmzfAR98oVByaJ02weUIt3ZLSO7RaA3da5aHkjmqHz6dqcil-zuRsDcZDLQylVUbZ38v0TlrHlcNIzcOb-ZxqfFOVlXyWdqFCkT-DdUFDrUewXp2cTqaPwQQUBhEFq4QOxNqZPs3L2lsXYxLySyqyVfppFf7s9NDxFryIAJJV_R1fwppvt2GnatF4vn5gn1iX0tn5yrfh-ffha2M8DHbbgW-_-vnzyBG2CGxO7l3y31NCKruiJKI7Wp9WR19ZxdoFLjBKQmSIb9n4KNev4PL4x8V4ksRBCokTki8T65xHzZw54XPvgy2auqhTy3ndcFsHAtg-SFcjGilyLuoydUqJgOAn01x4mb-GUbto_S4wRXFY4WvVaC2ywmppdXBo6FIfwVqUe8AH8hkXu4zTsIsrM6ST_TZEchp_qUwqDZJ8Dz4_nrnpe2w8uVsOXDH_vBSDSuDJcwcDCw0SnOhat35xf2fICkYxVqzeoTQ-Mkl_96bn_d97KhSReVa-_c9bHcDG5OL8zJydTE_fwWbv4CkSLvZhtLy99-8R8izth_ik_wBUgPor
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+intracellular+levels+of+NAD%3A+A+novel+role+for+CD38&rft.jtitle=Biochemical+and+biophysical+research+communications&rft.au=Aksoy%2C+Pinar&rft.au=White%2C+Thomas+A.&rft.au=Thompson%2C+Michael&rft.au=Chini%2C+Eduardo+N.&rft.date=2006-07-14&rft.pub=Elsevier+Inc&rft.issn=0006-291X&rft.eissn=1090-2104&rft.volume=345&rft.issue=4&rft.spage=1386&rft.epage=1392&rft_id=info:doi/10.1016%2Fj.bbrc.2006.05.042&rft.externalDocID=S0006291X06010643
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-291X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-291X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-291X&client=summon